1
|
Effects of allyl isothiocyanate on the expression, function, and its mechanism of ABCA1 and ABCG1 in pulmonary of COPD rats. Int Immunopharmacol 2021; 101:108373. [PMID: 34802946 DOI: 10.1016/j.intimp.2021.108373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/01/2021] [Accepted: 11/10/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND AIMS Allyl isothiocyanate(AITC) has been shown to play an important role in the improved symptoms of chronic obstructive pulmonary disease(COPD) and the inhibition of inflammation, but the role in COPD lipid metabolism disorder and the molecular mechanism remains unclear. We aimed to explore whether and how AITC affects COPD by regulating lipid metabolism and inflammatory response. METHODS The COPD rat model was established by cigarette smoke exposure. Cigarette smoke extract stimulated 16HBE cells to induce a cell model. The effect of AITC treatment was detected by lung function test, H&E staining, Oil red O staining, immunohistochemistry, ELISA, CCK-8, HPLC, fluorescence efflux test, siRNA, RT-PCR, and Western blotting. Biological analysis was performed to analyze the results. Graphpad Prism 8.0 software was used for statistical analysis. RESULTS AITC can improve lung function and pathological injury in COPD rats. The levels of IL-1 β and TNF- α in the AITC treatment group were significantly lower than those in the model group(P < 0.05), and the lipid metabolism was also improved (P < 0.05). AITC reverses CSE-induced down-regulation of LXR α, ABCA1, and ABCG1 expression and function in a time-and concentration-dependent manner (P < 0.05). AITC regulates the cholesterol metabolism disorder induced by CSE in NR8383 cells and attenuates macrophage inflammation (P < 0.05). In addition, after silencing LXR α with siRNA, the effect of AITC was also inhibited. CONCLUSION These results suggest that AITC improves COPD by promoting RCT process and reducing inflammatory response via activating LXR pathways.
Collapse
|
2
|
Sämfors S, Fletcher JS. Lipid Diversity in Cells and Tissue Using Imaging SIMS. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2020; 13:249-271. [PMID: 32212820 DOI: 10.1146/annurev-anchem-091619-103512] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Lipids are an important class of biomolecules with many roles within cells and tissue. As targets for study, they present several challenges. They are difficult to label, as many labels lack the specificity to the many different lipid species or the labels maybe larger than the lipids themselves, thus severely perturbing the natural chemical environment. Mass spectrometry provides exceptional specificity and is often used to examine lipid extracts from different samples. However, spatial information is lost during extraction. Of the different imaging mass spectrometry methods available, secondary ion mass spectrometry (SIMS) is unique in its ability to analyze very small features, with probe sizes <50 nm available. It also offers high surface sensitivity and 3D imaging capability on a subcellular scale. This article reviews the current capabilities and some remaining challenges associated with imaging the diverse lipids present in cell and tissue samples. We show how the technique has moved beyond show-and-tell, proof-of-principle analysis and is now being used to address real biological challenges. These include imaging the microenvironment of cancer tumors, probing the pathophysiology of traumatic brain injury, or tracking the lipid composition through bacterial membranes.
Collapse
Affiliation(s)
- Sanna Sämfors
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41296 Gothenburg, Sweden;
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - John S Fletcher
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41296 Gothenburg, Sweden;
| |
Collapse
|
3
|
Höring M, Ejsing CS, Hermansson M, Liebisch G. Quantification of Cholesterol and Cholesteryl Ester by Direct Flow Injection High-Resolution Fourier Transform Mass Spectrometry Utilizing Species-Specific Response Factors. Anal Chem 2019; 91:3459-3466. [PMID: 30707563 DOI: 10.1021/acs.analchem.8b05013] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The quantification of free cholesterol (FC) and cholesteryl ester (CE) in mammalian samples is of great interest for basic science and clinical lipidomics. Here, we evaluated the feasibility of direct flow injection analysis (FIA) coupled to electrospray ionization high-resolution mass spectrometry (ESI-HRMS) to quantify FC and CE in lipid extracts from human serum, cultured cells, and mouse liver. Despite poor ionization efficiency of FC, the limit of quantitation was sufficient for precise and accurate quantification of FC by multiplexed HRMS (MSX) analysis without using a derivatization step. However, it was demonstrated that, upon full scan Fourier transform MS (FTMS) quantification, CE species show substantial differences in their analytical responses depending on number of double bonds, length of the acyl chain, infused lipid concentration, and other lipid components. A major determinant for these response differences is their susceptibility to in-source fragmentation. In particular, introduction of double bonds lowers the degree of in-source fragmentation. Therefore, CE species-specific response factors need to be applied for CE quantification by FTMS to achieve accurate concentrations. Method validation demonstrated that FIA-ESI-HRMS (MSX and FTMS) is applicable for quantification of FC and CE in samples used in basic science as well as clinical studies such as cultured cells, tissue homogenates, and serum.
Collapse
Affiliation(s)
- Marcus Höring
- Institute of Clinical Chemistry and Laboratory Medicine , Regensburg University Hospital , D-93042 Regensburg , Germany
| | - Christer S Ejsing
- Department of Biochemistry and Molecular Biology , Villum Center for Bioanalytical Sciences, University of Southern Denmark , Campusvej 55 , 5230 , Odense , Denmark.,Cell Biology and Biophysics Unit , European Molecular Biology Laboratory , 69117 Heidelberg , Germany
| | - Martin Hermansson
- Department of Biochemistry and Molecular Biology , Villum Center for Bioanalytical Sciences, University of Southern Denmark , Campusvej 55 , 5230 , Odense , Denmark
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine , Regensburg University Hospital , D-93042 Regensburg , Germany
| |
Collapse
|
4
|
Chen J, Tian J, Ge H, Liu R, Xiao J. Effects of tetramethylpyrazine from Chinese black vinegar on antioxidant and hypolipidemia activities in HepG2 cells. Food Chem Toxicol 2017; 109:930-940. [PMID: 28034800 DOI: 10.1016/j.fct.2016.12.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/09/2016] [Accepted: 12/14/2016] [Indexed: 02/08/2023]
Abstract
Tetramethylpyrazine is a bioactive compound found in Chinese black vinegar. This work is to investigate the potential effects of tetramethylpyrazine on intracellular cholesterol modulation in HepG2 cells. The results demonstrated that tetramethylpyrazine can induce intracellular cholesterol efflux. Tetramethylpyrazine may also improve endothelial function through its antioxidant effects by inhibiting reactive oxygen species levels and increasing the antioxidant enzymes superoxide dismutase and catalase. Tetramethylpyrazine increased liver X receptor and peroxisome proliferator-activated receptor gene expression in HepG2 cells. Protein expression of ATP-binding cassette transporter 1 was up-regulated in a dose-dependent manner (P < 0.05). The biological significance of tetramethylpyrazine may involve hypolipidemic effects via modulation of intracellular cholesterol efflux, ROS inhibition, increases in SOD and CAT activities, and direct regulation of PPAR and LXR gene expression. Tetramethylpyrazine may improve lipid profiles by elevating the PPARγ-LXRα-ABCA1 pathway.
Collapse
Affiliation(s)
- Jicheng Chen
- College of Food Science, Fujian Agriculture and Forest University, 15 Shangxiadian Rd, Fuzhou, 350002, PR China; Department of Food Science, Cornell University, Ithaca, NY, 14853, USA
| | - Jingjing Tian
- College of Food Science, Fujian Agriculture and Forest University, 15 Shangxiadian Rd, Fuzhou, 350002, PR China
| | - Huifang Ge
- College of Food Science, Fujian Agriculture and Forest University, 15 Shangxiadian Rd, Fuzhou, 350002, PR China
| | - Ruihai Liu
- Department of Food Science, Cornell University, Ithaca, NY, 14853, USA
| | - Jianbo Xiao
- College of Food Science, Fujian Agriculture and Forest University, 15 Shangxiadian Rd, Fuzhou, 350002, PR China; Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade, Taipa, Macau.
| |
Collapse
|
5
|
Khatun R, Hunter H, Magcalas W, Sheng Y, Carpick B, Kirkitadze M. Nuclear Magnetic Resonance (NMR) Study for the Detection and Quantitation of Cholesterol in HSV529 Therapeutic Vaccine Candidate. Comput Struct Biotechnol J 2016; 15:14-20. [PMID: 28694932 PMCID: PMC5484764 DOI: 10.1016/j.csbj.2016.10.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/25/2016] [Accepted: 10/26/2016] [Indexed: 11/29/2022] Open
Abstract
This study describes the NMR-based method to determine the limit of quantitation (LOQ) and limit of detection (LOD) of cholesterol, a process-related impurity in the replication-deficient Herpes Simplex Virus (HSV) type 2 candidate vaccine HSV529. Three signature peaks from the 1D 1H NMR of a cholesterol reference spectrum were selected for the identification of cholesterol. The LOQ for a cholesterol working standard was found to be 1 μg/mL, and the LOD was found to be 0.1 μg/mL. The identity of cholesterol, separated from the formulation of growth supplement by thin layer chromatography (TLC), was confirmed by 1D 1H NMR and 2D 1H-13C HSQC NMR. The three signature peaks of cholesterol were detected only in a six-times concentrated sample of HSV529 candidate vaccine sample and not in the single dose HSV529 vaccine sample under similar experimental conditions. Taken together, the results demonstrated that NMR is a direct method that can successfully identify and quantify cholesterol in viral vaccine samples, such as HSV529, and as well as in the growth supplement used during the upstream stages of HSV529 manufacturing.
Collapse
Affiliation(s)
- Rahima Khatun
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, Canada
| | - Howard Hunter
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, Canada
| | - Webster Magcalas
- Analytical Research & Development, Sanofi Pasteur Ltd., 1755 Steeles Avenue West, Toronto, Ontario, Canada
| | - Yi Sheng
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, Canada
| | - Bruce Carpick
- Analytical Research & Development, Sanofi Pasteur Ltd., 1755 Steeles Avenue West, Toronto, Ontario, Canada
| | - Marina Kirkitadze
- Analytical Research & Development, Sanofi Pasteur Ltd., 1755 Steeles Avenue West, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Koenig U, Fobker M, Lengauer B, Brandstetter M, Resch GP, Gröger M, Plenz G, Pammer J, Barresi C, Hartmann C, Rossiter H. Autophagy facilitates secretion and protects against degeneration of the Harderian gland. Autophagy 2016; 11:298-313. [PMID: 25484081 PMCID: PMC4502725 DOI: 10.4161/15548627.2014.978221] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The epithelial derived Harderian gland consists of 2 types of secretory cells. The more numerous type A cells are responsible for the secretion of lipid droplets, while type B cells produce dark granules of multilamellar bodies. The process of autophagy is constitutively active in the Harderian gland, as confirmed by our analysis of LC3 processing in GFP-LC3 transgenic mice. This process is compromised by epithelial deletion of Atg7. Morphologically, the Atg7 mutant glands are hypotrophic and degenerated, with highly vacuolated cells and pyknotic nuclei. The mutant glands accumulate lipid droplets coated with PLIN2 (perilipin 2) and contain deposits of cholesterol, ubiquitinated proteins, SQSTM1/p62 (sequestosome 1) positive aggregates and other metabolic products such as porphyrin. Immunofluorescence stainings show that distinct cells strongly aggregate both proteins and lipids. Electron microscopy of the Harderian glands reveals that its organized structure is compromised, and the presence of large intracellular lipid droplets and heterologous aggregates. We attribute the occurrence of large vacuoles to a malfunction in the formation of multilamellar bodies found in the less abundant type B Harderian gland cells. This defect causes the formation of large tertiary lysosomes of heterologous content and is accompanied by the generation of tight lamellar stacks of endoplasmic reticulum in a pseudo-crystalline form. To test the hypothesis that lipid and protein accumulation is the cause for the degeneration in autophagy-deficient Harderian glands, epithelial cells were treated with a combination of the proteasome inhibitor and free fatty acids, to induce aggregation of misfolded proteins and lipid accumulation, respectively. The results show that lipid accumulation indeed enhanced the toxicity of misfolded proteins and that this was even more pronounced in autophagy-deficient cells. Thus, we conclude autophagy controls protein and lipid catabolism and anabolism to facilitate bulk production of secretory vesicles of the Harderian gland.
Collapse
Key Words
- Atg12, autophagy related 12
- Atg7, autophagy related 7
- BCA, bicinchoninic acid assay
- BODIPY, boron-dipyrromethene fluorescent dye
- BSA, bovine serum albumin
- Cre, Cre recombinase
- DMSO, dimethyl sulfoxide
- ELISA, enzyme-linked immunosorbent assay
- ER, edoplasmic reticulum
- FC, free cholesterol
- GFP, green fluorescent protein
- HaGl, Harderian gland
- Harderian gland
- KLICK, keratosis lineariz with ichthyosis congenita and sclerosing keratoderma
- KRT14, Keratin 14
- LD, Lipid drops
- LSM, laser scanning microscope
- MAP1LC3A/B (LC3), microtubule-associated protein 1 light chain 3 α/β
- MG132
- MG312, synthetic peptide Z-Leu-Leu-Leu-al
- ORO, oil red O
- PARP, poly (ADP-ribose) polymerase
- PCR, polymerase chain reaction
- PLIN2, perilipin 2
- RFU, relative fluorecent units
- SQSTM1, sequestosome 1/p62
- SQSTM1/p62
- TBS-T, Tris buffered saline with Tween 20
- TLC, thin layer chromatography
- UV, ultraviolet
- aggregates
- aggresome
- autophagy
- cholesterol
- degenerative diseases
- f, floxed
- keratinocytes
- lipotoxicity
- lysosome
- multilamellar bodies
- palmitate
- perilipin 2/adipophilin
- proteasome inhibitor
Collapse
Affiliation(s)
- Ulrich Koenig
- a Research Division of Biology and Pathobiology of the Skin; Department of Dermatology ; Medical University of Vienna ; Vienna , Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Angius F, Spolitu S, Uda S, Deligia S, Frau A, Banni S, Collu M, Accossu S, Madeddu C, Serpe R, Batetta B. High-density lipoprotein contribute to G0-G1/S transition in Swiss NIH/3T3 fibroblasts. Sci Rep 2015; 5:17812. [PMID: 26640042 PMCID: PMC4671069 DOI: 10.1038/srep17812] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 10/19/2015] [Indexed: 01/08/2023] Open
Abstract
High density lipoproteins (HDLs) play a crucial role in removing excess cholesterol from peripheral tissues. Although their concentration is lower during conditions of high cell growth rate (cancer and infections), their involvement during cell proliferation is not known. To this aim, we investigated the replicative cycles in synchronised Swiss 3T3 fibroblasts in different experimental conditions: i) contact-inhibited fibroblasts re-entering cell cycle after dilution; ii) scratch-wound assay; iii) serum-deprived cells induced to re-enter G1 by FCS, HDL or PDGF. Analyses were performed during each cell cycle up to quiescence. Cholesterol synthesis increased remarkably during the replicative cycles, decreasing only after cells reached confluence. In contrast, cholesteryl ester (CE) synthesis and content were high at 24 h after dilution and then decreased steeply in the successive cycles. Flow cytometry analysis of DiO-HDL, as well as radiolabeled HDL pulse, demonstrated a significant uptake of CE-HDL in 24 h. DiI-HDL uptake, lipid droplets (LDs) and SR-BI immunostaining and expression followed the same trend. Addition of HDL or PDGF partially restore the proliferation rate and significantly increase SR-BI and pAKT expression in serum-deprived cells. In conclusion, cell transition from G0 to G1/S requires CE-HDL uptake, leading to CE-HDL/SR-BI pathway activation and CEs increase into LDs.
Collapse
Affiliation(s)
- Fabrizio Angius
- Unit of Experimental Medicine, University of Cagliari, Cagliari, Italy
| | - Stefano Spolitu
- Unit of Experimental Medicine, University of Cagliari, Cagliari, Italy
| | - Sabrina Uda
- Unit of Experimental Medicine, University of Cagliari, Cagliari, Italy
| | - Stefania Deligia
- Unit of Experimental Medicine, University of Cagliari, Cagliari, Italy
| | - Alessandra Frau
- Unit of Experimental Medicine, University of Cagliari, Cagliari, Italy
| | - Sebastiano Banni
- Divisions of Physiology, University of Cagliari, Cagliari, Italy
| | - Maria Collu
- Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Simonetta Accossu
- Unit of Experimental Medicine, University of Cagliari, Cagliari, Italy
| | - Clelia Madeddu
- Department of Biomedical Sciences, Department of Medical Sciences "Mario Aresu", University of Cagliari, Cagliari, Italy
| | - Roberto Serpe
- Department of Biomedical Sciences, Department of Medical Sciences "Mario Aresu", University of Cagliari, Cagliari, Italy
| | - Barbara Batetta
- Unit of Experimental Medicine, University of Cagliari, Cagliari, Italy
| |
Collapse
|
8
|
Liu HY, Cui HB, Chen XM, Chen XY, Wang SH, Du WP, Zhou HL, Zhao RC, Zhou Y, Liu YH, Cui CC, Huang C. Imbalanced response of ATP-binding cassette transporter A1 and CD36 expression to increased oxidized low-density lipoprotein loading contributes to the development of THP-1 derived foam cells. J Biochem 2014; 155:35-42. [PMID: 24394674 DOI: 10.1093/jb/mvt106] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
ATP-binding cassette transporter A1 (ABCA1) and CD36, type B scavenger receptor, function as the key mediators of macrophages cholesterol efflux and intake, respectively. However, their contribution to development of foam cells still remains uncertain. We here examined the effects of increased oxidized low-density lipoprotein (oxLDL) loading on the ABCA1 and CD36 expression, and lipid accumulation in THP-1 macrophages. The cultured THP-1 macrophages were treated with different copper-oxLDL concentrations. The intracellular lipid contents and cholesterol efflux were measured, and the ABCA1 and CD36 expression were assessed. We found that expression of ABCA1 and CD36 were coordinately induced upon low to moderate doses of oxLDL loading. However, higher doses of oxLDL stimulation resulted in the imbalanced expression of ABCA1 and CD36 proteins with more preferentially suppressed ABCA1 protein, attenuated cholesterol efflux and development of THP-1 derived foam cells. The PPAR-γ expression was remarkably induced, and PPAR-γ agonist, pioglitazone, significantly promoted the ABCA1 and CD36 expression. Additionally, ABCA1 and CD36 proteins were strong colocalized in THP-1 macrophages membrane. In conclusion, the more preferentially suppressed ABCA1 expression as compared with CD36 at higher doses of oxLDL stimulation may be the initiator for the formation of macrophage-derived foam cells.
Collapse
Affiliation(s)
- Hong-Yan Liu
- Department of Neurology; Cardiology Center, Ningbo First Hospital, Ningbo University, Ningbo 315010, People's Republic of China; Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, Xi'an Jiaotong University, Xi'an 710068, People's Republic of China; Key Laboratory of Molecular Biology, Ningbo First Hospital, Ningbo University, Ningbo 315010, People's Republic of China; Department of Cardiovascular Medicine, First Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an 710061, People's Republic of China; and Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an 710061, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Son HH, Moon JY, Seo HS, Kim HH, Chung BC, Choi MH. High-temperature GC-MS-based serum cholesterol signatures may reveal sex differences in vasospastic angina. J Lipid Res 2013; 55:155-62. [PMID: 24220886 PMCID: PMC3927468 DOI: 10.1194/jlr.d040790] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alterations of cholesterol metabolism are responsible for vasospastic angina and atherosclerosis. To comprehensively evaluate cholesterol metabolism, 18 sterols, including cholesterol, 6 cholesteryl esters (CEs), 3 cholesterol precursors, and 8 hydroxycholesterols (OHCs), were simultaneously analyzed using hybrid solid-phase extraction (SPE) purification coupled to high-temperature gas chromatography-mass spectrometry (HTGC-MS). Methanol-based hybrid SPE increased the selective extraction, and HTGC resulted in a good chromatographic resolution for the separation of lipophilic compounds. The limits of quantification of cholesterol and CEs ranged from 0.2 to 10.0 μg/ml, while OHCs and cholesterol precursors ranged from 0.01 to 0.10 μg/ml. Linearity as the correlation coefficient was higher than 0.99 with the exception of cholesteryl laurate, myristate, oleate, and linoleate (r² > 0.98). The precision (% coefficient of variation) and accuracy (% bias) ranged from 1.1 to 9.8% and from 75.9 to 125.1%, respectively. The overall recoveries of CEs ranged from 26.1 to 64.0%, and the recoveries of other sterols ranged from 83.8 to 129.3%. The cholesterol signatures showed sex differences in patients with vasospastic angina and may associate with 24-reductases. This technique can be useful for making clinical diagnoses and for an increased understanding of the pathophysiology of vasospastic angina.
Collapse
Affiliation(s)
- Hyun-Hwa Son
- Future Convergence Research Division, Korea Institute of Science and Technology, Seoul 136-791, Korea
| | | | | | | | | | | |
Collapse
|
10
|
Kannenberg F, Gorzelniak K, Jäger K, Fobker M, Rust S, Repa J, Roth M, Björkhem I, Walter M. Characterization of cholesterol homeostasis in telomerase-immortalized Tangier disease fibroblasts reveals marked phenotype variability. J Biol Chem 2013; 288:36936-47. [PMID: 24196952 DOI: 10.1074/jbc.m113.500256] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We compared the consequences of an ABCA1 mutation that produced an apparent lack of atherosclerosis (Tangier family 1, N935S) with an ABCA1 mutation with functional ABCA1 knockout that was associated with severe atherosclerosis (Tangier family 2, Leu(548):Leu(575)-End), using primary and telomerase-immortalized fibroblasts. Telomerase-immortalized Tangier fibroblasts of family 1 (TT1) showed 30% residual cholesterol efflux capacity in response to apolipoprotein A-I, whereas telomerase-immortalized Tangier fibroblasts of family 2 (TT2) showed only 20%. However, there were a number of secondary differences that were often stronger and may help to explain the more rapid development of atherosclerosis in family 2. First, the total cellular cholesterol content increase was 2-3-fold and 3-5-fold in TT1 and TT2 cells, respectively. The corresponding increase in esterified cholesterol concentration was 10- and 40-fold, respectively. Second, 24-, 25-, and 27-hydroxycholesterol concentrations were moderately increased in TT1 cells, but were increased as much as 200-fold in TT2 cells. Third, cholesterol biosynthesis was moderately decreased in TT1 cells, but was markedly decreased in TT2 cells. Fourth, potentially atheroprotective LXR-dependent SREBP1c signaling was normal in TT1, but was rather suppressed in TT2 cells. Cultivated primary Tangier fibroblasts were characterized by premature aging in culture and were associated with less obvious biochemical differences. In summary, these results may help to understand the differential atherosclerotic susceptibility in Tangier disease and further demonstrate the usefulness of telomerase-immortalized cells in studying this cellular phenotype. The data support the contention that side chain-oxidized oxysterols are strong suppressors of cholesterol biosynthesis under specific pathological conditions in humans.
Collapse
Affiliation(s)
- Frank Kannenberg
- From the Center for Laboratory Medicine, University of Münster, 48149 Münster, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Uda S, Spolitu S, Angius F, Collu M, Accossu S, Banni S, Murru E, Sanna F, Batetta B. Role of HDL in cholesteryl ester metabolism of lipopolysaccharide-activated P388D1 macrophages. J Lipid Res 2013; 54:3158-69. [PMID: 23956443 DOI: 10.1194/jlr.m042663] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Infections share with atherosclerosis similar lipid alterations, with accumulation of cholesteryl esters (CEs) in activated macrophages and concomitant decrease of cholesterol-HDL (C-HDL). Yet the precise role of HDL during microbial infection has not been fully elucidated. Activation of P388D1 by lipopolysaccharide (LPS) triggered an increase of CEs and neutral lipid contents, along with a remarkable enhancement in 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate-HDL uptake. Similar results were found in human monocyte-derived macrophages and monocytes cocultured with phytohemagglutinin-activated lymphocytes. Inhibition of cholesterol esterification with Sandoz-58035 resulted in 80% suppression of CE biosynthesis in P388D1. However, only a 35% decrease of CE content, together with increased scavenger receptor class B member 1 (SR-B1) protein expression, was found after 72 h and thereafter up to 16 passages of continuous ACAT suppression. Chronic inhibition blunted the effect of LPS treatment on cholesterol metabolism, increased the ratio of free cholesterol/CE content and enhanced interleukin 6 secretion. These results imply that, besides de novo biosynthesis and acquisition by LDL, HDL contributes probably through SR-B1 to the increased CE content in macrophages, partly explaining the low levels of C-HDL during their activation. Our data suggest that in those conditions where more CEs are required, HDL rather than removing, may supply CEs to the cells.
Collapse
Affiliation(s)
- Sabrina Uda
- Experimental Medicine Unit, University of Cagliari, Cagliari, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Berberine-induced inhibition of adipocyte enhancer-binding protein 1 attenuates oxidized low-density lipoprotein accumulation and foam cell formation in phorbol 12-myristate 13-acetate-induced macrophages. Eur J Pharmacol 2012; 690:164-9. [PMID: 22796454 DOI: 10.1016/j.ejphar.2012.07.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 06/23/2012] [Accepted: 07/02/2012] [Indexed: 11/20/2022]
Abstract
The phagocytosis of oxidized low-density lipoprotein (oxLDL) by monocyte-derived macrophages and the subsequent differentiation of macrophages into foam cells are the key steps in atherogenesis. Scavenger receptors, such as CD36 and lectin-like low-density lipoprotein receptor 1 (LOX-1), are responsible for the uptake of oxLDL. Adipocyte enhancer-binding protein 1 (AEBP1) regulates many key genes associated with intracellular cholesterol efflux. The present study investigated the function of berberine, a compound isolated from Rhizoma coptidis, on foam cell formation, and explored the possible underlying mechanism. We found that berberine inhibited the oxLDL uptake of macrophages and reduced foam cell formation in a dose-dependent manner. Moreover, AEBP1 expression in macrophages increased and decreased after oxLDL and berberine treatments in a dose-dependent manner, respectively. Berberine reduced the expression of scavenger receptors CD36 and LOX-1, but did not affect the expression of CD68 in oxLDL-stimulated macrophages. Overall, berberine reduced foam cell formation by a dual mechanism, which decreased oxLDL internalization via the suppression of CD36 and LOX-1, and increased cholesterol efflux by inhibiting AEBP1 expression in macrophages.
Collapse
|
13
|
Uda S, Accossu S, Spolitu S, Collu M, Angius F, Sanna F, Banni S, Vacca C, Murru E, Mulas C, Diaz G, Batetta B. A lipoprotein source of cholesteryl esters is essential for proliferation of CEM-CCRF lymphoblastic cell line. Tumour Biol 2011; 33:443-53. [PMID: 22161086 DOI: 10.1007/s13277-011-0270-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 11/07/2011] [Indexed: 12/01/2022] Open
Abstract
Tumour are characterised by a high content of cholesteryl esters (CEs) stored in lipid droplets purported to be due to a high rate of intracellular esterification of cholesterol. To verify whether and which pathways involved in CE accumulation are essential in tumour proliferation, the effect of CE deprivation, from both exogenous and endogenous sources, on CEM-CCRF cells was investigated. Cholesterol synthesis, esterification and content, low-density lipoprotein (LDL) binding and high-density lipoprotein (HDL)-CE uptake were evaluated in cultured in both conventional and delipidated bovine serum with or without oleic or linoleic acids, cholesteryl oleate, LDL and HDL. High content of CEs in lipid droplets in this cell line was due to esterification of both newly synthesised cholesterol and that obtained from hydrolysis of LDL; moreover, a significant amount of CE was derived from HDL-CE uptake. Cell proliferation was slightly affected by either acute or chronic treatment up to 400 μM with Sz-58035, an acyl-cholesteryl cholesterol esterification inhibitor (ACAT); although when the enzyme activity was continuously inhibited, CE content in lipid droplets was significantly higher than those in control cells. In these cells, analysis of intracellular and medium CEs revealed a profile reflecting the characteristics of bovine serum, suggesting a plasma origin of CE molecules. Cell proliferation arrest in delipidated medium was almost completely prevented in the first 72 h by LDL or HDL, although in subsequent cultures with LDL, it manifested an increasing mortality rate. This study suggests that high content of CEs in CEM-CCRF is mainly derived from plasma lipoproteins and that part of CEs stored in lipid droplets are obtained after being taken up from HDL. This route appears to be up-regulated according to cell requirements and involved in low levels of c-HDL during cancer. Moreover, the dependence of tumour cells on a source of lipoprotein provides a novel impetus in developing therapeutic strategies for use in the treatment of some tumours.
Collapse
Affiliation(s)
- Sabrina Uda
- Department of Science and Biomedical Technologies, University of Cagliari, Cagliari, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Vascellari S, Banni S, Vacca C, Vetrugno V, Cardone F, Di Bari MA, La Colla P, Pani A. Accumulation and aberrant composition of cholesteryl esters in Scrapie-infected N2a cells and C57BL/6 mouse brains. Lipids Health Dis 2011; 10:132. [PMID: 21816038 PMCID: PMC3162549 DOI: 10.1186/1476-511x-10-132] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 08/04/2011] [Indexed: 01/28/2023] Open
Abstract
Objective Cholesterol changes have been described in prion-cell models and in experimental rodent scrapie; yet, the pattern of this association is still controversial. Methods To shed light on the matter, we analysed and compared cholesterol variations in ScN2a cells and in brains of Scrapie-infected C57Bl/6 mice, using two different methods: a fluorimetric-enzymatic cholesterol assay, and high performance liquid chromatography-mass spectroscopy (HPLC-MS). Results Compared to uninfected controls, similar cholesterol metabolism anomalies were observed in infected cells and brains by both methods; however, only HPLC-MS revealed statistically significant cholesterol variations, particularly in the cholesteryl esters (CE) fraction. HPLC-MS analyses also revealed different fatty acid composition of the CE fraction in cells and brains. In N2a cells, their profile reflected that of serum, while in normal brains cholesteryl-linoleate only was found at detectable levels. Following prion infection, most CE species were increased in the CE pool of ScN2a cells, whereas a conspicuous amount of cholesteryl-arachidonate only was found to contribute to the cerebral increase of CE. Of interest, oral pravastatin administration to Scrapie-infected mice, was associated with a significant reduction of cerebral free cholesterol (FC) along with a concomitant further increase of the CE pool, which included increased amounts of both cholesteryl-linoleate and cholesteryl-arachidonate. Conclusion Although mechanistic studies are needed to establish the pathophysiological relevance of changes in cerebral CE concentrations, to the best of our knowledge this is the first report to provide evidence of increased cholesterol esterification in brains of prion-infected mice, untreated and treated with pravastatin.
Collapse
Affiliation(s)
- Sarah Vascellari
- Department of Biomedical Science and Technology, University of Cagliari, 09042-Monserrato, Italy
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Robinet P, Wang Z, Hazen SL, Smith JD. A simple and sensitive enzymatic method for cholesterol quantification in macrophages and foam cells. J Lipid Res 2010; 51:3364-9. [PMID: 20688754 DOI: 10.1194/jlr.d007336] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A precise and sensitive method for measuring cellular free and esterified cholesterol is required in order to perform studies of macrophage cholesterol loading, metabolism, storage, and efflux. Until now, the use of an enzymatic cholesterol assay, commonly used for aqueous phase plasma cholesterol assays, has not been optimized for use with solid phase samples such as cells, due to inefficient solubilization of total cholesterol in enzyme compatible solvents. We present an efficient solubilization protocol compatible with an enzymatic cholesterol assay that does not require chemical saponification or chromatographic separation. Another issue with enzyme compatible solvents is the presence of endogenous peroxides that interfere with the enzymatic cholesterol assay. We overcame this obstacle by pretreatment of the reaction solution with the enzyme catalase, which consumed endogenous peroxides resulting in reduced background and increased sensitivity in our method. Finally, we demonstrated that this method for cholesterol quantification in macrophages yields results that are comparable to those measured by stable isotope dilution gas chromatography with mass spectrometry detection. In conclusion, we describe a sensitive, simple, and high-throughput enzymatic method to quantify cholesterol in complex matrices such as cells.
Collapse
Affiliation(s)
- Peggy Robinet
- Department of Cell Biology, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | | | | |
Collapse
|
16
|
Evolving neural network optimization of cholesteryl ester separation by reversed-phase HPLC. Anal Bioanal Chem 2010; 397:2367-74. [PMID: 20490467 PMCID: PMC2895920 DOI: 10.1007/s00216-010-3778-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2010] [Revised: 04/11/2010] [Accepted: 04/22/2010] [Indexed: 11/27/2022]
Abstract
Cholesteryl esters have antimicrobial activity and likely contribute to the innate immunity system. Improved separation techniques are needed to characterize these compounds. In this study, optimization of the reversed-phase high-performance liquid chromatography separation of six analyte standards (four cholesteryl esters plus cholesterol and tri-palmitin) was accomplished by modeling with an artificial neural network–genetic algorithm (ANN-GA) approach. A fractional factorial design was employed to examine the significance of four experimental factors: organic component in the mobile phase (ethanol and methanol), column temperature, and flow rate. Three separation parameters were then merged into geometric means using Derringer’s desirability function and used as input sources for model training and testing. The use of genetic operators proved valuable for the determination of an effective neural network structure. Implementation of the optimized method resulted in complete separation of all six analytes, including the resolution of two previously co-eluting peaks. Model validation was performed with experimental responses in good agreement with model-predicted responses. Improved separation was also realized in a complex biological fluid, human milk. Thus, the first known use of ANN-GA modeling for improving the chromatographic separation of cholesteryl esters in biological fluids is presented and will likely prove valuable for future investigators involved in studying complex biological samples. ANN-derived response surface plot for two interacting factors and overall response ![]()
Collapse
|
17
|
Perdian DC, Cha S, Oh J, Sakaguchi DS, Yeung ES, Lee YJ. In situ probing of cholesterol in astrocytes at the single-cell level using laser desorption ionization mass spectrometric imaging with colloidal silver. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2010; 24:1147-1154. [PMID: 20301106 DOI: 10.1002/rcm.4491] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Mass spectrometric imaging has been utilized to localize individual astrocytes and to obtain cholesterol populations at the single-cell level in laser desorption ionization (LDI) with colloidal silver. The silver ion adduct of membrane-bound cholesterol was monitored to detect individual cells. Good correlation between mass spectrometric and optical images at different cell densities indicates the ability to perform single-cell studies of cholesterol abundance. The feasibility of quantification is confirmed by the agreement between the LDI-MS ion signals and the results from a traditional enzymatic fluorometric assay. We propose that this approach could be an effective tool to study chemical populations at the cellular level.
Collapse
Affiliation(s)
- D C Perdian
- Ames Laboratory, U.S. Department of Energy, Iowa State University, Ames, IA 50011, USA
| | | | | | | | | | | |
Collapse
|
18
|
Ullery-Ricewick JC, Cox BE, Griffin EE, Jerome WG. Triglyceride alters lysosomal cholesterol ester metabolism in cholesteryl ester-laden macrophage foam cells. J Lipid Res 2009; 50:2014-26. [PMID: 19461120 DOI: 10.1194/jlr.m800659-jlr200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In late-stage atherosclerosis, much of the cholesterol in macrophage foam cells resides within enlarged lysosomes. Similarly, human macrophages incubated in vitro with modified LDLs contain significant amounts of lysosomal free cholesterol and cholesteryl ester (CE), which disrupts lysosomal function similar to macrophages in atherosclerotic lesions. The lysosomal cholesterol cannot be removed, even in the presence of strong efflux promoters. Thus, efflux of sterol is prevented. In the artery wall, foam cells interact with triglyceride-rich particles (TRPs) in addition to modified LDLs. Little is known about how TRP metabolism affects macrophage cholesterol. Therefore, we explored the effect of TRP on intracellular CE metabolism. Triglyceride (TG), delivered to lysosomes in TRP, reduced CE accumulation by 50%. Increased TG levels within the cell, particularly within lysosomes, correlated with reductions in CE content. The volume of cholesterol-engorged lysosomes decreased after TRP treatment, indicating cholesterol was cleared. Lysosomal TG also reduced the cholesterol-induced inhibition of lysosomal acidification allowing lysosomes to remain active. Enhanced degradation and clearance of CE may be explained by movement of cholesterol out of the lysosome to sites where it is effluxed. Thus, our results show that introduction of TG into CE-laden foam cells influences CE metabolism and, potentially, atherogenesis.-Ullery-Ricewick, J. C., B. E. Cox, E. E. Griffin, and W. G. Jerome. Triglyceride alters lysosomal cholesterol ester metabolism in cholesteryl ester-laden macrophage foam cells.
Collapse
|
19
|
Riehemann K, Schneider S, Luger T, Godin B, Ferrari M, Fuchs H. Nanomedizin - Herausforderung und Perspektiven. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200802585] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
20
|
Riehemann K, Schneider SW, Luger TA, Godin B, Ferrari M, Fuchs H. Nanomedicine--challenge and perspectives. Angew Chem Int Ed Engl 2009; 48:872-97. [PMID: 19142939 PMCID: PMC4175737 DOI: 10.1002/anie.200802585] [Citation(s) in RCA: 857] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The application of nanotechnology concepts to medicine joins two large cross-disciplinary fields with an unprecedented societal and economical potential arising from the natural combination of specific achievements in the respective fields. The common basis evolves from the molecular-scale properties relevant to the two fields. Local probes and molecular imaging techniques allow surface and interface properties to be characterized on a nanometer scale at predefined locations, while chemical approaches offer the opportunity to elaborate and address surfaces, for example, for targeted drug delivery, enhanced biocompatibility, and neuroprosthetic purposes. However, concerns arise in this cross-disciplinary area about toxicological aspects and ethical implications. This Review gives an overview of selected recent developments and applications of nanomedicine.
Collapse
Affiliation(s)
- Kristina Riehemann
- Dr. K. Riehemann, Prof. Dr. H. Fuchs, Center for Nanotechnology (CeNTech) and Physical Institute; WWU Münster, Wilhelm Klemm-Str. 10, 48149 Münster, Germany, Fax:+49 (251) 83 33602, , Homepage: http://www.uni-muenster.de/Physik.PI/Fuchs/
| | | | | | | | | | - Harald Fuchs
- Dr. K. Riehemann, Prof. Dr. H. Fuchs, Center for Nanotechnology (CeNTech) and Physical Institute; WWU Münster, Wilhelm Klemm-Str. 10, 48149 Münster, Germany, Fax:+49 (251) 83 33602, , Homepage: http://www.uni-muenster.de/Physik.PI/Fuchs/
| |
Collapse
|
21
|
Progression of atherosclerosis in the Apo E-/- model: 12-month exposure to cigarette mainstream smoke combined with high-cholesterol/fat diet. Atherosclerosis 2008; 205:135-43. [PMID: 19144336 DOI: 10.1016/j.atherosclerosis.2008.11.031] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 11/17/2008] [Accepted: 11/17/2008] [Indexed: 11/21/2022]
Abstract
This study was performed to gain information about the influence of two cardiovascular risk factors, cigarette mainstream smoke (MS) and high-cholesterol/fat diet, on the progression of atherosclerosis in apolipoprotein E-deficient (Apo E-/-) mice. Eight to 12-week-old mice were whole-body exposed for up to 12 months (6h/day, 5 days/week) to diluted cigarette mainstream smoke at total particulate matter (TPM) concentrations of 100 or 200mg/m(3), or to filtered fresh air (sham) in combination with a normal chow diet or a high-cholesterol/fat diet. Cholesterol in the aortic arch was elevated in the high-cholesterol/fat diet groups exposed to 200 mg TPM/m(3) compared to sham at all time points. In the brachiocephalic artery (BA), absolute plaque size and fraction area of plaques was elevated over the 12-month time course in mice exposed to 200 mg TPM/m(3) compared to sham (both diets). Exposure to 100 and 200 mg TPM/m(3) altered the number of elastin-rich layers in the BA in mice fed a high-cholesterol/fat diet, indicating changes in plaque morphology at 6 and 9 months. This study shows for the first time the influence of two different risk factors, MS and high-cholesterol/fat diet, both alone and in combination over a period of 12 months, on the progression of atherosclerosis in Apo E-/- mice. Data suggest that long-term exposure to cigarette mainstream smoke accelerates the development of atherosclerosis in Apo E-/- mice, particularly in combination with a high-cholesterol/fat diet.
Collapse
|
22
|
Hutchins PM, Barkley RM, Murphy RC. Separation of cellular nonpolar neutral lipids by normal-phase chromatography and analysis by electrospray ionization mass spectrometry. J Lipid Res 2008; 49:804-13. [PMID: 18223242 DOI: 10.1194/jlr.m700521-jlr200] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neutral lipids are an important class of hydrophobic compounds found in all cells that play critical roles from energy storage to signal transduction. Several distinct structural families make up this class, and within each family there are numbers of individual molecular species. A solvent extraction protocol has been developed to efficiently isolate neutral lipids without complete extraction of more polar phospholipids. Normal-phase HPLC was used for the separation of cholesteryl esters (CEs), monoalkylether diacylglycerols, triacylglycerols, and diacylglycerols in a single HPLC run from this extract. Furthermore, minor lipids such as ubiquinone-9 could be detected in RAW 264.7 cells. Molecular species that make up each neutral lipid class can be analyzed both qualitatively and quantitatively by on-line LC-MS and LC-MS/MS strategies. The quantitation of >20 CE molecular species revealed that challenging RAW 264.7 cells with a Toll-like receptor 4 agonist caused a >20-fold increase in the content of CEs within cells, particularly those CE molecular species that contained saturated (14:0, 16:0, and 18:1) fatty acyl groups. Longer chain CE molecular species did not change in response to the activation of these cells.
Collapse
Affiliation(s)
- Patrick M Hutchins
- Department of Pharmacology, University of Colorado Denver, Aurora, CO 80045-6511, USA
| | | | | |
Collapse
|
23
|
Emara S, Hussien SA, Mohamed FA. DETERMINATION OF CHOLESTEROL IN EGG YOLK BY HIGH PERFORMANCE LIQUID CHROMATOGRAPHY USING AN AUTOMATED PRECOLUMN-SWITCHING PROCEDURE. J LIQ CHROMATOGR R T 2007. [DOI: 10.1081/jlc-100101729] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Samy Emara
- a Department of Analytical Chemistry, Faculty of Pharmacy , Suez Canal University , Ismailia , Egypt
| | - Samiha A. Hussien
- b Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy , Assiut University , Assiut , Egypt
| | - Fardos A. Mohamed
- b Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy , Assiut University , Assiut , Egypt
| |
Collapse
|
24
|
Bolte G, Kompauer I, Fobker M, Cullen P, Keil U, Mutius E, Weiland SK. Fatty acids in serum cholesteryl esters in relation to asthma and lung function in children. Clin Exp Allergy 2006; 36:293-302. [PMID: 16499639 DOI: 10.1111/j.1365-2222.2006.02441.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Dietary fatty acid intake has been proposed to contribute to asthma development with n-6 polyunsaturated fatty acids (PUFA) having a detrimental and n-3 PUFA a protective effect. OBJECTIVE The aim of our analysis was to explore the relationship between fatty acid composition of serum cholesteryl esters as marker of dietary intake and prevalence of asthma, impaired lung function and bronchial hyper-responsiveness in children. METHODS The study population consisted of 242 girls and 284 boys aged 8-11 years, living in Munich, Germany. Data were collected by parental questionnaire, lung function measurement and skin prick test according to the International Study of Asthma and Allergies in Childhood phase II protocol. Confounder-adjusted odds ratios (OR) with 95% confidence intervals (CI) were calculated for the association between quartiles of fatty acid concentration and health outcomes with the first quartile as reference. RESULTS n-3 PUFA: levels of eicosapentaenoic acid were not related to asthma and impaired lung function. Linolenic acid levels were positively associated with current asthma (OR for fourth quartile 3.35, 95% CI 1.29-8.66). Forced expiratory volume in 1 s (FEV(1)) values decreased with increasing levels of linolenic acid (p for trend=0.057). n-6 PUFA: there was a strong positive association between arachidonic acid levels and current asthma (OR(4th quartile) 4.54, 1.77-11.62) and a negative association with FEV(1) (P=0.036). In contrast, linoleic acid was negatively related to current asthma (OR(4th quartile) 0.34, 0.14-0.87) and FEV(1) values increased with increasing levels of linoleic acid (P=0.022). The ratio of measured n-6 to n-3 PUFA as well as levels of palmitic and oleic acid were not consistently related to asthma or lung function. CONCLUSION Our data do not support the hypothesis of a protective role of n-3 PUFA. Elevated arachidonic acid levels in children with asthma may be because of a disturbed balance in the metabolism of n-6 PUFA or may be secondary to inflammation in these patients.
Collapse
Affiliation(s)
- G Bolte
- Department of Epidemiology, University of Ulm, Ulm, Germany
| | | | | | | | | | | | | |
Collapse
|
25
|
Jiang P, Yan PK, Chen JX, Zhu BY, Lei XY, Yin WD, Liao DF. High density lipoprotein 3 inhibits oxidized low density lipoprotein-induced apoptosis via promoting cholesterol efflux in RAW264.7 cells. Acta Pharmacol Sin 2006; 27:151-7. [PMID: 16412263 DOI: 10.1111/j.1745-7254.2006.00261.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM To investigate the protective effect of high density lipoprotein 3 (HDL3) on oxidized low density lipoprotein (ox-LDL)-induced apoptosis in RAW264.7 cells. METHODS RAW264.7 cells were exposed to 50 mg/L ox-LDL for various durations up to 48 h, and apoptosis was detected using Hoechst 33258 staining and flow cytometric analysis. Total cholesterol levels were detected by high performance liquid chromatography, cholesterol efflux was determined by Tritium labeling, and the cellular lipid droplets were assayed by oil red O staining. RESULTS Treatment with 50 mg/L ox-LDL for 12, 24, and 48 h increased the apoptotic rate of RAW264.7 cells in a time-dependent manner. The peak apoptotic rate (47.7%) was observed after 48 h incubation. HDL3 at various concentrations (50 mg/L, 100 mg/L, and 200 mg/L) inhibited the ox-LDL (50 mg/L for 48 h)-mediated apoptosis that was accompanied by an increased rate of intracellular cholesterol efflux, and decreased total cholesterol levels in cells in a concentration-dependent manner. Blockage of cholesterol efflux by brefeldin decreased the protective effect of HDL3 on ox-LDL-induced apoptosis. Increase of the cholesterol efflux effected by another cholesterol acceptor,beta-cyclodextrin, led to a dramatic decrease in the apoptotic rate of cells. CONCLUSION HDL3 antagonizes ox-LDL-induced apoptosis in RAW264.7 cells, through reducing the accumulation of toxic cholesterol.
Collapse
Affiliation(s)
- Pei Jiang
- Division of Pharmacoproteomics, Institute of Pharmacy and Pharmacology, Nanhua University, Hengyang 421001, China
| | | | | | | | | | | | | |
Collapse
|
26
|
Tian Q, Failla ML, Bohn T, Schwartz SJ. High-performance liquid chromatography/atmospheric pressure chemical ionization tandem mass spectrometry determination of cholesterol uptake by Caco-2 cells. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2006; 20:3056-60. [PMID: 16969766 DOI: 10.1002/rcm.2700] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
A simple, sensitive and selective liquid chromatography/atmospheric pressure chemical ionization tandem mass spectrometric method (LC/APCI-MS/MS) was developed and applied to quantitative determination of uptake of cholesterol by Caco-2 human intestine cells. Caco-2 cells were cultured in medium containing cholesterol-3,4-13C2 and phytosterols from nutritional supplements after in vitro digestion. Cellular cholesterol (cholesterol-3,4-13C2) and endogenous cholesterol were extracted using methanol/chloroform (1:2, v/v) and directly analyzed using LC/APCI-MS/MS with selected reaction monitoring (SRM), using cholesterol-2,2,3,4,4,6-d6 as an internal standard. Detection and quantification limits were 2.2 and 7.2 pmol, respectively. This method provides an effective tool for rapid determination of cholesterol uptake by cells with increased selectivity and sensitivity in comparison to previously reported LC/APCI-MS analysis using selected ion monitoring (SIM).
Collapse
Affiliation(s)
- Qingguo Tian
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
27
|
Cignarella A, Engel T, von Eckardstein A, Kratz M, Lorkowski S, Lueken A, Assmann G, Cullen P. Pharmacological regulation of cholesterol efflux in human monocyte-derived macrophages in the absence of exogenous cholesterol acceptors. Atherosclerosis 2005; 179:229-36. [PMID: 15777536 DOI: 10.1016/j.atherosclerosis.2004.11.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2004] [Revised: 11/02/2004] [Accepted: 11/15/2004] [Indexed: 11/24/2022]
Abstract
Cholesterol efflux from human monocyte-derived macrophages in the absence of exogenous acceptors has been described, but is unclear in mechanism. We investigated this process in relation to the expression of relevant genes, intracellular cholesterol storage and apoE secretion using drugs affecting different aspects of cholesterol metabolism. Both natural (22R-hydroxycholesterol/9-cis-retinoic acid) and synthetic (T0901317 and RO264456) LXR/RXR ligands increased ABCA1 and ABCG1 mRNAs in native macrophages and in cells loaded with acetylated LDL (acLDL). The ACAT inhibitor avasimibe increased only ABCG1 mRNA, whereas no treatment affected apoE mRNA. Avasimibe, progesterone, and natural but not synthetic LXR/RXR ligands prevented cholesterol esterification after acLDL-loading. Cholesterol efflux into acceptor-free medium was increased only by synthetic LXR/RXR ligands and avasimibe in acLDL-loaded cells. ApoE secretion was reduced by drugs affecting cholesterol trafficking but enhanced by LXR/RXR ligands. Incubation with an anti-apoE antibody virtually removed immunodetectable apoE from the medium, significantly increasing cholesterol storage and decreasing efflux. These findings indicate that in human macrophages spontaneous cholesterol efflux: (i) is not necessarily promoted by increasing intracellular free cholesterol, (ii) is increased by compounds that activate ABCA1 and, to a greater extent, ABCG1 and (iii) is only partially correlated with secretion of endogenous apoE, which acted as a cholesterol acceptor.
Collapse
Affiliation(s)
- Andrea Cignarella
- Department of Pharmacological Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Worldwide, more people die of the complications of atherosclerosis than of any other cause. It is not surprising, therefore, that enormous resources have been devoted to studying the pathogenesis of this condition. This article attempts to summarize present knowledge on the events that take place within the arterial wall during atherogenesis. Classical risk factors are not dealt with as they are the subjects of other parts of this book. First, we deal with the role of endothelial dysfunction and infection in initiating the atherosclerotic lesion. Then we describe the development of the lesion itself, with particular emphasis on the cell types involved and the interactions between them. The next section of the chapter deals with the events leading to thrombotic occlusion of the atherosclerotic vessel, the cause of heart attack and stroke. Finally, we describe the advantages--and limitations--of current animal models as they contribute to our understanding of atherosclerosis and its complications.
Collapse
Affiliation(s)
- P Cullen
- Institute of Arteriosclerosis Research, Münster, Germany.
| | | | | |
Collapse
|
29
|
Seedorf U, Engel T, Lueken A, Bode G, Lorkowski S, Assmann G. Cholesterol absorption inhibitor Ezetimibe blocks uptake of oxidized LDL in human macrophages. Biochem Biophys Res Commun 2004; 320:1337-41. [PMID: 15303279 DOI: 10.1016/j.bbrc.2004.06.092] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Ezetimibe belongs to a group of selective and very effective 2-azetidione cholesterol absorption inhibitors which act on the level of cholesterol entry into enterocytes. Recent data indicated that the drug prevents the formation of a heterocomplex consisting of annexin-2 and caveolin-l and leads to specific inhibition of an NPCILI-dependent cholesterol uptake pathway required for uptake of micellar cholesterol into enterocytes. Earlier studies have shown that caveolin-l and annexin-2 are also expressed in human macro-phages and we show in this study that human macrophages express NPC1L1. Moreover in human macrophages, Ezetimibe(SCH58235) and its analogue, SCH354909, are bound to specific cell surface receptors followed by endocytosis via the classical endocytic pathway. SCH58235 had no effect on uptake and/or processing of acetylated LDL (Ac-LDL). In contrast, the compound inhibited uptake of oxidized LDL (Ox-LDL) by -50% in a dose-dependent manner. SCH58235 blocked the lipid-induced induction of LXR/RXR target genes ABCAI, ABCGI, and apolipoprotein E distinctively more effectively in macrophages loaded with Ox-LDL than in those loaded with Ac-LDL. Based on these findings, we presume that the caveolin-l-, annexin-2-, and NPClLI-dependent cholesterol uptake system that is operating in enterocytes may also contribute to class B scavenger receptor-dependent uptake of Ox-LDL in human monocyte-derived macrophages.
Collapse
Affiliation(s)
- Udo Seedorf
- Institute for Arteriosclerosis Research, Central Laboratory, Westphalian Wilhelms-University Münster, Germany.
| | | | | | | | | | | |
Collapse
|
30
|
Mizoguchi T, Edano T, Koshi T. A method of direct measurement for the enzymatic determination of cholesteryl esters. J Lipid Res 2004; 45:396-401. [PMID: 14563821 DOI: 10.1194/jlr.d300024-jlr200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A direct measurement method for the enzymatic determination of cholesteryl esters (CEs) without measuring total cholesterol (TC) and free cholesterol (FC) is described. In the first step, hydrogen peroxide generated by cholesterol oxidase from FC was decomposed by catalase. In the second step, CE was measured by enzymatic determination using a colorimetric method or a fluorometric method. The measurement sensitivity of the fluorometric method was more than 20 times that of the colorimetric method. Optimal conditions of the assay were determined, and examples of measured CE in human plasma, rat liver, and cultured cells are indicated. The method of directly measuring CE was simple and has exceptional reproducibility compared with the technique of subtracting FC from TC using each measured TC and FC.
Collapse
Affiliation(s)
- Toshimi Mizoguchi
- Tokyo New Drug Research Laboratories II, Pharmaceutical Division, Kowa Co. Ltd., Tokyo 189-0022, Japan.
| | | | | |
Collapse
|
31
|
Lada AT, Willingham MC, St. Clair RW. Triglyceride depletion in THP-1 cells alters cholesteryl ester physical state and cholesterol efflux. J Lipid Res 2002. [DOI: 10.1016/s0022-2275(20)31492-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
32
|
Engel T, Lorkowski S, Lueken A, Rust S, Schlüter B, Berger G, Cullen P, Assmann G. The human ABCG4 gene is regulated by oxysterols and retinoids in monocyte-derived macrophages. Biochem Biophys Res Commun 2001; 288:483-8. [PMID: 11606068 DOI: 10.1006/bbrc.2001.5756] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Here we report the induction of gene expression of ABCG4, a member of the ABC transporter subfamily G, from human macrophages by oxysterols and retinoids, agonists of the nuclear receptors LXR and RXR. The cloned ABCG4 transcript has a size of 3.5 kb and contains an open reading frame which encodes a polypeptide of 646 amino acids. Structurally, the putative ABC transporter protein consists of a nucleotide binding fold followed by a cluster of six transmembrane-spanning domains and thus conforms to the group of half-size ABC transporters. Among the human ABC transporter subfamily G members the novel transporter shows highest protein sequence homology and identity to ABCG1 (84 and 72%, respectively). Analysis of the genomic organization demonstrates that the ABCG4 gene is composed of at least 14 exons which extend across a region of 12.6 kb in size on chromosome 11q23.3. Based on its structural features and an LXR/RXR-responsive regulation similar to the cellular lipid export protein ABCA1, we conclude that ABCG4 may be involved in macrophage lipid homeostasis.
Collapse
Affiliation(s)
- T Engel
- Macrophage Metabolism, Institut für Arterioskleroseforschung, Westfälische Wilhelms-Universität, Domagkstrasse 3, 48149 Münster, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Lorkowski S, Kratz M, Wenner C, Schmidt R, Weitkamp B, Fobker M, Reinhardt J, Rauterberg J, Galinski EA, Cullen P. Expression of the ATP-binding cassette transporter gene ABCG1 (ABC8) in Tangier disease. Biochem Biophys Res Commun 2001; 283:821-30. [PMID: 11350058 DOI: 10.1006/bbrc.2001.4863] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Several members of the ATP-binding cassette (ABC) transporter family are involved in cholesterol efflux from cells. A defect in one member, ABCA1, results in Tangier disease, a condition characterized by cholesterol accumulation in macrophages and virtual absence of mature circulating high-density lipoproteins. Expression of a second member, ABCG1, is increased by cholesterol-loading in human macrophages. We now show that ABCG1, which we identified by differential display RT-PCR in foamy macrophages, is overexpressed in macrophages from patients with Tangier disease compared to control macrophages. On examination by confocal laser scanning microscopy, ABCG1 was present in perinuclear structures within the cell. In addition, a combination of in situ hybridization and indirect immunofluorescence microscopy revealed that ABCG1 is expressed in foamy macrophages within the atherosclerotic plaque. These data indicate that not only ABCA1 but also ABCG1 may play a role in the cholesterol metabolism of macrophages in vitro and in the atherosclerotic plaque.
Collapse
Affiliation(s)
- S Lorkowski
- Institute of Arteriosclerosis Research, University of Münster, Münster, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Desiderio DM, Wirth U, Lovelace JL, Fridland G, Umstot ES, Nguyen TM, Schiller PW, Szeto HS, Clapp JF. Matrix-assisted laser desorption/ionization mass spectrometric quantification of the mu opioid receptor agonist DAMGO in ovine plasma. JOURNAL OF MASS SPECTROMETRY : JMS 2000; 35:725-733. [PMID: 10862125 DOI: 10.1002/1096-9888(200006)35:6<725::aid-jms1>3.0.co;2-i] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The synthetic opioid peptide analog Tyr-D-Ala-Gly-N-methyl-Phe-Gly-ol (DAMGO), which is a mu opioid receptor-selective agonist, was quantified in ovine plasma samples with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS), using delayed extraction and a reflectron. The internal standard was pentadeuterated DAMGO. Timed-ion selection was used to select the precursor ion. The analysis of the post-source decay fragments improved the detection sensitivity, and the use of the precursor-product ion relationship optimized the specificity. For plasma samples, the inter-assay variability of this method was 6.4% (n = 79) and the intra-assay variability was 6.0% (n = 10). The variability for controls was 3.4% (n = 43). The profile of DAMGO amount versus time was determined in sheep plasma, and the corresponding pharmacokinetic data were calculated.
Collapse
MESH Headings
- Analysis of Variance
- Animals
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/administration & dosage
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/blood
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacokinetics
- Female
- Infusions, Intravenous
- Receptors, Opioid, mu/agonists
- Reference Standards
- Reproducibility of Results
- Sensitivity and Specificity
- Sheep
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/standards
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/statistics & numerical data
Collapse
Affiliation(s)
- D M Desiderio
- Charles B. Stout Neuroscience Mass Spectrometry Laboratory, Departments of Neurology and Biochemistry, University of Tennessee, Memphis, 847 Monroe Avenue, Memphis, Tennessee 38163, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Panousis CG, Zuckerman SH. Regulation of cholesterol distribution in macrophage-derived foam cells by interferon-γ. J Lipid Res 2000. [DOI: 10.1016/s0022-2275(20)32076-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
36
|
HUI SP, YOSHIMURA T, MURAI T, CHIBA H, KUROSAWA T. Determination of Regioisomeric Hydroperoxides of Fatty Acid Cholesterol Esters Produced by Photosensitized Peroxidation Using HPLC. ANAL SCI 2000. [DOI: 10.2116/analsci.16.1023] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Shu-Ping HUI
- Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido
| | - Teruki YOSHIMURA
- Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido
| | - Tsuyoshi MURAI
- Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido
| | - Hitoshi CHIBA
- Department of Laboratory Medicine, Hokkaido University School of Medicine
| | - Takao KUROSAWA
- Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido
| |
Collapse
|
37
|
Daum U, Leren TP, Langer C, Chirazi A, Cullen P, Pritchard PH, Assmann G, von Eckardstein A. Multiple dysfunctions of two apolipoprotein A-I variants, apoA-I(R160L)Oslo and apoA-I(P165R), that are associated with hypoalphalipoproteinemia in heterozygous carriers. J Lipid Res 1999. [DOI: 10.1016/s0022-2275(20)32453-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
38
|
Kritharides L, Christian A, Stoudt G, Morel D, Rothblat GH. Cholesterol metabolism and efflux in human THP-1 macrophages. Arterioscler Thromb Vasc Biol 1998; 18:1589-99. [PMID: 9763531 DOI: 10.1161/01.atv.18.10.1589] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study has investigated in detail factors regulating accumulation, esterification, and mobilization of cholesterol in human THP-1 macrophages. Human THP-1 monocytes were differentiated into macrophages and then cholesterol enriched by exposure to acetylated LDL (AcLDL), together with [3H]free cholesterol (FC). Although THP-1 macrophages accumulated FC and esterified cholesterol (EC), assessed by both mass and radioactivity, cellular EC always demonstrated a much lower specific activity (cpm/ microg) than did cellular FC, and several potential causes of this finding were investigated. Inhibition of acyl-CoA:cholesterol acyltransferase (ACAT) during loading decreased cell [3H]EC by 95+/-1.4% but decreased cell EC mass by only 66.0+/-4.0%, indicating that some intracellular undegraded AcLDL-derived EC was present in these cells. Esterification of [3H]oleate to EC in THP-1 cells loaded with AcLDL was 2.0 nmol x mg-1 x h-1, consistent with previous literature. However, EC, triglyceride, and phospholipid fractions respectively contained 1.0+/-0.07%, 80.0+/-0.5%, and 18.9+/-0.3% of cell [3H]oleate, indicating triglycerides were much more metabolically active than EC. In addition, the mass of triglyceride in THP-1 macrophages exceeded that of EC both before and after exposure to AcLDL. Esterification of nonlipoprotein-derived cholesterol was compared in THP-1 cells and nonhuman Fu5AH, CHO, and RAW macrophage cells. Whereas the nonhuman cell lines all esterified over 30% of 2-hydroxypropyl-beta-cyclodextrin (hp-ss-CD)-delivered cholesterol within 6 hours, THP-1 cells esterified <8.0% of incorporated cholesterol. Kinetics of cholesterol efflux from AcLDL-loaded THP-1 cells were first investigated after loading with only FC, and interactions between efflux and EC hydrolysis were further assessed after loading cells with both EC and FC. Over 24 hours, human apolipoprotein (apo) A-I, apoHDL reconstituted with phosphatidylcholine, and HDL3 respectively removed 46.6+/-3.7%, 61. 3+/-3.4%, and 76.4+/-10.1% of [3H]FC from FC-enriched THP-1 cells. Cholesterol efflux to apoA-I was saturated by 24 hours and was enhanced by using apoA-I-phospholipid instead of pure apoA-I. Kinetic modeling identified that 97% of effluxed FC derived from a slow pool, with a T1/2 ranging from 27.7 hours for HDL to 69.3 hours for apoA-I. Although efflux enhanced net clearance of EC, hydrolysis of EC during concurrent inhibition of ACAT was unaffected by cholesterol efflux. Supplementation of THP-1 cultures with cAMP to stimulate hormone-sensitive lipase did not significantly enhance net hydrolysis of EC or cholesterol efflux. In conclusion, human THP-1 macrophages contain a large and metabolically active pool of triglyceride and a relatively inactive pool of EC. The low specific activity of EC relative to FC is contributed to by reduced esterification of FC, slow hydrolysis of EC, and accumulated lipoprotein EC. The relative inactivity of the EC pool may further contribute to already impaired cholesterol efflux from these cells. Net cholesterol efflux from human macrophages is achieved by pure apoA-I and is substantially further enhanced by the presence of phospholipid in acceptor particles.
Collapse
Affiliation(s)
- L Kritharides
- Clinical Research Group of the Heart Research Institute and the Department of Cardiology, Concord General Hospital, Sydney, Australia
| | | | | | | | | |
Collapse
|
39
|
Cignarella A, Brennhausen B, von Eckardstein A, Assmann G, Cullen P. Differential effects of lovastatin on the trafficking of endogenous and lipoprotein-derived cholesterol in human monocyte-derived macrophages. Arterioscler Thromb Vasc Biol 1998; 18:1322-9. [PMID: 9714140 DOI: 10.1161/01.atv.18.8.1322] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lovastatin has been shown to reduce cholesterol esterification in cholesterol-loaded human macrophages. Surprisingly, in nonloaded macrophages, lovastatin produces the opposite effect, lowering free cholesterol and increasing cholesteryl ester levels, as measured by high-performance liquid chromatography. In cholesterol-loaded cells, lovastatin reduced the cholesteryl esters of unsaturated but not those of saturated fatty acids. In nonloaded cells, by contrast, the cholesteryl esters of unsaturated fatty acids tended to increase after lovastatin treatment. Total (free plus esterified) cellular cholesterol content in nonloaded cells fell by 18% with 12-micromol/L lovastatin treatment but did not change in cholesterol-loaded cells. Lovastatin had no effect on the binding or uptake of acetylated low density lipoprotein, acyl coenzyme A:cholesterol acyltransferase (ACAT) activity, the secretion of [3H]cholesterol into the medium, or lysosomal hydrolysis of cholesteryl esters. Apolipoprotein (apo) E mRNA levels increased but apoE secretion into the medium decreased with lovastatin treatment in both cholesterol-loaded and nonloaded cells. Cholesterol of exogenous origin has been shown to pass via the cell membrane before its esterification by ACAT. We postulate that this is not the case for endogenous cholesterol, which may have direct access to ACAT. Our findings therefore suggest that lovastatin hinders the delivery of intracellular cholesterol to the plasma membrane, resulting in increased free cholesterol and lower levels of cholesteryl ester in cholesterol-loaded cells. In nonloaded cells, virtually all cholesterol is of endogenous origin and is normally translocated to the cell membrane. Lovastatin prevents this process, thus shunting newly synthesized cholesterol toward esterification and leading to an increase in the concentration of cholesteryl esters, even in the face of a drop in total and free cholesterol levels. Intracellular apoE may play a role in this process.
Collapse
Affiliation(s)
- A Cignarella
- Institut für Arterioskleroseforschung, Universität Münster, Germany
| | | | | | | | | |
Collapse
|
40
|
Cullen P, Tegelkamp K, Fobker M, Kannenberg F, Assmann G. Measuring cholesterol in macrophages: comparison of high-performance liquid chromatography and gas-liquid chromatography with enzymatic fluorometry. Anal Biochem 1997; 251:39-44. [PMID: 9300080 DOI: 10.1006/abio.1997.2227] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cholesterol and cholesteryl esters in human macrophages were analyzed by three different methods. Values obtained by high-performance liquid chromatography and by gas-liquid chromatography were compared with those obtained using enzymatic fluorometry. We also assessed fractional lipid recovery from these cells using radiolabeled cholesterol and cholesteryl ester. Enzymatic fluorometry substantially underestimated cellular cholesterol content. Two reasons for this were found. First, recovery into a variety of solvents was incomplete, particularly when extracted lipids were dried and redissolved in a second solvent. Second, the cells appeared to contain an intrinsic inhibitor of the enzymatic fluorometric method.
Collapse
Affiliation(s)
- P Cullen
- Institut für Arterioskleroseforschung, Münster, Federal Republic of Germany.
| | | | | | | | | |
Collapse
|
41
|
Cullen P, Mohr S, Brennhausen B, Cignarella A, Assmann G. Downregulation of the selectin ligand-producing fucosyltransferases Fuc-TIV and Fuc-TVII during foam cell formation in monocyte-derived macrophages. Arterioscler Thromb Vasc Biol 1997; 17:1591-8. [PMID: 9301640 DOI: 10.1161/01.atv.17.8.1591] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Identification of genes expressed during foam cell formation is important for understanding the molecular basis of atherosclerosis. We used polymerase chain reaction (PCR)-based differential display to isolate differentially expressed cDNA species in foam cells induced by incubation of human monocyte-derived macrophages in the presence of acetylated or oxidized LDL. This led to identification of a 306-bp cDNA with 100% homology to type IV fucosyltransferase (Fuc-TIV), which was downregulated by factors of 20 and 3 in acetylated LDL- and oxidized LDL-loaded macrophages, respectively. This enzyme is sufficient for the expression of Lewis X and sialyl Lewis X, carbohydrate adhesion molecules that bind to receptors of the selectin family. Expression of a second fucosyltransferase (Fuc-TVII) that synthesizes sialyl Lewis X but not Lewis X was shown by quantitative reverse transcription-PCR to also be reduced, by 40% and 20% in acetylated LDL- and oxidized LDL-loaded macrophages, respectively. alpha-(1,3)-Fucosyltransferase enzyme activity was reduced in lysates from both acetylated LDL- and oxidized LDL-loaded cells. Analysis by flow cytometry showed reduced expression of the CD15 (corresponding to Lewis X) and CD15s (sialyl Lewis X) antigens on the surface of cells loaded with either acetylated or oxidized LDL. Transformation of macrophages into foam cells results in reduced expression of selectin-binding ligands on the surface of such cells.
Collapse
Affiliation(s)
- P Cullen
- Institut für Arterioskleroseforschung, Westfälische Wilhelms-Universität Münster, Germany.
| | | | | | | | | |
Collapse
|