1
|
Ji C, Kosman DJ. Molecular mechanisms of non-transferrin-bound and transferring-bound iron uptake in primary hippocampal neurons. J Neurochem 2015; 133:668-83. [PMID: 25649872 DOI: 10.1111/jnc.13040] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 01/08/2015] [Accepted: 01/14/2015] [Indexed: 12/16/2022]
Abstract
The molecular mechanisms of iron trafficking in neurons have not been elucidated. In this study, we characterized the expression and localization of ferrous iron transporters Zip8, Zip14 and divalent metal transporter 1 (DMT1), and ferrireductases Steap2 and stromal cell-derived receptor 2 in primary rat hippocampal neurons. Steap2 and Zip8 partially co-localize, indicating these two proteins may function in Fe(3+) reduction prior to Fe(2+) permeation. Zip8, DMT1, and Steap2 co-localize with the transferrin receptor/transferrin complex, suggesting they may be involved in transferrin receptor/transferrin-mediated iron assimilation. In brain interstitial fluid, transferring-bound iron (TBI) and non-transferrin-bound iron (NTBI) exist as potential iron sources. Primary hippocampal neurons exhibit significant iron uptake from TBI (Transferrin-(59) Fe(3+)) and NTBI, whether presented as (59) Fe(2+) -citrate or (59) Fe(3+) -citrate; reductase-independent (59) Fe(2+) uptake was the most efficient uptake pathway of the three. Kinetic analysis of Zn(2+) inhibition of Fe(2+) uptake indicated that DMT1 plays only a minor role in the uptake of NTBI. In contrast, localization and knockdown data indicate that Zip8 makes a major contribution. Data suggest also that cell accumulation of (59) Fe from TBI relies at least in part on an endocytosis-independent pathway. These data suggest that Zip8 and Steap2 play a major role in iron accumulation from NTBI and TBI by hippocampal neurons. Analysis of the expression and localization of known iron uptake transporters demonstrated that Zip8 makes a major contribution to iron accumulation in primary cultures of rat embryonic hippocampal neurons. These cells exhibit uptake pathways for ferrous and ferric iron (non-transferrin-bound iron, NTBI in figure) and for transferrin-bound iron; the ferrireductases Steap2 and SDR2 support the uptake of ferric iron substrates. Zip8 and Steap2 are strongly expressed in the plasma membrane of both soma and processes, implying a crucial role in iron accumulation from NTBI and transferrin-bound iron (TBI) by hippocampal neurons.
Collapse
Affiliation(s)
- Changyi Ji
- Department of Biochemistry, State University of New York, School of Medicine and Biomedical Sciences Buffalo, Buffalo, New York, USA
| | | |
Collapse
|
2
|
Abstract
Elucidating the molecular basis for the regulation of iron uptake, storage, and distribution is necessary to understand iron homeostasis. Pharmacological tools are emerging to identify and distinguish among different iron transport pathways. Stimulatory or inhibitory small molecules with effects on iron uptake can help characterize the mechanistic elements of iron transport and the roles of the transporters involved in these processes. In particular, iron chelators can serve as potential pharmacological tools to alleviate diseases of iron overload. This review focuses on the pharmacology of iron transport, introducing iron transport membrane proteins and known inhibitors.
Collapse
Affiliation(s)
- Shaina L Byrne
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
3
|
Anderson GJ, Vulpe CD. Mammalian iron transport. Cell Mol Life Sci 2009; 66:3241-61. [PMID: 19484405 PMCID: PMC11115736 DOI: 10.1007/s00018-009-0051-1] [Citation(s) in RCA: 236] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2009] [Revised: 04/21/2009] [Accepted: 05/12/2009] [Indexed: 02/07/2023]
Abstract
Iron is essential for basic cellular processes but is toxic when present in excess. Consequently, iron transport into and out of cells is tightly regulated. Most iron is delivered to cells bound to plasma transferrin via a process that involves transferrin receptor 1, divalent metal-ion transporter 1 and several other proteins. Non-transferrin-bound iron can also be taken up efficiently by cells, although the mechanism is poorly understood. Cells can divest themselves of iron via the iron export protein ferroportin in conjunction with an iron oxidase. The linking of an oxidoreductase to a membrane permease is a common theme in membrane iron transport. At the systemic level, iron transport is regulated by the liver-derived peptide hepcidin which acts on ferroportin to control iron release to the plasma.
Collapse
Affiliation(s)
- Gregory Jon Anderson
- Iron Metabolism Laboratory, Queensland Institute of Medical Research, PO Royal Brisbane Hospital, QLD, Australia.
| | | |
Collapse
|
4
|
Messner DJ, Kowdley KV. Neoplastic transformation of rat liver epithelial cells is enhanced by non-transferrin-bound iron. BMC Gastroenterol 2008; 8:2. [PMID: 18254965 PMCID: PMC2275280 DOI: 10.1186/1471-230x-8-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2007] [Accepted: 02/06/2008] [Indexed: 12/26/2022] Open
Abstract
Background Iron overload is associated with liver toxicity, cirrhosis, and hepatocellular carcinoma in humans. While most iron circulates in blood as transferrin-bound iron, non-transferrin-bound iron (NTBI) also becomes elevated and contributes to toxicity in the setting of iron overload. The mechanism for iron-related carcinogenesis is not well understood, in part due to a shortage of suitable experimental models. The primary aim of this study was to investigate NTBI-related hepatic carcinogenesis using T51B rat liver epithelial cells, a non-neoplastic cell line previously developed for carcinogenicity and tumor promotion studies. Methods T51B cells were loaded with iron by repeated addition of ferric ammonium citrate (FAC) to the culture medium. Iron internalization was documented by chemical assay, ferritin induction, and loss of calcein fluorescence. Proliferative effects were determined by cell count, toxicity was determined by MTT assay, and neoplastic transformation was assessed by measuring colony formation in soft agar. Cyclin levels were measured by western blot. Results T51B cells readily internalized NTBI given as FAC. Within 1 week of treatment at 200 μM, there were significant but well-tolerated toxic effects including a decrease in cell proliferation (30% decrease, p < 0.01). FAC alone induced little or no colony formation in soft agar. In contrast, FAC addition to cells previously initiated with N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) resulted in a concentration dependent increase in colony formation. This was first detected at 12 weeks of FAC treatment and increased at longer times. At 16 weeks, colony formation increased more than 10 fold in cells treated with 200 μM FAC (p < 0.001). The iron chelator desferoxamine reduced both iron uptake and colony formation. Cells cultured with 200 μM FAC showed decreased cyclin D1, decreased cyclin A, and increased cyclin B1. Conclusion These results establish NTBI as a tumor promoter in T51B rat liver epithelial cells. Changes in cyclin proteins suggest cell cycle disregulation contributes to tumor promotion by NTBI in this liver cell model.
Collapse
|
5
|
Oshiro S, Kawamura KI, Zhang C, Sone T, Morioka MS, Kobayashi S, Nakajima K. Microglia and astroglia prevent oxidative stress-induced neuronal cell death: implications for aceruloplasminemia. Biochim Biophys Acta Mol Basis Dis 2007; 1782:109-17. [PMID: 18187051 DOI: 10.1016/j.bbadis.2007.12.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Revised: 12/04/2007] [Accepted: 12/05/2007] [Indexed: 10/22/2022]
Abstract
We partially characterized the transferrin-independent iron uptake (Tf-IU) of neuronal and glial cells in the previous report. In the present study, we further examined a mechanism of which glial cells protect neuronal cells against iron stress using neuron-microglia (N-MG) and neuron-astrocyte (N-AS) co-cultures. When each solely purified cell was treated with iron citrate, cell death occurred in N and MG. However, AS proliferated under the same condition. Both N-MG and N-AS co-cultures were effective in resistance to excessive iron. The total and specific Tf-IU activities of N-MG co-cultures similar to those of N did not increase in a density-dependent manner. Contrarily, the total activity of AS was extremely high and the specific activity was extremely low as a result of proliferation. Regarding of effect of co-cultures on H(2)O(2)-induced cell death, N-MG co-cultures were less effective, but N-AS co-cultures were more effective in protecting N from the oxidative stress. These results suggest that N-MG co-cultures suppress the Tf-IU and N-AS co-cultures stimulate AS proliferation to protect neuronal cells. Brain cells from aceruloplasminemia with mutations in the ceruloplasmin gene take up iron by Tf-IU. Therefore, the different mechanisms of neuronal cell protection by MG and AS may explain the pathophysiological observations in the brains of patient with aceruloplasminemia.
Collapse
Affiliation(s)
- Satoru Oshiro
- Division of Molecular and Cellular Biochemistry, Department of Health Science, Faculty of Sports and Health Sciences, Daito Bunka University, 560 Iwadono, Higashi-matsuyama, Saitama 355-8501, Japan.
| | | | | | | | | | | | | |
Collapse
|
6
|
Welter BH, Powell RR, Laughlin RC, McGugan GC, Bonner M, King A, Temesvari LA. Entamoeba histolytica: Comparison of the role of receptors and filamentous actin among various endocytic processes. Exp Parasitol 2006; 113:91-9. [PMID: 16458294 DOI: 10.1016/j.exppara.2005.12.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Revised: 12/14/2005] [Accepted: 12/20/2005] [Indexed: 11/21/2022]
Abstract
Entamoeba histolytica is the causative agent of amoebic dysentery. Uptake of iron is critical for E. histolytica growth and iron-bound human transferrin (holo-transferrin) has been shown to serve as an iron source in vitro. Although a transferrin-binding protein has been identified in E. histolytica, the mechanism by which this iron source is taken up by this pathogen is not well understood. To gain insight into this process, the uptake of fluorescent-dextran, -holo-transferrin, and human red blood cells (hRBCs) was compared. Both dextran and transferrin were taken up in an apparent receptor-independent fashion as compared to hRBCs, which were taken up in a receptor-mediated fashion. Interestingly, the uptake of FITC-dextran and FITC-holo-transferrin differentially relied on an intact actin cytoskeleton suggesting that their internalization routes may be regulated independently.
Collapse
Affiliation(s)
- B H Welter
- Department of Biological Sciences, Clemson University, SC 29634, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Kalinowski DS, Richardson DR. The evolution of iron chelators for the treatment of iron overload disease and cancer. Pharmacol Rev 2005; 57:547-83. [PMID: 16382108 DOI: 10.1124/pr.57.4.2] [Citation(s) in RCA: 567] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The evolution of iron chelators from a range of primordial siderophores and aromatic heterocyclic ligands has lead to the formation of a new generation of potent and efficient iron chelators. For example, various siderophore analogs and synthetic ligands, including ICL670A [4-[3,5-bis-(hydroxyphenyl)-1,2,4-triazol-1-yl]-benzoic acid], 4'-hydroxydesazadesferrithiocin, and Triapine, have been developed from predecessors and illustrate potent iron-mobilizing or antineoplastic activities. This review focuses on the evolution of iron chelators from initial lead compounds through to the development of novel chelating agents, many of which show great potential to be clinically applied in the treatment of iron overload disease and cancer.
Collapse
Affiliation(s)
- Danuta S Kalinowski
- The Iron Metabolism and Chelation Program, Children's Cancer Institute Australia for Medical Research, Sydney, New South Wales, Australia
| | | |
Collapse
|
8
|
Brown JX, Buckett PD, Wessling-Resnick M. Identification of small molecule inhibitors that distinguish between non-transferrin bound iron uptake and transferrin-mediated iron transport. ACTA ACUST UNITED AC 2004; 11:407-16. [PMID: 15123270 DOI: 10.1016/j.chembiol.2004.02.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2003] [Revised: 12/23/2003] [Accepted: 01/05/2004] [Indexed: 10/26/2022]
Abstract
Chemical genetics is an emerging field that takes advantage of combinatorial chemical and small molecule libraries to dissect complex biological processes. Here we establish a fluorescence-based assay to screen for inhibitors of iron uptake by mammalian cells. Using this approach, we screened the National Cancer Institute's Diversity Set library for inhibitors of non-transferrin bound iron uptake. This screen identified 10 novel small molecule inhibitors of iron transport with IC(50) values that ranged from 5 to 30 microM. Of these ten compounds, only two blocked uptake of iron mediated by transferrin. Thus, this study characterizes the first small molecule inhibitors that distinguish between different pathways of iron transport.
Collapse
Affiliation(s)
- Jing Xu Brown
- Harvard School of Public Health, Department of Genetics and Complex Diseases, 665 Huntington Avenue, Boston, MA 02115, USA
| | | | | |
Collapse
|
9
|
A New Effect of Aluminum on Iron Metabolism in Mammalian Cells. STRUCTURE AND BONDING 2002. [DOI: 10.1007/3-540-45425-x_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
10
|
Merrifield CJ, Feldman ME, Wan L, Almers W. Imaging actin and dynamin recruitment during invagination of single clathrin-coated pits. Nat Cell Biol 2002; 4:691-8. [PMID: 12198492 DOI: 10.1038/ncb837] [Citation(s) in RCA: 545] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
As a final step in endocytosis, clathrin-coated pits must separate from the plasma membrane and move into the cytosol as a coated vesicle. Because these events involve minute movements that conventional light microscopy cannot resolve, they have not been observed directly and their dynamics remain unexplored. Here, we used evanescent field (EF) microscopy to observe single clathrin-coated pits or vesicles as they draw inwards from the plasma membrane and finally lose their coats. This inward movement occurred immediately after a brief burst of dynamin recruitment and was accompanied by transient actin assembly. Therefore, dynamin may provide the trigger and actin may provide the force for movement into the cytosol.
Collapse
Affiliation(s)
- Christien J Merrifield
- Vollum Institute L-474, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Rd., Portland, OR 97201, USA
| | | | | | | |
Collapse
|
11
|
Oshiro S, Nozawa K, Hori M, Zhang C, Hashimoto Y, Kitajima S, Kawamura KI. Modulation of iron regulatory protein-1 by various metals. Biochem Biophys Res Commun 2002; 290:213-8. [PMID: 11779155 DOI: 10.1006/bbrc.2001.6182] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Iron regulatory protein-1 (IRP-1) is known as a cytosolic aconitase and a central regulator of iron (Fe) homeostasis. IRP-1 regulates the expression of Fe metabolism-related proteins by interacting with the Fe-responsive element (IRE) in the untranslated regions of mRNAs of these proteins. However, it is less known whether IRP-1 modulates various non-Fe metals. In the present study, we showed that treatment of homogenously purified IRP-1 with non-Fe metals decreased the affinity to IRE in RNA band shift assays and increased aconitase activity. Non-Fe metals also inhibited (55)Fe incorporation into the fourth labile position of the Fe-S cluster of IRP-1. In PLC hepatoma cells, metal loading inactivated binding activity and activated enzyme activity. It also suppressed transferrin receptor mRNA expression in the cells. These results suggest that various non-Fe metals modulate IRP-1 by conversion of the 3Fe-4S apo-form to a [1 non-Fe metal + 3Fe]-4Fe holo-form.
Collapse
Affiliation(s)
- Satoru Oshiro
- Department of Biochemical Genetics, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.
| | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Iron homeostasis is maintained by regulating its absorption: Under conditions of deficiency, assimilation is enhanced but iron uptake is otherwise limited to prevent toxicity due to overload. Iron deficiency remains the most important micronutrient deficiency worldwide, but increasing awareness of the genetic basis for iron-loading diseases points to iron overload as a major public health issue as well. Recent identification of mutant alleles causing iron uptake disorders in mice and humans provides new insights into the mechanisms involved in iron transport and its regulation. This article summarizes these discoveries and discusses their impact on our current understanding of iron transport and its regulation.
Collapse
Affiliation(s)
- M Wessling-Resnick
- Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts 02115, USA.
| |
Collapse
|
13
|
Oshiro S, Kawahara M, Kuroda Y, Zhang C, Cai Y, Kitajima S, Shirao M. Glial cells contribute more to iron and aluminum accumulation but are more resistant to oxidative stress than neuronal cells. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1502:405-14. [PMID: 11068183 DOI: 10.1016/s0925-4439(00)00065-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Iron (Fe) and aluminum (Al) have been implicated in the pathogenesis of Alzheimer's disease (AD). In this study, we examined neuronal and glial cells to clarify which contributes most to metal accumulation after internalization through the transferrin-independent iron uptake (Tf-IU) systems in primary neuronal and glial predominant (NP and GP) cells from rat cerebral cortex, which affect the accumulation of transition metals in a variety of cultured cells. Al more significantly upregulated the Tf-IU activity in GP cells than in NP cells. GP cells were more resistant to Fe and Al exposure than NP cells. However, a chemiluminescence analysis specific for reactive oxygen species (ROS) showed that ROS levels in Fe- or Al-loaded NP cells were twice as high as in Fe- or Al-loaded GP cells. Northern blot analysis and gel retardation assay showed that the Al and Fe exposure taken up by the cells suppress Tf receptor mRNA expression to a greater extent in GP than NP cells, indicating that Al and Fe more markedly accumulate in glial than in neuronal cells. These results suggest that glial cells rather than neuronal cells contribute to the metal accumulation and are more resistant to oxidative stress caused by metals than neuronal cells. The present study may help to explain the pathogenesis of neurodegeneration in AD disorders caused by metal-generated oxidative stress.
Collapse
Affiliation(s)
- S Oshiro
- Department of Biochemical Genetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
14
|
Sugawara N, Ikeda T, Lai YR, Sugawara C. The effect of subcutaneous tetrathiomolybdate administration on copper and iron metabolism, including their regional redistribution in the brain, in the Long-Evans Cinnamon rat, a bona fide animal model for Wilson's disease. PHARMACOLOGY & TOXICOLOGY 1999; 84:211-7. [PMID: 10361977 DOI: 10.1111/j.1600-0773.1999.tb01485.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The present work was performed to examine the effect of tetrathiomolybdate on Cu and Fe metabolism, especially redistribution of Cu and Fe in the brains of Long-Evans Cinnamon rats, with inherently abnormal Cu deposition in the liver. The drug was injected subcutaneously at 5 mg/kg of body weight twice a week for 65 days (total dose of 20 mg) into 40-day-old Long-Evans Cinnamon rats. In Long-Evans Cinnamon rats treated with tetrathiomolybdate, the hepatic Cu concentration was 60 microg/g wet weight, compared to 170 microg/g in untreated rats. In seven brain regions (cerebellum, medulla oblongata, hypothalamus, striatum, midbrain, hippocampus and cortex) of the Long-Evans Cinnamon rats treated with tetrathiomolybdate. the Cu concentration (1.5 to 2.3 microg/g) was slightly lower (1.6 to 2.7 microg/g) than in untreated rats. A significant difference between the two groups was found only in the midbrain. Brain Fe concentrations in regions other than the striatum were not changed significantly by the tetrathiomolybdate injections. The hepatic Fe concentration was about 120 microg/g in Long-Evans Cinnamon rats without tetrathiomolybdate. Tetrathiomolybdate injection further increased the concentration to about 250 microg/g. Our results indicated that subcutaneous tetrathiomolybdate injection did not have an effect that stimulated redistribution of Cu and Fe in the seven brain regions examined, although hepatic Cu was markedly decreased and the removed Cu was deposited in kidneys, spleen and testes. The increased hepatic Fe level should be taken into account when considering side effects of the compound.
Collapse
Affiliation(s)
- N Sugawara
- Department of Public Health, School of Medicine, Sapporo Medical University, Japan.
| | | | | | | |
Collapse
|
15
|
Savigni DL, Morgan EH. Transport mechanisms for iron and other transition metals in rat and rabbit erythroid cells. J Physiol 1998; 508 ( Pt 3):837-50. [PMID: 9518737 PMCID: PMC2230914 DOI: 10.1111/j.1469-7793.1998.837bp.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
1. Earlier studies have shown that Fe2+ transport into erythroid cells is inhibited by several transition metals (Mn2+, Zn2+, Co2+, Ni2+) and that Fe2+ transport can occur by two saturable mechanisms, one of high affinity and the other of low affinity. Also, the transport of Zn2+ and Cd2+ into erythroid cells is stimulated by NaHCO3 and NaSCN. The aim of the present investigation was to determine whether all of these transition metals can be transported by the processes described for Fe2+, Zn2+ and Cd2+ and to determine the properties of the transport processes. 2. Rabbit reticulocytes and mature erythrocytes and reticulocytes from homozygous and heterozygous Belgrade rats were incubated with radiolabelled samples of the metals under conditions known to be optimal for high- and low-affinity Fe2+ transport and for the processes mediated by NaHCO3 and NaSCN. 3. All of the metals were transported by the high- and low-affinity Fe2+ transport processes and could compete with each other for transport. The Km and Vmax values and the effects of incubation temperature and metabolic inhibitors were similar for all the metals. NaHCO3 and NaSCN increased the uptake of Zn2+ and Cd2+ but not the other metals. 4. The uptake of all of the metals by the high-affinity process was much lower in reticulocytes from homozygous Belgrade rats than in those from heterozygous animals, but there was no difference with respect to low-affinity transport. 5. It is concluded that the high- and low-affinity 'iron' transport mechanisms can also transport several other transition metals and should therefore be considered as general transition metal carriers.
Collapse
Affiliation(s)
- D L Savigni
- Department of Physiology, The University of Western Australia, Nedlands, Western Australia 6907, Australia
| | | |
Collapse
|
16
|
Scheiber B, Goldenberg H. The surface of rat hepatocytes can transfer iron from stable chelates to external acceptors. Hepatology 1998; 27:1075-80. [PMID: 9537448 DOI: 10.1002/hep.510270424] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
The chelator diethylenetriaminepentaacetate (DTPA) forms a stable complex with iron that does not donate iron to transferrin under physiological conditions, i.e., pH above 7 and isotonic milieu. It does, however, deliver iron to hepatocytes. This uptake is initiated by a mobilization of the metal from the complex by the cell surface. When an external chelator is added simultaneously, it can bind the iron and inhibit its accumulation by the cells. This is shown here with the impermeant siderophore conjugate hydroxyethyl-starch coupled desferrioxamine, as well as with apotransferrin. We also demonstrate exchange of iron between DTPA and holo-transferrin, or at least movement from the chelator to the protein, which may have lost its iron to the cell in advance, providing new binding sites for mobilized iron. The efficient hepatocyte iron donor lactoferrin greatly stimulates iron uptake from DTPA, apparently by binding iron and transferring it into the cells by endocytosis. Ferritin is unable to do this; therefore, the mobilization of iron is not caused by a reducing activity at the cell surface, because iron is readily transferred from DTPA to ferritin by the reductant ascorbic acid. The transfer process is dependent on the temperature, the time, and the amount of cells present, and is partly inhibited by sulfhydryl reagents. We conclude that this activity represents a hitherto unidentified first step in the movement of iron through the cell membrane and may be relevant for transferrin-bound, as well as for non-transferrin-bound, iron uptake by hepatocytes.
Collapse
Affiliation(s)
- B Scheiber
- Institute of Medical Chemistry, University of Vienna, Austria
| | | |
Collapse
|
17
|
Goldenberg HA. Regulation of mammalian iron metabolism: current state and need for further knowledge. Crit Rev Clin Lab Sci 1998; 34:529-72. [PMID: 9439884 DOI: 10.3109/10408369709006425] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Due to its character as an essential element for all forms of life, the biochemistry and physiology of iron has attracted very intensive interest for many decades. In more recent years, the ways that iron metabolism is regulated in mammalian and human organisms have been clarified, and many aspects of iron metabolism have been reviewed. In this article, some newer aspects concerning absorption and intracellular regulation of iron concentration are considered. These include a sorting of possible models for intestinal iron absorption, a description of ways for membrane passage of iron after release from transferrin during receptor-mediated endocytosis, a consideration of possible mechanisms for non-transferrin bound iron uptake and its regulation, and a review of recent knowledge on the properties of iron regulatory proteins and on regulation of iron metabolism by these proteins, changes of their own properties by non-iron-mediated influences, and regulatory events not mediated by these proteins. This somewhat heterogeneous collection of themes is a consequence of the intention to avoid repetition of the many aforementioned reviews already existing and to concentrate on newer findings generated within the last couple of years.
Collapse
Affiliation(s)
- H A Goldenberg
- Department of Medical Chemistry, University of Vienna, Austria
| |
Collapse
|
18
|
Qian ZM, Tang PL, Wang Q. Iron crosses the endosomal membrane by a carrier-mediated process. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1997; 67:1-15. [PMID: 9401416 DOI: 10.1016/s0079-6107(97)00009-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Z M Qian
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | | | | |
Collapse
|
19
|
Gutierrez JA, Yu J, Rivera S, Wessling-Resnick M. Functional expression cloning and characterization of SFT, a stimulator of Fe transport. J Cell Biol 1997; 139:895-905. [PMID: 9362508 PMCID: PMC2139974 DOI: 10.1083/jcb.139.4.895] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/1997] [Revised: 08/28/1997] [Indexed: 02/05/2023] Open
Abstract
A stimulator of Fe transport (SFT) was identified by functional expression cloning in Xenopus oocytes. SFT-mediated transport has properties defined for transferrin-independent Fe uptake, but its cytolocalization in recycling endosomes and the observed stimulation of transferrin-bound Fe assimilation indicate a key role in intracellular Fe membrane transport as well. SFT has six predicted transmembranous domains and a functionally important RExxE motif that resembles domains involved in yeast Fe transport and Fe-binding by ferritin L-chains. The observation that SFT oligomerizes, along with other structural and mechanistic features, suggests it may be a member of either the ATP-binding cassette or cation diffusion facilitator families. The 3' untranslated region of SFT contains a translation inhibitory element and inhibition of SFT expression in Xenopus oocytes was found to be relieved by coinjection of transcripts from other defined cDNAs that are also described in this report. SFT is the first component of the mammalian Fe membrane transport machinery to be identified.
Collapse
Affiliation(s)
- J A Gutierrez
- Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
20
|
Poola I. An estrogen inducible 104 kDa chaperone glycoprotein binds ferric iron containing proteins: a possible role in intracellular iron trafficking. FEBS Lett 1997; 416:139-42. [PMID: 9369199 DOI: 10.1016/s0014-5793(97)01183-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have previously described an estrogen inducible, intracellular, homodimeric membrane glycoprotein (subunit Mr 104 kDa) which is structurally related to 'chaperone' proteins (Poola, I. and Kiang J.G., J. Biol. Chem. 269 (1994) 21762-21769). In this report we describe a novel finding that the 104 kDa chaperone protein exhibits affinity for iron containing proteins such as transferrins from several species, human lactoferrin and microbial ferric binding protein (FBP). A single ferric ion in the above proteins appears to be sufficient for binding. It also binds to immobilized ferritin. However, it does not exhibit any affinity for apotransferrins, apolactoferrin, apoferritin and apoFBP. This is the first report of a chaperone protein that exhibits affinity for iron containing proteins.
Collapse
Affiliation(s)
- I Poola
- Department of Pharmacology and Biochemistry, Howard University School of Medicine, Washington, D.C. 20059, USA
| |
Collapse
|
21
|
Dix D, Bridgham J, Broderius M, Eide D. Characterization of the FET4 protein of yeast. Evidence for a direct role in the transport of iron. J Biol Chem 1997; 272:11770-7. [PMID: 9115232 DOI: 10.1074/jbc.272.18.11770] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The low affinity Fe2+ uptake system of Saccharomyces cerevisiae requires the FET4 gene. In this report, we present evidence that FET4 encodes the Fe2+ transporter protein of this system. Antibodies prepared against FET4 detected two distinct proteins with molecular masses of 63 and 68 kDa. In vitro synthesis of FET4 suggested that the 68-kDa form is the primary translation product, and the 63-kDa form may be generated by proteolytic cleavage of the full-length protein. Consistent with its role as an Fe2+ transporter, FET4 is an integral membrane protein present in the plasma membrane. The level of FET4 closely correlated with uptake activity over a broad range of expression levels and is itself regulated by iron. Furthermore, mutations in FET4 can alter the kinetic properties of the low affinity uptake system, suggesting a direct interaction between FET4 and its Fe2+ substrate. Mutations affecting potential Fe2+ ligands located in the predicted transmembrane domains of FET4 significantly altered the apparent Km and/or Vmax of the low affinity system. These mutations may identify residues involved in Fe2+ binding during transport.
Collapse
Affiliation(s)
- D Dix
- Department of Biochemistry and Molecular Biology, University of Minnesota, Duluth, Minnesota 55812, USA
| | | | | | | |
Collapse
|
22
|
Olakanmi O, Stokes JB, Pathan S, Britigan BE. Polyvalent cationic metals induce the rate of transferrin-independent iron acquisition by HL-60 cells. J Biol Chem 1997; 272:2599-606. [PMID: 9006892 DOI: 10.1074/jbc.272.5.2599] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The trivalent metals iron, aluminum, and gallium greatly increase the rate of iron acquisition from low molecular weight chelates by human myeloid cells. The present study explores the mechanism responsible. Gallium-induced iron acquisition was shown to lead to stable cellular association of iron, the magnitude of which varied with the chelate to which the iron was bound. The majority of this iron initially associated with the plasma membrane. Cellular depletion of ATP did not affect the response to gallium nor did it require the continued presence of extracellular gallium. However, continued cell association of gallium was needed as subsequent cellular exposure to metal chelators resulted in a rapid loss of the "induced" phenotype. Other trivalent metals (lanthanum and gadolinium) and tetravalent metals (tin and zirconium) but not divalent metals also induced iron acquisition. Neither enhanced iron reduction nor protein kinase C or tyrosine kinases appeared involved in gallium-mediated induction of iron acquisition. Exposure of HL-60 cells to polyvalent cationic metals results in a dramatic and sustained increase in the rate of iron acquisition from low molecular weight chelating agents. This could be important for the rapid clearance of iron by phagocytes from the extracellular environment at sites of local tissue damage.
Collapse
Affiliation(s)
- O Olakanmi
- Research Service, VA Medical Center, Iowa City, Iowa 52246, USA
| | | | | | | |
Collapse
|
23
|
Abstract
The suggestion from nutritional studies with mammals of a link between iron and copper metabolism has been reinforced by recent investigations with yeast cells. Iron must be in the reduced ferrous (FeII) state for uptake by yeast cells, and reoxidation to ferric (FeIII) by a copper oxidase is part of the transport process. Thus, yeast cells deficient in copper are unable to absorb iron. In an analogous way, animals deficient in copper appear to be unable to move FeII out of cells, probably because it cannot be oxidized to FeIII. Invertebrate animals use copper and iron in ways very similar to vertebrates, with some notable exceptions. In the cases where vertebrates and invertebrates are similar, the latter may be useful models for vertebrate metabolism. In cases where they differ (e.g. predominance of serum ferritin in insects, oxygen transport by a copper protein in many arthropods, central importance of phenoloxidase, a copper enzyme in arthropods), the differences may represent processes that are exaggerated in invertebrates and thus more amenable to study in these organisms. On the other hand, they may represent processes unique to invertebrates, thus providing novel information on species diversity.
Collapse
Affiliation(s)
- J J Winzerling
- Department of Biochemistry, and the Center for Insect Science, University of Arizona, Tucson 85721, USA
| | | |
Collapse
|
24
|
Keenan J, Clynes M. Replacement of transferrin by simple iron compounds for MDCK cells grown and subcultured in serum-free medium. In Vitro Cell Dev Biol Anim 1996; 32:451-3. [PMID: 8889596 DOI: 10.1007/bf02723044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
25
|
Abstract
After almost two decades of research, evidence suggests that transferrin receptors are rate-limiting in 67Ga uptake, 67Ga imaging is an in vivo detector of transferring receptors and an indicator of tumor cell proliferation. Moreover, 67Ga can be incorporated into tumor cells by a transferrin receptor-independent process. This pathway could be important in patients with saturated transferrin. Data that appear to support the concept that transferrin receptor-independent transporters are rate-limiting can be resolved by considering the presence of the gallate ion, [67Ga (OH)4]-.
Collapse
Affiliation(s)
- R E Weiner
- Nuclear Medicine Department, University of Connecticut Health Center, Farmington 06030, USA.
| |
Collapse
|
26
|
Callus BA, Iacopetta BJ, Kühn LC, Morgan EH. Effects of overexpression of the transferrin receptor on the rates of transferrin recycling and uptake of non-transferrin-bound iron. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 238:463-9. [PMID: 8681959 DOI: 10.1111/j.1432-1033.1996.0463z.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The possibilities that the recycling of the transferrin receptor is a rate-limiting step in the efflux of endocytosed transferrin, and that the receptor functions as a trans-membrane Fe transporter were investigated in untransfected Ltk- cells and in cells transfected with different levels of DNA for wild-type, mutant and chimeric human transferrin receptors. The uptake of transferrin-bound Fe and non-transferrin-bound Fe(II), and the surface binding, endocytosis and recycling of transferrin were measured. In cells that expressed increasing numbers of surface transferrin receptors, the rate of Fe uptake increased at a slower rate than the number of receptors. By measurement of the rates of endocytosis and recycling of transferrin it was shown that this effect was not due to a deficiency of endocytosis, but to a slower rate of recycling as the receptor numbers increased. Hence, a restricted recycling rate of the transferrin receptor appeared to be responsible for the slower rate of Fe uptake by cells with high receptor numbers, presumably because one or more cytosolic components required for recycling were in limited supply. The rate of uptake of non-transferrin-bound Fe(II) was not influenced by the number of transferrin receptors present on the surface of the cells even though this varied more than 20-fold between the different cell lines. Hence, this investigation does not support the hypothesis that the receptors play a direct role in the transport of Fe(II) across cell membranes, as has been proposed previously [Singer, S. J. (1989) Biol. Cell 65, 1-5].
Collapse
Affiliation(s)
- B A Callus
- Department of Physiology, University of Western Australia, Nedlands
| | | | | | | |
Collapse
|
27
|
Kriegerbecková K, Döpper L, Scheiber B, Kovár J, Goldenberg H. Non-transferrin iron uptake by HeLa cells cultured in serum-free media with different iron sources. EUROPEAN JOURNAL OF CLINICAL CHEMISTRY AND CLINICAL BIOCHEMISTRY : JOURNAL OF THE FORUM OF EUROPEAN CLINICAL CHEMISTRY SOCIETIES 1995; 33:791-7. [PMID: 8620055 DOI: 10.1515/cclm.1995.33.11.791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
HeLa cells cultured in defined serum-free media supplied with iron wither in the form of diferric transferrin (transferrin-dependent cells), ferric citrate at 500 micromol/l (high-iron dependent cells) or ferric citrate at 5 micromol/l (low-iron dependent cells) accumulate iron from ferric citrate in different ways. The uptake rate in transferrin-dependent cells is always much lower in the other two lines. In all three, the uptake rate rises almost linearly with the concentration of iron up to 10 micromol/l. In high-iron dependent cells, the uptake of radiolabelled iron is suppressed by a 100-fold excess of the iron complex, whereas this same excess stimulates iron uptake in the other two lines. The same concentrations of pure citrate completely inhibit iron uptake by all three types of cell. Only high-iron dependent cells take up citrate at measurable and reproducible rates. These rates are independent on the presence of iron, and the uptake is inhibited by an unlabelled surplus. The pH-dependence of iron uptake in high-iron dependent cells is also different from that of the other cells. Low-iron dependent cells transferred to medium containing 500 micromol/l iron show increased uptake rates within 3 to 7 h, and after overnight maintenance in this medium they acquire the uptake characteristics of high-iron dependent cells. The special characteristics of iron uptake by high-iron dependent cells are paralleled by low binding activity of iron-regulatory protein to iron-responsive elements of RNA. We conclude that low-iron dependent cells maintain their iron supply from the culture medium by unspecific uptake of oligomeric complexes, while cells in media with a high content of low-molecular weight iron induce a specific uptake system which might have a protective function.
Collapse
|
28
|
Thorstensen K, Trinder D, Zak O, Aisen P. Uptake of iron from N-terminal half-transferrin by isolated rat hepatocytes. Evidence of transferrin-receptor-independent iron uptake. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 232:129-33. [PMID: 7556141 DOI: 10.1111/j.1432-1033.1995.tb20790.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The aim of the present study was to determine if human N-terminal half-transferrin (N- fragment), prepared by thermolysin cleavage of diferric transferrin, would bind to the rat hepatocyte transferrin receptor and donate iron to the cell. Competition experiments between 125I-labelled N-fragment and diferric transferrin revealed no receptor binding of the half-transferrin. Still, the N-fragment delivered iron to the cells in amounts approximately 30-fold above what could be accounted for by uptake of the fragment itself. The rate of cellular iron uptake from the fragment was comparable to what is seen with the intact transferrin. The uptake of 125I-labelled N-fragment was not inhibited by excess non-radioactive diferric transferrin. By comparison, the uptake of 59Fe from the N-fragment was inhibited 70% by excess nonradioactive diferric transferrin. This suggests that iron derived from diferric transferrin competes with the iron derived from the N-fragment for a common transport pathway. Although some cellular degradation of the N-fragment occurred, the extent of degradation was too low to explain the amount of iron accumulated by the cells. The results show that the hepatocyte has an effective transferrin-receptor-independent mechanism for accumulation of iron from transferrin.
Collapse
Affiliation(s)
- K Thorstensen
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, USA
| | | | | | | |
Collapse
|
29
|
Breuer W, Epsztejn S, Millgram P, Cabantchik IZ. Transport of iron and other transition metals into cells as revealed by a fluorescent probe. THE AMERICAN JOURNAL OF PHYSIOLOGY 1995; 268:C1354-61. [PMID: 7611353 DOI: 10.1152/ajpcell.1995.268.6.c1354] [Citation(s) in RCA: 152] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Transport of nontransferrin-bound iron into cells is thought to be mediated by a facilitated mechanism involving either the trivalent form Fe(III) or the divalent form Fe(II) following reduction of Fe(III) at the cell surface. We have made use of the probe calcein, whose fluorescence is rapidly and stoichiometrically quenched by divalent metals such as Fe(II), Cu(II), Co(II), and Ni(II) and is minimally affected by variations in ionic strength, Ca(II) and Mg(II). Addition of Fe(II) salts to calcein-loaded human erythroleukemia K-562 cells elicited a slow quenching response that was markedly accelerated by the ionophore A-23187 and was reversed by membrane-permeant but not by impermeant chelators. These observations were confirmed by fluorescence imaging of cells. Other divalent metals such as Co(II), Ni(II), and Mn(II) permeated into cells at roughly similar rates, and their uptake, like that of Fe(II), was blocked by trifluoperazine, bepridil, and impermeant sulfhydryl-reactive organomercurials, indicating the operation of a common transport mechanism. This method could provide a versatile tool for studying the transport of iron and other transition metals into cells.
Collapse
Affiliation(s)
- W Breuer
- Department of Biological Chemistry, Institute of Life Sciences, Hebrew University of Jerusalem, Israel
| | | | | | | |
Collapse
|
30
|
Parkes JG, Randell EW, Olivieri NF, Templeton DM. Modulation by iron loading and chelation of the uptake of non-transferrin-bound iron by human liver cells. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1243:373-80. [PMID: 7727512 DOI: 10.1016/0304-4165(94)00162-q] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Hepatic non-transferrin-bound Fe (NTBI) flux and its regulation were characterized by measuring the uptake of Fe from [59Fe]/nitrilotriacetate (NTA) complexes in control and Fe-loaded cultures of human hepatocellular carcinoma cells (HepG2). Exposure to ferric ammonium citrate (FAC) for 1 to 7 days resulted in a time- and dose-dependent increase in the rate of NTBI uptake. In contrast to previous studies showing a dependence of the rate of Fe uptake on extracellular Fe, this was positively correlated with total cellular Fe content. The Fe3+ chelating agents deferoxamine (DFO), 1,2-dimethyl-3-hydroxypyrid-4-one (CP 020) and 1,2-diethyl-3-hydroxypyrid-4-one (CP 094) prevented or diminished the increase in NTBI transport when present during Fe loading and reversed the stimulation in pre-loaded cells in relation to their abilities to decrease intracellular iron. Although saturation of the Fe uptake process was not achieved in control cells, kinetic modelling to include linear diffusion-controlled processes yielded estimated parameters of Km = 4.3 microM and Vmax = 2.6 fmol/micrograms protein/min for the underlying process. There was a significant increase in the apparent Vmax (31.2 fmol/micrograms protein per min) for NTBI uptake in Fe-loaded cells, suggesting that Fe loading increases the number of a rate-limiting carrier site for Fe. Km also increased to 15.2 microM, comparable to values reported when whole liver is perfused with FeSO4. We conclude that HepG2 cells possess a transferrin-independent mechanism of Fe accumulation that responds reversibly to a regulatory intracellular Fe pool.
Collapse
Affiliation(s)
- J G Parkes
- Department of Clinical Biochemistry, University of Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
31
|
Dix DR, Bridgham JT, Broderius MA, Byersdorfer CA, Eide DJ. The FET4 gene encodes the low affinity Fe(II) transport protein of Saccharomyces cerevisiae. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)47163-3] [Citation(s) in RCA: 213] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
32
|
Gauthier JD, Vasta GR. Inhibition of in vitro replication of the oyster parasite Perkinsus marinus by the natural iron chelators transferrin, lactoferrin, and desferrioxamine. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 1994; 18:277-286. [PMID: 7883057 DOI: 10.1016/s0145-305x(94)90353-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The mammalian iron-binding proteins transferrin and lactoferrin, the bactericidal peptide lactoferricin B, and the bacterial siderophore desferrioxamine were tested for their ability to inhibit the in vitro replication of the oyster parasite Perkinsus marinus. All three chelators were effective in reducing the parasite proliferation in a dose-dependent manner. Lactoferricin B, a peptide of lactoferrin that exhibits bactericidal properties unrelated to iron chelation, had no inhibitory activity on the parasite. When the chelators were partially or completely saturated with the appropriate iron equivalents, their inhibitory effects on the parasite proliferation were diminished or abolished accordingly, confirming that this activity was related to the chelator's capacity for iron sequestration. Our results indicate that the parasite has a strong requirement for soluble iron and its growth rates are correlated with iron availability. We propose that excess iron accumulation in the host Crassostrea virginica promotes parasite proliferation. P. marinus may avoid oxidative damage that would compromise its intracellular survival by exhaustion the host's intracellular selected iron pools required for superoxide and hydroxyl radical production.
Collapse
Affiliation(s)
- J D Gauthier
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, Baltimore 21202
| | | |
Collapse
|
33
|
Randell E, Parkes J, Olivieri N, Templeton D. Uptake of non-transferrin-bound iron by both reductive and nonreductive processes is modulated by intracellular iron. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)33971-6] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|