1
|
Chance R, Kang AS. Eukaryotic ribosome display for antibody discovery: A review. Hum Antibodies 2024; 32:107-120. [PMID: 38788063 DOI: 10.3233/hab-240001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Monoclonal antibody biologics have significantly transformed the therapeutic landscape within the biopharmaceutical industry, partly due to the utilisation of discovery technologies such as the hybridoma method and phage display. While these established platforms have streamlined the development process to date, their reliance on cell transformation for antibody identification faces limitations related to library diversification and the constraints of host cell physiology. Cell-free systems like ribosome display offer a complementary approach, enabling antibody selection in a completely in vitro setting while harnessing enriched cellular molecular machinery. This review aims to provide an overview of the fundamental principles underlying the ribosome display method and its potential for advancing antibody discovery and development.
Collapse
|
2
|
Shabani S, Moghadam MF, Gargari SLM. Isolation and characterization of a novel GRP78-specific single-chain variable fragment (scFv) using ribosome display method. Med Oncol 2021; 38:115. [PMID: 34390413 DOI: 10.1007/s12032-021-01561-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/18/2021] [Indexed: 01/07/2023]
Abstract
Glucose-regulated protein 78 (GRP78) is a well-characterized endoplasmic reticulum (ER) chaperon frequently overexpressed at the surface of tumor cells and associated with tumor survival, metastasis, and chemoresistance. Hence, potential GRP78 binders emerge as promising candidates for cancer therapy and diagnosis. We applied ribosome display to isolate a single-chain variable domain (scFv) specific for the C-terminal domain of a recombinant human GRP78 (CGRP). Six female BALB/c mice were immunized and then splenocyte mRNA was extracted. An scFv-ribosome display library was established by joining the amplified VH/Vκ fragments through a 72-bp linker using overlap extension PCR. Then, selection was performed by applying two rounds of eukaryotic ribosome display panning with stepwise decreased amount of CGRP. Ultimately, the selected scFv was characterized using the indirect-ELISA assay, competitive-ELISA assay, Western blotting, Surface Plasmon Resonance (SPR), and in-silico analyses. The constructed library had a length of ~ 1100 bp and the high-affinity scFvs were isolated using the outputs of the final panning round. Among 60 positive clones, GSF3 was selected and its expression, purification, and binding capacity was confirmed by SDS-PAGE and Western blotting. GSF3 exhibited an affinity of 13 × 107 M-1 to CGRP as assessed by SPR. Moreover, the in-silico analyses indicated that GSF3 binds the C-terminal domain of GRP78 through key residues engaged in antibody-antigen interactions. We found that ribosome display is a swift and reliable technique for specific and high-affinity scFv isolation. Moreover, our results suggest that GSF3 might be applied as a potential cancer immunotherapeutic and diagnostic tool if this approach is carefully followed by successful preclinical and clinical evaluations to validate the findings for further confirmation.
Collapse
Affiliation(s)
- Shima Shabani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box 14115/111, Tehran, Iran
| | - Mehdi Forouzandeh Moghadam
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box 14115/111, Tehran, Iran.
| | | |
Collapse
|
3
|
Salimi F, Forouzandeh Moghadam M, Rajabibazl M. Development of a novel anti-HER2 scFv by ribosome display and in silico evaluation of its 3D structure and interaction with HER2, alone and after fusion to LAMP2B. Mol Biol Rep 2018; 45:2247-2256. [DOI: 10.1007/s11033-018-4386-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 09/12/2018] [Indexed: 12/31/2022]
|
4
|
Yu XJ, Shen YF, Dong J, Li T, Wang C, Zhang YJ, Wang LF, Meng YC, Yang Y, Wang HJ, Lei CH, Hu S, Li BH. Development and Optimization of Therapeutic Analogues of Anti-TNFα Antibody Infliximab. Mol Biol 2018. [DOI: 10.1134/s0026893318040180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Lu Q, Wang L, Zhang Y, Yu X, Wang C, Wang H, Yang Y, Chong X, Xia T, Meng Y, Wang Y, Lu C, Zhou L, Li B. An anti-ErbB2 fully human antibody circumvents trastuzumab resistance. Oncotarget 2018; 7:67129-67141. [PMID: 27564098 PMCID: PMC5341862 DOI: 10.18632/oncotarget.11562] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/11/2016] [Indexed: 02/04/2023] Open
Abstract
Trastuzumab, an anti-HER2/ErbB2 humanized antibody, has shown great clinical benefits in ErbB2-positive breast cancer treatment. Despite of its effectiveness, response rate to trastuzumab is limited and resistance is common. Here, we developed a new anti-ErbB2 antibody, denoted as H2-18, which was isolated from a phage display human antibody library. Previous studies have demonstrated that trastuzumab recognizes the juxtamembrane region of domain IV, and pertuzumab, another humanized ErbB2-specific antibody, binds to ErbB2 near the center of domain II. Our crystallographic analysis showed that the epitope recognized by H2-18 is within domain I of the ErbB2 molecule. H2-18 potently induced programmed cell death (PCD) in both trastuzumab-sensitive and -resistant breast cancer cell lines, while trastuzumab and pertuzumab, either used alone or in combination, only exhibits very weak PCD-inducing activity. More importantly, H2-18 could inhibit the growth of trastuzumab-resistant breast cancer cells far more effectively than trastuzumab plus pertuzumab, both in vitro and in vivo. In conclusion, H2-18 shows a unique ability to overcome trastuzumab resistance, suggesting that it has the great potential to be translated to the clinic.
Collapse
Affiliation(s)
- Qiong Lu
- International Joint Cancer Institute, The Second Military Medical University, Shanghai, People's Republic of China
| | - Lingfei Wang
- International Joint Cancer Institute, The Second Military Medical University, Shanghai, People's Republic of China
| | - Yajun Zhang
- International Joint Cancer Institute, The Second Military Medical University, Shanghai, People's Republic of China
| | - Xiaojie Yu
- International Joint Cancer Institute, The Second Military Medical University, Shanghai, People's Republic of China
| | - Chao Wang
- International Joint Cancer Institute, The Second Military Medical University, Shanghai, People's Republic of China
| | - Huajing Wang
- International Joint Cancer Institute, The Second Military Medical University, Shanghai, People's Republic of China
| | - Yang Yang
- International Joint Cancer Institute, The Second Military Medical University, Shanghai, People's Republic of China
| | - Xiaodan Chong
- International Joint Cancer Institute, The Second Military Medical University, Shanghai, People's Republic of China
| | - Tian Xia
- International Joint Cancer Institute, The Second Military Medical University, Shanghai, People's Republic of China
| | - Yanchun Meng
- School of Medicine, Nankai University, Tianjin, People's Republic of China
| | - Yuxiao Wang
- Central Laboratory, Navy General Hospital, Beijing People's Republic of China
| | - Cuihua Lu
- Department of Gastroenterology, The Affiliated Hospital of Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Lijun Zhou
- Central Laboratory, Navy General Hospital, Beijing People's Republic of China
| | - Bohua Li
- International Joint Cancer Institute, The Second Military Medical University, Shanghai, People's Republic of China
| |
Collapse
|
6
|
Nakayama M, Komiya S, Fujiwara K, Horisawa K, Doi N. In vitro selection of bispecific diabody fragments using covalent bicistronic DNA display. Biochem Biophys Res Commun 2016; 478:606-11. [PMID: 27473655 DOI: 10.1016/j.bbrc.2016.07.113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 07/25/2016] [Indexed: 12/25/2022]
Abstract
Bispecific antibodies with two different antigen-binding sites have been widely used for a variety of medical applications. The activity and stability of antibody fragments can be improved by in vitro evolution. Although the affinity and stability of small bispecific antibody fragments such as diabodies can be further optimized by in vitro display technologies, cell-free display of bispecific antibody fragments has not been reported. In this study, we applied a covalent bicistronic DNA display for the in vitro selection of heterodimeric diabodies. First, we confirmed the antigen-binding activities of a diabody synthesized by an in vitro transcription and translation system. However, when we performed DNA-display selection of a model diabody library in a proof-of-principle experiment, no enrichment of the diabody gene was observed, likely due to a low yield of the diabody heterodimer. To overcome this issue, we introduced cysteine residues at the VH-VL interface of the diabody heterodimer. Using the disulfide-stabilized diabodies, we successfully enriched the diabody gene from a model library. Our results indicate that the covalent bicistronic DNA display technique could be useful for improving the stability and affinity of bispecific diabody fragments.
Collapse
Affiliation(s)
- Masanao Nakayama
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Yokohama, 223-8522, Japan
| | - Shoko Komiya
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Yokohama, 223-8522, Japan
| | - Kei Fujiwara
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Yokohama, 223-8522, Japan
| | - Kenichi Horisawa
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Yokohama, 223-8522, Japan
| | - Nobuhide Doi
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Yokohama, 223-8522, Japan.
| |
Collapse
|
7
|
Abstract
Since the development of therapeutic antibodies the demand of recombinant human antibodies is steadily increasing. Traditionally, therapeutic antibodies were generated by immunization of rat or mice, the generation of hybridoma clones, cloning of the antibody genes and subsequent humanization and engineering of the lead candidates. In the last few years, techniques were developed that use transgenic animals with a human antibody gene repertoire. Here, modern recombinant DNA technologies can be combined with well established immunization and hybridoma technologies to generate already affinity maturated human antibodies. An alternative are in vitro technologies which enabled the generation of fully human antibodies from antibody gene libraries that even exceed the human antibody repertoire. Specific antibodies can be isolated from these libraries in a very short time and therefore reduce the development time of an antibody drug at a very early stage.In this review, we describe different technologies that are currently used for the in vitro and in vivo generation of human antibodies.
Collapse
|
8
|
Zemella A, Thoring L, Hoffmeister C, Kubick S. Cell-Free Protein Synthesis: Pros and Cons of Prokaryotic and Eukaryotic Systems. Chembiochem 2015; 16:2420-31. [PMID: 26478227 PMCID: PMC4676933 DOI: 10.1002/cbic.201500340] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Indexed: 01/07/2023]
Abstract
From its start as a small-scale in vitro system to study fundamental translation processes, cell-free protein synthesis quickly rose to become a potent platform for the high-yield production of proteins. In contrast to classical in vivo protein expression, cell-free systems do not need time-consuming cloning steps, and the open nature provides easy manipulation of reaction conditions as well as high-throughput potential. Especially for the synthesis of difficult to express proteins, such as toxic and transmembrane proteins, cell-free systems are of enormous interest. The modification of the genetic code to incorporate non-canonical amino acids into the target protein in particular provides enormous potential in biotechnology and pharmaceutical research and is in the focus of many cell-free projects. Many sophisticated cell-free systems for manifold applications have been established. This review describes the recent advances in cell-free protein synthesis and details the expanding applications in this field.
Collapse
Affiliation(s)
- Anne Zemella
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses Potsdam-Golm (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany
| | - Lena Thoring
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses Potsdam-Golm (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany
| | - Christian Hoffmeister
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses Potsdam-Golm (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses Potsdam-Golm (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany.
| |
Collapse
|
9
|
Characterization of Anti-Citrinin Specific ScFvs Selected from Non-Immunized Mouse Splenocytes by Eukaryotic Ribosome Display. PLoS One 2015; 10:e0131482. [PMID: 26131718 PMCID: PMC4488840 DOI: 10.1371/journal.pone.0131482] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 06/01/2015] [Indexed: 11/19/2022] Open
Abstract
Single chain variable fragments (scFvs) against citrinin (CIT) were selected from a scFv library constructed from the splenocytes of non-immunized mice by an improved eukaryotic ribosome display technology in this study. Bovine serum albumin (BSA)/ CIT-BSA and ovalbumin (OVA)/ CIT-OVA were used as the antigens to select specific anti-CIT scFvs. Eukaryotic in situ RT-PCR method was used to recover the selected mRNA after every affinity selection. After six rounds of ribosome display, expression vector pTIG-TRX carrying specific scFv DNAs were constructed and transformed into Escherichia coli BL21 (DE3) for protein expression. Thirteen positive clones were selected out of which three (designated 23, 68 and 109) showed high binding activity and specificity to CIT by indirect ELISA, while no clone showed binding activity with carrier proteins. The three scFvs showed high specificity to CIT and the cross reactivity with other mycotoxins was below 0.01% as determined by indirect competitive ELISA. These specific scFvs offer a potential novel immunoassay method for CIT residues. This study confirmed the effectiveness of the improved eukaryotic ribosome display system and could be used as a reference for the selection of scFvs specific to other small molecules using ribosome display.
Collapse
|
10
|
Bencurova E, Pulzova L, Flachbartova Z, Bhide M. A rapid and simple pipeline for synthesis of mRNA-ribosome-V(H)H complexes used in single-domain antibody ribosome display. MOLECULAR BIOSYSTEMS 2015; 11:1515-24. [PMID: 25902394 DOI: 10.1039/c5mb00026b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The single-domain antibody (VHH) is a promising building block for a number of antibody-based applications. Ribosome display can successfully be used in the production of VHH. However, the construction of the expression cassette, confirmation of the translation and proper folding of the nascent chain, and the purification of the ribosome complexes, remain cumbersome tasks. Additionally, selection of the most suitable expression system can be challenging. We have designed primers that will amplify virtually all Camelidae VHH. With the help of a double-overlap extension (OE) polymerase chain reaction (PCR) we have fused VHH with the F1 fragment (T7 promoter and species-independent translation sequence) and the F2 fragment (mCherry, Myc-tag, tether, SecM arrest sequence and 3' stem loop) to generate a full-length DNA cassette. OE-PCR generated fragments were incubated directly with cell-free lysates (Leishmania torentolae, rabbit reticulocyte or E. coli) for the synthesis of mRNA-VHH-mCherry-ribosome complexes in vitro. Alternatively, the cassette was ligated in pQE-30 vector and transformed into E. coli to produce ribosome complexes in vivo. The results showed that the same expression cassette could be used to synthesize ribosome complexes with different expression systems. mCherry reporter served to confirm the synthesis and proper folding of the nascent chain, Myc-tag was useful in the rapid purification of ribosome complexes, and combination of the SecM sequence and 3' stem loop made the cassette universal, both for cells-free and E. coli in vivo. This rapid and universal pipeline can effectively be used in antibody ribosome display and VHH production.
Collapse
Affiliation(s)
- Elena Bencurova
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenskeho 72, 04181 Kosice, Slovakia.
| | | | | | | |
Collapse
|
11
|
Fu W, Wang Y, Zhang Y, Xiong L, Takeda H, Ding L, Xu Q, He L, Tan W, Bethune AN, Zhou L. Insights into HER2 signaling from step-by-step optimization of anti-HER2 antibodies. MAbs 2014; 6:978-90. [PMID: 24838231 PMCID: PMC4171031 DOI: 10.4161/mabs.28786] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 04/03/2014] [Accepted: 04/04/2014] [Indexed: 02/04/2023] Open
Abstract
HER2, a ligand-free tyrosine kinase receptor of the HER family, is frequently overexpressed in breast cancer. The anti-HER2 antibody trastuzumab has shown significant clinical benefits in metastatic breast cancer; however, resistance to trastuzumab is common. The development of monoclonal antibodies that have complementary mechanisms of action results in a more comprehensive blockade of ErbB2 signaling, especially HER2/HER3 signaling. Use of such antibodies may have clinical benefits if these antibodies can become widely accepted. Here, we describe a novel anti-HER2 antibody, hHERmAb-F0178C1, which was isolated from a screen of a phage display library. A step-by-step optimization method was employed to maximize the inhibitory effect of this anti-HER2 antibody. Crystallographic analysis was used to determine the three-dimensional structure to 3.5 Å resolution, confirming that the epitope of this antibody is in domain III of HER2. Moreover, this novel anti-HER2 antibody exhibits superior efficacy in blocking HER2/HER3 heterodimerization and signaling, and its use in combination with pertuzumab has a synergistic effect. Characterization of this antibody revealed the important role of a ligand binding site within domain III of HER2. The results of this study clearly indicate the unique potential of hHERmAb-F0178C1, and its complementary inhibition effect on HER2/HER3 signaling warrants its consideration as a promising clinical treatment.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal, Humanized/genetics
- Antibodies, Monoclonal, Humanized/immunology
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Neoplasm/genetics
- Antibodies, Neoplasm/immunology
- Antibodies, Neoplasm/pharmacology
- Antineoplastic Agents/immunology
- Antineoplastic Agents/pharmacology
- Breast Neoplasms/drug therapy
- Breast Neoplasms/immunology
- Breast Neoplasms/pathology
- Cell Line, Tumor
- Female
- Humans
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Protein Engineering/methods
- Receptor, ErbB-2/antagonists & inhibitors
- Receptor, ErbB-2/immunology
- Receptor, ErbB-3/immunology
- Signal Transduction/drug effects
- Signal Transduction/immunology
- Trastuzumab
Collapse
Affiliation(s)
- Wenyan Fu
- Central Laboratory; Navy General Hospital; Beijing, PR China
- Cancer Center; PLA General Hospital; PLA Postgraduate School of Medicine; Beijing, PR China
| | - Yuxiao Wang
- Central Laboratory; Navy General Hospital; Beijing, PR China
| | - Yunshan Zhang
- Department of Ultrasound in Medicine; Navy General Hospital; Beijing, PR China
| | - Lijuan Xiong
- Central Laboratory; Navy General Hospital; Beijing, PR China
| | - Hiroaki Takeda
- Department of Biochemistry; Norman Institute for Cancer Research; Toronto, ON CA
| | - Li Ding
- Central Laboratory; Navy General Hospital; Beijing, PR China
| | - Qunfang Xu
- The Department of Laboratory Medicine; State Grid Beijing Electric Power Hospital; Beijing, PR China
| | - Lidong He
- Central Laboratory; Navy General Hospital; Beijing, PR China
| | - Wenlong Tan
- Beijing Institute of Radiation Medicine; Beijing, PR China
| | - Augus N. Bethune
- Department of Molecular Oncology; Norman Institute for Cancer Research; Toronto, ON CA
| | - Lijun Zhou
- Central Laboratory; Navy General Hospital; Beijing, PR China
| |
Collapse
|
12
|
Selection of Single Chain Variable Fragments Specific for the Human-Inducible Costimulator Using Ribosome Display. Appl Biochem Biotechnol 2012; 168:967-79. [DOI: 10.1007/s12010-012-9800-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Accepted: 07/03/2012] [Indexed: 12/13/2022]
|
13
|
Sun Y, Ning B, Liu M, Gao X, Fan X, Liu J, Gao Z. Selection of diethylstilbestrol-specific single-chain antibodies from a non-immunized mouse ribosome display library. PLoS One 2012; 7:e33186. [PMID: 22427984 PMCID: PMC3302827 DOI: 10.1371/journal.pone.0033186] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Accepted: 02/11/2012] [Indexed: 12/01/2022] Open
Abstract
Single chain variable fragments (scFvs) against diethylstilbestrol (DES) were selected from the splenocytes of non-immunized mice by ribosome display technology. A naive library was constructed and engineered to allow in vitro transcription and translation using an E. coli lysate system. Alternating selection in solution and immobilization in microtiter wells was used to pan mRNA-ribosome-antibody (ARM) complexes. After seven rounds of ribosome display, the expression vector pTIG-TRX containing the selected specific scFv DNAs were transformed into Escherichia coli BL21 (DE3) for expression. Twenty-six positive clones were screened and five clones had high antibody affinity and specificity to DES as evidenced by indirect competitive ELISA. Sequence analysis showed that these five DES-specific scFvs had different amino acid sequences, but the CDRs were highly similar. Surface plasmon resonance (SPR) analysis was used to determine binding kinetics of one clone (30-1). The measured KD was 3.79 µM. These results indicate that ribosome display technology can be used to efficiently isolate hapten-specific antibody (Ab) fragments from a naive library; this study provides a methodological framework for the development of novel immunoassays for multiple environmental pollutants with low molecular weight detection using recombinant antibodies.
Collapse
Affiliation(s)
- Yanan Sun
- Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, China
| | - Baoan Ning
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Institute of Hygiene and Environmental Medicine, Academy of Military Medical Sciences, Tianjin, China
| | - Ming Liu
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Institute of Hygiene and Environmental Medicine, Academy of Military Medical Sciences, Tianjin, China
| | - Xianjun Gao
- Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xianjun Fan
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Institute of Hygiene and Environmental Medicine, Academy of Military Medical Sciences, Tianjin, China
| | - Jianqing Liu
- School of Chemical Engineering and Technology, Tian Jin University, Tianjin, China
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Institute of Hygiene and Environmental Medicine, Academy of Military Medical Sciences, Tianjin, China
- * E-mail:
| |
Collapse
|
14
|
Luo Y, Xia Y. Selection of single-chain variable fragment antibodies against fenitrothion by ribosome display. Anal Biochem 2012; 421:130-7. [DOI: 10.1016/j.ab.2011.10.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 10/01/2011] [Accepted: 10/25/2011] [Indexed: 11/25/2022]
|
15
|
Abstract
Ribosome display is an in vitro evolution technology for proteins. It is based on in vitro translation, but prevents the newly synthesized protein and the mRNA encoding it from leaving the ribosome. It thereby couples phenotype and genotype. Since no cells need to be transformed, very large libraries can be used directly in selections, and the in vitro amplification provides a very convenient integration of random mutagenesis that can be incorporated into the procedure. This review highlights concepts, mechanisms, and different variations of ribosome display and compares it to related methods. Applications of ribosome display are summarized, e.g., the directed evolution of proteins for higher binding affinity, for higher stability or other improved biophysical parameters and enzymatic properties. Ribosome display has developed into a robust technology used in academia and industry alike, and it has made the cell-free Darwinian evolution of proteins over multiple generations a reality.
Collapse
Affiliation(s)
- Andreas Plückthun
- Department of Biochemistry, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
16
|
Groves MA, Nickson AA. Affinity maturation of phage display antibody populations using ribosome display. Methods Mol Biol 2012; 805:163-90. [PMID: 22094806 DOI: 10.1007/978-1-61779-379-0_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ribsosome display is a PCR-based in vitro display technology that it well suited for the selection and evolution of high-affinity antibodies. In particular, ribosome display lends itself to the evolution of functional characteristics, such as potency, and thereby facilitates the production of therapeutic antibodies from lead candidates. In this chapter, we describe how to mature large phage display antibody populations (>10(7)) by performing increasingly stringent selections with decreasing antigen concentration. This process takes advantage of ribosome display's intrinsic ability to evolve sequence during selection. Ribosome display can also be used as a complementary tool to phage display for isolating high-affinity antibodies from naïve libraries. Ultimately, maturation of large antibody populations by ribosome display will help to speed up the process of generating antibody therapeutics.
Collapse
Affiliation(s)
- Maria A Groves
- Department of Antibody Discovery and Protein Engineering, MedImmune Limited, Cambridge, UK.
| | | |
Collapse
|
17
|
ZHAO XL, CHEN WQ, FENG H, SHEN CF, JI Y, LI JM, ZHANG SJ, YANG ZH. Preparation of Human Antibody Fragments Against Rabies Virus Based on Ribosome Display Technology*. PROG BIOCHEM BIOPHYS 2011. [DOI: 10.3724/sp.j.1206.2010.00521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Abstract
The aim of this study was to construct a ribosome display library of single chain variable fragments (scFvs) associated with hepatocarcinoma and screen such a library for hepatocarcinoma-binding scFvs. mRNA was isolated from the spleens of mice immunized with hepatocellular carcinoma cell line HepG2. Heavy and k chain genes (VH and k) were amplified separately by RT-PCR, and an anti-HepG2 VH/k chain ribosome display library was constructed by assembling VH and k into the VH/k chain with a specially constructed linker by SOE-PCR. The VH/k chain library was transcribed and translated in vitro using a rabbit reticulocyte lysate system. In order to isolate specific scFvs, recognizing HepG2 negative selection on a normal hepatocyte line WRL-68 was carried out before three rounds of positive selection on HepG2. After three rounds of panning, cell enzyme-linked immunosorbent assay (ELISA) showed that one of the scFvs had high affinity for the HepG2 cell and lower affinity for the WRL-68 cell. In this study, we successfully constructed a native ribosome display library. Such a library would prove useful for direct intact cell panning using ribosome display technology. The selected scFv had a potential value for hepatocarcinoma treatment.
Collapse
|
19
|
Qi Y, Wu C, Zhang S, Wang Z, Huang S, Dai L, Wang S, Xia L, Wen K, Cao X, Wu Y, Shen J. Selection of anti-sulfadimidine specific ScFvs from a hybridoma cell by eukaryotic ribosome display. PLoS One 2009; 4:e6427. [PMID: 19641611 PMCID: PMC2712767 DOI: 10.1371/journal.pone.0006427] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2009] [Accepted: 06/19/2009] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Ribosome display technology has provided an alternative platform technology for the development of novel low-cost antibody based on evaluating antibiotics derived residues in food matrixes. METHODOLOGY/PRINCIPAL FINDINGS In our current studies, the single chain variable fragments (scFvs) were selected from hybridoma cell lines against sulfadimidine (SM(2)) by using a ribosome library technology. A DNA library of scFv antibody fragments was constructed for ribosome display, and then mRNA-ribosome-antibody (MRA) complexes were produced by a rabbit reticulocyte lysate system. The synthetic sulfadimidine-ovalbumin (SM(2)-OVA) was used as an antigen to pan MRA complexes and putative scFv-encoding genes were recovered by RT-PCR in situ following each panning. After four rounds of ribosome display, the expression vector pCANTAB5E containing the selected specific scFv DNA was constructed and transformed into Escherichia coli HB2151. Three positive clones (SAS14, SAS68 and SAS71) were screened from 100 clones and had higher antibody activity and specificity to SM(2) by indirect ELISA. The three specific soluble scFvs were identified to be the same molecular weight (approximately 30 kDa) by Western-blotting analysis using anti-E tag antibodies, but they had different amino acids sequence by sequence analysis. CONCLUSIONS/SIGNIFICANCE The selection of anti-SM(2) specific scFv by in vitro ribosome display technology will have an important significance for the development of novel immunodetection strategies for residual veterinary drugs.
Collapse
Affiliation(s)
- Yonghua Qi
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing, China
- College of Animal Science, Henan Institute of Science and Technology, Xixiang, China
| | - Congming Wu
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Suxia Zhang
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhanhui Wang
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Siyang Huang
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lei Dai
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shaochen Wang
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lining Xia
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing, China
- College of Veterinary Medicine, Xinjiang Agricultural University, Urmuqi, China
| | - Kai Wen
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xingyuan Cao
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yongning Wu
- Institute for Nutrition and Food Safety, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jianzhong Shen
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing, China
- * E-mail:
| |
Collapse
|
20
|
Weisser NE, Hall JC. Applications of single-chain variable fragment antibodies in therapeutics and diagnostics. Biotechnol Adv 2009; 27:502-20. [PMID: 19374944 DOI: 10.1016/j.biotechadv.2009.04.004] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 03/03/2009] [Accepted: 04/04/2009] [Indexed: 11/18/2022]
Abstract
Antibodies (Abs) are some of the most powerful tools in therapy and diagnostics and are currently one of the fastest growing classes of therapeutic molecules. Recombinant antibody (rAb) fragments are becoming popular therapeutic alternatives to full length monoclonal Abs since they are smaller, possess different properties that are advantageous in certain medical applications, can be produced more economically and are easily amendable to genetic manipulation. Single-chain variable fragment (scFv) Abs are one of the most popular rAb format as they have been engineered into larger, multivalent, bi-specific and conjugated forms for many clinical applications. This review will show the tremendous versatility and importance of scFv fragments as they provide the basic antigen binding unit for a multitude of engineered Abs for use as human therapeutics and diagnostics.
Collapse
Affiliation(s)
- Nina E Weisser
- Department of Environmental Biology, University of Guelph, Guelph, ON N1G2W1, Canada
| | | |
Collapse
|
21
|
Kim JM, Shin HJ, Kim K, Lee MS. A pseudoknot improves selection efficiency in ribosome display. Mol Biotechnol 2007; 36:32-7. [PMID: 17827535 PMCID: PMC7090622 DOI: 10.1007/s12033-007-0017-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 12/05/2022]
Abstract
The size and diversity of ribosome display libraries depends upon stability of the complex formed between the ribosome, mRNA and translated protein. To investigate if mRNA secondary structure improves stability of the complex, we tested a pseudoknot, originating from the genomic RNA of infectious bronchitis virus (IBV), a member of the positive-stranded coronavirus group. We used the previously-isolated anti-DNA scFv, 3D8, as a target protein. During in vitro translation in rabbit reticulocyte lysate, we observed that incorporation of the pseudoknot into the mRNA resulted in production of a translational intermediate that corresponded to the expected size for ribosomal arrest at the pseudoknot. Complexes containing the mRNA pseudoknot exhibited a higher efficiency of affinity selection than that those without, indicating that the pseudoknot improves stability of the mRNA-ribosome-antibody complex in a eukaryotic translation system. Thus, in order to improve the efficiency of selection, this relatively short pseudoknot sequence could be incorporated into ribosome display.
Collapse
Affiliation(s)
- Jong-Myung Kim
- Department of Microbiology, Ajou University School of Medicine, Suwon, South Korea
| | - Ho-Joon Shin
- Department of Microbiology, Ajou University School of Medicine, Suwon, South Korea
| | - Kyongmin Kim
- Department of Microbiology, Ajou University School of Medicine, Suwon, South Korea
| | - Myung-Shin Lee
- Department of Microbiology, Ajou University School of Medicine, Suwon, South Korea
- The Armed Forces Medical Research Institute, P.O.B 78-503, Chumok-dong, Yuseong-gu, Daejeon, 305-153 South Korea
| |
Collapse
|
22
|
Selection of single chain fragments against the phytopathogen Xanthomonas axonopodis pv. citri by ribosome display. Enzyme Microb Technol 2007. [DOI: 10.1016/j.enzmictec.2007.03.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
23
|
Sheedy C, MacKenzie CR, Hall JC. Isolation and affinity maturation of hapten-specific antibodies. Biotechnol Adv 2007; 25:333-52. [PMID: 17383141 DOI: 10.1016/j.biotechadv.2007.02.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Revised: 02/05/2007] [Accepted: 02/05/2007] [Indexed: 11/16/2022]
Abstract
More and more recombinant antibodies specific for haptens such as drugs of abuse, dyes and pesticides are being isolated from antibody libraries. Thereby isolated antibodies tend to possess lower affinity than their parental, full-size counterparts, and therefore the isolation techniques must be optimized or the antibody genes must be affinity-matured in order to reach high affinities and specificities required for practical applications. Several strategies have been explored to obtain high-affinity recombinant antibodies from antibody libraries: At the selection level, biopanning optimization can be performed through elution with free hapten, analogue pre-incubation and subtractive panning. At the mutagenesis level, techniques such as random mutagenesis, bacterial mutator strains passaging, site-directed mutagenesis, mutational hotspots targeting, parsimonious mutagenesis, antibody shuffling (chain, DNA and staggered extension process) have been used with various degrees of success to affinity mature or modify hapten-specific antibodies. These techniques are reviewed, illustrated and compared.
Collapse
Affiliation(s)
- Claudia Sheedy
- Department of Environmental Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | |
Collapse
|
24
|
Abstract
Ribosome display is a cell-free technology for the in vitro selection and evolution of proteins encoded by DNA libraries, in which individual nascent proteins (phenotypes) are linked physically to their corresponding mRNA (genotypes) in stable protein-ribosome-mRNA (PRM) complexes. Formation of the complexes can be achieved through deletion of the stop codon of the mRNA, stalling the ribosome at the end of translation; the nascent protein is extended by a spacer such as the immunoglobulin Ckappa domain or others to allow exit through the ribosome tunnel. Through affinity for a ligand, the protein-mRNA coupling permits simultaneous isolation of a functional nascent protein and its translated mRNA; the latter is then converted into cDNA by reverse transcription and amplified for further manipulation, repeated cycles or soluble protein expression. Through the use of PCR-generated libraries, avoiding the need for cloning, ribosome display can be used to both screen very large populations and continuously search for new diversity during subsequent rounds of selection. Additionally, the use of cell-free systems allows the selection of proteins that are toxic or unstable in cells, and proteins with chemical modifications. Ribosome display systems using both prokaryotic and eukaryotic cell extracts have been developed. Examples of the application of eukaryotic systems include the selection and evolution of antibody fragments, DNA binding domains, enzymes, interacting proteins and peptides among others. Here we describe the step-by-step procedure to perform our previously described eukaryotic ribosome display method, which has the distinctive feature of an in situ reverse transcription-PCR (RT-PCR) procedure for DNA recovery from ribosome-bound mRNA. We also introduce a recent, previously unpublished improvement to the procedure in which in situ reverse transcription is combined with sensitive single-primer PCR technology.
Collapse
Affiliation(s)
- Mingyue He
- Technology Research Group, The Babraham Institute, Cambridge CB22 4AT, UK
| | | |
Collapse
|
25
|
Zahnd C, Amstutz P, Plückthun A. Ribosome display: selecting and evolving proteins in vitro that specifically bind to a target. Nat Methods 2007; 4:269-79. [PMID: 17327848 DOI: 10.1038/nmeth1003] [Citation(s) in RCA: 218] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Ribosome display is an in vitro selection and evolution technology for proteins and peptides from large libraries. As it is performed entirely in vitro, there are two main advantages over other selection technologies. First, the diversity of the library is not limited by the transformation efficiency of bacterial cells, but only by the number of ribosomes and different mRNA molecules present in the test tube. Second, random mutations can be introduced easily after each selection round, as no library must be transformed after any diversification step. This allows facile directed evolution of binding proteins over several generations. A prerequisite for the selection of proteins from libraries is the coupling of genotype (RNA, DNA) and phenotype (protein). In ribosome display, this link is accomplished during in vitro translation by stabilizing the complex consisting of the ribosome, the mRNA and the nascent, correctly folded polypeptide. The DNA library coding for a particular library of binding proteins is genetically fused to a spacer sequence lacking a stop codon. This spacer sequence, when translated, is still attached to the peptidyl tRNA and occupies the ribosomal tunnel, and thus allows the protein of interest to protrude out of the ribosome and fold. The ribosomal complexes are allowed to bind to surface-immobilized target. Whereas non-bound complexes are washed away, mRNA of the complexes displaying a binding polypeptide can be recovered, and thus, the genetic information of the binding polypeptides is available for analysis. Here we describe a step-by-step procedure to perform ribosome display selection using an Escherichia coli S30 extract for in vitro translation, based on the work originally described and further refined in our laboratory. A protocol that makes use of eukaryotic in vitro translation systems for ribosome display is also included in this issue.
Collapse
Affiliation(s)
- Christian Zahnd
- Biochemisches Institut der Universität Zürich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland
| | | | | |
Collapse
|
26
|
Yan X, Xu Z. Ribosome-display technology: applications for directed evolution of functional proteins. Drug Discov Today 2006; 11:911-6. [PMID: 16997141 DOI: 10.1016/j.drudis.2006.08.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Revised: 07/26/2006] [Accepted: 08/15/2006] [Indexed: 11/18/2022]
Abstract
In vitro display technologies, especially ribosome display, are valuable tools for many applications. In this paper, ribosome display technology and its applications for directed evolution of functional proteins will be reviewed. Ribosome display has great potential for directed evolution of protein stability and affinity, the generation of high-quality libraries by in vitro preselection, the selection of enzymatic activities, and the display of cDNA and random-peptide libraries. Ribosome display is carried out fully in vitro, which overcomes some of the limitations of cell-based display systems. We anticipate that ribosome display will have a great impact on applications in biotechnology, medicine and proteomics.
Collapse
Affiliation(s)
- Xianghua Yan
- Antibody Engineering Center, Key Laboratory of Animal Molecular Nutrition, Ministry of Education, Feed Science Institute, Zhejiang University, Hangzhou, 310029, P.R. China
| | | |
Collapse
|
27
|
He M, Khan F. Ribosome display: next-generation display technologies for production of antibodies in vitro. Expert Rev Proteomics 2006; 2:421-30. [PMID: 16000087 DOI: 10.1586/14789450.2.3.421] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Antibodies represent an important and growing class of biologic research reagents and biopharmaceutical products. They can be used as therapeutics in a variety of diseases. With the rapid expansion of proteomic studies and biomarker discovery, there is a need for the generation of highly specific binding reagents to study the vast number of proteins encoded by the genome. Display technologies provide powerful tools for obtaining antibodies. Aside from the preservation of natural antibody repertoires, they are capable of exploiting diversity by DNA recombination to create very large libraries for selection of novel molecules. In contrast to in vivo immunization processes, display technologies allow selection of antibodies under in vitro-defined selection condition(s), resulting in enrichment of antibodies with desired properties from large populations. In addition, in vitro selection enables the isolation of antibodies against difficult antigens including self-antigens, and this can be applied to the generation of human antibodies against human targets. Display technologies can also be combined with DNA mutagenesis for antibody evolution in vitro. Some methods are amenable to automation, permitting high-throughput generation of antibodies. Ribosome display is considered as representative of the next generation of display technologies since it overcomes the limitations of cell-based display methods by using a cell-free system, offering advantages of screening larger libraries and continuously expanding new diversity during selection. Production of display-derived antibodies can be achieved by choosing one of a variety of prokaryotic and eukaryotic cell-based expression systems. In the near future, cell-free protein synthesis may be developed as an alternative for large-scale generation of antibodies.
Collapse
Affiliation(s)
- Mingyue He
- Protein Technologies Laboratory, Babraham Research Campus, Cambridge, CB2 4AT, UK.
| | | |
Collapse
|
28
|
Groves M, Lane S, Douthwaite J, Lowne D, Rees DG, Edwards B, Jackson RH. Affinity maturation of phage display antibody populations using ribosome display. J Immunol Methods 2006; 313:129-39. [PMID: 16730741 DOI: 10.1016/j.jim.2006.04.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Revised: 03/29/2006] [Accepted: 04/07/2006] [Indexed: 10/24/2022]
Abstract
A comparison has been performed, using phage display or ribosome display, of stringent selections on antibody populations derived from three rounds of phage display selection. Stringent selections were performed by reducing concentrations of the antigen, bovine insulin, down to 1 nM. Higher affinity antibodies were isolated using ribosome display in a process that introduces random mutations across the clone population. Whereas the highest affinity antibody produced by phage display, D3, has a K(d) of 5.8 nM as a scFv fragment, ribosome display generated higher affinity variants of this antibody with K(d) values of 189 pM and 152 pM, without or with the use of error prone mutagenesis, respectively. The affinities were further increased for each antibody on conversion of the scFv fragments to whole IgG format, to a K(d) of less than 21 pM for the highest affinity variant of D3. Mutation of VH D101 of antibody D3 to glycine or valine, removing the salt bridge between K94 and D101 at the base of VHCDR3, was responsible for the enhanced affinity observed. In addition to the variants of D3, other unrelated antibodies of comparable or higher affinity for insulin, were isolated by ribosome display, but not phage display, indicating that ribosome display can enrich for different populations of antibodies. Affinity maturation of phage antibody populations using ribosome display is a valuable method of rapidly generating diverse, high affinity antibodies to antigen and should be readily applicable to the isolation of antibodies for the detection and assay of biomarkers.
Collapse
Affiliation(s)
- Maria Groves
- Cambridge Antibody Technology, Milstein Building, Granta Park, Cambridge CB1 6GH, UK
| | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Ribosome display presents an innovative in vitro technology for the rapid isolation and evolution of high-affinity peptides or proteins. Displayed proteins are bound to and recovered from target molecules in multiple rounds of selection in order to enrich for specific binding proteins. No transformation step is necessary, which could lead to a loss of library diversity. A cycle of display and selection can be performed in one day, enabling the existing gene repertoire to be rapidly scanned. Proteins isolated from the panning rounds can be further modified through random or directed molecular evolution for affinity maturation, as well as selected for characteristics such as protein stability, folding and functional activity. Recently, the field of display technologies has become more prominent due to the generation of new scaffolds for ribosome display, isolation of high-affinity human antibodies by phage display, and their implementation in the discovery of novel protein-protein interactions. Applications for this technology extend into the broad field of antibody engineering, proteomics, and synthetic enzymes for diagnostics and therapeutics in cancer, autoimmune and infectious diseases, neurodegenerative diseases and inflammatory disorders. This review highlights the role of ribosome display in drug discovery, discusses advantages and disadvantages of the system, and attempts to predict the future impact of ribosome display technology on the development of novel engineered biopharmaceutical products for biological therapies.
Collapse
Affiliation(s)
- Achim Rothe
- CSIRO Molecular and Health Technologies, 343 Royal Parade, Parkville, Victoria 3052, Australia
| | | | | |
Collapse
|
30
|
Abstract
During the past decade several display methods and other library screening techniques have been developed for isolating monoclonal antibodies (mAbs) from large collections of recombinant antibody fragments. These technologies are now widely exploited to build human antibodies with high affinity and specificity. Clever antibody library designs and selection concepts are now able to identify mAb leads with virtually any specificity. Innovative strategies enable directed evolution of binding sites with ultra-high affinity, high stability and increased potency, sometimes to a level that cannot be achieved by immunization. Automation of the technology is making it possible to identify hundreds of different antibody leads to a single therapeutic target. With the first antibody of this new generation, adalimumab (Humira, a human IgG1 specific for human tumor necrosis factor (TNF)), already approved for therapy and with many more in clinical trials, these recombinant antibody technologies will provide a solid basis for the discovery of antibody-based biopharmaceuticals, diagnostics and research reagents for decades to come.
Collapse
|
31
|
Abstract
Ribosome display is a polymerase chain reaction-based in vitro display technology that is well suited to the selection and evolution of high affinity antibodies. Both eukaryotic and prokaryotic translation systems have been applied to ribosome display, and the technology's utility has been demonstrated in the antibody isolation process. In particular, ribosome display lends itself to the evolution of functional characteristics, such as potency, of lead candidate antibodies to provide therapeutic antibodies. Large libraries (10(12)) can be rapidly constructed, antibodies selected, and sequence space extensively explored by targeted mutagenesis techniques or by random mutagenesis throughout the antibody sequence. Using such approaches in ribosome display systems lead antibodies derived from phage display or from immunised animals have been improved > 1000-fold in potency within 6 months. This review will discuss the technology and give an insight into how ribosome display is being applied to the antibody lead discovery and optimisation processes.
Collapse
Affiliation(s)
- Maria A T Groves
- Cambridge Antibody Technology, Milstein Building, Granta Park, Cambridge, CB16GH, UK
| | | |
Collapse
|
32
|
He M, Taussig MJ. Ribosome display of antibodies: expression, specificity and recovery in a eukaryotic system. J Immunol Methods 2005; 297:73-82. [PMID: 15777932 DOI: 10.1016/j.jim.2004.11.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2004] [Revised: 10/04/2004] [Accepted: 11/30/2004] [Indexed: 10/26/2022]
Abstract
In ribosome display, proteins are linked to their encoding genetic material as protein-ribosome-mRNA complexes. The technology has been applied to the isolation of antibodies and other proteins from large PCR-derived libraries. Here we demonstrate the specificity of eukaryotic ribosome complexes and investigate recovery and display procedures using a single chain version of the anti-progesterone monoclonal antibody DB3. Complexes are formed by deletion of the 3' stop codon in a coupled rabbit reticulocyte system. Using inhibition with different steroid probes, we show that the fine specificity of the combining site expressed as a nascent protein is closely similar to the native monoclonal, indicating correct folding and function while bound to the ribosome. We have demonstrated that the 3' end of the mRNA is blocked by the stalled ribosome and unavailable to primers. Moreover, we show that an in situ RT-PCR recovery procedure, carried out on intact complexes, is more efficient than ribosome disruption and isolation of mRNA followed by RT-PCR. We also explore the Mg(2+) and DTT concentrations and time required for efficient production of complexes. Our findings confirm the effectiveness of the eukaryotic ribosome display system and define conditions for efficient selection of single chain antibodies.
Collapse
Affiliation(s)
- Mingyue He
- Protein Technologies Laboratory, The Babraham Institute, The Babraham Research Campus, Cambridge CB2 4AT, UK
| | | |
Collapse
|
33
|
Lipovsek D, Plückthun A. In-vitro protein evolution by ribosome display and mRNA display. J Immunol Methods 2004; 290:51-67. [PMID: 15261571 DOI: 10.1016/j.jim.2004.04.008] [Citation(s) in RCA: 244] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2004] [Indexed: 11/30/2022]
Abstract
In-vitro display technologies combine two important advantages for identifying and optimizing ligands by evolutionary strategies. First, by obviating the need to transform cells in order to generate and select libraries, they allow a much higher library diversity. Second, by including PCR as an integral step in the procedure, they make PCR-based mutagenesis strategies convenient. The resulting iteration between diversification and selection allows true Darwinian protein evolution to occur in vitro. We describe two such selection methods, ribosome display and mRNA display. In ribosome display, the translated protein remains connected to the ribosome and to its encoding mRNA; the resulting ternary complex is used for selection. In mRNA display, mRNA is first translated and then covalently bonded to the protein it encodes, using puromycin as an adaptor molecule. The covalent mRNA-protein adduct is purified from the ribosome and used for selection. Successful examples of high-affinity, specific target-binding molecules selected by in-vitro display methods include peptides, antibodies, enzymes, and engineered scaffolds, such as fibronectin type III domains and synthetic ankyrins, which can mimic antibody function.
Collapse
Affiliation(s)
- Dasa Lipovsek
- Biological Engineering Division, Massachusetts Institute of Technology, Cambridge 02139, USA.
| | | |
Collapse
|
34
|
Lee MS, Kwon MH, Kim KH, Shin HJ, Park S, Kim HI. Selection of scFvs specific for HBV DNA polymerase using ribosome display. J Immunol Methods 2004; 284:147-57. [PMID: 14736425 DOI: 10.1016/j.jim.2003.10.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We applied a ribosome display technique to a mouse scFv library to select single chain variable fragments (scFvs) specific for the terminal protein (TP) of hepatitis B virus (HBV) DNA polymerase. Synthetic TP-peptide was used as an antigen to obtain scFvs that recognize specific epitopes within the TP domain, the priming site of HBV DNA polymerase. The scFv DNA library was transcribed in vitro to mRNA for ribosome display. scFv-ribosome-mRNA complexes were produced using a rabbit reticulocyte lysate system, and were panned against TP-peptide under appropriate conditions. After each panning, putative scFv-encoding genes were recovered by RT-PCR, and the analysis showed that scFv-ribosome-mRNA complexes were specifically selected by the TP-peptide. We used a radioimmunoassay to show that the TP-peptide-specific scFv pools were enriched through the selection process. Selected scFvs showed binding activity for both the TP-peptide and the HBV DNA polymerase protein in an ELISA. Sequence analysis showed that each TP-specific scFv had a different sequence, and that random mutagenesis was mediated by ribosome display.
Collapse
Affiliation(s)
- Myung-Shin Lee
- Department of Microbiology, Ajou University School of Medicine, Woncheon-dong 5, 442-749, Suwon, South Korea
| | | | | | | | | | | |
Collapse
|
35
|
Osbourn J, Jermutus L, Duncan A. Current methods for the generation of human antibodies for the treatment of autoimmune diseases. Drug Discov Today 2003; 8:845-51. [PMID: 12963321 DOI: 10.1016/s1359-6446(03)02803-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Autoimmune diseases are a significant area of unmet medical need in the Western World, but human antibodies are an emerging drug class that could address this demand. Some autoimmune diseases, such as rheumatoid arthritis, are currently benefiting from antibody treatment and new and existing technologies for antibody generation could facilitate the production of effective human antibodies as future drug candidates for other autoimmune diseases. Several methods of generating human antibodies for use as therapeutics have been established, the most commonly used being phage display and transgenic mouse technologies and more recently, cell-free display technologies have also emerged. In this review, we explain the principles behind the various methods of antibody generation and highlight some potential benefits of certain approaches in the context of treatment of autoimmune disease.
Collapse
Affiliation(s)
- Jane Osbourn
- Cambridge Antibody Technology, Milstein Building, Granta Park, Cambridge, UK CB1 6GH.
| | | | | |
Collapse
|
36
|
Soloviev M, Barry R, Scrivener E, Terrett J. Combinatorial peptidomics: a generic approach for protein expression profiling. J Nanobiotechnology 2003; 1:4. [PMID: 12877747 PMCID: PMC166277 DOI: 10.1186/1477-3155-1-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2003] [Accepted: 07/03/2003] [Indexed: 12/03/2022] Open
Abstract
Traditional approaches to protein profiling were built around the concept of investigating one protein at a time and have long since reached their limits of throughput. Here we present a completely new approach for comprehensive compositional analysis of complex protein mixtures, capable of overcoming the deficiencies of current proteomics techniques. The Combinatorial methodology utilises the peptidomics approach, in which protein samples are proteolytically digested using one or a combination of proteases prior to any assay being carried out. The second fundamental principle is the combinatorial depletion of the crude protein digest (i.e. of the peptide pool) by chemical crosslinking through amino acid side chains. Our approach relies on the chemical reactivities of the amino acids and therefore the amino acid content of the peptides (i.e. their information content) rather than their physical properties. Combinatorial peptidomics does not use affinity reagents and relies on neither chromatography nor electrophoretic separation techniques. It is the first generic methodology applicable to protein expression profiling, that is independent of the physical properties of proteins and does not require any prior knowledge of the proteins. Alternatively, a specific combinatorial strategy may be designed to analyse a particular known protein on the basis of that protein sequence alone or, in the absence of reliable protein sequence, even the predicted amino acid translation of an EST sequence. Combinatorial peptidomics is especially suitable for use with high throughput micro- and nano-fluidic platforms capable of running multiple depletion reactions in a single disposable chip.
Collapse
Affiliation(s)
- Mikhail Soloviev
- Oxford GlycoSciences (UK) Ltd, Abingdon, Oxon OX14 3YS, United Kingdom
| | - Richard Barry
- Oxford GlycoSciences (UK) Ltd, Abingdon, Oxon OX14 3YS, United Kingdom
| | - Elaine Scrivener
- Oxford GlycoSciences (UK) Ltd, Abingdon, Oxon OX14 3YS, United Kingdom
| | - Jonathan Terrett
- Oxford GlycoSciences (UK) Ltd, Abingdon, Oxon OX14 3YS, United Kingdom
| |
Collapse
|
37
|
He M, Taussig MJ. DiscernArray technology: a cell-free method for the generation of protein arrays from PCR DNA. J Immunol Methods 2003; 274:265-70. [PMID: 12609552 DOI: 10.1016/s0022-1759(02)00521-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Protein array technology offers a powerful tool to bridge genomics and proteomics. Currently, the bottleneck in the generation of protein arrays is the comprehensive production of functional proteins. We have developed a rapid cell-free method, DiscernArray, which creates functional protein arrays directly from PCR DNA by in vitro synthesis of individual tagged proteins on tag-binding surfaces, such that the tagged proteins are immobilized on a surface as they are synthesised. DiscernArray is particularly useful for arraying proteins and domains which cannot be functionally produced in heterologous expression systems or for which the cloned DNA is not available.
Collapse
Affiliation(s)
- Mingyue He
- Discerna Limited, Babraham Research Campus, Babraham, CB2 4AT, Cambridge, UK.
| | | |
Collapse
|
38
|
Fletcher G, Mason S, Terrett J, Soloviev M. Self-assembly of proteins and their nucleic acids. J Nanobiotechnology 2003; 1:1. [PMID: 12646068 PMCID: PMC151556 DOI: 10.1186/1477-3155-1-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2002] [Accepted: 01/28/2003] [Indexed: 11/10/2022] Open
Abstract
We have developed an artificial protein scaffold, herewith called a protein vector, which allows linking of an in-vitro synthesised protein to the nucleic acid which encodes it through the process of self-assembly. This protein vector enables the direct physical linkage between a functional protein and its genetic code. The principle is demonstrated using a streptavidin-based protein vector (SAPV) as both a nucleic acid binding pocket and a protein display system. We have shown that functional proteins or protein domains can be produced in vitro and physically linked to their DNA in a single enzymatic reaction. Such self-assembled protein-DNA complexes can be used for protein cloning, the cloning of protein affinity reagents or for the production of proteins which self-assemble on a variety of solid supports. Self-assembly can be utilised for making libraries of protein-DNA complexes or for labelling the protein part of such a complex to a high specific activity by labelling the nucleic acid associated with the protein. In summary, self-assembly offers an opportunity to quickly generate cheap protein affinity reagents, which can also be efficiently labelled, for use in traditional affinity assays or for protein arrays instead of conventional antibodies.
Collapse
Affiliation(s)
- Graham Fletcher
- Oxford GlycoSciences (UK) Ltd, Abingdon, Oxon OX14 3YS, United Kingdom
| | - Sean Mason
- Oxford GlycoSciences (UK) Ltd, Abingdon, Oxon OX14 3YS, United Kingdom
| | - Jon Terrett
- Oxford GlycoSciences (UK) Ltd, Abingdon, Oxon OX14 3YS, United Kingdom
| | - Mikhail Soloviev
- Oxford GlycoSciences (UK) Ltd, Abingdon, Oxon OX14 3YS, United Kingdom
| |
Collapse
|
39
|
Kellermann SA, Green LL. Antibody discovery: the use of transgenic mice to generate human monoclonal antibodies for therapeutics. Curr Opin Biotechnol 2002; 13:593-7. [PMID: 12482519 DOI: 10.1016/s0958-1669(02)00354-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Technical advances made in the 1980s and early 1990s resulted in monoclonal antibodies that are now approved for human therapy. Novel transgenic mouse strains provide a powerful technology platform for creating fully human monoclonal antibodies as therapeutics; ten such antibodies have entered clinical trials since 1998 and more are in preclinical testing. Improved transgenic mouse strains provide a powerful technology platform for creating human therapeutics in the future.
Collapse
|
40
|
Dower WJ, Mattheakis LC. In vitro selection as a powerful tool for the applied evolution of proteins and peptides. Curr Opin Chem Biol 2002; 6:390-8. [PMID: 12023121 DOI: 10.1016/s1367-5931(02)00332-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
New in vitro methods for the applied evolution of protein structure and function complement conventional cellular and phage-based methods. Strategies employing the direct physical linkage of genotype and phenotype, and the compartmental association of gene and product to select desired properties are discussed, and recent useful applications are described. Engineering of antibodies and other proteins, selection from cDNA libraries, and the creation of functional protein domains from completely random starting sequences illustrate the value of the in vitro approaches. Also discussed is an emerging new direction for in vitro display technology: the self-assembly of protein arrays.
Collapse
Affiliation(s)
- William J Dower
- XenoPort, Inc., 3410 Central Expressway, Santa Clara, CA 95051, USA.
| | | |
Collapse
|
41
|
Takahashi F, Ebihara T, Mie M, Yanagida Y, Endo Y, Kobatake E, Aizawa M. Ribosome display for selection of active dihydrofolate reductase mutants using immobilized methotrexate on agarose beads. FEBS Lett 2002; 514:106-10. [PMID: 11904191 DOI: 10.1016/s0014-5793(02)02334-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Ribosome display was applied to the selection of an enzyme. As a model, we selected and amplified the dihydrofolate reductase (DHFR) gene by ribosome display utilizing a wheat germ cell-free protein synthesis system based on binding affinity to its substrate analog, methotrexate, immobilized on agarose beads. After three rounds of selection, the DHFR gene could be effectively selected and preferentially amplified from a small proportion in a mixture also containing competitive genes. Active enzymes were expressed and amplified and by sequence analysis, four mutants of DHFR were identified. These mutants showed as much activity as the wild-type enzyme.
Collapse
Affiliation(s)
- Fumio Takahashi
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midoriku, 226-8501, Yokohama, Japan
| | | | | | | | | | | | | |
Collapse
|
42
|
Daly SJ, Dillon PP, Brennan J, Dunne L, Fitzpatrick J, O'Kennedy R. PRODUCTION AND ANALYTICAL APPLICATIONS OF scFv ANTIBODY FRAGMENTS. ANAL LETT 2001. [DOI: 10.1081/al-100106113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
43
|
Amstutz P, Forrer P, Zahnd C, Plückthun A. In vitro display technologies: novel developments and applications. Curr Opin Biotechnol 2001; 12:400-5. [PMID: 11551470 DOI: 10.1016/s0958-1669(00)00234-2] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In vitro display techniques are powerful tools to select polypeptide binders against various target molecules. Novel applications include maturation of protein affinity and stability, selection for enzymatic activity, and the display of cDNA and random polypeptide libraries. Taken together, these display techniques have great potential for biotechnological, medical and proteomic applications.
Collapse
Affiliation(s)
- P Amstutz
- Biochemisches Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | | | |
Collapse
|
44
|
Nuttall SD, Krishnan UV, Hattarki M, De Gori R, Irving RA, Hudson PJ. Isolation of the new antigen receptor from wobbegong sharks, and use as a scaffold for the display of protein loop libraries. Mol Immunol 2001; 38:313-26. [PMID: 11566324 DOI: 10.1016/s0161-5890(01)00057-8] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The new antigen receptor (NAR) from nurse sharks consists of an immunoglobulin variable domain attached to five constant domains, and is hypothesised to function as an antigen-binding antibody-like molecule. To determine whether the NAR is present in other species we have isolated a number of new antigen receptor variable domains from the spotted wobbegong shark (Orectolobus maculatus) and compared their structure to that of the nurse shark protein. To determine whether these wNARs can function as antigen-binding proteins, we have used them as scaffolds for the construction of protein libraries in which the CDR3 loop was randomised, and displayed the resulting recombinant domains on the surface of fd bacteriophages. On selection against several protein antigens, the highest affinity wNAR proteins were generated against the Gingipain K protease from Porphyromonas gingivalis. One wNAR protein bound Gingipain K specifically by ELISA and BIAcore analysis and, when expressed in E. coli and purified by affinity chromatography, eluted from an FPLC column as a single peak consistent with folding into a monomeric protein. Naturally occurring nurse shark and wobbegong NAR variable domains exhibit conserved cysteine residues within the CDR1 and CDR3 loops which potentially form disulphide linkages and enhance protein stability; proteins isolated from the in vitro NAR wobbegong library showed similar selection for such paired cysteine residues. Thus, the New Antigen Receptor represents a protein scaffold with possible stability advantages over conventional antibodies when used in in vitro molecular libraries.
Collapse
Affiliation(s)
- S D Nuttall
- CSIRO Health Sciences and Nutrition, 343 Royal Parade, Parkville, Victoria 3052, Australia.
| | | | | | | | | | | |
Collapse
|
45
|
He M, Taussig MJ. Single step generation of protein arrays from DNA by cell-free expression and in situ immobilisation (PISA method). Nucleic Acids Res 2001; 29:E73-3. [PMID: 11470888 PMCID: PMC55838 DOI: 10.1093/nar/29.15.e73] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We describe a format for production of protein arrays termed 'protein in situ array' (PISA). A PISA is rapidly generated in one step directly from PCR-generated DNA fragments by cell-free protein expression and in situ immobilisation at a surface. The template for expression is DNA encoding individual proteins or domains, which is produced by PCR using primers designed from information in DNA databases. Coupled transcription and translation is carried out on a surface to which the tagged protein adheres as soon as it is synthesised. Because proteins generated by cell-free synthesis are usually soluble and functional, this method can overcome problems of insolubility or degradation associated with bacterial expression of recombinant proteins. Moreover, the use of PCR-generated DNA enables rapid production of proteins or domains based on genome information alone and will be particularly useful where cloned material is not available. Here we show that human single-chain antibody fragments (three domain, V(H)/K form) and an enzyme (luciferase) can be functionally arrayed by the PISA method.
Collapse
Affiliation(s)
- M He
- Technology Research Group, The Babraham Institute, Babraham, Cambridge CB2 4AT, UK.
| | | |
Collapse
|
46
|
Coia G, Pontes-Braz L, Nuttall SD, Hudson PJ, Irving RA. Panning and selection of proteins using ribosome display. J Immunol Methods 2001; 254:191-7. [PMID: 11406164 DOI: 10.1016/s0022-1759(01)00409-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Eukaryotic ribosome complexes can be used as a means to display a library of proteins, and isolate specific binding reagents by screening against target molecules. Here we present, as an example, a method for the display of a library of immunoglobulin variable-like domains (VLDs) for the production of stable mRNA/ribosome/protein complexes. These complexes are produced by the addition of specific in vitro transcriptional promoter elements and translation control sequences to the template DNA. Furthermore, an appropriate spacer (anchor) domain is included for efficient folding of the nascent translated protein, which remains attached to the ribosome complex. Ribosome complexes are panned against hen egg lysozyme-conjugated magnetic beads and genes encoding specific, binding, V-like domains are recovered by RT-PCR and cloned into an Escherichia coli expression vector.
Collapse
Affiliation(s)
- G Coia
- CRC for Diagnostic Technologies, CSIRO Health Sciences and Nutrition, 343 Royal Parade, Parkville, Victoria 3052, Australia.
| | | | | | | | | |
Collapse
|
47
|
Plückthun A, Schaffitzel C, Hanes J, Jermutus L. In vitro selection and evolution of proteins. ADVANCES IN PROTEIN CHEMISTRY 2001; 55:367-403. [PMID: 11050939 DOI: 10.1016/s0065-3233(01)55009-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- A Plückthun
- Biochemisches Institut, Universität Zürich, Switzerland
| | | | | | | |
Collapse
|
48
|
Irving RA, Coia G, Roberts A, Nuttall SD, Hudson PJ. Ribosome display and affinity maturation: from antibodies to single V-domains and steps towards cancer therapeutics. J Immunol Methods 2001; 248:31-45. [PMID: 11223067 DOI: 10.1016/s0022-1759(00)00341-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Protein affinity maturation using molecular evolution techniques to produce high-affinity binding proteins is an important step in the generation of reagents for cancer diagnosis and treatment. Currently, the most commonly used molecular evolution processes involve mutation of a single gene into complex gene repertoires followed by selection from a display library. Fd-bacteriophage are the most popular display vectors, but are limited in their capacity for library presentation, speed of processing and mutation frequency. Recently, the potential of ribosome display for directed molecular evolution was recognised and developed into a rapid and simple affinity selection strategy using ribosome complexes to display antibody fragments (scFv). Ribosome display and selection has the potential to generate and display large libraries more representative of the theoretical optima for naïve repertoires (10(14)). Even more important is the application of ribosome display for the affinity maturation of individual proteins by rapid mutation and selection cycles. These display strategies can apply to other members of the immunoglobulin superfamily; for example single V-domains which have an important application in providing specific targeting to either novel or refractory cancer markers. We discuss the application of ribosome display and selection in conjunction with variable domain (CTLA-4) libraries as the first step towards this objective and review affinity maturation strategies for in vitro ribosome display systems.
Collapse
Affiliation(s)
- R A Irving
- CSIRO Health Sciences and Nutrition and CRC for Diagnostic Technologies, 343 Royal Parade, Parkville, 3052, Victoria, Australia.
| | | | | | | | | |
Collapse
|
49
|
Abstract
We describe a rapid and general technology working entirely in vitro to evolve either the affinity or the stability of ligand-binding proteins, depending on the chosen selection pressure. Tailored in vitro selection strategies based on ribosome display were combined with in vitro diversification by DNA shuffling to evolve either the off-rate or thermodynamic stability of single-chain Fv antibody fragments (scFvs). To demonstrate the potential of this method, we chose to optimize two proteins already possessing favorable properties. A scFv with an initial affinity of 1.1 nM (k(off) at 4 degrees C of 10(-4) s(-1)) was improved 30-fold by the use of off-rate selections over a period of several days. As a second example, a generic selection strategy for improved stability exploited the property of ribosome display that the conditions can be altered under which the folding of the displayed protein occurs. We used decreasing redox potentials in the selection step to select for molecules stable in the absence of disulfide bonds. They could be functionally expressed in the reducing cytoplasm, and, when allowed to form disulfides again, their stability had increased to 54 kJ/mol from an initial value of 24 kJ/mol. Sequencing revealed that the evolved mutant proteins had used different strategies of residue changes to adapt to the selection pressure. Therefore, by a combination of randomization and appropriate selection strategies, an in vitro evolution of protein properties in a predictable direction is possible.
Collapse
|
50
|
Jermutus L, Honegger A, Schwesinger F, Hanes J, Plückthun A. Tailoring in vitro evolution for protein affinity or stability. Proc Natl Acad Sci U S A 2001; 98:75-80. [PMID: 11134506 PMCID: PMC14547 DOI: 10.1073/pnas.98.1.75] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We describe a rapid and general technology working entirely in vitro to evolve either the affinity or the stability of ligand-binding proteins, depending on the chosen selection pressure. Tailored in vitro selection strategies based on ribosome display were combined with in vitro diversification by DNA shuffling to evolve either the off-rate or thermodynamic stability of single-chain Fv antibody fragments (scFvs). To demonstrate the potential of this method, we chose to optimize two proteins already possessing favorable properties. A scFv with an initial affinity of 1.1 nM (k(off) at 4 degrees C of 10(-4) s(-1)) was improved 30-fold by the use of off-rate selections over a period of several days. As a second example, a generic selection strategy for improved stability exploited the property of ribosome display that the conditions can be altered under which the folding of the displayed protein occurs. We used decreasing redox potentials in the selection step to select for molecules stable in the absence of disulfide bonds. They could be functionally expressed in the reducing cytoplasm, and, when allowed to form disulfides again, their stability had increased to 54 kJ/mol from an initial value of 24 kJ/mol. Sequencing revealed that the evolved mutant proteins had used different strategies of residue changes to adapt to the selection pressure. Therefore, by a combination of randomization and appropriate selection strategies, an in vitro evolution of protein properties in a predictable direction is possible.
Collapse
Affiliation(s)
- L Jermutus
- Biochemisches Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | | | | | |
Collapse
|