1
|
Fekete S, Murisier A, Nguyen JM, Lauber MA, Guillarme D. Negative gradient slope methods to improve the separation of closely eluting proteins. J Chromatogr A 2020; 1635:461743. [PMID: 33260022 DOI: 10.1016/j.chroma.2020.461743] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 12/28/2022]
Abstract
In the present work, we describe the fundamental and practical advantages of a new strategy to improve the resolution of very closely eluting peaks within therapeutic protein samples. This approach involves the use of multiple isocratic steps, together with the addition of a steep negative gradient segment (with a decrease in mobile phase strength) to "park" a slightly more retained peak somewhere along the column (at a given migration distance), while a slightly less retained compound can be eluted. First, some model calculations were performed to highlight the potential of this innovative approach. For this purpose, the retention parameters (logk0 and S) for two case studies were considered, namely the analysis of a mixture of two therapeutic mAbs (simple to resolve sample) and separation of a therapeutic mAb from its main variant (challenging to resolve sample). The results confirm that the insertion of a negative segment into a multi-isocratic elution program can be a good tool to improve selectivity between critical peak pairs. However, it is also important to keep in mind that this approach only works with large solutes, which more or less follow an "on-off" type elution behavior. Two real applications were successfully developed to illustrate the practical advantage of this new approach, including the separation of a therapeutic mAb from its main variant possessing very close elution behavior, and the separation of a carrier protein from an intact mAb as might be encountered in a quantitative bioanalysis assay. These two examples demonstrate that improved selectivity can be achieved for protein RPLC through the inclusion of a negative gradient slope that selectively bifurcates the elution of two or more peaks of interest.
Collapse
Affiliation(s)
- Szabolcs Fekete
- School of Pharmaceutical Sciences, University of Geneva, CMU-Rue Michel Servet 1, 1211 Geneva 4, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU-Rue Michel Servet 1, 1211 Geneva 4, Switzerland.
| | - Amarande Murisier
- School of Pharmaceutical Sciences, University of Geneva, CMU-Rue Michel Servet 1, 1211 Geneva 4, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU-Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Jennifer M Nguyen
- Waters Corporation, 34 Maple Street, Milford, MA 01757-3696, United States
| | - Matthew A Lauber
- Waters Corporation, 34 Maple Street, Milford, MA 01757-3696, United States
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, CMU-Rue Michel Servet 1, 1211 Geneva 4, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU-Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| |
Collapse
|
2
|
Shi RL, Xiao G, Dillon TM, Ricci MS, Bondarenko PV. Characterization of therapeutic proteins by cation exchange chromatography-mass spectrometry and top-down analysis. MAbs 2020; 12:1739825. [PMID: 32292112 PMCID: PMC7188404 DOI: 10.1080/19420862.2020.1739825] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 01/10/2023] Open
Abstract
Recently, cation exchange chromatography (CEX) using aqueous volatile buffers was directly coupled with mass spectrometry (MS) and applied for intact analysis of therapeutic proteins and antibodies. In our study, chemical modifications responsible for charge variants were identified by CEX-UV-MS for a monoclonal antibody (mAb), a bispecific antibody, and an Fc-fusion protein. We also report post-CEX column addition of organic solvent and acid followed by mixing at elevated temperatures, which unfolded proteins, increased ion intensity (sensitivity) and facilitated top-down analysis. mAb stressed by hydrogen peroxide oxidation was used as a model system, which produced additional CEX peaks. The on-line CEX-UV-MS top-down analysis produced gas-phase fragments containing one or two methionine residues. Oxidation of some methionine residues contributed to earlier (acidic), some to later (basic) eluting peaks, while oxidation of other residues did not change CEX elution. The abundance of the oxidized and non-oxidized fragment ions also allowed estimation of the oxidation percentage of different methionine residues in stressed mAb. CEX-UV-MS measurement revealed a new intact antibody proteoform at 5% that eluted as a basic peak and included paired modifications: high-mannose glycosylation and remaining C-terminal lysine residue (M5/M5 + K). This finding was confirmed by peptide mapping and on-column disulfide reduction coupled with reversed-phase liquid chromatography - top-down MS analysis of the collected basic peak. Overall, our results demonstrate the utility of the on-line method in providing site-specific structural information of charge modifications without fraction collection and laborious peptide mapping.
Collapse
Affiliation(s)
- Rachel Liuqing Shi
- Attribute Sciences, Process Development, Amgen Inc., Thousand Oaks, CA, USA
| | - Gang Xiao
- Attribute Sciences, Process Development, Amgen Inc., Thousand Oaks, CA, USA
| | - Thomas M. Dillon
- Attribute Sciences, Process Development, Amgen Inc., Thousand Oaks, CA, USA
| | - Margaret S. Ricci
- Attribute Sciences, Process Development, Amgen Inc., Thousand Oaks, CA, USA
| | | |
Collapse
|
3
|
Regl C, Wohlschlager T, Esser-Skala W, Wagner I, Samonig M, Holzmann J, Huber CG. Dilute-and-shoot analysis of therapeutic monoclonal antibody variants in fermentation broth: a method capability study. MAbs 2019; 11:569-582. [PMID: 30668249 PMCID: PMC6512939 DOI: 10.1080/19420862.2018.1563034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Monoclonal antibodies (mAbs) are widely applied as highly specific and efficient therapeutic agents for various medical conditions, including cancer, inflammatory and autoimmune diseases. As protein production in cellular systems inherently generates a multitude of molecular variants, manufacturing of mAbs requires stringent control in order to ensure safety and efficacy of the drugs. Moreover, monitoring of mAb variants in the course of the fermentation process may allow instant tuning of process parameters to maintain optimal cell culture conditions. Here, we describe a fast and robust workflow for the characterization of mAb variants in fermentation broth. Sample preparation is minimal in that the fermentation broth is shortly centrifuged before dilution and HPLC-MS analysis in a short 15-min gradient run. In a single analysis, N-glycosylation and truncation variants of the expressed mAb are identified at the intact protein level. Simultaneously, absolute quantification of mAb content in fermentation broth is achieved. The whole workflow features excellent robustness as well as retention time and peak area stability. Additional enzymatic removal of N-glycans enables determination of mAb glycation levels, which are subsequently considered in relative N-glycoform quantification to correct for isobaric galactosylation. Several molecular attributes of the expressed therapeutic protein may thus be continuously monitored to ensure the desired product profile. Application of the described workflow in an industrial environment may therefore substantially enhance in-process control in mAb production, as well as targeted biosimilar development.
Collapse
Affiliation(s)
- Christof Regl
- a Department of Biosciences, Bioanalytical Research Labs , University of Salzburg , Salzburg , Austria.,b Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization , University of Salzburg , Salzburg , Austria
| | - Therese Wohlschlager
- a Department of Biosciences, Bioanalytical Research Labs , University of Salzburg , Salzburg , Austria.,b Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization , University of Salzburg , Salzburg , Austria
| | - Wolfgang Esser-Skala
- a Department of Biosciences, Bioanalytical Research Labs , University of Salzburg , Salzburg , Austria.,b Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization , University of Salzburg , Salzburg , Austria
| | - Iris Wagner
- a Department of Biosciences, Bioanalytical Research Labs , University of Salzburg , Salzburg , Austria.,b Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization , University of Salzburg , Salzburg , Austria
| | - Martin Samonig
- a Department of Biosciences, Bioanalytical Research Labs , University of Salzburg , Salzburg , Austria.,b Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization , University of Salzburg , Salzburg , Austria.,c Thermo Fisher Scientific GmbH , Germering , Germany
| | - Johann Holzmann
- b Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization , University of Salzburg , Salzburg , Austria.,d Technical Development Biosimilars , Global Drug Development, Novartis, Sandoz GmbH , Kundl , Austria
| | - Christian G Huber
- a Department of Biosciences, Bioanalytical Research Labs , University of Salzburg , Salzburg , Austria.,b Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization , University of Salzburg , Salzburg , Austria
| |
Collapse
|
4
|
Characterization of recombinant monoclonal antibody charge variants using WCX chromatography, icIEF and LC-MS/MS. Anal Biochem 2018; 564-565:1-12. [PMID: 30291836 DOI: 10.1016/j.ab.2018.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/27/2018] [Accepted: 10/02/2018] [Indexed: 12/25/2022]
Abstract
Charge heterogeneity is an important aspect of research into the development of monoclonal antibody drugs. In the present study, charge variants were separated into four fractions using weak cation exchange chromatography and were thoroughly analyzed using liquid chromatography-mass spectrometry at multiple levels. Molecular weight analysis of intact antibody and subunits confirmed the presence of heavy-chain leader sequences, light-chain leader sequences, dehydration, and cysteinylation. Peptide mapping of the fractions using different enzymes further localized the modified sites. Modified proportions identified at peptide level were compared with the purity detected by imaged capillary isoelectric focusing, the results showed that basic variant 1 consisted of cysteinylation and dehydration of asparagine, and basic variant 2 fully accounted for the N-terminal leader sequence of the heavy chain. About 14.8% of the acidic variant can be explained by N-terminal leader sequences in the light chain, and 18% of the acidic variant was demonstrated to be deamidation of asparagine in the heavy chain. There was approximately 54.2% of the acidic variant still cannot be explained. It was hypothesized that those acidic variants that have not yet been identified are an ensemble of molecules with slight molecular weight differences or the same molecular weight but different structures.
Collapse
|
5
|
O’Connor E, Aspelund M, Bartnik F, Berge M, Coughlin K, Kambarami M, Spencer D, Yan H, Wang W. Monoclonal antibody fragment removal mediated by mixed mode resins. J Chromatogr A 2017; 1499:65-77. [DOI: 10.1016/j.chroma.2017.03.063] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/21/2017] [Accepted: 03/23/2017] [Indexed: 10/19/2022]
|
6
|
Michels DA, Ip AY, Dillon TM, Brorson K, Lute S, Chavez B, Prentice KM, Brady LJ, Miller KJ. Separation Methods and Orthogonal Techniques. ACS SYMPOSIUM SERIES 2015. [DOI: 10.1021/bk-2015-1201.ch005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- David A. Michels
- Department of Protein Analytical Chemistry, Genentech, South San Francisco, California 94080, United States
- Department of Process and Product Development, Amgen Inc., Thousand Oaks, California 91361, United States
- Division of Monoclonal Antibodies, Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20903, United States
- Department of Process and Product Development, Amgen Inc., Seattle, Washington 98119, United States
- Global Analytical Sciences, Amgen Inc., Thousand Oaks, California 91320, United States
| | - Anna Y. Ip
- Department of Protein Analytical Chemistry, Genentech, South San Francisco, California 94080, United States
- Department of Process and Product Development, Amgen Inc., Thousand Oaks, California 91361, United States
- Division of Monoclonal Antibodies, Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20903, United States
- Department of Process and Product Development, Amgen Inc., Seattle, Washington 98119, United States
- Global Analytical Sciences, Amgen Inc., Thousand Oaks, California 91320, United States
| | - Thomas M. Dillon
- Department of Protein Analytical Chemistry, Genentech, South San Francisco, California 94080, United States
- Department of Process and Product Development, Amgen Inc., Thousand Oaks, California 91361, United States
- Division of Monoclonal Antibodies, Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20903, United States
- Department of Process and Product Development, Amgen Inc., Seattle, Washington 98119, United States
- Global Analytical Sciences, Amgen Inc., Thousand Oaks, California 91320, United States
| | - Kurt Brorson
- Department of Protein Analytical Chemistry, Genentech, South San Francisco, California 94080, United States
- Department of Process and Product Development, Amgen Inc., Thousand Oaks, California 91361, United States
- Division of Monoclonal Antibodies, Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20903, United States
- Department of Process and Product Development, Amgen Inc., Seattle, Washington 98119, United States
- Global Analytical Sciences, Amgen Inc., Thousand Oaks, California 91320, United States
| | - Scott Lute
- Department of Protein Analytical Chemistry, Genentech, South San Francisco, California 94080, United States
- Department of Process and Product Development, Amgen Inc., Thousand Oaks, California 91361, United States
- Division of Monoclonal Antibodies, Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20903, United States
- Department of Process and Product Development, Amgen Inc., Seattle, Washington 98119, United States
- Global Analytical Sciences, Amgen Inc., Thousand Oaks, California 91320, United States
| | - Brittany Chavez
- Department of Protein Analytical Chemistry, Genentech, South San Francisco, California 94080, United States
- Department of Process and Product Development, Amgen Inc., Thousand Oaks, California 91361, United States
- Division of Monoclonal Antibodies, Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20903, United States
- Department of Process and Product Development, Amgen Inc., Seattle, Washington 98119, United States
- Global Analytical Sciences, Amgen Inc., Thousand Oaks, California 91320, United States
| | - Ken M. Prentice
- Department of Protein Analytical Chemistry, Genentech, South San Francisco, California 94080, United States
- Department of Process and Product Development, Amgen Inc., Thousand Oaks, California 91361, United States
- Division of Monoclonal Antibodies, Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20903, United States
- Department of Process and Product Development, Amgen Inc., Seattle, Washington 98119, United States
- Global Analytical Sciences, Amgen Inc., Thousand Oaks, California 91320, United States
| | - Lowell J. Brady
- Department of Protein Analytical Chemistry, Genentech, South San Francisco, California 94080, United States
- Department of Process and Product Development, Amgen Inc., Thousand Oaks, California 91361, United States
- Division of Monoclonal Antibodies, Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20903, United States
- Department of Process and Product Development, Amgen Inc., Seattle, Washington 98119, United States
- Global Analytical Sciences, Amgen Inc., Thousand Oaks, California 91320, United States
| | - Karen J. Miller
- Department of Protein Analytical Chemistry, Genentech, South San Francisco, California 94080, United States
- Department of Process and Product Development, Amgen Inc., Thousand Oaks, California 91361, United States
- Division of Monoclonal Antibodies, Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20903, United States
- Department of Process and Product Development, Amgen Inc., Seattle, Washington 98119, United States
- Global Analytical Sciences, Amgen Inc., Thousand Oaks, California 91320, United States
| |
Collapse
|
7
|
Navas N, Herrera A, Martínez-Ortega A, Salmerón-García A, Cabeza J, Cuadros-Rodríguez L. Quantification of an intact monoclonal antibody, rituximab, by (RP)HPLC/DAD in compliance with ICH guidelines. Anal Bioanal Chem 2014; 405:9351-63. [PMID: 24121431 DOI: 10.1007/s00216-013-7368-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 09/11/2013] [Accepted: 09/13/2013] [Indexed: 11/26/2022]
Abstract
We studied the quantification of an intact therapeutic monoclonal antibody (mAb), rituximab (RTX), using (reversephase) high-performance liquid chromatography with diode array detection ((RP)HPLC/DAD). To this end, we developed a chromatographic method and validated it as stabilityindicating in accordance with the International Conference on Harmonization guidelines (ICH). A 300-Å C8 column (250 mm×4.6 mm, 5 μm) was used to perform the analysis, and the temperature was maintained at 70 °C. Although only one mAb was analyzed, it was necessary to apply a gradient to elute it with a complex organic mixture. Chromatograms were registered at several wavelengths, with λ =214 nm employed for quantification purposes. The method was developed to quantify marketed RTX under typical hospital administration conditions. Further dilution was avoided in order to prevent additional mAb modification, and in this way the method was shown to be linear from 60 to 5000 mg/L. The precision of the method (repeatability and intermediate precision, estimated as the relative standard deviation, RSD %), was less than 1.0 %. Accuracy, specificity, robustness, and system suitability were also evaluated as specified in the ICH guidelines.We conducted a comprehensive chromatographic analysis by submitting RTX to several informative stress conditions. These forced degradation studies were conducted for two reasons: to estimate the specificity of the method, and to evaluate the robustness of the mAb formulation against external stress factors when handling it in preparation for administration. Thus, we investigated the effects of acid, base, oxidation, ionic strength, temperature, and UV light. Although a slight modification to the intact mAb could not be distinguished chromatographically in the stress studies we conducted, the procedure proposed here to evaluate peak purity enabled us to detect it with a satisfactory level of confidence. The proposed method could therefore be considered stability-indicating for quantyfying the intact mAb since it is qualified to detect its degradation/modification. Finally, the method was used to evaluate RTX in a long-term stability study performed under hospital conditions of use.
Collapse
|
8
|
Ion-pair reversed-phase high performance liquid chromatography method for the quantification of isoaspartic acid in a monoclonal antibody. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 955-956:26-33. [PMID: 24631807 DOI: 10.1016/j.jchromb.2014.02.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 01/22/2014] [Accepted: 02/02/2014] [Indexed: 11/22/2022]
Abstract
Isomerization of aspartic acid residues is one of the major causes of chemical degradation during the shelf life of biological pharmaceuticals. Monoclonal antibody biopharmaceuticals are typically stored at mildly acidic pH conditions, which can lead to the isomerization reaction. The mechanism of this non-enzymatic chemical reaction has been studied in great detail. However, the identification and quantification of the isomerization sites in a given protein still remains a challenge. We developed an ion-pair reversed-phase HPLC method for the separation of an intact monoclonal antibody variant containing a single isoaspartic acid residue from its native counterpart. We identified and characterized the isomerization site using ion-pair reversed-phase HPLC mass spectrometry methods of the reduced and alkylated antibody and the enzymatically cleaved antibody. Lys-C followed by Asp-N digestion of the antibody was used for the identification of the isomerization site. Electron transfer dissociation (ETD) mass spectrometry was used to confirm the isomerization site at a DY motif at an aspartic acid residue in the CDR-H3 region of the antibody. Tyrosine at the C-terminus of an aspartic acid residue is typically not regarded as a hot spot for isomerization. Our findings suggest that it is not possible to predict isomerization sites in proteins with confidence and all aspartic acid residues located in the CDR regions of antibodies must be considered as potential isomerization site due to the solvent exposure or the flexibility of these regions of the molecule. Additionally, the effect of the pH on the isomerization rate was evaluated using the ion-pair reversed-phase HPLC method, showing that at a lower pH the isomerization rate is faster. Storage at 25°C for 6 months resulted in an increase of the amount of isoaspartic acid to 6.6% at pH 5.4, 6.0% at pH 5.8, and 5.6% at pH 6.2.
Collapse
|
9
|
Zhang T, Zhang J, Hewitt D, Tran B, Gao X, Qiu ZJ, Tejada M, Gazzano-Santoro H, Kao YH. Identification and Characterization of Buried Unpaired Cysteines in a Recombinant Monoclonal IgG1 Antibody. Anal Chem 2012; 84:7112-23. [DOI: 10.1021/ac301426h] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Taylor Zhang
- Protein
Analytical Chemistry, ‡BioAnalytical Sciences, and §Biological Technologies, Genentech, California 94080, United
States
| | - Jennifer Zhang
- Protein
Analytical Chemistry, ‡BioAnalytical Sciences, and §Biological Technologies, Genentech, California 94080, United
States
| | - Daniel Hewitt
- Protein
Analytical Chemistry, ‡BioAnalytical Sciences, and §Biological Technologies, Genentech, California 94080, United
States
| | - Ben Tran
- Protein
Analytical Chemistry, ‡BioAnalytical Sciences, and §Biological Technologies, Genentech, California 94080, United
States
| | - Xiaoying Gao
- Protein
Analytical Chemistry, ‡BioAnalytical Sciences, and §Biological Technologies, Genentech, California 94080, United
States
| | - Zhihua Julia Qiu
- Protein
Analytical Chemistry, ‡BioAnalytical Sciences, and §Biological Technologies, Genentech, California 94080, United
States
| | - Max Tejada
- Protein
Analytical Chemistry, ‡BioAnalytical Sciences, and §Biological Technologies, Genentech, California 94080, United
States
| | - Helene Gazzano-Santoro
- Protein
Analytical Chemistry, ‡BioAnalytical Sciences, and §Biological Technologies, Genentech, California 94080, United
States
| | - Yung-Hsiang Kao
- Protein
Analytical Chemistry, ‡BioAnalytical Sciences, and §Biological Technologies, Genentech, California 94080, United
States
| |
Collapse
|
10
|
Gomez N, Vinson AR, Ouyang J, Nguyen MDH, Chen XN, Sharma VK, Yuk IH. Triple light chain antibodies: factors that influence its formation in cell culture. Biotechnol Bioeng 2010; 105:748-60. [PMID: 19845001 DOI: 10.1002/bit.22580] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
THIOMABs are recombinant antibodies engineered with reactive cysteines, which can be covalently conjugated to drugs of interest to generate targeted therapeutics. During the analysis of THIOMABs secreted by stably transfected Chinese Hamster Ovary (CHO) cells, we discovered the existence of a new species--Triple Light Chain Antibody (3LC). This 3LC species is the product of a disulfide bond formed between an extra light chain and one of the engineered cysteines on the THIOMAB. We characterized the 3LC by size exclusion chromatography, mass spectrometry, and microchip electrophoresis. We also investigated the potential causes of 3LC formation during cell culture, focusing on the effects of free light chain (LC) polypeptide concentration, THIOMAB amino acid sequence, and glutathione (GSH) production. In studies covering 12 THIOMABs produced by 66 stable cell lines, increased free LC polypeptide expression--evaluated as the ratio of mRNA encoding for LC to the mRNA encoding for heavy chain (HC)--correlated with increased 3LC levels. The amino acid sequence of the THIOMAB molecule also impacted its susceptibility to 3LC formation: hydrophilic LC polypeptides showed elevated 3LC levels. Finally, increased GSH production--evaluated as the ratio of the cell-specific production rate of GSH (q(GSH)) to the cell-specific production rate of THIOMAB (q(p))--corresponded to decreased 3LC levels. In time-lapse studies, changes in extracellular 3LC levels during cell culture corresponded to changes in mRNA LC/HC ratio and q(GSH)/q(p) ratio. In summary, we found that cell lines with low mRNA LC/HC ratio and high q(GSH)/q(p) ratio yielded the lowest levels of 3LC. These findings provide us with factors to consider in selecting a cell line to produce THIOMABs with minimal levels of the 3LC impurity.
Collapse
Affiliation(s)
- Natalia Gomez
- Early Stage Cell Culture, Genentech, Inc., 1 DNA Way, MS 32, South San Francisco, California 94080-4990, USA.
| | | | | | | | | | | | | |
Collapse
|
11
|
|
12
|
Zhang Z, Pan H, Chen X. Mass spectrometry for structural characterization of therapeutic antibodies. MASS SPECTROMETRY REVIEWS 2009; 28:147-76. [PMID: 18720354 DOI: 10.1002/mas.20190] [Citation(s) in RCA: 243] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Antibodies, also known as immunoglobulins, have emerged as one of the most promising classes of therapeutics in the biopharmaceutical industry. The need for complete characterization of the quality attributes of these molecules requires sophisticated techniques. Mass spectrometry (MS) has become an essential analytical tool for the structural characterization of therapeutic antibodies, due to its superior resolution over other analytical techniques. It has been widely used in virtually all phases of antibody development. Structural features determined by MS include amino acid sequence, disulfide linkages, carbohydrate structure and profile, and many different post-translational, in-process, and in-storage modifications. In this review, we will discuss various MS-based techniques for the structural characterization of monoclonal antibodies. These techniques are categorized as mass determination of intact antibodies, and as middle-up, bottom-up, top-down, and middle-down structural characterizations. Each of these techniques has its advantages and disadvantages in terms of structural resolution, sequence coverage, sample consumption, and effort required for analyses. The role of MS in glycan structural characterization and profiling will also be discussed.
Collapse
Affiliation(s)
- Zhongqi Zhang
- Process and Product Development, Amgen, Thousand Oaks, CA 91320, USA.
| | | | | |
Collapse
|
13
|
Liquid chromatography of recombinant proteins and protein drugs. J Chromatogr B Analyt Technol Biomed Life Sci 2008; 866:133-53. [DOI: 10.1016/j.jchromb.2008.01.041] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 12/17/2007] [Accepted: 01/18/2008] [Indexed: 01/12/2023]
|
14
|
Quantitative aspects of the analysis of the monoclonal antibody trastuzumab using high-performance liquid chromatography coupled with electrospray mass spectrometry. J Pharm Biomed Anal 2008; 46:449-55. [DOI: 10.1016/j.jpba.2007.11.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 10/25/2007] [Accepted: 11/03/2007] [Indexed: 11/18/2022]
|
15
|
Srebalus Barnes CA, Lim A. Applications of mass spectrometry for the structural characterization of recombinant protein pharmaceuticals. MASS SPECTROMETRY REVIEWS 2007; 26:370-88. [PMID: 17410555 DOI: 10.1002/mas.20129] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Therapeutic proteins produced using recombinant DNA technologies are generally complex, heterogeneous, and subject to a variety of enzymatic or chemical modifications during expression, purification, and long-term storage. The use of mass spectrometry (MS) for the evaluation of recombinant protein sequence and structure provides detailed information regarding amino acid modifications and sequence alterations that have the potential to affect the safety and activity of therapeutic protein products. General MS approaches for the characterization of recombinant therapeutic protein products will be reviewed with particular attention given to the standard MS tools available in most biotechnology laboratories. A number of recent examples will be used to illustrate the utility of MS strategies for evaluation of recombinant protein heterogeneity resulting from post-translational modifications (PTMs), sequence variations generated from proteolysis or transcriptional/translational errors, and degradation products which are formed during processing or final product storage. Specific attention will be given to the MS characterization of monoclonal antibodies as a model system for large, glycosylated, recombinant proteins. Detailed examples highlighting the use of MS for the analysis of monoclonal antibody glycosylation, deamidation, and disulfide mapping will be used to illustrate the application of these techniques to a wide variety of heterogeneous therapeutic protein products. The potential use of MS to support the selection of cell line/clone selection and formulation development for therapeutic antibody products will also be discussed.
Collapse
|
16
|
Pascoe DE, Arnott D, Papoutsakis ET, Miller WM, Andersen DC. Proteome analysis of antibody-producing CHO cell lines with different metabolic profiles. Biotechnol Bioeng 2007; 98:391-410. [PMID: 17461427 DOI: 10.1002/bit.21460] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Two-dimensional gel electrophoresis and tandem mass spectrometry were used to identify proteins associated with a metabolic shift during fed-batch cultures of two recombinant antibody-producing CHO cell lines. The first cell line underwent a marked change in lactate metabolism during culture, initially producing lactate and then consuming it, while the second cell line produced lactate for a similar duration but did not later consume it. The first cell line displayed a declining specific antibody productivity during culture, correlating to the 2-D gel results and the intracellular antibody concentration determined by HPLC. Several statistical analysis methods were compared during this work, including a fixed fold-change criterion and t-tests using standard deviations determined in several ways from the raw data and mathematically transformed data. Application of a variance-stabilizing transformation enabled the use of a global empirical standard deviation in the t-tests. Most of the protein spots changing in each cell line did not change significantly in the other cell line. A substantial fraction of the changing proteins were glycolytic enzymes; others included proteins related to antibody production, protein processing, and cell structure. Enolase, pyruvate kinase, BiP/GRP78, and protein disulfide isomerase were found in spots that changed over time in both cell lines, and some protein changes differed from previous reports. These data provide a foundation for future investigation of metabolism in industrially relevant mammalian cell culture processes, and suggest that along with differences between cell types, the proteins expressed in cultures with low lactate concentrations may depend on how those conditions were generated.
Collapse
Affiliation(s)
- Deborah E Pascoe
- Bioprocess Development, Genentech, Inc., One DNA Way, South San Francisco, California 94080, USA
| | | | | | | | | |
Collapse
|
17
|
Ahrer K, Jungbauer A. Chromatographic and electrophoretic characterization of protein variants. J Chromatogr B Analyt Technol Biomed Life Sci 2006; 841:110-22. [PMID: 16872917 DOI: 10.1016/j.jchromb.2006.05.044] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2006] [Revised: 05/23/2006] [Accepted: 05/28/2006] [Indexed: 11/17/2022]
Abstract
Almost all proteins are expressed in several variants, also known as isoforms. Individual protein variants differ by modifications of the individual amino acid side chains, or the N- or C-terminus. Typical modifications are glycosylation, phosphorylation, acetylation, methylation, deamidation or oxidation. It is of utmost interest to either get a quantitative picture of the variants of a particular protein or to separate the variants in order to be able to identify their molecular structure. Protein variants are present in native as well as in recombinant proteins. In the case of protein production it is interesting, how variants are generated during fermentation, purification processes, storage, and how present individual variants influence the biological activity. This review provides a comparison of chromatographic and electrophoretic separation methods to analyze and to prepare protein variants.
Collapse
Affiliation(s)
- Karin Ahrer
- Department of Biotechnology, University of Natural Resources and Applied Life Sciences and Austrian Center of Biopharmaceutical Technology, Vienna, Muthgasse 18, A-1190 Vienna, Austria
| | | |
Collapse
|
18
|
Dillon TM, Bondarenko PV, Rehder DS, Pipes GD, Kleemann GR, Ricci MS. Optimization of a reversed-phase high-performance liquid chromatography/mass spectrometry method for characterizing recombinant antibody heterogeneity and stability. J Chromatogr A 2006; 1120:112-20. [PMID: 16448656 DOI: 10.1016/j.chroma.2006.01.016] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2005] [Revised: 12/30/2005] [Accepted: 01/06/2006] [Indexed: 10/25/2022]
Abstract
An enhanced analytical RP-HPLC/MS method was developed for monitoring the stability and production of intact and fragmented monoclonal antibodies (MAbs). The use of high column temperatures (70-80 degrees C), organic solvents with high eluotropic strength coefficients (isopropyl and n-propyl alcohols), and Zorbax StableBond columns, were critical for good recovery and resolution of immunoglobulin G1 (IgG1) and IgG2 monoclonal antibodies. Using this method, cleavage products of a degraded IgG1 antibody were clearly separated and identified by in-line electrospray ionization time-of-flight (ESI-TOF) mass spectrometry generating exact masses and unique terminal ladder sequences. The glycosylation profile, including mapping of the terminal galactose and fucose heterogeneity of the N-linked sugars, was determined by mass spectrometry of intact MAbs. In addition, we discovered that several IgG2 MAbs exhibited greater structural heterogeneity compared to IgG1s. Mass spectral characterization data and reduction data suggested that the heterogeneity is disulfide related. This reversed-phase LC/MS method represents a key advancement in monitoring intact MAb production and stability.
Collapse
Affiliation(s)
- Thomas M Dillon
- Pharmaceutics Department, Amgen Inc., One Amgen Center Dr., Thousand Oaks, CA 91320, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Rehder DS, Dillon TM, Pipes GD, Bondarenko PV. Reversed-phase liquid chromatography/mass spectrometry analysis of reduced monoclonal antibodies in pharmaceutics. J Chromatogr A 2006; 1102:164-75. [PMID: 16297926 DOI: 10.1016/j.chroma.2005.10.053] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2005] [Revised: 10/10/2005] [Accepted: 10/17/2005] [Indexed: 11/30/2022]
Abstract
A reversed-phase LC/MS method was developed for reduced antibodies that provides efficient separation of light chain and two variants of heavy chain containing N-terminal glutamine and pyroglutamic acid. The best separation was achieved on Zorbax CN and Varian Pursuit DiPhenyl columns eluted with increasing percentage of n-propanol and acetonitrile in 0.1% trifluoroacetic acid. Although glutamine was genetically coded for the N-terminal residue of heavy chain of a monoclonal antibody used in this study, we found that most of it (70%) was converted to pyroglutamate during production. The conversion process continued in vitro and was monitored by the method. Deconvoluted electrospray ionization mass spectrum of the heavy chain revealed the glycosylation profile of a single N-linked sugar including a-, mono-, and di-galactosylated biantennary glycans and a 5-mannose sugar form.
Collapse
Affiliation(s)
- Douglas S Rehder
- Amgen, Department of Pharmaceutics, One Amgen Center Drive, MS 8-1-C, Thousand Oaks, CA 91320, USA
| | | | | | | |
Collapse
|
20
|
Harris RJ, Shire SJ, Winter C. Commercial manufacturing scale formulation and analytical characterization of therapeutic recombinant antibodies. Drug Dev Res 2004. [DOI: 10.1002/ddr.10344] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
21
|
Chen C, Snedecor B, Nishihara JC, Joly JC, McFarland N, Andersen DC, Battersby JE, Champion KM. High-level accumulation of a recombinant antibody fragment in the periplasm ofEscherichia coli requires a triple-mutant (degP prc spr) host strain. Biotechnol Bioeng 2004; 85:463-74. [PMID: 14760686 DOI: 10.1002/bit.20014] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
During production of a humanized antibody fragment secreted into the periplasm of Escherichia coli, proteolytic degradation of the light chain was observed. In order to determine which protease(s) were responsible for this degradation, we compared expression of the F(ab')(2) antibody fragment in several E. coli strains carrying mutations in genes encoding periplasmic proteases. Analysis of strains cultured in high cell density fermentations showed that the combination of mutations in degP prc spr was necessary for the cells to produce high levels of the desired recombinant antibody fragment. In order to eliminate the possible effects of mutations in other genes, we constructed E. coli strains with protease mutations in isogenic backgrounds and repeated the studies in high cell density fermentations. Extensive light chain proteolysis persisted in degP strains. However, light chain proteolysis was substantially decreased in prc and prc spr strains, and was further decreased with the introduction of a degP mutation in prc and prc spr mutant strains. These results show that the periplasmic protease Prc (Tsp) is primarily responsible for proteolytic degradation of the light chain during expression of a recombinant antibody fragment in E. coli, and that DegP (HtrA) makes a minor contribution to this degradation as well. The results also show that spr, a suppressor of growth defects in prc strains, is required for a prc mutant to survive throughout high cell density fermentations.
Collapse
Affiliation(s)
- Christina Chen
- Department of Cell Culture and Fermentation Research and Development, Genentech, Inc., South San Francisco, California 94080, USA.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Lee PS, Lee KH. Escherichia coli?a model system that benefits from and contributes to the evolution of proteomics. Biotechnol Bioeng 2003; 84:801-14. [PMID: 14708121 DOI: 10.1002/bit.10848] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The large body of knowledge about Escherichia coli makes it a useful model organism for the expression of heterologous proteins. Proteomic studies have helped to elucidate the complex cellular responses of E. coli and facilitated its use in a variety of biotechnology applications. Knowledge of basic cellular processes provides the means for better control of heterologous protein expression. Beyond such important applications, E. coli is an ideal organism for testing new analytical technologies because of the extensive knowledge base available about the organism. For example, improved technology for characterization of unknown proteins using mass spectrometry has made two-dimensional electrophoresis (2DE) studies more useful and more rewarding, and much of the initial testing of novel protocols is based on well-studied samples derived from E. coli. These techniques have facilitated the construction of more accurate 2DE maps. In this review, we present work that led to the 2DE databases, including a new map based on tandem time-of-flight (TOF) mass spectrometry (MS); describe cellular responses relevant to biotechnology applications; and discuss some emerging proteomic techniques.
Collapse
Affiliation(s)
- Pat S Lee
- School of Chemical and Biomolecular Engineering, Cornell University, 102 Olin Hall, Ithaca, New York 14853, USA
| | | |
Collapse
|