1
|
Faltinek L, Melicher F, Kelemen V, Mező E, Borbás A, Wimmerová M. Bispecific Thio-Linked Disaccharides as Inhibitors of Pseudomonas Aeruginosa Lectins LecA (PA-IL) and LecB (PA-IIL): Dual-Targeting Strategy. Chemistry 2025; 31:e202403546. [PMID: 39535852 PMCID: PMC11753388 DOI: 10.1002/chem.202403546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/24/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024]
Abstract
Pseudomonas aeruginosa is a prevalent opportunistic human pathogen, particularly associated with cystic fibrosis. Among its virulence factors are the LecA and LecB lectins. Both lectins play an important role in the adhesion to the host cells and display cytotoxic activity. In this study, we successfully synthesized hardly hydrolysable carbohydrate ligands targeting these pathogenic lectins, including two bispecific glycans. The interactions between LecA/LecB lectins and synthetic glycans were evaluated using hemagglutination (yeast agglutination) inhibition assays, comparing their efficacy with corresponding monosaccharides. Additionally, the binding affinities of bispecific glycans were assessed using isothermal titration calorimetry (ITC). Structural insight into the lectin-ligand interaction was obtained by determining the crystal structures of LecA/LecB lectins in complex with one of the bispecific ligands using X ray crystallography. This comprehensive investigation into the inhibitory potential of synthetic glycosides against P. aeruginosa lectins sheds light on their potential application in antimicrobial therapy.
Collapse
Affiliation(s)
- Lukáš Faltinek
- Department of Biochemistry, Faculty of ScienceMasaryk UniversityKotlářská 2611 37BrnoCzech Republic
| | - Filip Melicher
- Central European Institute of TechnologyMasaryk UniversityKamenice 5625 00BrnoCzech Republic
- National Centre for Biomolecular ResearchFaculty of ScienceMasaryk UniversityKotlářská 2611 37BrnoCzech Republic
| | - Viktor Kelemen
- HUN-REN-UD Pharmamodul Research GroupEgyetem tér 14032DebrecenHungary
- Department of Pharmaceutical ChemistryUniversity of DebrecenEgyetem tér 14032DebrecenHungary
| | - Erika Mező
- Department of Pharmaceutical ChemistryUniversity of DebrecenEgyetem tér 14032DebrecenHungary
| | - Anikó Borbás
- Department of Pharmaceutical ChemistryUniversity of DebrecenEgyetem tér 14032DebrecenHungary
| | - Michaela Wimmerová
- Department of Biochemistry, Faculty of ScienceMasaryk UniversityKotlářská 2611 37BrnoCzech Republic
- Central European Institute of TechnologyMasaryk UniversityKamenice 5625 00BrnoCzech Republic
- National Centre for Biomolecular ResearchFaculty of ScienceMasaryk UniversityKotlářská 2611 37BrnoCzech Republic
| |
Collapse
|
2
|
Chance DL, Wang W, Waters JK, Mawhinney TP. Insights on Pseudomonas aeruginosa Carbohydrate Binding from Profiles of Cystic Fibrosis Isolates Using Multivalent Fluorescent Glycopolymers Bearing Pendant Monosaccharides. Microorganisms 2024; 12:801. [PMID: 38674745 PMCID: PMC11051836 DOI: 10.3390/microorganisms12040801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Pseudomonas aeruginosa contributes to frequent, persistent, and, often, polymicrobial respiratory tract infections for individuals with cystic fibrosis (CF). Chronic CF infections lead to bronchiectasis and a shortened lifespan. P. aeruginosa expresses numerous adhesins, including lectins known to bind the epithelial cell and mucin glycoconjugates. Blocking carbohydrate-mediated host-pathogen and intra-biofilm interactions critical to the initiation and perpetuation of colonization offer promise as anti-infective treatment strategies. To inform anti-adhesion therapies, we profiled the monosaccharide binding of P. aeruginosa from CF and non-CF sources, and assessed whether specific bacterial phenotypic characteristics affected carbohydrate-binding patterns. Focusing at the cellular level, microscopic and spectrofluorometric tools permitted the solution-phase analysis of P. aeruginosa binding to a panel of fluorescent glycopolymers possessing distinct pendant monosaccharides. All P. aeruginosa demonstrated significant binding to glycopolymers specific for α-D-galactose, β-D-N-acetylgalactosamine, and β-D-galactose-3-sulfate. In each culture, a small subpopulation accounted for the binding. The carbohydrate anomeric configuration and sulfate ester presence markedly influenced binding. While this opportunistic pathogen from CF hosts presented with various colony morphologies and physiological activities, no phenotypic, physiological, or structural feature predicted enhanced or diminished monosaccharide binding. Important to anti-adhesive therapeutic strategies, these findings suggest that, regardless of phenotype or clinical source, P. aeruginosa maintain a small subpopulation that may readily associate with specific configurations of specific monosaccharides. This report provides insights into whole-cell P. aeruginosa carbohydrate-binding profiles and into the context within which successful anti-adhesive and/or anti-virulence anti-infective agents for CF must contend.
Collapse
Affiliation(s)
- Deborah L. Chance
- Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Department of Pediatrics, University of Missouri School of Medicine, Columbia, MO 65212, USA;
| | - Wei Wang
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA;
| | - James K. Waters
- Experiment Station Chemical Laboratories, University of Missouri, Columbia, MO 65211, USA;
| | - Thomas P. Mawhinney
- Department of Pediatrics, University of Missouri School of Medicine, Columbia, MO 65212, USA;
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA;
- Experiment Station Chemical Laboratories, University of Missouri, Columbia, MO 65211, USA;
| |
Collapse
|
3
|
Choudhary M, Katare P, Deshpande M, Chaudhari N, Rajpoot K, Jain A, Tekade RK. Dendrimers in targeted drug delivery: design, development, and modern applications. PROGRESS AND PROSPECT OF NANOCARRIERS 2024:181-240. [DOI: 10.1016/b978-0-12-819979-4.00004-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
4
|
Leusmann S, Ménová P, Shanin E, Titz A, Rademacher C. Glycomimetics for the inhibition and modulation of lectins. Chem Soc Rev 2023; 52:3663-3740. [PMID: 37232696 PMCID: PMC10243309 DOI: 10.1039/d2cs00954d] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Indexed: 05/27/2023]
Abstract
Carbohydrates are essential mediators of many processes in health and disease. They regulate self-/non-self- discrimination, are key elements of cellular communication, cancer, infection and inflammation, and determine protein folding, function and life-times. Moreover, they are integral to the cellular envelope for microorganisms and participate in biofilm formation. These diverse functions of carbohydrates are mediated by carbohydrate-binding proteins, lectins, and the more the knowledge about the biology of these proteins is advancing, the more interfering with carbohydrate recognition becomes a viable option for the development of novel therapeutics. In this respect, small molecules mimicking this recognition process become more and more available either as tools for fostering our basic understanding of glycobiology or as therapeutics. In this review, we outline the general design principles of glycomimetic inhibitors (Section 2). This section is then followed by highlighting three approaches to interfere with lectin function, i.e. with carbohydrate-derived glycomimetics (Section 3.1), novel glycomimetic scaffolds (Section 3.2) and allosteric modulators (Section 3.3). We summarize recent advances in design and application of glycomimetics for various classes of lectins of mammalian, viral and bacterial origin. Besides highlighting design principles in general, we showcase defined cases in which glycomimetics have been advanced to clinical trials or marketed. Additionally, emerging applications of glycomimetics for targeted protein degradation and targeted delivery purposes are reviewed in Section 4.
Collapse
Affiliation(s)
- Steffen Leusmann
- Chemical Biology of Carbohydrates (CBCH), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, 66123 Saarbrücken, Germany.
- Department of Chemistry, Saarland University, 66123 Saarbrücken, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany
| | - Petra Ménová
- University of Chemistry and Technology, Prague, Technická 5, 16628 Prague 6, Czech Republic
| | - Elena Shanin
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Biocenter 5, 1030 Vienna, Austria
| | - Alexander Titz
- Chemical Biology of Carbohydrates (CBCH), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, 66123 Saarbrücken, Germany.
- Department of Chemistry, Saarland University, 66123 Saarbrücken, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany
| | - Christoph Rademacher
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Biocenter 5, 1030 Vienna, Austria
| |
Collapse
|
5
|
Kraemer M, Bellion M, Kissmann AK, Herberger T, Synatschke CV, Bozdogan A, Andersson J, Rodriguez A, Ständker L, Wiese S, Stenger S, Spellerberg B, Gottschalk KE, Cetinkaya A, Pietrasik J, Weil T, Rosenau F. Aptamers as Novel Binding Molecules on an Antimicrobial Peptide-Armored Composite Hydrogel Wound Dressing for Specific Removal and Efficient Eradication of Pseudomonas aeruginosa. Int J Mol Sci 2023; 24:ijms24054800. [PMID: 36902270 PMCID: PMC10002764 DOI: 10.3390/ijms24054800] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/15/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
Here we present for the first time a potential wound dressing material implementing aptamers as binding entities to remove pathogenic cells from newly contaminated surfaces of wound matrix-mimicking collagen gels. The model pathogen in this study was the Gram-negative opportunistic bacterium Pseudomonas aeruginosa, which represents a considerable health threat in hospital environments as a cause of severe infections of burn or post-surgery wounds. A two-layered hydrogel composite material was constructed based on an established eight-membered focused anti-P. aeruginosa polyclonal aptamer library, which was chemically crosslinked to the material surface to form a trapping zone for efficient binding of the pathogen. A drug-loaded zone of the composite released the C14R antimicrobial peptide to deliver it directly to the bound pathogenic cells. We demonstrate that this material combining aptamer-mediated affinity and peptide-dependent pathogen eradication can quantitatively remove bacterial cells from the "wound" surface, and we show that the surface-trapped bacteria are completely killed. The drug delivery function of the composite thus represents an extra safeguarding property and thus probably one of the most important additional advances of a next-generation or smart wound dressing ensuring the complete removal and/or eradication of the pathogen of a freshly infected wound.
Collapse
Affiliation(s)
- Markus Kraemer
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Magali Bellion
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Ann-Kathrin Kissmann
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Max-Planck-Institute for Polymer Research Mainz, Ackermannweg 10, 55128 Mainz, Germany
- Correspondence: (A.-K.K.); (F.R.)
| | - Tilmann Herberger
- Max-Planck-Institute for Polymer Research Mainz, Ackermannweg 10, 55128 Mainz, Germany
| | | | - Anil Bozdogan
- Center for Electrochemical Surface Technology (CEST), Austrian Institute of Technology, 3420 Tulln, Austria
- Austrian Institute of Technology, Giefinggasse 4, 1210 Vienna, Austria
| | - Jakob Andersson
- Austrian Institute of Technology, Giefinggasse 4, 1210 Vienna, Austria
| | - Armando Rodriguez
- Core Facility for Functional Peptidomics, Ulm Peptide Pharmaceuticals (U-PEP), Faculty of Medicine, Ulm University, 89081 Ulm, Germany
- Core Unit of Mass Spectrometry and Proteomics, Faculty of Medicine, Ulm University, 89081 Ulm, Germany
| | - Ludger Ständker
- Core Unit of Mass Spectrometry and Proteomics, Faculty of Medicine, Ulm University, 89081 Ulm, Germany
| | - Sebastien Wiese
- Core Unit of Mass Spectrometry and Proteomics, Faculty of Medicine, Ulm University, 89081 Ulm, Germany
| | - Steffen Stenger
- Institute for Medical Microbiology and Hygiene, University Hospital Ulm, 89081 Ulm, Germany
| | - Barbara Spellerberg
- Institute for Medical Microbiology and Hygiene, University Hospital Ulm, 89081 Ulm, Germany
| | - Kay-Eberhard Gottschalk
- Institute of Experimental Physics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Ahmet Cetinkaya
- Institute of Polymer and Dye Technology, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland
| | - Joanna Pietrasik
- Institute of Polymer and Dye Technology, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland
| | - Tanja Weil
- Max-Planck-Institute for Polymer Research Mainz, Ackermannweg 10, 55128 Mainz, Germany
| | - Frank Rosenau
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Max-Planck-Institute for Polymer Research Mainz, Ackermannweg 10, 55128 Mainz, Germany
- Correspondence: (A.-K.K.); (F.R.)
| |
Collapse
|
6
|
Surface chemistry dependent toxicity of inorganic nanostructure glycoconjugates on bacterial cells and cancer cell lines. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2022.104054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
7
|
Watari H, Kageyama H, Masubuchi N, Nakajima H, Onodera K, Focia PJ, Oshiro T, Matsui T, Kodera Y, Ogawa T, Yokoyama T, Hirayama M, Hori K, Freymann DM, Imai M, Komatsu N, Araki M, Tanaka Y, Sakai R. A marine sponge-derived lectin reveals hidden pathway for thrombopoietin receptor activation. Nat Commun 2022; 13:7262. [PMID: 36433967 PMCID: PMC9700728 DOI: 10.1038/s41467-022-34921-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 11/07/2022] [Indexed: 11/26/2022] Open
Abstract
N-glycan-mediated activation of the thrombopoietin receptor (MPL) under pathological conditions has been implicated in myeloproliferative neoplasms induced by mutant calreticulin, which forms an endogenous receptor-agonist complex that traffics to the cell surface and constitutively activates the receptor. However, the molecular basis for this mechanism is elusive because oncogenic activation occurs only in the cell-intrinsic complex and is thus cannot be replicated with external agonists. Here, we describe the structure and function of a marine sponge-derived MPL agonist, thrombocorticin (ThC), a homodimerized lectin with calcium-dependent fucose-binding properties. In-depth characterization of lectin-induced activation showed that, similar to oncogenic activation, sugar chain-mediated activation persists due to limited receptor internalization. The strong synergy between ThC and thrombopoietin suggests that ThC catalyzes the formation of receptor dimers on the cell surface. Overall, the existence of sugar-mediated MPL activation, in which the mode of activation is different from the original ligand, suggests that receptor activation is unpredictably diverse in living organisms.
Collapse
Affiliation(s)
- Hiromi Watari
- grid.39158.360000 0001 2173 7691Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Hiromu Kageyama
- grid.69566.3a0000 0001 2248 6943Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Nami Masubuchi
- grid.258269.20000 0004 1762 2738Laboratory for the Development of Therapies against MPN, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hiroya Nakajima
- grid.39158.360000 0001 2173 7691Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Kako Onodera
- grid.69566.3a0000 0001 2248 6943Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Pamela J. Focia
- grid.16753.360000 0001 2299 3507Department of Biochemistry & Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Takumi Oshiro
- grid.410786.c0000 0000 9206 2938Department of Physics, School of Science, Kitasato University, Sagamihara, Japan
| | - Takashi Matsui
- grid.410786.c0000 0000 9206 2938Department of Physics, School of Science, Kitasato University, Sagamihara, Japan ,grid.410786.c0000 0000 9206 2938Center for Disease Proteomics, School of Science, Kitasato University, Sagamihara, Japan
| | - Yoshio Kodera
- grid.410786.c0000 0000 9206 2938Department of Physics, School of Science, Kitasato University, Sagamihara, Japan ,grid.410786.c0000 0000 9206 2938Center for Disease Proteomics, School of Science, Kitasato University, Sagamihara, Japan
| | - Tomohisa Ogawa
- grid.69566.3a0000 0001 2248 6943Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Takeshi Yokoyama
- grid.69566.3a0000 0001 2248 6943Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Makoto Hirayama
- grid.257022.00000 0000 8711 3200Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Kanji Hori
- grid.257022.00000 0000 8711 3200Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Douglas M. Freymann
- grid.16753.360000 0001 2299 3507Department of Biochemistry & Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Misa Imai
- grid.258269.20000 0004 1762 2738Laboratory for the Development of Therapies against MPN, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Norio Komatsu
- grid.258269.20000 0004 1762 2738Laboratory for the Development of Therapies against MPN, Juntendo University Graduate School of Medicine, Tokyo, Japan ,grid.258269.20000 0004 1762 2738Department of Advanced Hematology, Juntendo University Graduate School of Medicine, Tokyo, Japan ,grid.258269.20000 0004 1762 2738Department of Hematology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Marito Araki
- grid.258269.20000 0004 1762 2738Laboratory for the Development of Therapies against MPN, Juntendo University Graduate School of Medicine, Tokyo, Japan ,grid.258269.20000 0004 1762 2738Department of Advanced Hematology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoshikazu Tanaka
- grid.69566.3a0000 0001 2248 6943Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Ryuichi Sakai
- grid.39158.360000 0001 2173 7691Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| |
Collapse
|
8
|
Tricomi J, Cacaci M, Biagiotti G, Caselli L, Niccoli L, Torelli R, Gabbani A, Di Vito M, Pineider F, Severi M, Sanguinetti M, Menna E, Lelli M, Berti D, Cicchi S, Bugli F, Richichi B. Ball milled glyco-graphene oxide conjugates markedly disrupted Pseudomonas aeruginosa biofilms. NANOSCALE 2022; 14:10190-10199. [PMID: 35796327 DOI: 10.1039/d2nr02027k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The engineering of the surface of nanomaterials with bioactive molecules allows controlling their biological identity thus accessing functional materials with tuned physicochemical and biological profiles suited for specific applications. Then, the manufacturing process, by which the nanomaterial surface is grafted, has a significant impact on their development and innovation. In this regard, we report herein the grafting of sugar headgroups on a graphene oxide (GO) surface by exploiting a green manufacturing process that relies on the use of vibrational ball mills, a grinding apparatus in which the energy is transferred to the reacting species through collision with agate spheres inside a closed and vibrating vessel. The chemical composition and the morphology of the resulting glyco-graphene oxide conjugates (glyco-GO) are assessed by the combination of a series of complementary advanced techniques (i.e. UV-vis and Raman spectroscopy, transmission electron microscopy, and Magic Angle Spinning (MAS) solid-state NMR (ssNMR) providing in-depth insights into the chemical reactivity of GO in a mechanochemical route. The conjugation of monosaccharide residues on the GO surface significantly improves the antimicrobial activity of pristine GO against P. aeruginosa. Indeed, glyco-GO conjugates, according to the monosaccharide derivatives installed into the GO surface, affect the ability of sessile cells to adhere to a polystyrene surface in a colony forming assay. Scanning electron microscopy images clearly show that glyco-GO conjugates significantly disrupt an already established P. aeruginosa biofilm.
Collapse
Affiliation(s)
- Jacopo Tricomi
- Department of Chemistry 'Ugo Schiff', University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino, FI, Italy.
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti, 9, 50121 Firenze, Italy
| | - Margherita Cacaci
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy.
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giacomo Biagiotti
- Department of Chemistry 'Ugo Schiff', University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino, FI, Italy.
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti, 9, 50121 Firenze, Italy
| | - Lucrezia Caselli
- Department of Chemistry 'Ugo Schiff', University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino, FI, Italy.
- Italian Center for Colloid and Surface Science (CSGI), Via della Lastruccia 3, Sesto Fiorentino, 50019, FI, Italy
| | - Lorenzo Niccoli
- Magnetic Resonance Centre (CERM), Department of Chemistry 'Ugo Schiff', University of Firenze, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, FI, Italy
- Consorzio Interuniversitario Risonanze Magnetiche Metalloproteine Paramagnetiche (CIRMMP), Via Luigi Sacconi 6, 50019 Sesto Fiorentino, FI, Italy
| | - Riccardo Torelli
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Alessio Gabbani
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56132 Pisa, Italy
| | - Maura Di Vito
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy.
| | - Francesco Pineider
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56132 Pisa, Italy
| | - Mirko Severi
- Department of Chemistry 'Ugo Schiff', University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino, FI, Italy.
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti, 9, 50121 Firenze, Italy
| | - Maurizio Sanguinetti
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy.
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Enzo Menna
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
- Centre for Mechanics of Biological Materials - CMBM, Via Marzolo 9, 35131 Padova, Italy
| | - Moreno Lelli
- Magnetic Resonance Centre (CERM), Department of Chemistry 'Ugo Schiff', University of Firenze, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, FI, Italy
- Consorzio Interuniversitario Risonanze Magnetiche Metalloproteine Paramagnetiche (CIRMMP), Via Luigi Sacconi 6, 50019 Sesto Fiorentino, FI, Italy
| | - Debora Berti
- Department of Chemistry 'Ugo Schiff', University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino, FI, Italy.
- Italian Center for Colloid and Surface Science (CSGI), Via della Lastruccia 3, Sesto Fiorentino, 50019, FI, Italy
| | - Stefano Cicchi
- Department of Chemistry 'Ugo Schiff', University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino, FI, Italy.
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti, 9, 50121 Firenze, Italy
| | - Francesca Bugli
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy.
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Barbara Richichi
- Department of Chemistry 'Ugo Schiff', University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino, FI, Italy.
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti, 9, 50121 Firenze, Italy
| |
Collapse
|
9
|
Singh K, Kulkarni SS. Small Carbohydrate Derivatives as Potent Antibiofilm Agents. J Med Chem 2022; 65:8525-8549. [PMID: 35777073 DOI: 10.1021/acs.jmedchem.1c01039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Biofilm formation by most pathogenic bacteria is considered as one of the key mechanisms associated with virulence and antibiotic resistance. Biofilm-forming bacteria adhere to the surfaces of biological or implant medical devices and create communities within their self-produced extracellular matrix that are difficult to treat by existing antibiotics. There is an urgent need to synthesize and screen structurally diverse molecules for their antibiofilm activity that can remove or minimize the bacterial biofilm. The development of carbohydrate-based small molecules as antibiofilm agents holds a great promise in addressing the problem of the eradication of biofilm-related infections. Owing to their structural diversity and specificity, the sugar scaffolds are valuable entities for developing antibiofilm agents. In this perspective, we discuss the literature pertaining to carbohydrate-based natural antibiofilm agents and provide an overview of the design, activity, and mode of action of potent synthetic carbohydrate-based molecules.
Collapse
Affiliation(s)
- Kartikey Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India 400076
| | - Suvarn S Kulkarni
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India 400076
| |
Collapse
|
10
|
The differential expression of PilY1 proteins by the HsfBA phosphorelay allows twitching motility in the absence of exopolysaccharides. PLoS Genet 2022; 18:e1010188. [PMID: 35486648 PMCID: PMC9109919 DOI: 10.1371/journal.pgen.1010188] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 05/16/2022] [Accepted: 04/04/2022] [Indexed: 11/30/2022] Open
Abstract
Type Four Pili (T4P) are extracellular appendages mediating several bacterial functions such as motility, biofilm formation and infection. The ability to adhere to substrates is essential for all these functions. In Myxococcus xanthus, during twitching motility, the binding of polar T4P to exopolysaccharides (EPS), induces pilus retraction and the forward cell movement. EPS are produced, secreted and weakly associated to the M. xanthus cell surface or deposited on the substrate. In this study, a genetic screen allowed us to identify two factors involved in EPS-independent T4P-dependent twitching motility: the PilY1.1 protein and the HsfBA phosphorelay. Transcriptomic analyses show that HsfBA differentially regulates the expression of PilY1 proteins and that the down-regulation of pilY1.1 together with the accumulation of its homologue pilY1.3, allows twitching motility in the absence of EPS. The genetic and bioinformatic dissection of the PilY1.1 domains shows that PilY1.1 might be a bi-functional protein with a role in priming T4P extension mediated by its conserved N-terminal domain and roles in EPS-dependent motility mediated by an N-terminal DUF4114 domain activated upon binding to Ca2+. We speculate that the differential transcriptional regulation of PilY1 homologs by HsfBA in response to unknown signals, might allow accessorizing T4P tips with different modules allowing twitching motility in the presence of alternative substrates and environmental conditions. In the motile bacterium Myxococcus xanthus, T4P mediate twitching motility by binding to the sugar moiety of the extracellular matrix deposited on the neighboring cells or on the substrate. The binding of T4P to these sugars also termed exopolysaccharides (EPS) stimulates the pilus fiber retraction pulling the cell forwards. In this study, we performed a series of genetic analyses leading to the discovery that M. xanthus cells can move in the absence of EPS if two conditions are fulfilled: the pilY1.1 gene is down-regulated and the PilY1.3 protein is accumulated on pili. RNAseq, qRT-PCR and gel retardation assays show that the differential accumulation of PilY1 proteins is under the control of the HsfBA phosphorelay, which up-regulates the expression of pilY1.1 and down-regulates that of a homologue, pilY1.3. We also found that PilY1.1 has a domain at the N terminus probably requiring Ca2+ to be active in EPS-dependent motility, and a conserved domain at the C terminus essential for T4P assembly. Conversely, PilY1.3 contains a Von Willebrand factor A (VWA) domain and is potentially involved in the binding to proteins. We speculate that thanks to the HsfBA regulation, T4P can be equipped with different PilY1 homologues to allow twitching motility in the presence of different substrates.
Collapse
|
11
|
Neutron crystallography reveals mechanisms used by Pseudomonas aeruginosa for host-cell binding. Nat Commun 2022; 13:194. [PMID: 35017516 PMCID: PMC8752737 DOI: 10.1038/s41467-021-27871-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/15/2021] [Indexed: 12/22/2022] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa, a major cause of nosocomial infections, uses carbohydrate-binding proteins (lectins) as part of its binding to host cells. The fucose-binding lectin, LecB, displays a unique carbohydrate-binding site that incorporates two closely located calcium ions bridging between the ligand and protein, providing specificity and unusually high affinity. Here, we investigate the mechanisms involved in binding based on neutron crystallography studies of a fully deuterated LecB/fucose/calcium complex. The neutron structure, which includes the positions of all the hydrogen atoms, reveals that the high affinity of binding may be related to the occurrence of a low-barrier hydrogen bond induced by the proximity of the two calcium ions, the presence of coordination rings between the sugar, calcium and LecB, and the dynamic behaviour of bridging water molecules at room temperature. These key structural details may assist in the design of anti-adhesive compounds to combat multi-resistance bacterial infections. Pseudomonas aeruginosa employs lectins to bind to its host cells, and is known to be the major cause of lung infections. Lectin B (LecB) from Pseudomonas aeruginosa binds specifically to galactose and fucose and is important for pathogenicity, adhesion and biofilm formation. In this work, the neutron crystal structure (1.9 Å) of the deuterated LecB/Ca/fucose complex is reported. The structure, in combination with perdeuteration of the ligand and the receptor allowed the observation of hydrogen atoms, protonation states and hydrogen bonds involved in the interaction between pathogenic bacteria and host cells. Thus the study provides structural insights into the mechanism of high affinity binding of LecB to its targets.
Collapse
|
12
|
Jiang Z, Nero T, Mukherjee S, Olson R, Yan J. Searching for the Secret of Stickiness: How Biofilms Adhere to Surfaces. Front Microbiol 2021; 12:686793. [PMID: 34305846 PMCID: PMC8295476 DOI: 10.3389/fmicb.2021.686793] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/28/2021] [Indexed: 01/01/2023] Open
Abstract
Bacterial biofilms are communities of cells enclosed in an extracellular polymeric matrix in which cells adhere to each other and to foreign surfaces. The development of a biofilm is a dynamic process that involves multiple steps, including cell-surface attachment, matrix production, and population expansion. Increasing evidence indicates that biofilm adhesion is one of the main factors contributing to biofilm-associated infections in clinics and biofouling in industrial settings. This review focuses on describing biofilm adhesion strategies among different bacteria, including Vibrio cholerae, Pseudomonas aeruginosa, and Staphylococcus aureus. Techniques used to characterize biofilm adhesion are also reviewed. An understanding of biofilm adhesion strategies can guide the development of novel approaches to inhibit or manipulate biofilm adhesion and growth.
Collapse
Affiliation(s)
- Zhaowei Jiang
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, United States
| | - Thomas Nero
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, United States
| | - Sampriti Mukherjee
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, United States
| | - Rich Olson
- Department of Molecular Biology and Biochemistry, Molecular Biophysics Program, Wesleyan University, Middletown, CT, United States
| | - Jing Yan
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, United States.,Quantitative Biology Institute, Yale University, New Haven, CT, United States
| |
Collapse
|
13
|
Structural Basis of Ligand Selectivity by a Bacterial Adhesin Lectin Involved in Multispecies Biofilm Formation. mBio 2021; 12:mBio.00130-21. [PMID: 33824212 PMCID: PMC8092209 DOI: 10.1128/mbio.00130-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Bacterial adhesins are key virulence factors that are essential for the pathogen-host interaction and biofilm formation that cause most infections. Many of the adhesin-driven cell-cell interactions are mediated by lectins. Carbohydrate recognition by lectins governs critical host-microbe interactions. MpPA14 (Marinomonas primoryensis PA14 domain) lectin is a domain of a 1.5-MDa adhesin responsible for a symbiotic bacterium-diatom interaction in Antarctica. Here, we show that MpPA14 binds various monosaccharides, with l-fucose and N-acetylglucosamine being the strongest ligands (dissociation constant [Kd], ∼150 μM). High-resolution structures of MpPA14 with 15 different sugars bound elucidated the molecular basis for the lectin’s apparent binding promiscuity but underlying selectivity. MpPA14 mediates strong Ca2+-dependent interactions with the 3,4-diols of l-fucopyranose and glucopyranoses, and it binds other sugars via their specific minor isomers. Thus, MpPA14 only binds polysaccharides like branched glucans and fucoidans with these free end groups. Consistent with our findings, adhesion of MpPA14 to diatom cells was selectively blocked by l-fucose, but not by N-acetyl galactosamine. The MpPA14 lectin homolog present in a Vibrio cholerae adhesin was produced and was shown to have the same sugar binding preferences as MpPA14. The pathogen’s lectin was unable to effectively bind the diatom in the presence of fucose, thus demonstrating the antiadhesion strategy of blocking infection via ligand-based antagonists.
Collapse
|
14
|
Schulze A, Mitterer F, Pombo JP, Schild S. Biofilms by bacterial human pathogens: Clinical relevance - development, composition and regulation - therapeutical strategies. MICROBIAL CELL (GRAZ, AUSTRIA) 2021; 8:28-56. [PMID: 33553418 PMCID: PMC7841849 DOI: 10.15698/mic2021.02.741] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 12/19/2022]
Abstract
Notably, bacterial biofilm formation is increasingly recognized as a passive virulence factor facilitating many infectious disease processes. In this review we will focus on bacterial biofilms formed by human pathogens and highlight their relevance for diverse diseases. Along biofilm composition and regulation emphasis is laid on the intensively studied biofilms of Vibrio cholerae, Pseudomonas aeruginosa and Staphylococcus spp., which are commonly used as biofilm model organisms and therefore contribute to our general understanding of bacterial biofilm (patho-)physiology. Finally, therapeutical intervention strategies targeting biofilms will be discussed.
Collapse
Affiliation(s)
- Adina Schulze
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
- A.S. and F.M. contributed equally to this work
| | - Fabian Mitterer
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
- A.S. and F.M. contributed equally to this work
| | - Joao P. Pombo
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
| | - Stefan Schild
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
- BioTechMed Graz, Austria
- Field of Excellence Biohealth – University of Graz, Graz, Austria
| |
Collapse
|
15
|
Madaoui M, Vidal O, Meyer A, Noël M, Lacroix JM, Vasseur JJ, Marra A, Morvan F. Modified Galacto- or Fuco-Clusters Exploiting the Siderophore Pathway to Inhibit the LecA- or LecB-Associated Virulence of Pseudomonas aeruginosa. Chembiochem 2020; 21:3433-3448. [PMID: 32701213 DOI: 10.1002/cbic.202000490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Indexed: 11/11/2022]
Abstract
Galacto- and fuco-clusters conjugated with one to three catechol or hydroxamate motifs were synthesised to target LecA and LecB lectins of Pseudomonas aeruginosa (PA) localised in the outer membrane and inside the bacterium. The resulting glycocluster-pseudosiderophore conjugates were evaluated as Trojan horses to cross the outer membrane of PA by iron transport. The data suggest that glycoclusters with catechol moieties are able to hijack the iron transport, whereas those with hydroxamates showed strong nonspecific interactions. Mono- and tricatechol galactoclusters (G1C and G3C) were evaluated as inhibitors of infection by PA in comparison with the free galactocluster (G0). All of them exhibited an inhibitory effect between 46 to 75 % at 100 μM, with a higher potency than G0. This result shows that LecA localised in the outer membrane of PA is involved in the infection mechanism.
Collapse
Affiliation(s)
- Mimouna Madaoui
- Institut des Biomolécules Max Mousseron (IBMM), Université Montpellier, CNRS, ENSCM, Montpellier, France
| | - Olivier Vidal
- Unité de Glycobiologie Structurelle et Fonctionnelle (UGSF), UMR 8576 CNRS, Université de Lille Cité Scientifique, Avenue Mendeleiev, Bat. C9, 59655, Villeneuve d'Ascq Cedex, France
| | - Albert Meyer
- Institut des Biomolécules Max Mousseron (IBMM), Université Montpellier, CNRS, ENSCM, Montpellier, France
| | - Mathieu Noël
- Institut des Biomolécules Max Mousseron (IBMM), Université Montpellier, CNRS, ENSCM, Montpellier, France
| | - Jean-Marie Lacroix
- Unité de Glycobiologie Structurelle et Fonctionnelle (UGSF), UMR 8576 CNRS, Université de Lille Cité Scientifique, Avenue Mendeleiev, Bat. C9, 59655, Villeneuve d'Ascq Cedex, France
| | - Jean-Jacques Vasseur
- Institut des Biomolécules Max Mousseron (IBMM), Université Montpellier, CNRS, ENSCM, Montpellier, France
| | - Alberto Marra
- Institut des Biomolécules Max Mousseron (IBMM), Université Montpellier, CNRS, ENSCM, Montpellier, France
| | - François Morvan
- Institut des Biomolécules Max Mousseron (IBMM), Université Montpellier, CNRS, ENSCM, Montpellier, France
| |
Collapse
|
16
|
LecB, a High Affinity Soluble Fucose-Binding Lectin from Pseudomonas aeruginosa. Methods Mol Biol 2020. [PMID: 32306354 DOI: 10.1007/978-1-0716-0430-4_46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
LecB/PA-IIL (Pfam PF07472) from bacterium Pseudomonas aeruginosa is a fucose-binding lectin with unusual high affinity for glycans. The occurrence of LecB and related proteins is limited to few opportunistic bacterial species, some of them being responsible for severe infections in immune-compromised patients. This lectin is therefore of interest as a target for the design of anti-infectious compounds, but can also be used for research and biotechnology. LecB is a small protein that can be produced in good quantity in recombinant system and purified by affinity chromatography.
Collapse
|
17
|
Hussain S, Lv F, Qi R, Senthilkumar T, Zhao H, Chen Y, Liu L, Wang S. Förster Resonance Energy Transfer Mediated Rapid and Synergistic Discrimination of Bacteria over Fungi Using a Cationic Conjugated Glycopolymer. ACS APPLIED BIO MATERIALS 2019; 3:20-28. [DOI: 10.1021/acsabm.9b00691] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sameer Hussain
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Fengting Lv
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Ruilian Qi
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Thangaraj Senthilkumar
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Hao Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yanyan Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Libing Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
18
|
Taouai M, Chakroun K, Sommer R, Michaud G, Giacalone D, Ben Maaouia MA, Vallin-Butruille A, Mathiron D, Abidi R, Darbre T, Cragg PJ, Mullié C, Reymond JL, O'Toole GA, Benazza M. Glycocluster Tetrahydroxamic Acids Exhibiting Unprecedented Inhibition of Pseudomonas aeruginosa Biofilms. J Med Chem 2019; 62:7722-7738. [PMID: 31449405 DOI: 10.1021/acs.jmedchem.9b00481] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Opportunistic Gram-negative Pseudomonas aeruginosa uses adhesins (e.g., LecA and LecB lectins, type VI pili and flagella) and iron to invade host cells with the formation of a biofilm, a thick barrier that protects bacteria from drugs and host immune system. Hindering iron uptake and disrupting adhesins' function could be a relevant antipseudomonal strategy. To test this hypothesis, we designed an iron-chelating glycocluster incorporating a tetrahydroxamic acid and α-l-fucose bearing linker to interfere with both iron uptake and the glycan recognition process involving the LecB lectin. Iron depletion led to increased production of the siderophore pyoverdine by P. aeruginosa to counteract the loss of iron uptake, and strong biofilm inhibition was observed not only with the α-l-fucocluster (72%), but also with its α-d-manno (84%), and α-d-gluco (92%) counterparts used as negative controls. This unprecedented finding suggests that both LecB and biofilm inhibition are closely related to the presence of hydroxamic acid groups.
Collapse
Affiliation(s)
- Marwa Taouai
- Laboratoire de Glycochimie des Antimicrobiens et des Agroressources (LG2A-UMR7378-CNRS) , CNRS-Université de Picardie Jules Verne , 10 Rue Baudelocque , 80039 Amiens Cédex , France.,Laboratoire LACReSNE, Unité "Interactions Moléculaires Spécifiques", Faculté des Sciences de Bizerte , Université de Carthage Zarzouna-Bizerte TN 7021 , Tunisie
| | - Khouloud Chakroun
- Laboratoire de Glycochimie des Antimicrobiens et des Agroressources (LG2A-UMR7378-CNRS) , CNRS-Université de Picardie Jules Verne , 10 Rue Baudelocque , 80039 Amiens Cédex , France.,Department of Microbiology and Immunology , Geisel School of Medicine at Dartmouth , Room 202, Remsen Building 66, College Street , Hanover , New Hampshire 03755 , United States
| | - Roman Sommer
- Chemical Biology of Carbohydrates , Helmholtz Institute for Pharmaceutical Research Saarland , 66123 Saarbrücken , Germany
| | - Gaelle Michaud
- Chemistry and Biochemistry , University of Berne , Freistrasse 3 , 3012 Berne , Switzerland
| | - David Giacalone
- Department of Microbiology and Immunology , Geisel School of Medicine at Dartmouth , Room 202, Remsen Building 66, College Street , Hanover , New Hampshire 03755 , United States
| | - Mohamed Amine Ben Maaouia
- Laboratoire de Glycochimie des Antimicrobiens et des Agroressources (LG2A-UMR7378-CNRS) , CNRS-Université de Picardie Jules Verne , 10 Rue Baudelocque , 80039 Amiens Cédex , France.,Laboratoire LACReSNE, Unité "Interactions Moléculaires Spécifiques", Faculté des Sciences de Bizerte , Université de Carthage Zarzouna-Bizerte TN 7021 , Tunisie
| | - Aurélie Vallin-Butruille
- Laboratoire de Glycochimie des Antimicrobiens et des Agroressources (LG2A-UMR7378-CNRS) , CNRS-Université de Picardie Jules Verne , 10 Rue Baudelocque , 80039 Amiens Cédex , France
| | - David Mathiron
- Laboratoire de Glycochimie des Antimicrobiens et des Agroressources (LG2A-UMR7378-CNRS) , CNRS-Université de Picardie Jules Verne , 10 Rue Baudelocque , 80039 Amiens Cédex , France
| | - Rym Abidi
- Laboratoire LACReSNE, Unité "Interactions Moléculaires Spécifiques", Faculté des Sciences de Bizerte , Université de Carthage Zarzouna-Bizerte TN 7021 , Tunisie
| | - Tamis Darbre
- Chemistry and Biochemistry , University of Berne , Freistrasse 3 , 3012 Berne , Switzerland
| | - Peter J Cragg
- School of Pharmacy and Biomolecular Science University of Brighton , Brighton BN2 4GJ , U.K
| | - Catherine Mullié
- Laboratoire de Glycochimie des Antimicrobiens et des Agroressources (LG2A-UMR7378-CNRS) , CNRS-Université de Picardie Jules Verne , 10 Rue Baudelocque , 80039 Amiens Cédex , France
| | - Jean-Louis Reymond
- Chemistry and Biochemistry , University of Berne , Freistrasse 3 , 3012 Berne , Switzerland
| | - George A O'Toole
- Department of Microbiology and Immunology , Geisel School of Medicine at Dartmouth , Room 202, Remsen Building 66, College Street , Hanover , New Hampshire 03755 , United States
| | - Mohammed Benazza
- Laboratoire de Glycochimie des Antimicrobiens et des Agroressources (LG2A-UMR7378-CNRS) , CNRS-Université de Picardie Jules Verne , 10 Rue Baudelocque , 80039 Amiens Cédex , France
| |
Collapse
|
19
|
Pushing beyond the Envelope: the Potential Roles of OprF in Pseudomonas aeruginosa Biofilm Formation and Pathogenicity. J Bacteriol 2019; 201:JB.00050-19. [PMID: 31010902 DOI: 10.1128/jb.00050-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The ability of Pseudomonas aeruginosa to form biofilms, which are communities of cells encased in a self-produced extracellular matrix, protects the cells from antibiotics and the host immune response. While some biofilm matrix components, such as exopolysaccharides and extracellular DNA, are relatively well characterized, the extracellular matrix proteins remain understudied. Multiple proteomic analyses of the P. aeruginosa soluble biofilm matrix and outer membrane vesicles, which are a component of the matrix, have identified OprF as an abundant matrix protein. To date, the few reports on the effects of oprF mutations on biofilm formation are conflicting, and little is known about the potential role of OprF in the biofilm matrix. The majority of OprF studies focus on the protein as a cell-associated porin. As a component of the outer membrane, OprF assumes dual conformations and is involved in solute transport, as well as cell envelope integrity. Here, we review the current literature on OprF in P. aeruginosa, discussing how the structure and function of the cell-associated and matrix-associated protein may affect biofilm formation and pathogenesis in order to inform future research on this understudied matrix protein.
Collapse
|
20
|
Abstract
Flagellar filaments of the pathogenic Vibrio species, including V. vulnificus, V. parahaemolyticus, and V. cholerae, are composed of multiple flagellin subunits. In their genomes, however, there are higher numbers of the ORFs encoding flagellin-like proteins than the numbers of flagellin subunits required for filament assembly. Since these flagellin-homologous proteins (FHPs) are well expressed and excreted to environments via a flagellin transport channel, their extracellular role in the pathogenic Vibrio has been enigmatic. Their biological significance, which is not related with flagellar functions, has been revealed to be in maturation of biofilm structures. Among various components of the extracellular polymeric matrix produced in the V. vulnificus biofilms, the exopolysaccharides (EPS) are dominant constituents and crucial in maturation of biofilms. The enhancing role of the V. vulnificus FHPs in biofilm formation requires the presence of EPS, as indicated by highly specific interactions among two FHPs and three EPS. The pathogenic bacterium Vibrio vulnificus exhibits the ability to form biofilm, for which initiation is dependent upon swimming motility by virtue of a polar flagellum. The filament of its flagellum is composed of multiple flagellin subunits, FlaA, -B, -C, and -D. In V. vulnificus genomes, however, open reading frames (ORFs) annotated by FlaE and -F are also present. Although neither FlaE nor FlaF is involved in filament formation and cellular motility, they are well expressed and secreted to the extracellular milieu through the secretion apparatus for flagellar assembly. In the extrapolymeric matrix of V. vulnificus biofilm, significant levels of FlaEF were detected. Mutants defective in both flaE and flaF formed significantly decreased biofilms compared to the wild-type biofilm. Thus, the potential role of FlaEF during the biofilm-forming process was investigated by exogenous addition of recombinant FlaEF (rFlaEF) to the biofilm assays. The added rFlaE and rFlaF were predominantly incorporated into the biofilm matrix formed by the wild type. However, biofilms formed by a mutant defective in exopolysaccharide (EPS) biosynthesis were not affected by added FlaEF. These results raised a possibility that FlaEF specifically interact with EPS within the biofilm matrix. In vitro pulldown assays using His-tagged rFlaEF or rFlaC revealed the specific binding of EPS to rFlaEF but not to rFlaC. Taken together, our results demonstrate that V. vulnificus FlaEF, flagellin-homologous proteins (FHPs), are crucial for biofilm formation by directly interacting with the essential determinant for biofilm maturation, EPS. Further analyses performed with other pathogenic Vibrio species demonstrated both the presence of FHPs and their important role in biofilm formation.
Collapse
|
21
|
Vance TDR, Guo S, Assaie-Ardakany S, Conroy B, Davies PL. Structure and functional analysis of a bacterial adhesin sugar-binding domain. PLoS One 2019; 14:e0220045. [PMID: 31335890 PMCID: PMC6650083 DOI: 10.1371/journal.pone.0220045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 07/08/2019] [Indexed: 01/17/2023] Open
Abstract
Bacterial adhesins attach their hosts to surfaces through one or more ligand-binding domains. In RTX adhesins, which are localized to the outer membrane of many Gram-negative bacteria via the type I secretion system, we see several examples of a putative sugar-binding domain. Here we have recombinantly expressed one such ~20-kDa domain from the ~340-kDa adhesin found in Marinobacter hydrocarbonoclasticus, an oil-degrading bacterium. The sugar-binding domain was purified from E. coli with a yield of 100 mg/L of culture. Circular dichroism analysis showed that the protein was rich in beta-structure, was moderately heat resistant, and required Ca2+ for proper folding. A crystal structure was obtained in Ca2+ at 1.2-Å resolution, which showed the presence of three Ca2+ ions, two of which were needed for structural integrity and one for binding sugars. Glucose was soaked into the crystal, where it bound to the sugar's two vicinal hydroxyl groups attached to the first and second (C1 and C2) carbons in the pyranose ring. This attraction to glucose caused the protein to bind certain polysaccharide-based column matrices and was used in a simple competitive binding assay to assess the relative affinity of sugars for the protein's ligand-binding site. Fucose, glucose and N-acetylglucosamine bound most tightly, and N-acetylgalactosamine hardly bound at all. Isothermal titration calorimetry was used to determine specific binding affinities, which lie in the 100-μM range. Glycan arrays were tested to expand the range of ligand sugars assayed, and showed that MhPA14 bound preferentially to branched polymers containing terminal sugars highlighted as strong binders in the competitive binding assay. Some of these binders have vicinal hydroxyl groups attached to the C3 and C4 carbons that are sterically equivalent to those presented by the C1 and C2 carbons of glucose.
Collapse
Affiliation(s)
- Tyler D. R. Vance
- Department of Biomedical and Molecular Science, Queen’s University, Kingston, Ontario, Canada
| | - Shuaiqi Guo
- Department of Biomedical and Molecular Science, Queen’s University, Kingston, Ontario, Canada
| | - Shayan Assaie-Ardakany
- Department of Biomedical and Molecular Science, Queen’s University, Kingston, Ontario, Canada
| | - Brigid Conroy
- Department of Biomedical and Molecular Science, Queen’s University, Kingston, Ontario, Canada
| | - Peter L. Davies
- Department of Biomedical and Molecular Science, Queen’s University, Kingston, Ontario, Canada
- * E-mail:
| |
Collapse
|
22
|
Passos da Silva D, Matwichuk ML, Townsend DO, Reichhardt C, Lamba D, Wozniak DJ, Parsek MR. The Pseudomonas aeruginosa lectin LecB binds to the exopolysaccharide Psl and stabilizes the biofilm matrix. Nat Commun 2019; 10:2183. [PMID: 31097723 PMCID: PMC6522473 DOI: 10.1038/s41467-019-10201-4] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 04/12/2019] [Indexed: 11/09/2022] Open
Abstract
Pseudomonas aeruginosa biofilms are composed of exopolysaccharides (EPS), exogenous DNA, and proteins that hold these communities together. P. aeruginosa produces lectins LecA and LecB, which possess affinities towards sugars found in matrix EPS and mediate adherence of P. aeruginosa to target host cells. Here, we demonstrate that LecB binds to Psl, a key matrix EPS, and this leads to increased retention of both cells and EPS in a growing biofilm. This interaction is predicted to occur between the lectin and the branched side chains present on Psl. Finally, we show that LecB coordinates Psl localization in the biofilm. This constitutes a unique function for LecB and identifies it as a matrix protein that contributes to biofilm structure through EPS interactions.
Collapse
Affiliation(s)
| | | | | | | | - Doriano Lamba
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Sede Secondaria di Basovizza, Trieste, Italy
| | - Daniel J Wozniak
- Departments of Microbial Infection and Immunity, Microbiology, Ohio State University, Columbus, OH, USA
| | - Matthew R Parsek
- Department of Microbiology, University of Washington, Seattle, WA, USA.
- Integrative Microbiology Research Centre, South China Agricultural University, 510642, Guangzhou, China.
| |
Collapse
|
23
|
Granata G, Stracquadanio S, Consoli GML, Cafiso V, Stefani S, Geraci C. Synthesis of a calix[4]arene derivative exposing multiple units of fucose and preliminary investigation as a potential broad-spectrum antibiofilm agent. Carbohydr Res 2019; 476:60-64. [PMID: 30913401 DOI: 10.1016/j.carres.2019.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/04/2019] [Accepted: 03/12/2019] [Indexed: 12/17/2022]
Abstract
Calix[4]arene derivative (1), bearing four α-l-C-fucosyl units linked via a flexible spacer, and a monomeric analogous (2) bearing a single moiety of fucose, were synthesized. Compounds 1 and 2 were assayed for antibiofilm activity against Pseudomonas aeruginosa (Gram-) and Staphylococcus epidermidis (Gram+). The macrocyclic compound 1 showed very high percentage of biofilm inhibition against two different bacterial strains while compound 2, which does not possess a macrocyclic structure, showed only moderate biofilm inhibition against P. aeruginosa and no biofilm inhibition against S. epidermidis. The fucose multivalent derivative could be a new broad-spectrum antibiofilm agent.
Collapse
Affiliation(s)
- Giuseppe Granata
- Istituto di Chimica Biomolecolare - C.N.R, Via Paolo Gaifami 18, 95126, Catania, Italy
| | - Stefano Stracquadanio
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123, Catania, Italy
| | | | - Viviana Cafiso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123, Catania, Italy
| | - Stefania Stefani
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123, Catania, Italy
| | - Corrada Geraci
- Istituto di Chimica Biomolecolare - C.N.R, Via Paolo Gaifami 18, 95126, Catania, Italy.
| |
Collapse
|
24
|
Bücher KS, Babic N, Freichel T, Kovacic F, Hartmann L. Monodisperse Sequence‐Controlled α‐l‐Fucosylated Glycooligomers and Their Multivalent Inhibitory Effects on LecB. Macromol Biosci 2018; 18:e1800337. [DOI: 10.1002/mabi.201800337] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/04/2018] [Indexed: 01/10/2023]
Affiliation(s)
- Katharina Susanne Bücher
- Institute of Organic and Macromolecular ChemistryHeinrich‐Heine‐University Duesseldorf Universitaetsstraße 1 40225 Duesseldorf Germany
| | - Nikolina Babic
- Institute of Molecular Enzyme TechnologyHeinrich‐Heine‐University Duesseldorf and Forschungszentrum Jülich GmbH Wilhelm Johnen Straße 52428 Jülich Germany
| | - Tanja Freichel
- Institute of Organic and Macromolecular ChemistryHeinrich‐Heine‐University Duesseldorf Universitaetsstraße 1 40225 Duesseldorf Germany
| | - Filip Kovacic
- Institute of Molecular Enzyme TechnologyHeinrich‐Heine‐University Duesseldorf and Forschungszentrum Jülich GmbH Wilhelm Johnen Straße 52428 Jülich Germany
| | - Laura Hartmann
- Institute of Organic and Macromolecular ChemistryHeinrich‐Heine‐University Duesseldorf Universitaetsstraße 1 40225 Duesseldorf Germany
| |
Collapse
|
25
|
Sato K, Kakuda S, Yukitake H, Kondo Y, Shoji M, Takebe K, Narita Y, Naito M, Nakane D, Abiko Y, Hiratsuka K, Suzuki M, Nakayama K. Immunoglobulin‐like domains of the cargo proteins are essential for protein stability during secretion by the type IX secretion system. Mol Microbiol 2018; 110:64-81. [DOI: 10.1111/mmi.14083] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2018] [Indexed: 01/12/2023]
Affiliation(s)
- Keiko Sato
- Department of Microbiology and Oral Infection Nagasaki University Graduate School of Biomedical Sciences Nagasaki Nagasaki 852‐8588Japan
| | - Shinji Kakuda
- Institute for Protein Research Osaka University Yamadaoka, Suita Osaka 565‐0871Japan
| | - Hideharu Yukitake
- Department of Microbiology and Oral Infection Nagasaki University Graduate School of Biomedical Sciences Nagasaki Nagasaki 852‐8588Japan
| | - Yoshio Kondo
- Department of Pediatric Dentistry Nagasaki University Graduate School of Biomedical Sciences Nagasaki Nagasaki 852‐8588Japan
| | - Mikio Shoji
- Department of Microbiology and Oral Infection Nagasaki University Graduate School of Biomedical Sciences Nagasaki Nagasaki 852‐8588Japan
| | - Katsuki Takebe
- Institute for Protein Research Osaka University Yamadaoka, Suita Osaka 565‐0871Japan
| | - Yuka Narita
- Department of Functional Bioscience, Infection Biology Fukuoka Dental College Matsudo, Tamura, Sawara, Fukuoka 814‐0913Japan
| | - Mariko Naito
- Department of Microbiology and Oral Infection Nagasaki University Graduate School of Biomedical Sciences Nagasaki Nagasaki 852‐8588Japan
| | - Daisuke Nakane
- Department of Physics, Faculty of Science Gakushuin University Toshima‐ku, Tokyo 171‐8588Japan
| | - Yoshimitsu Abiko
- Department of Biochemistry and Molecular Biology Nihon University School of Dentistry at Matsudo Matsudo Chiba 271‐8587Japan
| | - Koichi Hiratsuka
- Department of Biochemistry and Molecular Biology Nihon University School of Dentistry at Matsudo Matsudo Chiba 271‐8587Japan
| | - Mamoru Suzuki
- Institute for Protein Research Osaka University Yamadaoka, Suita Osaka 565‐0871Japan
| | - Koji Nakayama
- Department of Microbiology and Oral Infection Nagasaki University Graduate School of Biomedical Sciences Nagasaki Nagasaki 852‐8588Japan
| |
Collapse
|
26
|
Dingjan T, Gillon É, Imberty A, Pérez S, Titz A, Ramsland PA, Yuriev E. Virtual Screening Against Carbohydrate-Binding Proteins: Evaluation and Application to Bacterial Burkholderia ambifaria Lectin. J Chem Inf Model 2018; 58:1976-1989. [DOI: 10.1021/acs.jcim.8b00185] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Tamir Dingjan
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Émilie Gillon
- University Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France
| | - Anne Imberty
- University Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France
| | - Serge Pérez
- University Grenoble Alpes, CNRS, DPM, 38000 Grenoble, France
| | - Alexander Titz
- Chemical Biology of Carbohydrates, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, D-66123 Saarbrücken, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany
- Department of Pharmacy, Saarland University, D-66123 Saarbrücken, Germany
| | - Paul A. Ramsland
- School of Science, RMIT University, Bundoora, Victoria 3083, Australia
- Department of Surgery Austin Health, University of Melbourne, Heidelberg, Victoria 3084, Australia
- Department of Immunology, Monash University, Alfred Medical Research and Education Precinct, Melbourne, Victoria 3004, Australia
- Burnet Institute, Melbourne, Victoria 3004, Australia
| | - Elizabeth Yuriev
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|
27
|
Joachim I, Rikker S, Hauck D, Ponader D, Boden S, Sommer R, Hartmann L, Titz A. Development and optimization of a competitive binding assay for the galactophilic low affinity lectin LecA from Pseudomonas aeruginosa. Org Biomol Chem 2018; 14:7933-48. [PMID: 27488655 DOI: 10.1039/c6ob01313a] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Infections with the Gram-negative bacterium Pseudomonas aeruginosa result in a high mortality among immunocompromised patients and those with cystic fibrosis. The pathogen can switch from planktonic life to biofilms, and thereby shields itself against antibiotic treatment and host immune defense to establish chronic infections. The bacterial protein LecA, a C-type lectin, is a virulence factor and an integral component for biofilm formation. Inhibition of LecA with its carbohydrate ligands results in reduced biofilm mass, a potential Achilles heel for treatment. Here, we report the development and optimization of a fluorescence polarization-based competitive binding assay with LecA for application in screening of potential inhibitors. As a consequence of the low affinity of d-galactose for LecA, the fluorescent ligand was optimized to reduce protein consumption in the assay. The assay was validated using a set of known inhibitors of LecA and IC50 values in good agreement with the known Kd values were obtained. Finally, we employed the optimized assay to screen sets of synthetic thio-galactosides and natural blood group antigens and report their structure-activity relationship. In addition, we evaluated a multivalent fluorescent assay probe for LecA and report its applicability in an inhibition assay.
Collapse
Affiliation(s)
- Ines Joachim
- Chemical Biology of Carbohydrates, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), D-66123 Saarbrücken, Germany. and Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover, Braunschweig, Germany and Department of Chemistry and Graduate School Chemical Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Sebastian Rikker
- Department of Chemistry and Graduate School Chemical Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Dirk Hauck
- Chemical Biology of Carbohydrates, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), D-66123 Saarbrücken, Germany. and Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover, Braunschweig, Germany
| | - Daniela Ponader
- Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, Research Campus Golm, 14424 Potsdam, Germany
| | - Sophia Boden
- Heinrich-Heine-University Duesseldorf, Institute of Organic Chemistry and Macromolecular Chemistry, D-40225 Düsseldorf, Germany
| | - Roman Sommer
- Chemical Biology of Carbohydrates, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), D-66123 Saarbrücken, Germany. and Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover, Braunschweig, Germany
| | - Laura Hartmann
- Heinrich-Heine-University Duesseldorf, Institute of Organic Chemistry and Macromolecular Chemistry, D-40225 Düsseldorf, Germany
| | - Alexander Titz
- Chemical Biology of Carbohydrates, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), D-66123 Saarbrücken, Germany. and Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover, Braunschweig, Germany and Department of Chemistry and Graduate School Chemical Biology, University of Konstanz, D-78457 Konstanz, Germany
| |
Collapse
|
28
|
Sommer R, Wagner S, Rox K, Varrot A, Hauck D, Wamhoff EC, Schreiber J, Ryckmans T, Brunner T, Rademacher C, Hartmann RW, Brönstrup M, Imberty A, Titz A. Glycomimetic, Orally Bioavailable LecB Inhibitors Block Biofilm Formation of Pseudomonas aeruginosa. J Am Chem Soc 2018; 140:2537-2545. [PMID: 29272578 DOI: 10.1021/jacs.7b11133] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The opportunistic Gram-negative bacterium Pseudomonas aeruginosa is a leading pathogen for infections of immuno-compromised patients and those suffering from cystic fibrosis. Its ability to switch from planktonic life to aggregates, forming the so-called biofilms, is a front-line mechanism of antimicrobial resistance. The bacterial carbohydrate-binding protein LecB is an integral component and necessary for biofilm formation. Here, we report a new class of drug-like low molecular weight inhibitors of the lectin LecB with nanomolar affinities and excellent receptor binding kinetics and thermodynamics. This class of glycomimetic inhibitors efficiently blocked biofilm formation of P. aeruginosa in vitro while the natural monovalent carbohydrate ligands failed. Furthermore, excellent selectivity and pharmacokinetic properties were achieved. Notably, two compounds showed good oral bioavailability, and high compound concentrations in plasma and urine were achieved in vivo.
Collapse
Affiliation(s)
- Roman Sommer
- Chemical Biology of Carbohydrates and ‡Drug Design and Development, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) , D-66123 Saarbrücken, Germany.,Deutsches Zentrum für Infektionsforschung (DZIF) , Standort Hannover-Braunschweig, Germany
| | - Stefanie Wagner
- Chemical Biology of Carbohydrates and ‡Drug Design and Development, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) , D-66123 Saarbrücken, Germany.,Deutsches Zentrum für Infektionsforschung (DZIF) , Standort Hannover-Braunschweig, Germany
| | - Katharina Rox
- Deutsches Zentrum für Infektionsforschung (DZIF) , Standort Hannover-Braunschweig, Germany
| | - Annabelle Varrot
- Univ. Grenoble Alpes , CNRS, Centre de Recherche sur les Macromolécules Végétales (CERMAV), 38000 Grenoble, France
| | - Dirk Hauck
- Chemical Biology of Carbohydrates and ‡Drug Design and Development, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) , D-66123 Saarbrücken, Germany.,Deutsches Zentrum für Infektionsforschung (DZIF) , Standort Hannover-Braunschweig, Germany
| | - Eike-Christian Wamhoff
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces , D-14424 Potsdam, Germany.,Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin , D-14195 Berlin, Germany
| | - Janine Schreiber
- Deutsches Zentrum für Infektionsforschung (DZIF) , Standort Hannover-Braunschweig, Germany
| | - Thomas Ryckmans
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel , CH-4070 Basel, Switzerland
| | - Thomas Brunner
- Biochemical Pharmacology, Department of Biology, University of Konstanz , D-78457 Konstanz, Germany
| | - Christoph Rademacher
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces , D-14424 Potsdam, Germany.,Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin , D-14195 Berlin, Germany
| | - Rolf W Hartmann
- Deutsches Zentrum für Infektionsforschung (DZIF) , Standort Hannover-Braunschweig, Germany.,Department of Pharmacy, Saarland University , D-66123 Saarbrücken, Germany
| | - Mark Brönstrup
- Deutsches Zentrum für Infektionsforschung (DZIF) , Standort Hannover-Braunschweig, Germany
| | - Anne Imberty
- Univ. Grenoble Alpes , CNRS, Centre de Recherche sur les Macromolécules Végétales (CERMAV), 38000 Grenoble, France
| | - Alexander Titz
- Chemical Biology of Carbohydrates and ‡Drug Design and Development, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) , D-66123 Saarbrücken, Germany.,Deutsches Zentrum für Infektionsforschung (DZIF) , Standort Hannover-Braunschweig, Germany.,Department of Pharmacy, Saarland University , D-66123 Saarbrücken, Germany
| |
Collapse
|
29
|
Sager CP, Eriş D, Smieško M, Hevey R, Ernst B. What contributes to an effective mannose recognition domain? Beilstein J Org Chem 2017; 13:2584-2595. [PMID: 29259668 PMCID: PMC5727865 DOI: 10.3762/bjoc.13.255] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/15/2017] [Indexed: 12/27/2022] Open
Abstract
In general, carbohydrate-lectin interactions are characterized by high specificity but also low affinity. The main reason for the low affinities are desolvation costs, due to the numerous hydroxy groups present on the ligand, together with the typically polar surface of the binding sites. Nonetheless, nature has evolved strategies to overcome this hurdle, most prominently in relation to carbohydrate-lectin interactions of the innate immune system but also in bacterial adhesion, a process key for the bacterium's survival. In an effort to better understand the particular characteristics, which contribute to a successful carbohydrate recognition domain, the mannose-binding sites of six C-type lectins and of three bacterial adhesins were analyzed. One important finding is that the high enthalpic penalties caused by desolvation can only be compensated for by the number and quality of hydrogen bonds formed by each of the polar hydroxy groups engaged in the binding process. In addition, since mammalian mannose-binding sites are in general flat and solvent exposed, the half-lives of carbohydrate-lectin complexes are rather short since water molecules can easily access and displace the ligand from the binding site. In contrast, the bacterial lectin FimH benefits from a deep mannose-binding site, leading to a substantial improvement in the off-rate. Together with both a catch-bond mechanism (i.e., improvement of affinity under shear stress) and multivalency, two methods commonly utilized by pathogens, the affinity of the carbohydrate-FimH interaction can be further improved. Including those just described, the various approaches explored by nature to optimize selectivity and affinity of carbohydrate-lectin interactions offer interesting therapeutic perspectives for the development of carbohydrate-based drugs.
Collapse
Affiliation(s)
- Christoph P Sager
- Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | - Deniz Eriş
- Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | - Martin Smieško
- Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | - Rachel Hevey
- Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | - Beat Ernst
- Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| |
Collapse
|
30
|
Cai D, Xun C, Tang F, Tian X, Yang L, Ding K, Li W, Le Z, Huang W. Glycoconjugate probes containing a core-fucosylated N-glycan trisaccharide for fucose lectin identification and purification. Carbohydr Res 2017; 449:143-152. [PMID: 28800497 DOI: 10.1016/j.carres.2017.07.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 07/27/2017] [Accepted: 07/27/2017] [Indexed: 12/12/2022]
|
31
|
Angeli A, Li M, Dupin L, Vergoten G, Noël M, Madaoui M, Wang S, Meyer A, Géhin T, Vidal S, Vasseur JJ, Chevolot Y, Morvan F. Design and Synthesis of Galactosylated Bifurcated Ligands with Nanomolar Affinity for Lectin LecA from Pseudomonas aeruginosa. Chembiochem 2017; 18:1036-1047. [DOI: 10.1002/cbic.201700154] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Indexed: 01/05/2023]
Affiliation(s)
- Anthony Angeli
- Institut des Biomolécules Max Mousseron (IBMM); UMR 5247; CNRS; Université Montpellier; ENSCM; Place Eugène Bataillon CC1704 34095 Montpellier cedex 5 France
| | - Muchen Li
- Université de Lyon; Institut des Nanotechnologies de Lyon; INL); UMR CNRS 5270; Site Ecole Centrale de Lyon; 36 avenue Guy de Collongue 69134 Ecully cedex France
| | - Lucie Dupin
- Université de Lyon; Institut des Nanotechnologies de Lyon; INL); UMR CNRS 5270; Site Ecole Centrale de Lyon; 36 avenue Guy de Collongue 69134 Ecully cedex France
| | - Gérard Vergoten
- Unité de Glycobiologie Structurelle et Fonctionnelle; UGSF); UMR 8576 CNRS; Université de Lille 1; Cité Scientifique; Avenue Mendeleiev Bat. C9 59655 Villeneuve d'Ascq cedex France
| | - Mathieu Noël
- Institut des Biomolécules Max Mousseron (IBMM); UMR 5247; CNRS; Université Montpellier; ENSCM; Place Eugène Bataillon CC1704 34095 Montpellier cedex 5 France
| | - Mimouna Madaoui
- Institut des Biomolécules Max Mousseron (IBMM); UMR 5247; CNRS; Université Montpellier; ENSCM; Place Eugène Bataillon CC1704 34095 Montpellier cedex 5 France
| | - Shuai Wang
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires; Laboratoire de Chimie Organique 2; Glycochimie UMR 5246; CNRS; Université Claude Bernard Lyon 1; 43 Boulevard du 11 Novembre 1918 69622 Villeurbanne France
| | - Albert Meyer
- Institut des Biomolécules Max Mousseron (IBMM); UMR 5247; CNRS; Université Montpellier; ENSCM; Place Eugène Bataillon CC1704 34095 Montpellier cedex 5 France
| | - Thomas Géhin
- Université de Lyon; Institut des Nanotechnologies de Lyon; INL); UMR CNRS 5270; Site Ecole Centrale de Lyon; 36 avenue Guy de Collongue 69134 Ecully cedex France
| | - Sébastien Vidal
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires; Laboratoire de Chimie Organique 2; Glycochimie UMR 5246; CNRS; Université Claude Bernard Lyon 1; 43 Boulevard du 11 Novembre 1918 69622 Villeurbanne France
| | - Jean-Jacques Vasseur
- Institut des Biomolécules Max Mousseron (IBMM); UMR 5247; CNRS; Université Montpellier; ENSCM; Place Eugène Bataillon CC1704 34095 Montpellier cedex 5 France
| | - Yann Chevolot
- Université de Lyon; Institut des Nanotechnologies de Lyon; INL); UMR CNRS 5270; Site Ecole Centrale de Lyon; 36 avenue Guy de Collongue 69134 Ecully cedex France
| | - François Morvan
- Institut des Biomolécules Max Mousseron (IBMM); UMR 5247; CNRS; Université Montpellier; ENSCM; Place Eugène Bataillon CC1704 34095 Montpellier cedex 5 France
| |
Collapse
|
32
|
Urzhumtseva L, Urzhumtsev A. COMPaRS: a stand-alone program for map comparison using quantile rank scaling. J Appl Crystallogr 2016. [DOI: 10.1107/s1600576716015752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The usual metrics for comparison of two crystallographic or cryoEM maps, for example the overall map correlation coefficient, measure the similarity of two sets of values with no consideration of their position in space. In contrast, when analyzing the maps visually it is the positions of sets of points with map values equal to or greater than some cutoff level that is of interest. An intrinsic and scale-invariant characteristic of such a set is the quantile rank defining the fraction of grid nodes (or of the unit-cell volume) with values less than this cutoff level. Comparison of the quantile ranks associated with the same point in the two maps is very similar to a comparison of the isosurfaces. The programCOMPaRSuses new metrics for map comparison based on this idea: this gives quantitative results that agree with the qualitative results obtained from a visual analysis.
Collapse
|
33
|
LadS is a calcium-responsive kinase that induces acute-to-chronic virulence switch in Pseudomonas aeruginosa. Nat Microbiol 2016; 2:16184. [DOI: 10.1038/nmicrobiol.2016.184] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 08/30/2016] [Indexed: 11/08/2022]
|
34
|
Sommer R, Wagner S, Varrot A, Nycholat CM, Khaledi A, Häussler S, Paulson JC, Imberty A, Titz A. The virulence factor LecB varies in clinical isolates: consequences for ligand binding and drug discovery. Chem Sci 2016; 7:4990-5001. [PMID: 30155149 PMCID: PMC6018602 DOI: 10.1039/c6sc00696e] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/05/2016] [Indexed: 01/18/2023] Open
Abstract
P. aeruginosa causes a substantial number of nosocomial infections and is the leading cause of death of cystic fibrosis patients. This Gram-negative bacterium is highly resistant against antibiotics and further protects itself by forming a biofilm. Moreover, a high genomic variability among clinical isolates complicates therapy. Its lectin LecB is a virulence factor and necessary for adhesion and biofilm formation. We analyzed the sequence of LecB variants in a library of clinical isolates and demonstrate that it can serve as a marker for strain family classification. LecB from the highly virulent model strain PA14 presents 13% sequence divergence with LecB from the well characterized PAO1 strain. These differences might result in differing ligand binding specificities and ultimately in reduced efficacy of drugs directed towards LecB. Despite several amino acid variations at the carbohydrate binding site, glycan array analysis showed a comparable binding pattern for both variants. A common high affinity ligand could be identified and after its chemoenzymatic synthesis verified in a competitive binding assay: an N-glycan presenting two blood group O epitopes (H-type 2 antigen). Molecular modeling of the complex suggests a bivalent interaction of the ligand with the LecB tetramer by bridging two separate binding sites. This binding rationalizes the strong avidity (35 nM) of LecBPA14 to this human fucosylated N-glycan. Biochemical evaluation of a panel of glycan ligands revealed that LecBPA14 demonstrated higher glycan affinity compared to LecBPAO1 including the extraordinarily potent affinity of 70 nM towards the monovalent human antigen Lewisa. The structural basis of this unusual high affinity ligand binding for lectins was rationalized by solving the protein crystal structures of LecBPA14 with several glycans.
Collapse
Affiliation(s)
- Roman Sommer
- Chemical Biology of Carbohydrates , Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) , D-66123 Saarbrücken , Germany . ; http://www.helmholtz-hzi.de/cbch.,Deutsches Zentrum für Infektionsforschung (DZIF) , Standort Hannover , Braunschweig , Germany
| | - Stefanie Wagner
- Chemical Biology of Carbohydrates , Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) , D-66123 Saarbrücken , Germany . ; http://www.helmholtz-hzi.de/cbch.,Deutsches Zentrum für Infektionsforschung (DZIF) , Standort Hannover , Braunschweig , Germany
| | - Annabelle Varrot
- Centre de Recherche sur les Macromolécules Végétales (CERMAV-UPR5301) , CNRS and Université Grenoble Alpes , BP53 , F-38041 Grenoble cedex 9 , France
| | - Corwin M Nycholat
- Department of Cell and Molecular Biology and Department of Chemical Physiology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , CA 92037 , USA
| | - Ariane Khaledi
- Molecular Bacteriology , Helmholtz Centre for Infection Research , D-38124 Braunschweig , Germany
| | - Susanne Häussler
- Molecular Bacteriology , Helmholtz Centre for Infection Research , D-38124 Braunschweig , Germany
| | - James C Paulson
- Department of Cell and Molecular Biology and Department of Chemical Physiology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , CA 92037 , USA
| | - Anne Imberty
- Centre de Recherche sur les Macromolécules Végétales (CERMAV-UPR5301) , CNRS and Université Grenoble Alpes , BP53 , F-38041 Grenoble cedex 9 , France
| | - Alexander Titz
- Chemical Biology of Carbohydrates , Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) , D-66123 Saarbrücken , Germany . ; http://www.helmholtz-hzi.de/cbch.,Deutsches Zentrum für Infektionsforschung (DZIF) , Standort Hannover , Braunschweig , Germany
| |
Collapse
|
35
|
Arnold JW, Spacht D, Koudelka GB. Determinants that govern the recognition and uptake of
Escherichia coli
O157 : H7 by
Acanthamoeba castellanii. Cell Microbiol 2016; 18:1459-70. [DOI: 10.1111/cmi.12591] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 03/07/2016] [Accepted: 03/08/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Jason W. Arnold
- Department of Biological Sciences University at Buffalo Buffalo NY 14260 USA
| | - Drew Spacht
- Department of Biology Mercyhurst University Erie PA 16546 USA
- Department of Entomology The Ohio State University 318 W. 12th Ave. 300 Aronoff Laboratory Columbus OH 43210 USA
| | - Gerald B. Koudelka
- Department of Biological Sciences University at Buffalo Buffalo NY 14260 USA
| |
Collapse
|
36
|
Abstract
Proteinaceous components of the biofilm matrix include secreted extracellular proteins, cell surface adhesins, and protein subunits of cell appendages such as flagella and pili. Biofilm matrix proteins play diverse roles in biofilm formation and dissolution. They are involved in attaching cells to surfaces, stabilizing the biofilm matrix via interactions with exopolysaccharide and nucleic acid components, developing three-dimensional biofilm architectures, and dissolving biofilm matrix via enzymatic degradation of polysaccharides, proteins, and nucleic acids. In this article, we will review functions of matrix proteins in a selected set of microorganisms, studies of the matrix proteomes of Vibrio cholerae and Pseudomonas aeruginosa, and roles of outer membrane vesicles and of nucleoid-binding proteins in biofilm formation.
Collapse
|
37
|
Wagner S, Sommer R, Hinsberger S, Lu C, Hartmann RW, Empting M, Titz A. Novel Strategies for the Treatment of Pseudomonas aeruginosa Infections. J Med Chem 2016; 59:5929-69. [DOI: 10.1021/acs.jmedchem.5b01698] [Citation(s) in RCA: 193] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Stefanie Wagner
- Chemical
Biology of Carbohydrates, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), D-66123 Saarbrücken, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), 30625 Standort Hannover-Braunschweig, Germany
| | - Roman Sommer
- Chemical
Biology of Carbohydrates, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), D-66123 Saarbrücken, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), 30625 Standort Hannover-Braunschweig, Germany
| | - Stefan Hinsberger
- Deutsches Zentrum für Infektionsforschung (DZIF), 30625 Standort Hannover-Braunschweig, Germany
- Drug
Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), D-66123 Saarbrücken, Germany
| | - Cenbin Lu
- Deutsches Zentrum für Infektionsforschung (DZIF), 30625 Standort Hannover-Braunschweig, Germany
- Drug
Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), D-66123 Saarbrücken, Germany
| | - Rolf W. Hartmann
- Deutsches Zentrum für Infektionsforschung (DZIF), 30625 Standort Hannover-Braunschweig, Germany
- Drug
Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), D-66123 Saarbrücken, Germany
| | - Martin Empting
- Deutsches Zentrum für Infektionsforschung (DZIF), 30625 Standort Hannover-Braunschweig, Germany
- Drug
Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), D-66123 Saarbrücken, Germany
| | - Alexander Titz
- Chemical
Biology of Carbohydrates, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), D-66123 Saarbrücken, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), 30625 Standort Hannover-Braunschweig, Germany
| |
Collapse
|
38
|
Antonik PM, Volkov AN, Broder UN, Re DL, van Nuland NAJ, Crowley PB. Anomer-Specific Recognition and Dynamics in a Fucose-Binding Lectin. Biochemistry 2016; 55:1195-203. [PMID: 26845253 DOI: 10.1021/acs.biochem.5b01212] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Sugar binding by a cell surface ∼29 kDa lectin (RSL) from the bacterium Ralstonia solanacearum was characterized by NMR spectroscopy. The complexes formed with four monosaccharides and four fucosides were studied. Complete resonance assignments and backbone dynamics were determined for RSL in the sugar-free form and when bound to l-fucose or d-mannose. RSL was found to interact with both the α- and the β-anomer of l-fucose and the "fucose like" sugars d-arabinose and l-galactose. Peak splitting was observed for some resonances of the binding site residues. The assignment of the split signals to the α- or β-anomer was confirmed by comparison with the spectra of RSL bound to methyl-α-l-fucoside or methyl-β-l-fucoside. The backbone dynamics of RSL were sensitive to the presence of ligand, with the protein adopting a more compact structure upon binding to l-fucose. Taking advantage of tryptophan residues in the binding sites, we show that the indole resonance is an excellent reporter on ligand binding. Each sugar resulted in a distinct signature of chemical shift perturbations, suggesting that tryptophan signals are a sufficient probe of sugar binding.
Collapse
Affiliation(s)
- Paweł M Antonik
- School of Chemistry, National University of Ireland Galway , University Road, Galway, Ireland.,Department of Food BioSciences, Teagasc Food Research Centre , Ashtown, Dublin 15, Ireland
| | - Alexander N Volkov
- Jean Jeener NMR Centre, Structural Biology Brussels, Vrije Universiteit Brussel , Pleinlaan 2, 1050 Brussels, Belgium.,Structural Biology Research Centre, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Ursula N Broder
- School of Chemistry, National University of Ireland Galway , University Road, Galway, Ireland
| | - Daniele Lo Re
- School of Chemistry, National University of Ireland Galway , University Road, Galway, Ireland
| | - Nico A J van Nuland
- Jean Jeener NMR Centre, Structural Biology Brussels, Vrije Universiteit Brussel , Pleinlaan 2, 1050 Brussels, Belgium.,Structural Biology Research Centre, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Peter B Crowley
- School of Chemistry, National University of Ireland Galway , University Road, Galway, Ireland
| |
Collapse
|
39
|
Makyio H, Kato R. Classification and Comparison of Fucose-Binding Lectins Based on Their Structures. TRENDS GLYCOSCI GLYC 2016. [DOI: 10.4052/tigg.1429.1e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Hisayoshi Makyio
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science,
High Energy Accelerator Research Organization (KEK)
| | - Ryuichi Kato
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science,
High Energy Accelerator Research Organization (KEK)
| |
Collapse
|
40
|
Makyio H, Kato R. Classification and Comparison of Fucose-Binding Lectins Based on Their Structures. TRENDS GLYCOSCI GLYC 2016. [DOI: 10.4052/tigg.1429.1j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Hisayoshi Makyio
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science,
High Energy Accelerator Research Organization (KEK)
| | - Ryuichi Kato
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science,
High Energy Accelerator Research Organization (KEK)
| |
Collapse
|
41
|
Michaud G, Visini R, Bergmann M, Salerno G, Bosco R, Gillon E, Richichi B, Nativi C, Imberty A, Stocker A, Darbre T, Reymond JL. Overcoming antibiotic resistance in Pseudomonas aeruginosa biofilms using glycopeptide dendrimers. Chem Sci 2016; 7:166-182. [PMID: 29896342 PMCID: PMC5953009 DOI: 10.1039/c5sc03635f] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 11/23/2015] [Indexed: 12/12/2022] Open
Abstract
Antibiotic resistance in the opportunistic pathogen Pseudomonas aeruginosa is partly caused by biofilms forming a physical barrier to antibiotic penetration. Here we focused on modifying tetravalent glycopeptide dendrimer ligands of P. aeruginosa lectins LecB or LecA to increase their biofilm inhibition activity. First heteroglycoclusters were investigated displaying one pair each of LecB specific fucosyl groups and LecA specific galactosyl groups and binding simultaneously to both lectins, one of which gave the first fully resolved crystal structure of a peptide dendrimer as LecB complex providing a structural model for dendrimer-lectin interactions (PDB ; 5D2A). Biofilm inhibition was increased by introducing additional cationic residues in these dendrimers but resulted in bactericidal effects similar to those of non-glycosylated polycationic antimicrobial peptide dendrimers. In a second approach dendrimers displaying four copies of the natural LecB ligand Lewisa were prepared leading to slightly stronger LecB binding and biofilm inhibition. Finally synergistic application of a LecB specific non-bactericidal antibiofilm dendrimer with the antibiotic tobramycin at sub-inhibitory concentrations of both compounds allowed effective biofilm inhibition and dispersal.
Collapse
Affiliation(s)
- Gaëlle Michaud
- Department of Chemistry and Biochemistry , University of Berne , Freiestrasse 3 , 3012 Berne , Switzerland .
| | - Ricardo Visini
- Department of Chemistry and Biochemistry , University of Berne , Freiestrasse 3 , 3012 Berne , Switzerland .
| | - Myriam Bergmann
- Department of Chemistry and Biochemistry , University of Berne , Freiestrasse 3 , 3012 Berne , Switzerland .
| | - Gianluca Salerno
- Dipartimento di Chimica , Polo Scientifico e Tecnologico , Universita' degli Studi di Firenze , Via della Lastruccia 3, 13, I-50019 Sesto Fiorentino , Firenze , Italy
| | - Rosa Bosco
- Dipartimento di Chimica , Polo Scientifico e Tecnologico , Universita' degli Studi di Firenze , Via della Lastruccia 3, 13, I-50019 Sesto Fiorentino , Firenze , Italy
| | - Emilie Gillon
- Centre de Recherches sur les Macromolécules Végétales , UPR5301 , CNRS and Université Grenoble Alpes , 601 rue de la Chimie , F38041 Grenoble , France
| | - Barbara Richichi
- Dipartimento di Chimica , Polo Scientifico e Tecnologico , Universita' degli Studi di Firenze , Via della Lastruccia 3, 13, I-50019 Sesto Fiorentino , Firenze , Italy
| | - Cristina Nativi
- Dipartimento di Chimica , Polo Scientifico e Tecnologico , Universita' degli Studi di Firenze , Via della Lastruccia 3, 13, I-50019 Sesto Fiorentino , Firenze , Italy
| | - Anne Imberty
- Centre de Recherches sur les Macromolécules Végétales , UPR5301 , CNRS and Université Grenoble Alpes , 601 rue de la Chimie , F38041 Grenoble , France
| | - Achim Stocker
- Department of Chemistry and Biochemistry , University of Berne , Freiestrasse 3 , 3012 Berne , Switzerland .
| | - Tamis Darbre
- Department of Chemistry and Biochemistry , University of Berne , Freiestrasse 3 , 3012 Berne , Switzerland .
| | - Jean-Louis Reymond
- Department of Chemistry and Biochemistry , University of Berne , Freiestrasse 3 , 3012 Berne , Switzerland .
| |
Collapse
|
42
|
Sommer R, Hauck D, Varrot A, Wagner S, Audfray A, Prestel A, Möller HM, Imberty A, Titz A. Cinnamide Derivatives of d-Mannose as Inhibitors of the Bacterial Virulence Factor LecB from Pseudomonas aeruginosa. ChemistryOpen 2015; 4:756-67. [PMID: 27308201 PMCID: PMC4906503 DOI: 10.1002/open.201500162] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Indexed: 01/03/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic Gram-negative pathogen with high antibiotic resistance. Its lectin LecB was identified as a virulence factor and is relevant in bacterial adhesion and biofilm formation. Inhibition of LecB with carbohydrate-based ligands results in a decrease in toxicity and biofilm formation. We recently discovered two classes of potent drug-like glycomimetic inhibitors, that is, sulfonamides and cinnamides of d-mannose. Here, we describe the chemical synthesis and biochemical evaluation of more than 20 derivatives with increased potency compared to the unsubstituted cinnamide. The structure-activity relationship (SAR) obtained and the extended biophysical characterization allowed the experimental determination of the binding mode of these cinnamides with LecB. The established surface binding mode now allows future rational structure-based drug design. Importantly, all glycomimetics tested showed extended receptor residence times with half-lives in the 5-20 min range, a prerequisite for therapeutic application. Thus, the glycomimetics described here provide an excellent basis for future development of anti-infectives against this multidrug-resistant pathogen.
Collapse
Affiliation(s)
- Roman Sommer
- Chemical Biology of CarbohydratesHelmholtz Institute for Pharmaceutical Research Saarland (HIPS)Universitätsstrasse 1066123SaarbrückenGermany
- Department of Chemistry and Graduate School Chemical BiologyUniversity of Konstanz78457KonstanzGermany
- Deutsches Zentrum für Infektionsforschung (DZIF)Inhoffenstraße 738124BraunschweigGermany
| | - Dirk Hauck
- Chemical Biology of CarbohydratesHelmholtz Institute for Pharmaceutical Research Saarland (HIPS)Universitätsstrasse 1066123SaarbrückenGermany
- Department of Chemistry and Graduate School Chemical BiologyUniversity of Konstanz78457KonstanzGermany
- Deutsches Zentrum für Infektionsforschung (DZIF)Inhoffenstraße 738124BraunschweigGermany
| | - Annabelle Varrot
- Centre de Recherche sur les Macromolécules Végétales (CERMAV-UPR5301)CNRS and Université Grenoble Alpes, BP5338041Grenoble cedex 9France
| | - Stefanie Wagner
- Chemical Biology of CarbohydratesHelmholtz Institute for Pharmaceutical Research Saarland (HIPS)Universitätsstrasse 1066123SaarbrückenGermany
- Deutsches Zentrum für Infektionsforschung (DZIF)Inhoffenstraße 738124BraunschweigGermany
| | - Aymeric Audfray
- Centre de Recherche sur les Macromolécules Végétales (CERMAV-UPR5301)CNRS and Université Grenoble Alpes, BP5338041Grenoble cedex 9France
| | - Andreas Prestel
- Department of Chemistry and Graduate School Chemical BiologyUniversity of Konstanz78457KonstanzGermany
- Institute of ChemistryUniversity of Potsdam14476PotsdamGermany
| | - Heiko M. Möller
- Department of Chemistry and Graduate School Chemical BiologyUniversity of Konstanz78457KonstanzGermany
- Institute of ChemistryUniversity of Potsdam14476PotsdamGermany
| | - Anne Imberty
- Centre de Recherche sur les Macromolécules Végétales (CERMAV-UPR5301)CNRS and Université Grenoble Alpes, BP5338041Grenoble cedex 9France
| | - Alexander Titz
- Chemical Biology of CarbohydratesHelmholtz Institute for Pharmaceutical Research Saarland (HIPS)Universitätsstrasse 1066123SaarbrückenGermany
- Department of Chemistry and Graduate School Chemical BiologyUniversity of Konstanz78457KonstanzGermany
- Deutsches Zentrum für Infektionsforschung (DZIF)Inhoffenstraße 738124BraunschweigGermany
| |
Collapse
|
43
|
Bergmann M, Michaud G, Visini R, Jin X, Gillon E, Stocker A, Imberty A, Darbre T, Reymond JL. Multivalency effects on Pseudomonas aeruginosa biofilm inhibition and dispersal by glycopeptide dendrimers targeting lectin LecA. Org Biomol Chem 2015; 14:138-48. [PMID: 26416170 DOI: 10.1039/c5ob01682g] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The galactose specific lectin LecA partly mediates the formation of antibiotic resistant biofilms by Pseudomonas aeruginosa, an opportunistic pathogen causing lethal airways infections in immunocompromised and cystic fibrosis patients, suggesting that preventing LecA binding to natural saccharides might provide new opportunities for treatment. Here 8-fold (G3) and 16-fold (G4) galactosylated analogs of GalAG2, a tetravalent G2 glycopeptide dendrimer LecA ligand and P. aeruginosa biofilm inhibitor, were obtained by convergent chloroacetyl thioether (ClAc) ligation between 4-fold or 8-fold chloroacetylated dendrimer cores and digalactosylated dendritic arms. Hemagglutination inhibition, isothermal titration calorimetry and biofilm inhibition assays showed that G3 dendrimers bind LecA slightly better than their parent G2 dendrimers and induce complete biofilm inhibition and dispersal of P. aeruginosa biofilms, while G4 dendrimers show reduced binding and no biofilm inhibition. A binding model accounting for the observed saturation of glycopeptide dendrimer galactosyl groups and LecA binding sites is proposed based on the crystal structure of a G3 dendrimer LecA complex.
Collapse
Affiliation(s)
- Myriam Bergmann
- Department of Chemistry and Biochemistry, University of Berne, Freiestrasse 3, 3012 Berne, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Xu B, Wozniak DJ. Development of a Novel Method for Analyzing Pseudomonas aeruginosa Twitching Motility and Its Application to Define the AmrZ Regulon. PLoS One 2015; 10:e0136426. [PMID: 26309248 PMCID: PMC4550253 DOI: 10.1371/journal.pone.0136426] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 08/03/2015] [Indexed: 11/28/2022] Open
Abstract
Twitching motility is an important migration mechanism for the Gram-negative bacterium Pseudomonas aeruginosa. In the commonly used subsurface twitching assay, the sub-population of P. aeruginosa with active twitching motility is difficult to harvest for high-throughput studies. Here we describe the development of a novel method that allows efficient isolation of bacterial sub-populations conducting highly active twitching motility. The transcription factor AmrZ regulates multiple P. aeruginosa virulence factors including twitching motility, yet the mechanism of this activation remains unclear. We therefore set out to understand this mechanism by defining the AmrZ regulon using DNA microarrays in combination with the newly developed twitching motility method. We discovered 112 genes in the AmrZ regulon and many encode virulence factors. One gene of interest and the subsequent focus was lecB, which encodes a fucose-binding lectin. DNA binding assays revealed that AmrZ activates lecB transcription by directly binding to its promoter. The lecB gene was previously shown to be required for twitching motility in P. aeruginosa strain PAK; however, our lecB deletion had no effect on twitching motility in strain PAO1. Collectively, in this study a novel condition was developed for quantitative studies of twitching motility, under which the AmrZ regulon was defined.
Collapse
Affiliation(s)
- Binjie Xu
- Department of Microbiology, The Ohio State University, Columbus, Ohio, 43210, United States of America
- Center for Microbial Interface Biology, The Ohio State University, Columbus, Ohio, 43210, United States of America
| | - Daniel J. Wozniak
- Department of Microbiology, The Ohio State University, Columbus, Ohio, 43210, United States of America
- Center for Microbial Interface Biology, The Ohio State University, Columbus, Ohio, 43210, United States of America
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, 43210, United States of America
- * E-mail:
| |
Collapse
|
45
|
Hofmann A, Sommer R, Hauck D, Stifel J, Göttker-Schnetmann I, Titz A. Synthesis of mannoheptose derivatives and their evaluation as inhibitors of the lectin LecB from the opportunistic pathogen Pseudomonas aeruginosa. Carbohydr Res 2015; 412:34-42. [DOI: 10.1016/j.carres.2015.04.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 04/02/2015] [Accepted: 04/03/2015] [Indexed: 11/25/2022]
|
46
|
Lectins from opportunistic bacteria interact with acquired variable-region glycans of surface immunoglobulin in follicular lymphoma. Blood 2015; 125:3287-96. [PMID: 25784678 DOI: 10.1182/blood-2014-11-609404] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 03/10/2015] [Indexed: 12/13/2022] Open
Abstract
B-cell antigen receptor (BCR) expression is a key feature of most B-cell lymphomas, but the mechanisms of BCR signal induction and the involvement of autoantigen recognition remain unclear. In follicular lymphoma (FL) B cells, BCR expression is retained despite a chromosomal translocation that links the antiapoptotic gene BCL2 to the regulatory elements of immunoglobulin genes, thereby disrupting 1 heavy-chain allele. A remarkable feature of FL-BCRs is the acquisition of potential N-glycosylation sites during somatic hypermutation. The introduced glycans carry mannose termini, which create potential novel binding sites for mannose-specific lectins. Here, we investigated the effect of N-linked variable-region glycosylation for BCR interaction with cognate antigen and with lectins of different origins. N-glycans were found to severely impair BCR specificity and affinity to the initial cognate antigen. In addition, we found that lectins from Pseudomonas aeruginosa and Burkholderia cenocepacia bind and stimulate FL cells. Human exposure to these bacteria can occur by contact with soil and water. In addition, they represent opportunistic pathogens in susceptible hosts. Understanding the role of bacterial lectins might elucidate the pathogenesis of FL and establish novel therapeutic approaches.
Collapse
|
47
|
Sommer R, Exner TE, Titz A. A biophysical study with carbohydrate derivatives explains the molecular basis of monosaccharide selectivity of the Pseudomonas aeruginosa lectin LecB. PLoS One 2014; 9:e112822. [PMID: 25415418 PMCID: PMC4240550 DOI: 10.1371/journal.pone.0112822] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 10/15/2014] [Indexed: 12/28/2022] Open
Abstract
The rise of resistances against antibiotics in bacteria is a major threat for public health and demands the development of novel antibacterial therapies. Infections with Pseudomonas aeruginosa are a severe problem for hospitalized patients and for patients suffering from cystic fibrosis. These bacteria can form biofilms and thereby increase their resistance towards antibiotics. The bacterial lectin LecB was shown to be necessary for biofilm formation and the inhibition with its carbohydrate ligands resulted in reduced amounts of biofilm. The natural ligands for LecB are glycosides of d-mannose and l-fucose, the latter displaying an unusual strong affinity. Interestingly, although mannosides are much weaker ligands for LecB, they do form an additional hydrogen bond with the protein in the crystal structure. To analyze the individual contributions of the methyl group in fucosides and the hydroxymethyl group in mannosides to the binding, we designed and synthesized derivatives of these saccharides. We report glycomimetic inhibitors that dissect the individual interactions of their saccharide precursors with LecB and give insight into the biophysics of binding by LecB. Furthermore, theoretical calculations supported by experimental thermodynamic data suggest a perturbed hydrogen bonding network for mannose derivatives as molecular basis for the selectivity of LecB for fucosides. Knowledge gained on the mode of interaction of LecB with its ligands at ambient conditions will be useful for future drug design.
Collapse
Affiliation(s)
- Roman Sommer
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C 2.3, D-66123, Saarbrücken, Germany
- Department of Chemistry and Graduate School Chemical Biology, University of Konstanz, D-78457, Konstanz, Germany
| | - Thomas E. Exner
- Department of Chemistry and Graduate School Chemical Biology, University of Konstanz, D-78457, Konstanz, Germany
- Theoretical Medicinal Chemistry and Biophysics, Institute of Pharmacy, University of Tübingen, D-72076, Tübingen, Germany
| | - Alexander Titz
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C 2.3, D-66123, Saarbrücken, Germany
- Department of Chemistry and Graduate School Chemical Biology, University of Konstanz, D-78457, Konstanz, Germany
- * E-mail:
| |
Collapse
|
48
|
Urzhumtsev A, Afonine PV, Lunin VY, Terwilliger TC, Adams PD. Metrics for comparison of crystallographic maps. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:2593-606. [PMID: 25286844 PMCID: PMC4188004 DOI: 10.1107/s1399004714016289] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 07/14/2014] [Indexed: 11/11/2022]
Abstract
Numerical comparison of crystallographic contour maps is used extensively in structure solution and model refinement, analysis and validation. However, traditional metrics such as the map correlation coefficient (map CC, real-space CC or RSCC) sometimes contradict the results of visual assessment of the corresponding maps. This article explains such apparent contradictions and suggests new metrics and tools to compare crystallographic contour maps. The key to the new methods is rank scaling of the Fourier syntheses. The new metrics are complementary to the usual map CC and can be more helpful in map comparison, in particular when only some of their aspects, such as regions of high density, are of interest.
Collapse
Affiliation(s)
- Alexandre Urzhumtsev
- Centre for Integrative Biology, Department of Integrated Structural Biology, IGMBC, CNRS UMR 7104–INSERM U964–Université de Strasbourg, 1 Rue Laurent Fries, BP 10142, 67404 Illkirch, France
- Faculté des Sciences et Technologies, Université de Lorraine, 54506 Vandoeuvre-lès-Nancy, France
| | - Pavel V. Afonine
- Lawrence Berkeley National Laboratory, One Cyclotron Road, BLDG 64R0121, Berkeley, CA 94720, USA
| | - Vladimir Y. Lunin
- Institute of Mathematical Problems of Biology, Russian Academy of Sciences, Pushchino 142290, Russian Federation
| | | | - Paul D. Adams
- Lawrence Berkeley National Laboratory, One Cyclotron Road, BLDG 64R0121, Berkeley, CA 94720, USA
- Department of Bioengineering, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
49
|
Lin YH, Lin JH, Chou SC, Chang SJ, Chung CC, Chen YS, Chang CH. Berberine-loaded targeted nanoparticles as specific Helicobacter pylori eradication therapy: in vitro and in vivo study. Nanomedicine (Lond) 2014; 10:57-71. [PMID: 25177920 DOI: 10.2217/nnm.14.76] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
AIM The aim of this work was to develop fucose-conjugated nanoparticles and control the release of berberine, and demonstrate that these particles come into contact with Helicobacter pylori and enhance the suppressive effect of berberine on H. pylori growth. MATERIALS & METHODS Fucose-chitosan/heparin nanoparticle-encapsulated berberine was prepared and delivery efficiency was monitored by confocal laser scanning microscopy. Anti-H. pylori activities were investigated by determining the calculated bacterial colonies and immunohistochemistry staining analysis. RESULTS Analysis of a simulated gastrointestinal medium indicated that the proposed drug carrier effectively controls the release of berberine, which interacts specifically at the site of H. pylori infection, and significantly increases berberine's suppressive effect on H. pylori growth. In an in vivo study, the berberine-loaded fucose-conjugated nanoparticles exhibited an H. pylori clearance effect. CONCLUSION These findings indicate that berberine-loaded fucose-conjugated nanoparticles exert an H. pylori clearance effect and effectively reduce gastric inflammation in an H. pylori-infected animal study.
Collapse
Affiliation(s)
- Yu-Hsin Lin
- Department of Biological Science & Technology, China Medical University, Taichung, Taiwan, 40402
| | | | | | | | | | | | | |
Collapse
|
50
|
Smadhi M, de Bentzmann S, Imberty A, Gingras M, Abderrahim R, Goekjian PG. Expeditive synthesis of trithiotriazine-cored glycoclusters and inhibition of Pseudomonas aeruginosa biofilm formation. Beilstein J Org Chem 2014; 10:1981-90. [PMID: 25246957 PMCID: PMC4168900 DOI: 10.3762/bjoc.10.206] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 07/30/2014] [Indexed: 12/13/2022] Open
Abstract
Readily accessible, low-valency glycoclusters based on a triazine core bearing D-galactose and L-fucose epitopes are able to inhibit biofilm formation by Pseudomonas aeruginosa. These multivalent ligands are simple to synthesize, are highly soluble, and can be either homofunctional or heterofunctional. The galactose-decorated cluster shows good affinity for Pseudomonas aeruginosa lectin lecA. They are convenient biological probes for investigating the roles of lecA and lecB in biofilm formation.
Collapse
Affiliation(s)
- Meriem Smadhi
- Laboratoire Chimie Organique 2 Glycochimie, Université de Lyon, ICBMS, UMR 5246 - CNRS, Université Claude Bernard Lyon 1, Bat. 308 -CPE Lyon, 43 Bd. du 11 Novembre 1918, 69622 Villeurbanne, France. ; Tel: +33-4-72448183 ; Université de Carthage, Faculté des sciences Bizerte, Tunisie
| | - Sophie de Bentzmann
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, Institut de Biologie Structurale et Microbiologie, CNRS-Aix Marseille University, UMR7255, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Anne Imberty
- Centre de Recherches sur les Macromolécules Végétales (CERMAV), UPR 5301 CNRS et Université Grenoble Alpes, BP53, 38041 Grenoble, France
| | - Marc Gingras
- Aix-Marseille Université, CNRS, CINaM UMR 7325, 163 Avenue de Luminy 13288 Marseille, France
| | | | - Peter G Goekjian
- Laboratoire Chimie Organique 2 Glycochimie, Université de Lyon, ICBMS, UMR 5246 - CNRS, Université Claude Bernard Lyon 1, Bat. 308 -CPE Lyon, 43 Bd. du 11 Novembre 1918, 69622 Villeurbanne, France. ; Tel: +33-4-72448183
| |
Collapse
|