1
|
Guo Z, Cui Z. Fluorescent nanotechnology for in vivo imaging. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1705. [PMID: 33686803 DOI: 10.1002/wnan.1705] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 11/21/2020] [Accepted: 01/12/2021] [Indexed: 12/11/2022]
Abstract
Fluorescent imaging in living animals gives an intuitive picture of the dynamic processes in the complex environment within a living being. However, animal tissues present a substantial barrier and are opaque to most wavelengths of visible light. Fluorescent nanoparticles (NPs) with new photophysical characteristics have shown excellent performance for in vivo imaging. Hence, fluorescent NPs have been widely studied and applied for the detection of molecular and biological processes in living animals. In addition, developments in the area of nanotechnology have allowed materials to be used in intact animals for disease detection, diagnosis, drug delivery, and treatment. This review provides information on the different types of fluorescent particles based on nanotechnology, describing their unique individual properties and applications for detecting vital processes in vivo. The development and application of new fluorescent NPs will provide opportunities for in vivo imaging with better penetration, sensitivity, and resolution. This article is categorized under: Diagnostic Tools > in vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Zhengyuan Guo
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zongqiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
2
|
Sun YU, Nishino H, Zhao M, Miyake K, Sugisawa N, Yamamoto J, Tashiro Y, Inubushi S, Hamada K, Zhu G, Lim H, Hoffman RM. A Non-invasive Imageable GFP-expressing Mouse Model of Orthotopic Human Bladder Cancer. In Vivo 2020; 34:3225-3231. [PMID: 33144427 DOI: 10.21873/invivo.12158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 01/24/2023]
Abstract
BACKGROUND/AIM A more realistic mouse model of bladder cancer is necessary to develop effective drugs for the disease. Tumor models enhanced by bright fluorescent-reporter genes to follow the disease in real-time would enhance the ability to accurately predict the efficacy of various therapeutics on this particularly-malignant human cancer. MATERIALS AND METHODS A highly-fluorescent green fluorescent protein (GFP)-expressing bladder cancer model was orthotopically established in nude mice using the UM-UC-3 human bladder-cancer cell line (UM-UC-3-GFP). Fragments from a subcutaneous tumor of UM-UC-3-GFP were surgically implanted into the nude mouse bladder. Non-invasive and intra-vital fluorescence imaging was obtained with a simple imaging box. RESULTS The GFP-expressing orthotopic bladder tumor was imaged in real-time non-invasively as well as intra-vitally, with the two methods correlating at r=0.99. CONCLUSION This is the first non-invasive-fluorescence-imaging orthotopic model of bladder cancer and can be used for rapidly screening novel effective agents for this recalcitrant disease.
Collapse
Affiliation(s)
- Y U Sun
- AntiCancer, Inc., San Diego, CA, U.S.A.,Department of Surgery, University of California San Diego, San Diego, CA, U.S.A
| | - Hiroto Nishino
- AntiCancer, Inc., San Diego, CA, U.S.A.,Department of Surgery, University of California San Diego, San Diego, CA, U.S.A
| | - Ming Zhao
- AntiCancer, Inc., San Diego, CA, U.S.A
| | - Kentaro Miyake
- AntiCancer, Inc., San Diego, CA, U.S.A.,Department of Surgery, University of California San Diego, San Diego, CA, U.S.A
| | - Norihiko Sugisawa
- AntiCancer, Inc., San Diego, CA, U.S.A.,Department of Surgery, University of California San Diego, San Diego, CA, U.S.A
| | - Jun Yamamoto
- AntiCancer, Inc., San Diego, CA, U.S.A.,Department of Surgery, University of California San Diego, San Diego, CA, U.S.A
| | - Yoshihiko Tashiro
- AntiCancer, Inc., San Diego, CA, U.S.A.,Department of Surgery, University of California San Diego, San Diego, CA, U.S.A
| | - Sachiko Inubushi
- AntiCancer, Inc., San Diego, CA, U.S.A.,Department of Surgery, University of California San Diego, San Diego, CA, U.S.A
| | - Kazuyuki Hamada
- AntiCancer, Inc., San Diego, CA, U.S.A.,Department of Surgery, University of California San Diego, San Diego, CA, U.S.A
| | - Guangwei Zhu
- AntiCancer, Inc., San Diego, CA, U.S.A.,Department of Surgery, University of California San Diego, San Diego, CA, U.S.A
| | - Hyein Lim
- AntiCancer, Inc., San Diego, CA, U.S.A.,Department of Surgery, University of California San Diego, San Diego, CA, U.S.A
| | - Robert M Hoffman
- AntiCancer, Inc., San Diego, CA, U.S.A. .,Department of Surgery, University of California San Diego, San Diego, CA, U.S.A
| |
Collapse
|
3
|
Yamamoto J, Miyake K, Han Q, Tan Y, Inubushi S, Sugisawa N, Higuchi T, Tashiro Y, Nishino H, Homma Y, Matsuyama R, Chawla SP, Bouvet M, Singh SR, Endo I, Hoffman RM. Oral recombinant methioninase increases TRAIL receptor-2 expression to regress pancreatic cancer in combination with agonist tigatuzumab in an orthotopic mouse model. Cancer Lett 2020; 492:174-184. [PMID: 32739322 DOI: 10.1016/j.canlet.2020.07.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/08/2020] [Accepted: 07/27/2020] [Indexed: 12/16/2022]
Abstract
Methionine addiction is a fundamental and general hallmark of cancer. Gene expression analysis showed that methionine restriction (MR) of methionine-addicted cancer cells increases TNF-related apoptosis-induced ligand receptor-2 (TRAIL-R2) expression. Here, we determined the effects of MR on TRAIL-R2 targeted therapy in pancreatic cancer by the TRAIL-R2 agonist tigatuzumab. Human pancreatic cancer cell lines were cultured in control or methionine-free medium. The effects of MR on TRAIL-R2 expression and sensitivity to tigatuzumab were evaluated in vitro. An orthotopic pancreatic cancer mouse model was established to evaluate the efficacy of MR using oral recombinant methioninase (o-rMETase), and the efficacy of tigatuzumab and their combination. MR enabled tigatuzumab-induced apoptosis, by increasing TRAIL-R2 expression in pancreatic cancer cells in vitro. The protein expression level of the melanoma-associated antigen MAGED2, which reduces TRAIL-R2 expression, was decreased by MR. In the orthotopic pancreatic cancer mouse model, o-rMETase increased TRAIL-R2 expression level in the tumors and enabled the antitumor efficacy of tigatuzumab. MR, effected by o-rMETase, enabled the efficacy of the TRAIL-R2 agonist tigatuzumab by increasing TRAIL-R2 expression in pancreatic cancer. Our results suggest that o-rMETase has clinical potential for treating pancreatic cancer.
Collapse
Affiliation(s)
- Jun Yamamoto
- AntiCancer Inc, San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA; Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kentaro Miyake
- AntiCancer Inc, San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA; Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | | | | | - Sachiko Inubushi
- AntiCancer Inc, San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA
| | - Norihiko Sugisawa
- AntiCancer Inc, San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA
| | - Takashi Higuchi
- AntiCancer Inc, San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA
| | - Yoshihiko Tashiro
- AntiCancer Inc, San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA
| | - Hiroto Nishino
- AntiCancer Inc, San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA
| | - Yuki Homma
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ryusei Matsuyama
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | | | - Michael Bouvet
- Department of Surgery, University of California, San Diego, CA, USA
| | - Shree Ram Singh
- Basic Research Laboratory, National Cancer Institute, Frederick, MD, USA.
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| | - Robert M Hoffman
- AntiCancer Inc, San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA.
| |
Collapse
|
4
|
Jiang S, Zhang M, Zhang Y, Zhou W, Zhu T, Ruan Q, Chen H, Fang J, Zhou F, Sun J, Yang X. WNT5B governs the phenotype of basal-like breast cancer by activating WNT signaling. Cell Commun Signal 2019; 17:109. [PMID: 31462314 PMCID: PMC6714433 DOI: 10.1186/s12964-019-0419-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/12/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Breast cancer is the leading cause of cancer-related death in women worldwide. Metastatic disease remains the primary cause of death in patients with breast cancer. Basal-like breast cancer (BLBC) is associated with aggressive behavior, stem-like phenotype, high histological grade, poor clinical features, and high rates of recurrences and/or metastasis. However, the mechanism of BLBC phenotype shaping remains obscure. METHODS Seventeen normal breast/breast cancer cell lines were used for evaluating the breast cancer subtype-markers, WNT targets and constitutive components, and epithelial mesenchymal transition (EMT) markers analysis by western blot. One hundred and twenty formalin-fixed breast cancer tissues were used for immunohistochemistry (IHC) staining. Nine online platforms (cBioPortal, CCLE, GEPIA, etc.) were used for related analyses. RESULTS We identified Wnt5b as a key regulatory factor that governs the phenotype of BLBC by activating canonical and non-canonical WNT signaling. Wnt5b exhibited basal-like specificity in cells and clinical samples both at the mRNA and protein levels and also showed good correlation with basal-like phenotype at the mRNA level. Besides, Wnt5b was also a promising therapeutic target for LGK-974 treatment. In addition, we identified that CK1α was expressed at low levels in BLBC and that the activation of CK1α by pyrvinium was an alternative strategy for BLBC treatment. CONCLUSIONS Wnt5b is not only a diagnostic biomarker but also a potential therapeutic target of BLBC.
Collapse
Affiliation(s)
- Shaojie Jiang
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016 Zhejiang China
| | - Miaofeng Zhang
- Department of Orthopaedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009 Zhejiang China
| | - Yanhua Zhang
- Department of Pathology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016 Zhejiang China
| | - Weiping Zhou
- Department of Diagnostic Ultrasound and Echocardiography, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016 Zhejiang China
| | - Tao Zhu
- Department of Pathology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016 Zhejiang China
| | - Qing Ruan
- Department of Pathology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016 Zhejiang China
| | - Hui Chen
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003 Zhejiang China
| | - Jie Fang
- Key Laboratory of Experimental Animal and Safety Research, Zhejiang Academy of Medical Sciences, Hangzhou, 310013 Zhejiang China
| | - Fei Zhou
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016 Zhejiang China
| | - Jihong Sun
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016 Zhejiang China
| | - Xiaoming Yang
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016 Zhejiang China
- Image-Guided Bio-Molecular Intervention Research, Department of Radiology, University of Washington School of Medicine, Seattle, Washington 98109 USA
| |
Collapse
|
5
|
Pigula M, Huang HC, Mallidi S, Anbil S, Liu J, Mai Z, Hasan T. Size-dependent Tumor Response to Photodynamic Therapy and Irinotecan Monotherapies Revealed by Longitudinal Ultrasound Monitoring in an Orthotopic Pancreatic Cancer Model. Photochem Photobiol 2018; 95:378-386. [PMID: 30229942 DOI: 10.1111/php.13016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/31/2018] [Indexed: 01/02/2023]
Abstract
Longitudinal monitoring of tumor size in vivo can provide important biological information about disease progression and treatment efficacy that is not captured by other modes of quantification. Ultrasound enables high-throughput evaluation of orthotopic mouse models via fast acquisition of three-dimensional tumor images and calculation of volume with a reasonable degree of accuracy. Herein, we compare orthotopic pancreatic tumor volume measurements determined by ultrasound with volume measured by calipers and tumor weight, and found strong correlations between the three modalities over a large range of tumor sizes, suggesting ultrasound can accurately quantify tumor volumes in this model. Furthermore, we demonstrate the unique ability of longitudinal treatment monitoring to reveal a tumor size-dependent response to Benzoporphyrin Derivative photodynamic therapy (BPD-PDT) and irinotecan. Small tumors (5-35 mm3 ) were found to respond well to a single round of PDT, while large tumors (35-65 mm3 ) showed no response to the same treatment. These results highlight the role that tumor size can play in preclinical interpretation of treatment response and more generally suggest that careful evaluation of subtle biological features such as this must be carefully considered in order to grant a more comprehensive understanding of disease biology in vivo.
Collapse
Affiliation(s)
- Michael Pigula
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA.,Department of Dermatology, Massachusetts General Hospital, Boston, MA
| | - Huang-Chiao Huang
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA.,Department of Dermatology, Massachusetts General Hospital, Boston, MA.,Fischell Department of Bioengineering, University of Maryland, College Park, MD
| | - Srivalleesha Mallidi
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA.,Department of Dermatology, Massachusetts General Hospital, Boston, MA.,Department of Biomedical Engineering, Tufts University, Medford, MA
| | - Sriram Anbil
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA.,The University of Texas School of Medicine at San Antonio, San Antonio, TX
| | - Joyce Liu
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA.,University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Zhiming Mai
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA.,Department of Dermatology, Massachusetts General Hospital, Boston, MA
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA.,Department of Dermatology, Massachusetts General Hospital, Boston, MA.,Division of Health Sciences and Technology, Harvard University and Massachusetts Institute of Technology, Cambridge, MA
| |
Collapse
|
6
|
Igarashi K, Li S, Han Q, Tan Y, Kawaguchi K, Murakami T, Kiyuna T, Miyake K, Li Y, Nelson SD, Dry SM, Singh AS, Elliott IA, Russell TA, Eckardt MA, Yamamoto N, Hayashi K, Kimura H, Miwa S, Tsuchiya H, Eilber FC, Hoffman RM. Growth of doxorubicin-resistant undifferentiated spindle-cell sarcoma PDOX is arrested by metabolic targeting with recombinant methioninase. J Cell Biochem 2018; 119:3537-3544. [PMID: 29143983 DOI: 10.1002/jcb.26527] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 11/13/2017] [Indexed: 12/22/2022]
Abstract
Undifferentiated spindle-cell sarcoma (USCS) is a recalcitrant -cancer in need of individualized therapy. A high-grade USCS from a striated muscle of a patient was grown orthotopically in the right biceps femoris muscle of nude mice to establish a patient-derived orthotopic xenograft (PDOX) model. In a previous study, we evaluated the efficacy of standard first-line chemotherapy of doxorubicin (DOX), gemcitabine (GEM) combined with docetaxel (DOC), compared to pazopanib (PAZ), a multi-targeting tyrosine-kinase inhibitor, in an USCS PDOX model. In the present study, mice-bearing the USCS PDOX tumors were randomized into the following groups when tumor volume reached 100 mm3 : G1, untreated control without treatment; G2, DOX (3 mg/kg, intraperitoneal (i.p.) injection, weekly, for 2 weeks); G3, L-methionine α-deamino-γ-mercaptomethane lyase (recombinant methioninase [rMETase]) (100 U/mouse, i.p., daily, for 2 weeks). Tumor size and body weight were measured with calipers and a digital balance twice a week. The methionine level of supernatants derived from sonicated tumors was also measured. rMETase inhibited tumor growth, measured by tumor volume, compared to untreated controls and the DOX-treated group on day 14 after initiation of treatment: control (G1): 347.6 ± 88 mm3 ; DOX (G2): 329.5 ± 79 mm3 , P = 0.670; rMETase (G3): 162.6 ± 51 mm3 , P = 0.0003. The mouse body weight of the treated mice was not significantly different from the untreated controls. Tumor L-methionine levels were reduced after the rMETase-treatment compared to untreated control and pre-rMETase treatment. We previously reported efficacy of rMETase against Ewing's sarcoma and melanoma in a PDOX models. These studies suggest clinical development of rMETase, especially in recalcitrant cancers such as sarcoma.
Collapse
Affiliation(s)
- Kentaro Igarashi
- AntiCancer, Inc., San Diego, California.,Department of Surgery, University of California, San Diego, California.,Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan
| | | | | | | | - Kei Kawaguchi
- AntiCancer, Inc., San Diego, California.,Department of Surgery, University of California, San Diego, California
| | - Takashi Murakami
- AntiCancer, Inc., San Diego, California.,Department of Surgery, University of California, San Diego, California
| | - Tasuku Kiyuna
- AntiCancer, Inc., San Diego, California.,Department of Surgery, University of California, San Diego, California
| | - Kentaro Miyake
- AntiCancer, Inc., San Diego, California.,Department of Surgery, University of California, San Diego, California
| | - Yunfeng Li
- Department of Pathology, University of California, Los Angeles, California
| | - Scott D Nelson
- Department of Pathology, University of California, Los Angeles, California
| | - Sarah M Dry
- Department of Pathology, University of California, Los Angeles, California
| | - Arun S Singh
- Division of Hematology-Oncology, University of California, Los Angeles, California
| | - Irmina A Elliott
- Division of Surgical Oncology, University of California, Los Angeles, California
| | - Tara A Russell
- Division of Surgical Oncology, University of California, Los Angeles, California
| | - Mark A Eckardt
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut
| | - Norio Yamamoto
- Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Katsuhiro Hayashi
- Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Hiroaki Kimura
- Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Shinji Miwa
- Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Hiroyuki Tsuchiya
- Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Fritz C Eilber
- Division of Surgical Oncology, University of California, Los Angeles, California
| | - Robert M Hoffman
- AntiCancer, Inc., San Diego, California.,Department of Surgery, University of California, San Diego, California
| |
Collapse
|
7
|
Hoffman RM. The Advantages of Using Fluorescent Proteins for In Vivo Imaging. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/cpet.12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Robert M. Hoffman
- Department of Surgery, University of California San Diego California
- AntiCancer Inc San Diego California
| |
Collapse
|
8
|
Hoffman RM. Strategies for In Vivo Imaging Using Fluorescent Proteins. J Cell Biochem 2017; 118:2571-2580. [DOI: 10.1002/jcb.25677] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 08/25/2016] [Indexed: 01/16/2023]
Affiliation(s)
- Robert M. Hoffman
- AntiCancer, Inc.; San Diego California
- Department of Surgery; University of California San Diego; San Diego California
| |
Collapse
|
9
|
Hoffman RM, Bouvet M. Imaging the microenvironment of pancreatic cancer patient-derived orthotopic xenografts (PDOX) growing in transgenic nude mice expressing GFP, RFP, or CFP. Cancer Lett 2016; 380:349-55. [PMID: 26742463 DOI: 10.1016/j.canlet.2015.12.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 12/01/2015] [Accepted: 12/17/2015] [Indexed: 11/24/2022]
Abstract
We have developed a multi-color, imageable, orthotopic mouse model for individual patients with pancreatic cancer. The tumors are labeled by first passaging them orthotopically through transgenic nude mice expressing green fluorescent protein (GFP), red fluorescent protein (RFP), or cyan fluorescent protein (CFP). Passage of the tumors in these colored transgenic mice labels the stromal cells of the tumor. The cancer cells in the PDOX are labeled in situ with GFP by telomerase-dependent adenovirus OBP-401. The models are termed imageable patient-derived orthotopic xenografts (iPDOX). The tumors acquired brightly-fluorescent stromal cells from the transgenic host mice, which were stably associated with the tumors through multiple passages. The colored fluorescent protein-expressing stromal cells included cancer-associated fibroblasts (CAFs) and tumor-associated macrophages (TAMs). This model enables powerful color-coded imaging of the interaction of cancer and stromal cells during tumor progression and treatment.
Collapse
Affiliation(s)
- Robert M Hoffman
- AntiCancer, Inc., San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA.
| | - Michael Bouvet
- Department of Surgery, University of California, San Diego, CA, USA
| |
Collapse
|
10
|
Murakami T, Hiroshima Y, Zhao M, Zhang Y, Chishima T, Tanaka K, Bouvet M, Endo I, Hoffman RM. Therapeutic efficacy of tumor-targeting Salmonella typhimurium A1-R on human colorectal cancer liver metastasis in orthotopic nude-mouse models. Oncotarget 2016; 6:31368-77. [PMID: 26375054 PMCID: PMC4741612 DOI: 10.18632/oncotarget.5187] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/25/2015] [Indexed: 12/12/2022] Open
Abstract
Liver metastasis is the most frequent cause of death from colon and other cancers. Generally, liver metastasis is recalcitrant to treatment. The aim of this study is to determine the efficacy of tumor-targeting Salmonella typhimurium A1-R on liver metastasis in orthotopic mouse models. HT-29 human colon cancer cells expressing red fluorescent protein (RFP) were used in the present study. S. typhimurium A1-R infected HT-29 cells in a time-dependent manner, inhibiting cancer-cell proliferation in vitro. S. typhimurium A1-R promoted tumor necrosis and inhibited tumor growth in a subcutaneous tumor mouse model of HT-29-RFP. In orthotopic mouse models, S. typhimurium A1-R targeted liver metastases and significantly reduced their growth. The results of this study demonstrate the future clinical potential of S. typhimurium A1-R targeting of liver metastasis.
Collapse
Affiliation(s)
- Takashi Murakami
- AntiCancer Inc., San Diego, California, USA.,Department of Surgery, University of California, San Diego, California, USA.,Department of Gastroenterological Surgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Yukihiko Hiroshima
- AntiCancer Inc., San Diego, California, USA.,Department of Surgery, University of California, San Diego, California, USA.,Department of Gastroenterological Surgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Ming Zhao
- AntiCancer Inc., San Diego, California, USA
| | - Yong Zhang
- AntiCancer Inc., San Diego, California, USA
| | - Takashi Chishima
- Department of Gastroenterological Surgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Kuniya Tanaka
- Department of Gastroenterological Surgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Michael Bouvet
- Department of Surgery, University of California, San Diego, California, USA
| | - Itaru Endo
- Department of Gastroenterological Surgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Robert M Hoffman
- AntiCancer Inc., San Diego, California, USA.,Department of Surgery, University of California, San Diego, California, USA
| |
Collapse
|
11
|
Methods for Tumor Targeting with Salmonella typhimurium A1-R. Methods Mol Biol 2016. [PMID: 26846809 DOI: 10.1007/978-1-4939-3515-4_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Salmonella typhimurium A1-R (S. typhimurium A1-R) has shown great preclinical promise as a broad-based anti-cancer therapeutic (please see Chapter 1 ). The present chapter describes materials and methods for the preclinical study of S. typhimurium A1-R in clinically-relevant mouse models. Establishment of orthotopic metastatic mouse models of the major cancer types is described, as well as other useful models, for efficacy studies of S. typhimurium A1-R or other tumor-targeting bacteria, as well. Imaging methods are described to visualize GFP-labeled S. typhimurium A1-R, as well as GFP- and/or RFP-labeled cancer cells in vitro and in vivo, which S. typhimurium A1-R targets. The mouse models include metastasis to major organs that are life-threatening to cancer patients including the liver, lung, bone, and brain and how to target these metastases with S. typhimurium A1-R. Various routes of administration of S. typhimurium A1-R are described with the advantages and disadvantages of each. Basic experiments to determine toxic effects of S. typhimurium A1-R are also described. Also described are methodologies for combining S. typhimurium A1-R and chemotherapy. The testing of S. typhimurium A1-R on patient tumors in patient-derived orthotopic xenograft (PDOX) mouse models is also described. The major methodologies described in this chapter should be translatable for clinical studies.
Collapse
|
12
|
Murakami T, Hiroshima Y, Zhao M, Zhang Y, Chishima T, Tanaka K, Bouvet M, Endo I, Hoffman RM. Adjuvant treatment with tumor-targeting Salmonella typhimurium A1-R reduces recurrence and increases survival after liver metastasis resection in an orthotopic nude mouse model. Oncotarget 2015; 6:41856-62. [PMID: 26497690 PMCID: PMC4747193 DOI: 10.18632/oncotarget.6170] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/04/2015] [Indexed: 01/08/2023] Open
Abstract
Colon cancer liver metastasis is often the lethal aspect of this disease. Well-isolated metastases are candidates for surgical resection, but recurrence is common. Better adjuvant treatment is therefore needed to reduce or prevent recurrence. In the present study, HT-29 human colon cancer cells expressing red fluorescent protein (RFP) were used to establish liver metastases in nude mice. Mice with a single liver metastasis were randomized into bright-light surgery (BLS) or the combination of BLS and adjuvant treatment with tumor-targeting S. typhimurium A1-R. Residual tumor fluorescence after BLS was clearly visualized at high magnification by fluorescence imaging. Adjuvant treatment with S. typhimurium A1-R was highly effective to increase survival and disease-free survival after BLS of liver metastasis. The results suggest the future clinical potential of adjuvant S. typhimurium A1-R treatment after liver metastasis resection.
Collapse
Affiliation(s)
- Takashi Murakami
- AntiCancer, Inc., San Diego, California, USA
- Department of Surgery, University of California, San Diego, California, USA
- Department of Gastroenterological Surgery, Graduate School of Medicine, Yokohama City University, Japan
| | - Yukihiko Hiroshima
- AntiCancer, Inc., San Diego, California, USA
- Department of Surgery, University of California, San Diego, California, USA
- Department of Gastroenterological Surgery, Graduate School of Medicine, Yokohama City University, Japan
| | - Ming Zhao
- AntiCancer, Inc., San Diego, California, USA
| | - Yong Zhang
- AntiCancer, Inc., San Diego, California, USA
| | - Takashi Chishima
- Department of Gastroenterological Surgery, Graduate School of Medicine, Yokohama City University, Japan
| | - Kuniya Tanaka
- Department of Gastroenterological Surgery, Graduate School of Medicine, Yokohama City University, Japan
| | - Michael Bouvet
- Department of Surgery, University of California, San Diego, California, USA
| | - Itaru Endo
- Department of Gastroenterological Surgery, Graduate School of Medicine, Yokohama City University, Japan
| | - Robert M. Hoffman
- AntiCancer, Inc., San Diego, California, USA
- Department of Surgery, University of California, San Diego, California, USA
| |
Collapse
|
13
|
Abstract
In this chapter, we describe protocols for tumor imaging technologies in mouse models. These models utilize human cancer cell lines which have been genetically engineered to selectively express high levels of green fluorescent protein (GFP) or red fluorescent protein (RFP). Tumors with fluorescent genetic reporters are established subcutaneously in nude mice, and fragments of the subcutaneous tumors are then surgically transplanted onto the orthotopic organ. Locoregional tumor growth and distant metastasis of these orthotopic implants occur spontaneously and rapidly throughout the abdomen in a manner consistent with clinical human disease. Highly specific, high-resolution, real-time quantitative fluorescence imaging of tumor growth and metastasis may be achieved in vivo without the need for contrast agents, invasive techniques, or expensive imaging equipment. Transplantation of RFP-expressing tumor fragments onto the pancreas of GFP- or cyan fluorescent protein (CFP)-expressing transgenic nude mice was used to facilitate visualization of tumor-host interaction between the pancreatic cancer cells and host-derived stroma and vasculature. Such in vivo models have enabled us to visualize in real time and acquire images of the progression of pancreatic cancer in the live animal, and to demonstrate the real-time antitumor and antimetastatic effects of several novel therapeutic strategies on a variety of malignancies. We discuss studies from our laboratory that demonstrate that fluorescence imaging in mice is complementary to other modalities such as magnetic resonance imaging (MRI) or ultrasound. These fluorescent models are powerful and reliable tools with which to investigate metastatic human cancer and novel therapeutic strategies directed against it.
Collapse
|
14
|
Yano S, Hiroshima Y, Maawy A, Kishimoto H, Suetsugu A, Miwa S, Toneri M, Yamamoto M, Katz MH, Fleming JB, Urata Y, Tazawa H, Kagawa S, Bouvet M, Fujiwara T, Hoffman RM. Color-coding cancer and stromal cells with genetic reporters in a patient-derived orthotopic xenograft (PDOX) model of pancreatic cancer enhances fluorescence-guided surgery. Cancer Gene Ther 2015; 22:344-50. [PMID: 26088297 PMCID: PMC4523223 DOI: 10.1038/cgt.2015.26] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 05/05/2015] [Indexed: 12/16/2022]
Abstract
Precise fluorescence-guided surgery (FGS) for pancreatic cancer has the potential to greatly improve the outcome in this recalcitrant disease. To achieve this goal, we have used genetic reporters to color code cancer and stroma cells in a patient-derived orthotopic xenograft (PDOX) model. The telomerase-dependent green fluorescent protein (GFP)-containing adenovirus OBP-401 was used to label the cancer cells of a pancreatic cancer PDOX. The PDOX was previously grown in a red fluorescent protein (RFP) transgenic mouse that stably labeled the PDOX stroma cells bright red. The color-coded PDOX model enabled FGS to completely resect the pancreatic tumors including stroma. Dual-colored FGS significantly prevented local recurrence, which bright-light surgery or single-color FGS could not. FGS, with color-coded cancer and stroma cells has important potential for improving the outcome of recalcitrant-cancer surgery.
Collapse
Affiliation(s)
- Shuya Yano
- AntiCancer, Inc., San Diego, CA, USA
- Department of Surgery, University of California San Diego, CA, USA
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yukihiko Hiroshima
- AntiCancer, Inc., San Diego, CA, USA
- Department of Surgery, University of California San Diego, CA, USA
| | - Ali Maawy
- Department of Surgery, University of California San Diego, CA, USA
| | - Hiroyuki Kishimoto
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Atsushi Suetsugu
- Department of Gastroenterology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Shinji Miwa
- AntiCancer, Inc., San Diego, CA, USA
- Department of Surgery, University of California San Diego, CA, USA
| | - Makoto Toneri
- AntiCancer, Inc., San Diego, CA, USA
- Department of Surgery, University of California San Diego, CA, USA
| | - Mako Yamamoto
- AntiCancer, Inc., San Diego, CA, USA
- Department of Surgery, University of California San Diego, CA, USA
| | - Matthew H.G. Katz
- Department of Surgical Oncoloy, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Jason B. Fleming
- Department of Surgical Oncoloy, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | | | - Hiroshi Tazawa
- Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
| | - Shunsuke Kagawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Michael Bouvet
- Department of Surgery, University of California San Diego, CA, USA
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Robert M. Hoffman
- AntiCancer, Inc., San Diego, CA, USA
- Department of Surgery, University of California San Diego, CA, USA
| |
Collapse
|
15
|
Abstract
Multicolored proteins have allowed the color-coding of cancer cells growing in vivo and enabled the distinction of host from tumor with single-cell resolution. Non-invasive imaging with fluorescent proteins enabled the dynamics of metastatic cancer to be followed in real time in individual animals. Non-invasive imaging of cancer cells expressing fluorescent proteins has allowed the real-time determination of efficacy of candidate antitumor and antimetastatic agents in mouse models. The use of fluorescent proteins to differentially label cancer cells in the nucleus and cytoplasm can visualize the nuclear-cytoplasmic dynamics of cancer cells in vivo including: mitosis, apoptosis, cell-cycle position, and differential behavior of nucleus and cytoplasm that occurs during cancer-cell deformation and extravasation. Recent applications of the technology described here include linking fluorescent proteins with cell-cycle-specific proteins such that the cells change color from red to green as they transit from G1 to S phases. With the macro- and micro-imaging technologies described here, essentially any in vivo process can be imaged, giving rise to the new field of in vivo cell biology using fluorescent proteins.
Collapse
Affiliation(s)
- Robert M. Hoffman
- AntiCancer, Inc., Dept. of Surgery, University of California San Diego
| |
Collapse
|
16
|
Maawy AA, Hiroshima Y, Zhang Y, Garcia-Guzman M, Luiken GA, Kobayashi H, Hoffman RM, Bouvet M. Photoimmunotherapy lowers recurrence after pancreatic cancer surgery in orthotopic nude mouse models. J Surg Res 2015; 197:5-11. [PMID: 25799527 DOI: 10.1016/j.jss.2015.02.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 01/26/2015] [Accepted: 02/13/2015] [Indexed: 01/06/2023]
Abstract
BACKGROUND Photoimmunotherapy (PIT) is based on the use of a monoclonal antibody specific to cancer epitopes conjugated to a photosensitizer near-infrared phthalocyanine dye (IR700). In this study, PIT with IR700 conjugated to anti-carcinoembryonic antigen (CEA) was used as an adjunct to surgery in orthotopically-implanted human pancreatic cancer in a nude mouse model to eliminate microscopic disease in the post-surgical tumor bed and prevent local as well as metastatic recurrence. MATERIALS AND METHODS Athymic nude mice were orthotopically implanted with the human pancreatic cancer cell line BxPC3 expressing green fluorescent protein. After tumor engraftment, the mice were divided into two groups as follows: bright light surgery (BLS) + anti-CEA-IR700 + 690 nm laser (PIT); and BLS only. Anti-CEA-IR700 (100 μg) was administered to the treatment group via tail-vein injection 24 h before therapy. Tumors were resected, and the surgical bed was treated with intraoperative phototherapy at an intensity of 150 mW/cm(2) for 30 min. Mice were imaged noninvasively for 8 wk using an OV-100 small animal fluorescence imager. RESULTS BLS + PIT reduced local recurrence to 1/7 mice from 7/7 mice with BLS-only (P = 0.001) and metastatic recurrence to 2/7 mice compared with 6/7 mice with BLS-only (P = 0.03). Local tumor growth continued at a rapid rate after BLS-only compared with BLS + PIT where almost no local growth occurred. There was a significant difference in tumor size between mice in the BLS + PIT (2.14 mm(2), 95% confidence interval [CI] [-2.06 to 6.34] and BLS-only groups (115.2 mm(2), 95% CI [88.8-141.6]) at 6 wk after surgery (P < 0.001). There was also a significant difference in tumor weight between the BLS + PIT group (6.65 mg, 95% CI [-6.35 to 19.65] and BLS-only group (1100 mg, 95% CI [794-1406] at 8 wk after surgery (P < 0.001). CONCLUSIONS PIT holds promise in the treatment of pancreatic cancer and may serve as a useful adjunct to surgery in the eradication of microscopic residual disease that can lead to both local and metastatic recurrence. Further studies are warranted to investigate the potential toxicities of PIT, especially with regard to anastomoses, such as those involved in pancreaticoduodenectomy.
Collapse
Affiliation(s)
- Ali A Maawy
- Department of Surgery, University of California San Diego, San Diego, California
| | - Yukihiko Hiroshima
- Department of Surgery, University of California San Diego, San Diego, California; AntiCancer, Inc, San Diego, California; Department of Surgery, Yokohama City University, Yokohama City, Japan
| | | | | | | | | | - Robert M Hoffman
- Department of Surgery, University of California San Diego, San Diego, California; AntiCancer, Inc, San Diego, California
| | - Michael Bouvet
- Department of Surgery, University of California San Diego, San Diego, California; Department of Surgery, VA Healthcare System, San Diego, California.
| |
Collapse
|
17
|
Hoffman RM. Back to the Future: Are Tumor-Targeting Bacteria the Next-Generation Cancer Therapy? Methods Mol Biol 2015; 1317:239-60. [PMID: 26072411 DOI: 10.1007/978-1-4939-2727-2_14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cancer patients infected with various bacteria were reported, for at least two centuries, to have spontaneous remission. W.B. Coley, of what is now the Memorial Sloan-Kettering Cancer Center, pioneered bacterial therapy of cancer in the clinic with considerable success beginning in the late nineteenth century. After Coley died in 1936, bacterial therapy of cancer essentially ended. Currently there is much excitement in developing bacterial therapy for treating cancer using either obligate or facultative anaerobic bacteria. This chapter will demonstrate the potential and strategy of Salmonella typhimurium A1-R, an engineered tumor-targeting variant for the systemic treatment of metastatic cancer. A new concept using Salmonella typhimurium A1-R for cell cycle "decoy" chemotherapy of metastatic cancer is also described.
Collapse
Affiliation(s)
- Robert M Hoffman
- AntiCancer, Inc., 7917 Ostrow Street, San Diego, CA, 92111, USA,
| |
Collapse
|
18
|
Penet MF, Shah T, Bharti S, Krishnamachary B, Artemov D, Mironchik Y, Wildes F, Maitra A, Bhujwalla ZM. Metabolic imaging of pancreatic ductal adenocarcinoma detects altered choline metabolism. Clin Cancer Res 2014; 21:386-95. [PMID: 25370468 DOI: 10.1158/1078-0432.ccr-14-0964] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE Pancreatic ductal adenocarcinoma (PDAC) is an aggressive and lethal disease that develops relatively symptom-free and is therefore advanced at the time of diagnosis. The absence of early symptoms and effective treatments has created a critical need for identifying and developing new noninvasive biomarkers and therapeutic targets. EXPERIMENTAL DESIGN We investigated the metabolism of a panel of PDAC cell lines in culture and noninvasively in vivo with (1)H magnetic resonance spectroscopic imaging (MRSI) to identify noninvasive biomarkers and uncover potential metabolic targets. RESULTS We observed elevated choline-containing compounds in the PDAC cell lines and tumors. These elevated choline-containing compounds were easily detected by increased total choline (tCho) in vivo, in spectroscopic images obtained from tumors. Principal component analysis of the spectral data identified additional differences in metabolites between immortalized human pancreatic cells and neoplastic PDAC cells. Molecular characterization revealed overexpression of choline kinase (Chk)-α, choline transporter 1 (CHT1), and choline transporter-like protein 1 (CTL1) in the PDAC cell lines and tumors. CONCLUSIONS Collectively, these data identify new metabolic characteristics of PDAC and reveal potential metabolic targets. Total choline detected with (1)H MRSI may provide an intrinsic, imaging probe-independent biomarker to complement existing techniques in detecting PDAC. The expression of Chk-α, CHT1, and CTL1 may provide additional molecular markers in aspirated cytological samples.
Collapse
Affiliation(s)
- Marie-France Penet
- JHU ICMIC Program, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland. Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Tariq Shah
- JHU ICMIC Program, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Santosh Bharti
- JHU ICMIC Program, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Balaji Krishnamachary
- JHU ICMIC Program, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Dmitri Artemov
- JHU ICMIC Program, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland. Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yelena Mironchik
- JHU ICMIC Program, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Flonné Wildes
- JHU ICMIC Program, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Anirban Maitra
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland. Departments of Pathology and Translational Molecular Pathology, UT MD Anderson Cancer Center, Houston Texas
| | - Zaver M Bhujwalla
- JHU ICMIC Program, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland. Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
19
|
Metildi CA, Felsen CN, Savariar EN, Nguyen QT, Kaushal S, Hoffman RM, Tsien RY, Bouvet M. Ratiometric activatable cell-penetrating peptides label pancreatic cancer, enabling fluorescence-guided surgery, which reduces metastases and recurrence in orthotopic mouse models. Ann Surg Oncol 2014; 22:2082-7. [PMID: 25319581 PMCID: PMC4400250 DOI: 10.1245/s10434-014-4144-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Indexed: 11/18/2022]
Abstract
BACKGROUND The aim of this study was to evaluate the efficacy of using matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9)-cleavable ratiometric activatable cell-penetrating peptides (RACPPs) conjugated to Cy5 and Cy7 fluorophores to accurately label pancreatic cancer for fluorescence-guided surgery (FGS) in an orthotopic mouse model. METHODS Orthotopic mouse models were established using MiaPaCa-2-GFP human pancreatic cancer cells. Two weeks after implantation, tumor-bearing mice were randomized to conventional white light reflectance (WLR) surgery or FGS. FGS was performed at far-red and infrared wavelengths with a customized fluorescence-dissecting microscope 2 h after injection of MMP-2 and MMP-9-cleavable RACPPs. Green fluorescence imaging of the GFP-labeled cancer cells was used to assess the effectiveness of surgical resection and monitor recurrence. At 8 weeks, mice were sacrificed to evaluate tumor burden and metastases. RESULTS Mice in the WLR group had larger primary tumors than mice in the FGS group at termination [1.72 g ± standard error (SE) 0.58 vs. 0.25 g ± SE 0.14; respectively, p = 0.026). Mean disease-free survival was significantly lengthened from 5.33 weeks in the WLR group to 7.38 weeks in the FGS group (p = 0.02). Recurrence rates were lower in the FGS group than in the WLR group (38 vs. 73 %; p = 0.049). This translated into lower local and distant recurrence rates for FGS compared to WLR (31 vs. 67 for local recurrence, respectively, and 25 vs. 60 % for distant recurrence, respectively). Metastatic tumor burden was significantly greater in the WLR group than in the FGS group (96.92 mm(2) ± SE 52.03 vs. 2.20 mm(2) ± SE 1.43; respectively, χ (2) = 5.455; p = 0.02). CONCLUSIONS RACPPs can accurately and effectively label pancreatic cancer for effective FGS, resulting in better postresection outcomes than for WLR surgery.
Collapse
Affiliation(s)
- Cristina A Metildi
- Department of Surgery, University of California San Diego, San Diego, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Zhang L, Wu C, Zhang Y, Liu F, Wang X, Zhao M, Hoffman RM. Comparison of efficacy and toxicity of traditional Chinese medicine (TCM) herbal mixture LQ and conventional chemotherapy on lung cancer metastasis and survival in mouse models. PLoS One 2014; 9:e109814. [PMID: 25286158 PMCID: PMC4186882 DOI: 10.1371/journal.pone.0109814] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 09/13/2014] [Indexed: 11/25/2022] Open
Abstract
Unlike Western medicine that generally uses purified compounds and aims to target a single molecule or pathway, traditional Chinese medicine (TCM) compositions usually comprise multiple herbs and components that are necessary for efficacy. Despite the very long-time and wide-spread use of TCM, there are very few direct comparisons of TCM and standard cytotoxic chemotherapy. In the present report, we compared the efficacy of the TCM herbal mixture LQ against lung cancer in mouse models with doxorubicin (DOX) and cyclophosphamide (CTX). LQ inhibited tumor size and weight measured directly as well as by fluorescent-protein imaging in subcutaneous, orthotopic, spontaneous experimental metastasis and angiogenesis mouse models of lung cancer. LQ was efficacious against primary and metastatic lung cancer without weight loss and organ toxicity. In contrast, CTX and DOX, although efficacious in the lung cancer models caused significant weight loss, and organ toxicity. LQ also had anti-angiogenic activity as observed in lung tumors growing in nestin-driven green fluorescent protein (ND-GFP) transgenic nude mice, which selectively express GFP in nascent blood vessels. Survival of tumor-bearing mice was also prolonged by LQ, comparable to DOX. In vitro, lung cancer cells were killed by LQ as observed by time-lapse imaging, comparable to cisplatinum. LQ was more potent to induce cell death on cancer cell lines than normal cell lines unlike cytotoxic chemotherapy. The results indicate that LQ has non-toxic efficacy against metastatic lung cancer.
Collapse
Affiliation(s)
- Lei Zhang
- AntiCancer, Inc., San Diego, California, United States of America
- Department of Surgery, University of California San Diego, San Diego, California, United States of America
| | - Chengyu Wu
- Department of Traditional Chinese Medicine Diagnostics, Nanjing University of Chinese Medicine, Nanjing, China
- * E-mail: (CW); (RMH)
| | - Yong Zhang
- AntiCancer, Inc., San Diego, California, United States of America
| | - Fang Liu
- AntiCancer, Inc., San Diego, California, United States of America
- Department of Anatomy, Second Military Medical University, Shanghai, China
| | - Xiaoen Wang
- AntiCancer, Inc., San Diego, California, United States of America
| | - Ming Zhao
- AntiCancer, Inc., San Diego, California, United States of America
| | - Robert M. Hoffman
- AntiCancer, Inc., San Diego, California, United States of America
- Department of Surgery, University of California San Diego, San Diego, California, United States of America
- * E-mail: (CW); (RMH)
| |
Collapse
|
21
|
Bryan RA, Jiang Z, Jandl T, Strauss J, Koba W, Onyedika C, Morgenstern A, Bruchertseifer F, Epstein AL, Dadachova E. Treatment of experimental pancreatic cancer with 213-Bismuth-labeled chimeric antibody to single-strand DNA. Expert Rev Anticancer Ther 2014; 14:1243-9. [PMID: 25156106 DOI: 10.1586/14737140.2014.952285] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Novel approaches to treatment of pancreatic cancer (PCa) are urgently needed. A chimeric monoclonal antibody (mAb) chTNT3 binds to single-strand DNA (ssDNA) and RNA released from the non-viable cells in fast growing tumors. Here the authors investigated whether radioimmunotherapy (RIT) using chTNT3 mAb radiolabeled with 213-Bismuth ((213)Bi) could be effective in treatment of experimental PCa. METHODS Two human PCa cell lines, Panc1 and MiaPaCa-2, were used for in vitro experiments. The xenografts in mice were established using MiaPaCa-2 cells. Therapy compared (213)Bi-chTNT3 (700 μCi) to gemcitabine or cisplatin, untreated controls and 'cold' chTNT3. RESULTS RIT abrogated the tumors growth while tumors in control groups grew aggressively. Chemotherapy was less effective than RIT and toxic to mice while RIT did not have any side effects. CONCLUSIONS RIT with (213)Bi-chTNT3 was safe and effective in the treatment of experimental PCa in comparison with chemotherapy. This makes α-RIT targeting ssDNA a promising modality for further development.
Collapse
Affiliation(s)
- Ruth A Bryan
- Department of Radiology, Albert Einstein College of Medicine, 1695A Eastchester Rd. Bronx, NY 10461, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Hiroshima Y, Zhao M, Maawy A, Zhang Y, Katz MHG, Fleming JB, Uehara F, Miwa S, Yano S, Momiyama M, Suetsugu A, Chishima T, Tanaka K, Bouvet M, Endo I, Hoffman RM. Efficacy of Salmonella typhimurium A1-R versus chemotherapy on a pancreatic cancer patient-derived orthotopic xenograft (PDOX). J Cell Biochem 2014; 115:1254-61. [PMID: 24435915 DOI: 10.1002/jcb.24769] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 01/13/2014] [Indexed: 12/23/2022]
Abstract
The aim of this study is to determine the efficacy of tumor-targeting Salmonella typhimurium A1-R (A1-R) on pancreatic cancer patient-derived orthotopic xenografts (PDOX). The PDOX model was originally established from a pancreatic cancer patient in SCID-NOD mice. The pancreatic cancer PDOX was subsequently transplanted by surgical orthotopic implantation (SOI) in transgenic nude red fluorescent protein (RFP) mice in order that the PDOX stably acquired red fluorescent protein (RFP)-expressing stroma for the purpose of imaging the tumor after passage to non-transgenic nude mice in order to visualize tumor growth and drug efficacy. The nude mice with human pancreatic PDOX were treated with A1-R or standard chemotherapy, including gemcitabine (GEM), which is first-line therapy for pancreatic cancer, for comparison of efficacy. A1-R treatment significantly reduced tumor weight, as well as tumor fluorescence area, compared to untreated control (P = 0.011), with comparable efficacy of GEM, CDDP, and 5-FU. Histopathological response to treatment was defined according to Evans's criteria and A1-R had increased efficacy compared to standard chemotherapy. The present report is the first to show that A1-R is effective against a very low-passage patient tumor, in this case, pancreatic cancer. The data of the present report suggest A1-1 will have clinical activity in pancreatic cancer, a highly lethal and treatment-resistant disease and may be most effectively used in combination with other agents.
Collapse
Affiliation(s)
- Yukihiko Hiroshima
- AntiCancer, Inc., San Diego, California; Department of Surgery, University of California, San Diego, California; Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Hasnis E, Alishekevitz D, Gingis-Veltski S, Bril R, Fremder E, Voloshin T, Raviv Z, Karban A, Shaked Y. Anti-Bv8 antibody and metronomic gemcitabine improve pancreatic adenocarcinoma treatment outcome following weekly gemcitabine therapy. Neoplasia 2014; 16:501-10. [PMID: 24957319 PMCID: PMC4198746 DOI: 10.1016/j.neo.2014.05.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/27/2014] [Accepted: 05/30/2014] [Indexed: 12/13/2022] Open
Abstract
Weekly gemcitabine therapy is the major treatment offered for patients with pancreatic adenocarcinoma cancer; however, relative resistance of tumor cells to chemotherapy, rapid regrowth, and metastasis are the main causes of death within a year. Recently, the daily continuous administration of chemotherapy in low doses--called metronomic chemotherapy (MC)--has been shown to inhibit primary tumor growth and delay metastases in several tumor types; however, its use as a single therapy is still in question due to its moderate therapeutic benefit. Here, we show that the combination of weekly gemcitabine with MC of the same drug delays tumor regrowth and inhibits metastasis in mice implanted orthotopically with pancreatic tumors. We further demonstrate that weekly gemcitabine, but not continuous MC gemcitabine or the combination of the two drug regimens, promotes rebound myeloid-derived suppressor cell (MDSC) mobilization and increases angiogenesis in this tumor model. Furthermore, Bv8 is highly expressed in MDSCs colonizing pancreatic tumors in mice treated with weekly gemcitabine compared to MC gemcitabine or the combination of the two regimens. Blocking Bv8 with antibodies in weekly gemcitabine-treated mice results in a significant reduction in tumor regrowth, angiogenesis, and metastasis. Overall, our results suggest that pro-tumorigenic effects induced by weekly gemcitabine are mediated in part by MDSCs expressing Bv8. Therefore, both Bv8 inhibition and MC can be used as legitimate 'add-on' treatments for preventing post-chemotherapy pancreatic cancer recurrence, progression, and metastasis following weekly gemcitabine therapy.
Collapse
Affiliation(s)
- Erez Hasnis
- Department of Molecular Pharmacology, Rappaport Faculty of Medicine, Technion, Haifa, Israel; Department of Internal Medicine C, Rambam Health Care Campus, Haifa, Israel
| | - Dror Alishekevitz
- Department of Molecular Pharmacology, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Svetlana Gingis-Veltski
- Department of Molecular Pharmacology, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Rotem Bril
- Department of Molecular Pharmacology, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Ella Fremder
- Department of Molecular Pharmacology, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Tali Voloshin
- Department of Molecular Pharmacology, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Ziv Raviv
- Department of Molecular Pharmacology, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Amir Karban
- Department of Internal Medicine C, Rambam Health Care Campus, Haifa, Israel
| | - Yuval Shaked
- Department of Molecular Pharmacology, Rappaport Faculty of Medicine, Technion, Haifa, Israel.
| |
Collapse
|
24
|
Hiroshima Y, Maawy A, Zhang Y, Sato S, Murakami T, Yamamoto M, Uehara F, Miwa S, Yano S, Momiyama M, Chishima T, Tanaka K, Bouvet M, Endo I, Hoffman RM. Fluorescence-guided surgery in combination with UVC irradiation cures metastatic human pancreatic cancer in orthotopic mouse models. PLoS One 2014; 9:e99977. [PMID: 24924955 PMCID: PMC4055701 DOI: 10.1371/journal.pone.0099977] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 05/20/2014] [Indexed: 11/18/2022] Open
Abstract
The aim of this study is to determine if ultraviolet light (UVC) irradiation in combination with fluorescence-guided surgery (FGS) can eradicate metastatic human pancreatic cancer in orthotopic nude–mouse models. Two weeks after orthotopic implantation of human MiaPaCa-2 pancreatic cancer cells, expressing green fluorescent protein (GFP), in nude mice, bright-light surgery (BLS) was performed on all tumor-bearing mice (n = 24). After BLS, mice were randomized into 3 treatment groups; BLS-only (n = 8) or FGS (n = 8) or FGS-UVC (n = 8). The residual tumors were resected using a hand-held portable imaging system under fluorescence navigation in mice treated with FGS and FGS-UVC. The surgical resection bed was irradiated with 2700 J/m2 UVC (254 nm) in the mice treated with FGS-UVC. The average residual tumor area after FGS (n = 16) was significantly smaller than after BLS only (n = 24) (0.135±0.137 mm2 and 3.338±2.929 mm2, respectively; p = 0.007). The BLS treated mice had significantly reduced survival compared to FGS- and FGS-UVC-treated mice for both relapse-free survival (RFS) (p<0.001 and p<0.001, respectively) and overall survival (OS) (p<0.001 and p<0.001, respectively). FGS-UVC-treated mice had increased RFS and OS compared to FGS-only treated mice (p = 0.008 and p = 0.025, respectively); with RFS lasting at least 150 days indicating the animals were cured. The results of the present study suggest that UVC irradiation in combination with FGS has clinical potential to increase survival.
Collapse
Affiliation(s)
- Yukihiko Hiroshima
- AntiCancer, Inc., San Diego, California, United States of America
- Department of Surgery, University of California San Diego, San Diego, California, United States of America
- Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ali Maawy
- Department of Surgery, University of California San Diego, San Diego, California, United States of America
| | - Yong Zhang
- AntiCancer, Inc., San Diego, California, United States of America
| | - Sho Sato
- Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takashi Murakami
- Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Mako Yamamoto
- AntiCancer, Inc., San Diego, California, United States of America
- Department of Surgery, University of California San Diego, San Diego, California, United States of America
| | - Fuminari Uehara
- AntiCancer, Inc., San Diego, California, United States of America
- Department of Surgery, University of California San Diego, San Diego, California, United States of America
| | - Shinji Miwa
- AntiCancer, Inc., San Diego, California, United States of America
- Department of Surgery, University of California San Diego, San Diego, California, United States of America
| | - Shuya Yano
- AntiCancer, Inc., San Diego, California, United States of America
- Department of Surgery, University of California San Diego, San Diego, California, United States of America
| | - Masashi Momiyama
- Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takashi Chishima
- Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kuniya Tanaka
- Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Michael Bouvet
- Department of Surgery, University of California San Diego, San Diego, California, United States of America
| | - Itaru Endo
- Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Robert M. Hoffman
- AntiCancer, Inc., San Diego, California, United States of America
- Department of Surgery, University of California San Diego, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
25
|
Maawy AA, Hiroshima Y, Zhang Y, Luiken GA, Hoffman RM, Bouvet M. Polyethylene glycol (PEG) linked to near infrared (NIR) dyes conjugated to chimeric anti-carcinoembryonic antigen (CEA) antibody enhances imaging of liver metastases in a nude-mouse model of human colon cancer. PLoS One 2014; 9:e97965. [PMID: 24859320 PMCID: PMC4032229 DOI: 10.1371/journal.pone.0097965] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 04/26/2014] [Indexed: 11/18/2022] Open
Abstract
We report here that polyethylene glycol (PEG) linked to near infrared dyes conjugated to chimeric mouse-human anti-carcinoembryonic antigen (CEA) antibody greatly improves imaging of liver metastases in a nude mouse model of colon-cancer experimental metastases. PEGylated and non-PEGylated DyLight 650 and 750 dyes were conjugated to the chimeric anti-CEA antibody. The dyes were initially injected intravenously into nude mice without tumors. Tissue biodistribution was determined by tissue sonication and analyzing tissue dye concentration profiles over time. PEGylated dyes had significantly lower accumulation in the liver (p = 0.03 for the 650 dyes; p = 0.002 for the 750 dyes) compared to non-PEGylated dyes. In an experimental liver metastasis model of HT-29 colon cancer, PEGylated dyes conjugated to the anti-CEA antibody showed good labeling of metastatic tumors with high contrast between normal and malignant tissue which was not possible with the non-PEGylated dyes since there was so much non-specific accumulation in the liver. PEGylation of the DyLight 650 and 750 NIR dyes significantly altered tissue biodistribution, allowing brighter tissue labeling, decreased accumulation in normal organs, particularly the liver. This enabled high fidelity and high contrast imaging of liver metastases.
Collapse
Affiliation(s)
- Ali A. Maawy
- Department of Surgery, University of California San Diego, San Diego, California, United States of America
| | - Yukihiko Hiroshima
- AntiCancer, Inc., San Diego, California, United States of America
- Yokohama City University, Yokohama City, Japan
| | - Yong Zhang
- AntiCancer, Inc., San Diego, California, United States of America
| | - George A. Luiken
- OncoFluor, Inc., San Diego, California, United States of America
| | - Robert M. Hoffman
- Department of Surgery, University of California San Diego, San Diego, California, United States of America
- AntiCancer, Inc., San Diego, California, United States of America
| | - Michael Bouvet
- Department of Surgery, University of California San Diego, San Diego, California, United States of America
- VA San Diego Healthcare System, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
26
|
Metildi CA, Kaushal S, Pu M, Messer KA, Luiken GA, Moossa AR, Hoffman RM, Bouvet M. Fluorescence-guided surgery with a fluorophore-conjugated antibody to carcinoembryonic antigen (CEA), that highlights the tumor, improves surgical resection and increases survival in orthotopic mouse models of human pancreatic cancer. Ann Surg Oncol 2014; 21:1405-11. [PMID: 24499827 DOI: 10.1245/s10434-014-3495-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND We have developed a method of distinguishing normal tissue from pancreatic cancer in vivo using fluorophore-conjugated antibody to carcinoembryonic antigen (CEA). The objective of this study was to evaluate whether fluorescence-guided surgery (FGS) with a fluorophore-conjugated antibody to CEA, to highlight the tumor, can improve surgical resection and increase disease-free survival (DFS) and overall survival (OS) in orthotopic mouse models of human pancreatic cancer. METHODS We established nude-mouse models of human pancreatic cancer with surgical orthotopic implantation of the human BxPC-3 pancreatic cancer. Orthotopic tumors were allowed to develop for 2 weeks. Mice then underwent bright-light surgery (BLS) or FGS 24 h after intravenous injection of anti-CEA-Alexa Fluor 488. Completeness of resection was assessed from postoperative imaging. Mice were followed postoperatively until premorbid to determine DFS and OS. RESULTS Complete resection was achieved in 92 % of mice in the FGS group compared to 45.5 % in the BLS group (p = 0.001). FGS resulted in a smaller postoperative tumor burden (p = 0.01). Cure rates with FGS compared to BLS improved from 4.5 to 40 %, respectively (p = 0.01), and 1-year postoperative survival rates increased from 0 % with BLS to 28 % with FGS (p = 0.01). Median DFS increased from 5 weeks with BLS to 11 weeks with FGS (p = 0.0003). Median OS increased from 13.5 weeks with BLS to 22 weeks with FGS (p = 0.001). CONCLUSIONS FGS resulted in greater cure rates and longer DFS and OS using a fluorophore-conjugated anti-CEA antibody. FGS has potential to improve the surgical treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Cristina A Metildi
- Department of Surgery, University of California San Diego, San Diego, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Zhu P, Gu YF, Yang BL, Lin Q, Ding YJ. Effects of gamboge in an orthotopic mouse model of colon cancer. Shijie Huaren Xiaohua Zazhi 2014; 22:476. [DOI: 10.11569/wcjd.v22.i4.476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
28
|
Abstract
In the past 10 years, we have developed a new approach to the development of a clinically accurate rodent model for human cancer based on our invention of surgical orthotopic implantation (SOI). The SOI models have been described in approx. 70 publications and in 4 patents.*SOI allows human tumors of all the major types of human cancer to reproduce clinical like tumor growth and metastasis in the transplanted rodents. The major features of the SOI models are reviewed here and also compared to transgenic mouse models of cancer.
Collapse
|
29
|
Hiroshima Y, Maawy A, Sato S, Murakami T, Uehara F, Miwa S, Yano S, Momiyama M, Chishima T, Tanaka K, Bouvet M, Endo I, Hoffman RM. Hand-held high-resolution fluorescence imaging system for fluorescence-guided surgery of patient and cell-line pancreatic tumors growing orthotopically in nude mice. J Surg Res 2013; 187:510-7. [PMID: 24373959 DOI: 10.1016/j.jss.2013.11.1083] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 10/23/2013] [Accepted: 11/12/2013] [Indexed: 01/21/2023]
Abstract
BACKGROUND In this study, we investigated the advantages of fluorescence-guided surgery (FGS) in mice of a portable hand-sized imaging system compared with a large fluorescence imaging system or a long-working-distance fluorescence microscope. METHODS Mouse models of human pancreatic cancer for FGS included the following: (1) MiaPaCa-2-expressing green fluorescent protein, (2) BxPC3 labeled with Alexa Fluor 488-conjucated anti-carcinoembryonic antigen (CEA) antibody, and (3) patient-derived orthotopic xenograft (PDOX) labeled with Alexa Fluor 488-conjugated anti-carbohydrate antigen 19-9 antibody. RESULTS Each device could clearly detect the primary MiaPaCa-2-green fluorescent protein tumor and any residual tumor after FGS. In the BxPC3 model labeled with Alexa Fluor 488-conjugated anti-CEA, each device could detect the primary tumor, but the MVX10 could not clearly detect the residual tumor remaining after FGS whereas the other devices could. In the PDOX model labeled with Alexa Fluor 488-conjugated anti-carbohydrate antigen 19-9, only the portable hand-held device could distinguish the residual tumor from the background, and complete resection of the residual tumor was achieved under fluorescence navigation. CONCLUSIONS The results described in the present report suggest that the hand-held mobile imaging system can be applied to the clinic for FGS because of its convenient size and high sensitivity which should help make FGS widely used.
Collapse
MESH Headings
- Animals
- Antigens, Tumor-Associated, Carbohydrate/immunology
- Carcinoembryonic Antigen/immunology
- Cell Line, Tumor
- Disease Models, Animal
- Fluorescent Antibody Technique
- Fluorescent Dyes
- Green Fluorescent Proteins/genetics
- Humans
- Image Enhancement/instrumentation
- Image Enhancement/methods
- Mice
- Mice, Nude
- Microscopy, Fluorescence/instrumentation
- Microscopy, Fluorescence/methods
- Neoplasm Transplantation/methods
- Neoplasm, Residual/pathology
- Neoplasm, Residual/surgery
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/surgery
- Surgery, Computer-Assisted/instrumentation
- Surgery, Computer-Assisted/methods
- Transplantation, Heterologous/methods
Collapse
Affiliation(s)
- Yukihiko Hiroshima
- AntiCancer, Inc, San Diego, California; Department of Surgery, University of California San Diego, San Diego, California; Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ali Maawy
- Department of Surgery, University of California San Diego, San Diego, California
| | - Sho Sato
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takashi Murakami
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Fuminari Uehara
- AntiCancer, Inc, San Diego, California; Department of Surgery, University of California San Diego, San Diego, California
| | - Shinji Miwa
- AntiCancer, Inc, San Diego, California; Department of Surgery, University of California San Diego, San Diego, California
| | - Shuya Yano
- AntiCancer, Inc, San Diego, California; Department of Surgery, University of California San Diego, San Diego, California
| | - Masashi Momiyama
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takashi Chishima
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kuniya Tanaka
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Michael Bouvet
- Department of Surgery, University of California San Diego, San Diego, California.
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Robert M Hoffman
- AntiCancer, Inc, San Diego, California; Department of Surgery, University of California San Diego, San Diego, California
| |
Collapse
|
30
|
Zhang L, Wu C, Zhang Y, Liu F, Zhao M, Bouvet M, Hoffman RM. Efficacy comparison of traditional Chinese medicine LQ versus gemcitabine in a mouse model of pancreatic cancer. J Cell Biochem 2013; 114:2131-7. [PMID: 23553901 DOI: 10.1002/jcb.24561] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 03/21/2013] [Indexed: 11/10/2022]
Abstract
Pancreatic cancer is highly treatment-resistant and has one of the highest fatality rates of all cancers and is the fourth highest cancer killer worldwide. Novel, more effective strategies are needed to treat this disease. We report here on the use of patient-like orthotopic nude-mouse models of human metastatic pancreatic cancer to compare the traditional Chinese medicine (TCM) herbal mixture LQ to gemcitabine, which is first-line therapy for this disease, for anti-metastatic and anti-tumor activity as well as safety. The human pancreatic cancer cell line, MiaPaCa-2, labeled with red fluorescent protein (RFP), was used for the orthotopic model. LQ (gavage, 600 mg/kg/day) significantly inhibited pancreatic cancer tumor growth and metastasis, as measured by imaging, with no overt toxicity. Survival of tumor-bearing mice was also prolonged by LQ. The therapeutic efficacy of LQ is comparable with gemcitabine but with less toxicity, as indicated by a lack of body-weight loss with LQ, but not gemcitabine. The results indicate that TCM can have non-toxic efficacy against metastatic pancreatic cancer comparable to gemcitabine in a clinically-relevant orthotopic mouse model.
Collapse
Affiliation(s)
- Lei Zhang
- AntiCancer, Inc., San Diego, California, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Zhao G, Wang B, Liu Y, Zhang JG, Deng SC, Qin Q, Tian K, Li X, Zhu S, Niu Y, Gong Q, Wang CY. miRNA-141, downregulated in pancreatic cancer, inhibits cell proliferation and invasion by directly targeting MAP4K4. Mol Cancer Ther 2013; 12:2569-80. [PMID: 24013097 DOI: 10.1158/1535-7163.mct-13-0296] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
miRNAs are associated with various types of cancer due to their ability to affect expression of genes that modulate tumorigenesis. In this study, we explored the role of miR-141 in pancreatic cancer. The analysis of clinical characteristics showed that miR-141 was significantly downregulated in tissues and cell lines of pancreatic cancer. Moreover, the decreased miR-141 level was significantly associated with tumor size and TNM stage, as well as lymph node and distant metastasis. Meanwhile, both Kaplan-Meier and multivariate survival analysis showed decreased miR-141 were associated with overall survival. Overexpression of miR-141 in pancreatic cancer cells inhibited cell proliferation, clonogenicity, and invasion; induced G1 arrest and apoptosis; and enhanced chemosensitivity. To understand how miR-141 mediates the phenotype of pancreatic cancer cells, a bioinformatics tool was used to identify MAP4K4 as a potential target of miR-141. The Dual-Luciferase reporter gene assay showed that miR-141 binds directly to the 3'-untranslated region (3'UTR) of MAP4K4 to inhibit MAP4K4 expression. Western blot and quantitative real-time PCR (qRT-PCR) analyses revealed that MAP4K4 expression was inversely correlated with miR-141 expression both in pancreatic cancer samples and cell lines. Knockdown of MAP4K4 inhibited cell proliferation, clonogenicity, and invasion, induced G1 arrest and apoptosis, and enhanced chemosensitivity. In a nude mouse xenograft model, both overexpression of miR-141 and knockdown of MAP4K4 significantly repressed pancreatic cancer cell growth. Therefore, we conclude that miR-141 targets MAP4K4, acts as a tumor suppressor in pancreatic cancer cells, and may serve as a novel therapeutic agent for miRNA-based pancreatic cancer therapy.
Collapse
Affiliation(s)
- Gang Zhao
- Corresponding Authors: Gang Zhao, Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1277, Wuhan, Hubei Province 430022, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Aung W, Jin ZH, Furukawa T, Claron M, Boturyn D, Sogawa C, Tsuji AB, Wakizaka H, Fukumura T, Fujibayashi Y, Dumy P, Saga T. Micro-positron emission tomography/contrast-enhanced computed tomography imaging of orthotopic pancreatic tumor-bearing mice using the αvβ₃ integrin tracer ⁶⁴Cu-labeled cyclam-RAFT-c(-RGDfK-)₄. Mol Imaging 2013; 12:376-387. [PMID: 23981783 DOI: 10.2310/7290.2013.00054] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The purpose of this study was to develop a clinically relevant orthotopic xenotransplantation model of pancreatic cancer and to perform a preclinical evaluation of a new positron emission tomography (PET) imaging probe, ⁶⁴Cu-labeled cyclam-RAFT-c(-RGDfK-)₄ peptide (⁶⁴Cu-RAFT-RGD), using this model. Varying degrees of αvβ₃ integrin expression in several human pancreatic cancer cell lines were examined by flow cytometry and Western blotting. The cell line BxPC-3, which is stably transfected with a red fluorescence protein (RFP), was used for surgical orthotopic implantation. Orthotopic xenograft was established in the pancreas of recipient nude mice. An in vivo probe biodistribution and receptor blocking study, preclinical PET imaging coregistered with contrast-enhanced computed tomography (CECT) comparing ⁶⁴Cu-RAFT-RGD and ¹⁸F-fluoro-2-deoxy-d-glucose (¹⁸F-FDG) accumulation in tumor, postimaging autoradiography, and histologic and immunohistochemical examinations were done. Biodistribution evaluation with a blocking study confirmed that efficient binding of probe to tumor is highly αvβ₃ integrin specific. ⁶⁴Cu-RAFT-RGD PET combined with CECT provided for precise and easy detection of cancer lesions. Autoradiography, histologic, and immunohistochemical examinations confirmed the accumulation of ⁶⁴Cu-RAFT-RGD in tumor versus nontumor tissues. In comparative PET studies, ⁶⁴Cu-RAFT-RGD accumulation provided better tumor contrast to background than ¹⁸F-FDG. Our results suggest that ⁶⁴Cu-RAFT-RGD PET imaging is potentially applicable for the diagnosis of αvβ₃ integrin-expressing pancreatic tumors.
Collapse
Affiliation(s)
- Winn Aung
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Metildi CA, Kaushal S, Hoffman RM, Bouvet M. In vivo serial selection of human pancreatic cancer cells in orthotopic mouse models produces high metastatic variants irrespective of Kras status. J Surg Res 2013; 184:290-8. [PMID: 23590868 PMCID: PMC3724759 DOI: 10.1016/j.jss.2013.03.049] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 03/04/2013] [Accepted: 03/14/2013] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Kras mutations have been thought to play an important role in pancreatic cancer progression. In this study, we evaluated how serially passaging primary pancreatic tumors with and without Kras mutations, in nude mice, can generate more aggressive variants of human pancreatic cancer. MATERIALS & METHODS Orthotopic mouse models of human pancreatic cancer were established by injecting 1 × 10(6) cells of the Kras wildtype BxPC-3 cell line, expressing red fluorescent protein or the Kras mutant Panc-1 cell line expressing green fluorescent protein, into the pancreas. Pancreatic tumors were harvested from premorbid mice to establish cell lines. One million passaged cells were then orthotopically injected into another set of mice. Serial passaging continued until decreasing lifespan of the implanted mice stabilized, which occurred by six passages. Mice harboring serially-passaged cell lines were followed with weekly imaging. RESULTS Serially passaging generated more aggressive variants of both human pancreatic cancer cell lines, one of which was Kras wild-type (BXPC-3) and the other Kras mutant, Panc-1, which displayed faster tumor growth and shortened survival time. Overall survival decreased from 18 wk in mice with the parental cell line (passage 0) tumor to ∼6 wk in mice by passage 6. Average time to metastasis was shortened from 14 wk to ∼3 wk or less. At termination, mice with the passaged tumor demonstrated a greater extent of distant metastasis. CONCLUSIONS Serial passaging of tumor creates more aggressive variants of human pancreatic cancer cell lines regardless of Kras mutation. The aggressive variants can be used to study the molecular basis of highly malignant pancreatic cancer and to screen for effective agents against this disease.
Collapse
Affiliation(s)
| | | | - Robert M. Hoffman
- University of California San Diego, San Diego, CA
- AntiCancer, Inc, San Diego, CA
| | | |
Collapse
|
34
|
Hiroshima Y, Zhao M, Zhang Y, Maawy A, Hassanein MK, Uehara F, Miwa S, Yano S, Momiyama M, Suetsugu A, Chishima T, Tanaka K, Bouvet M, Endo I, Hoffman RM. Comparison of efficacy of Salmonella typhimurium A1-R and chemotherapy on stem-like and non-stem human pancreatic cancer cells. Cell Cycle 2013; 12:2774-80. [PMID: 23966167 DOI: 10.4161/cc.25872] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The XPA1 human pancreatic cancer cell line is dimorphic, with spindle stem-like cells and round non-stem cells. We report here the in vitro IC 50 values of stem-like and non-stem XPA1 human pancreatic cells cells for: (1) 5-fluorouracil (5-FU), (2) cisplatinum (CDDP), (3) gemcitabine (GEM), and (4) tumor-targeting Salmonella typhimurium A1-R (A1-R). IC 50 values of stem-like XPA1 cells were significantly higher than those of non-stem XPA1 cells for 5-FU (P = 0.007) and CDDP (P = 0.012). In contrast, there was no difference between the efficacy of A1-R on stem-like and non-stem XPA1 cells. In vivo, 5-FU and A1-R significantly reduced the tumor weight of non-stem XPA1 cells (5-FU; P = 0.028; A1-R; P = 0.011). In contrast, only A1-R significantly reduced tumor weight of stem-like XPA1 cells (P = 0.012). The combination A1-R with 5-FU improved the antitumor efficacy compared with 5-FU monotherapy on the stem-like cells (P = 0.004). The results of the present report indicate A1-R is a promising therapy for chemo-resistant pancreatic cancer stem-like cells.
Collapse
Affiliation(s)
- Yukihiko Hiroshima
- AntiCancer, Inc; San Diego, CA USA; Department of Surgery; University of California San Diego; San Diego, CA USA; Yokohama City University Graduate School of Medicine; Yokohama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Pancreatic cancer is critical for developed countries, where its rate of diagnosis has been increasing steadily annually. In the past decade, the advances of pancreatic cancer research have not contributed to the decline in mortality rates from pancreatic cancer-the overall 5-year survival rate remains about 5% low. This number only underscores an obvious urgency for us to better understand the biological features of pancreatic carcinogenesis, to develop early detection methods, and to improve novel therapeutic treatments. To achieve these goals, animal modeling that faithfully recapitulates the whole process of human pancreatic cancer is central to making the advancements. In this review, we summarize the currently available animal models for pancreatic cancer and the advances in pancreatic cancer animal modeling. We compare and contrast the advantages and disadvantages of three major categories of these models: (1) carcinogen-induced; (2) xenograft and allograft; and (3) genetically engineered mouse models. We focus more on the genetically engineered mouse models, a category which has been rapidly expanded recently for their capacities to mimic human pancreatic cancer and metastasis, and highlight the combinations of these models with various newly developed strategies and cell-lineage labeling systems.
Collapse
Affiliation(s)
- Wanglong Qiu
- Department of Otolaryngology and Head and Neck Surgery, Columbia University Medical Center, 1130 St. Nicholas Ave, ICRC 10-04, New York, NY 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Gloria H. Su
- Department of Otolaryngology and Head and Neck Surgery, Columbia University Medical Center, 1130 St. Nicholas Ave, ICRC 10-04, New York, NY 10032, USA
- Department of Pathology, Columbia University Medical Center, New York, NY 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
36
|
Goicoechea SM, García-Mata R, Staub J, Valdivia A, Sharek L, McCulloch CG, Hwang RF, Urrutia R, Yeh JJ, Kim HJ, Otey CA. Palladin promotes invasion of pancreatic cancer cells by enhancing invadopodia formation in cancer-associated fibroblasts. Oncogene 2013; 33:1265-73. [PMID: 23524582 DOI: 10.1038/onc.2013.68] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 12/17/2012] [Accepted: 01/25/2013] [Indexed: 12/29/2022]
Abstract
The stromal compartment surrounding epithelial-derived pancreatic tumors is thought to have a key role in the aggressive phenotype of this malignancy. Emerging evidence suggests that cancer-associated fibroblasts (CAFs), the most abundant cells in the stroma of pancreatic tumors, contribute to the tumor's invasion, metastasis and resistance to therapy, but the precise molecular mechanisms that regulate CAFs behavior are poorly understood. In this study, we utilized immortalized human pancreatic CAFs to investigate molecular pathways that control the matrix-remodeling and invasion-promoting activity of CAFs. We showed previously that palladin, an actin-associated protein, is expressed at high levels in CAFs of pancreatic tumors and other solid tumors, and also in an immortalized line of human CAFs. In this study, we found that short-term exposure of CAFs to phorbol esters reduced the number of stress fibers and triggered the appearance of individual invadopodia and invadopodial rosettes in CAFs. Molecular analysis of invadopodia revealed that their composition resembled that of similar structures (that is, invadopodia and podosomes) described in other cell types. Pharmacological inhibition and small interfering RNA knockdown experiments demonstrated that protein kinase C, the small GTPase Cdc42 and palladin were necessary for the efficient assembly of invadopodia by CAFs. In addition, GTPase activity assays showed that palladin contributes to the activation of Cdc42. In mouse xenograft experiments using a mixture of CAFs and tumor cells, palladin expression in CAFs promoted the rapid growth and metastasis of human pancreatic tumor cells. Overall, these results indicate that high levels of palladin expression in CAFs enhance their ability to remodel the extracellular matrix by regulating the activity of Cdc42, which in turn promotes the assembly of matrix-degrading invadopodia in CAFs and tumor cell invasion. Together, these results identify a novel molecular signaling pathway that may provide new molecular targets for the inhibition of pancreatic cancer metastasis.
Collapse
Affiliation(s)
- S M Goicoechea
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - R García-Mata
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - J Staub
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - A Valdivia
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - L Sharek
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - C G McCulloch
- CIHR Group in Matrix Dynamics, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - R F Hwang
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - R Urrutia
- Department of Biochemistry and Molecular Biology, Epigenetics and Chromatin Dynamics Laboratory, Division of Gastroenterology and Hepatology, Translational Epigenomics Program, Center for Individualized Medicine (CIM), Mayo Clinic, Rochester, MN, USA
| | - J J Yeh
- 1] Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA [2] Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA [3] Department of Surgery, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - H J Kim
- 1] Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA [2] Department of Surgery, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - C A Otey
- 1] Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA [2] Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
37
|
Abstract
BACKGROUND The operative and conservative results of therapy in pancreatic ductal adenocarcinoma remain appallingly poor. This underlines the demand for further research for effective anticancer drugs. The various animal models remain the essential method for the determination of efficacy of substances during preclinical phase. OBJECTIVE Unfortunately, most of these tested substances showed a good efficacy in pancreatic carcinoma in the animal model but were not confirmed during the clinical phase. METHODS The available literature in PubMed, Medline, Ovid and secondary literature was searched regarding the available animal models for drug testing against pancreatic cancer. The models were analyzed regarding their pros and cons in anticancer drug testing. CONCLUSION The different modifications of the orthotopic model (especially in mice) seem at present to be the best model for anticancer testing in pancreatic carcinoma. The value of genetically engineered animal model (GEM) and syngeneic models is on debate. A good selection of the model concerning the questions supposed to be clarified may improve the comparability of the results of animal experiments compared to clinical trials.
Collapse
Affiliation(s)
- Matthias Kapischke
- Vivantes Hospital Spandau, Department of Surgery, Neue Bergstrasse 06, D-13585 Berlin, Germany +49 (0)30 130 132155 ; +49 (0)30130 132154 ;
| | | |
Collapse
|
38
|
Hoffman RM. Fluorescent proteins as visible in vivo sensors. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 113:389-402. [PMID: 23244796 DOI: 10.1016/b978-0-12-386932-6.00010-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Fluorescent proteins have enabled a whole new technology of visible in vivo genetic sensors. Fluorescent proteins have revolutionized biology by enabling what was formerly invisible to be seen clearly. These proteins have allowed us to visualize, in real time, important aspects of cancer in living animals, including tumor cell mobility, invasion, metastasis, and angiogenesis. These multicolored proteins have allowed the color coding of cancer cells growing in vivo and enabled the distinction of host from tumor with single-cell resolution. Whole-body imaging with fluorescent proteins has been shown to be a powerful technology to noninvasively follow the dynamics of metastatic cancer. Whole-body imaging of cancer cells expressing fluorescent proteins has enabled the facile determination of efficacy of candidate antitumor and antimetastatic agents in mouse models. The use of fluorescent proteins to differentially label cancer cells in the nucleus and cytoplasm and high-powered imaging technology have enabled the visualization of the nuclear-cytoplasmic dynamics of cancer cells in vivo, including noninvasive techniques. Fluorescent proteins thus enable both macro- and microimaging technology and thereby provide the basis for the new field of in vivo cell biology.
Collapse
|
39
|
Brullé L, Vandamme M, Riès D, Martel E, Robert E, Lerondel S, Trichet V, Richard S, Pouvesle JM, Le Pape A. Effects of a non thermal plasma treatment alone or in combination with gemcitabine in a MIA PaCa2-luc orthotopic pancreatic carcinoma model. PLoS One 2012; 7:e52653. [PMID: 23300736 PMCID: PMC3530450 DOI: 10.1371/journal.pone.0052653] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 11/19/2012] [Indexed: 12/01/2022] Open
Abstract
Pancreatic tumors are the gastrointestinal cancer with the worst prognosis in humans and with a survival rate of 5% at 5 years. Nowadays, no chemotherapy has demonstrated efficacy in terms of survival for this cancer. Previous study focused on the development of a new therapy by non thermal plasma showed significant effects on tumor growth for colorectal carcinoma and glioblastoma. To allow targeted treatment, a fibered plasma (Plasma Gun) was developed and its evaluation was performed on an orthotopic mouse model of human pancreatic carcinoma using a MIA PaCa2-luc bioluminescent cell line. The aim of this study was to characterize this pancreatic carcinoma model and to determine the effects of Plasma Gun alone or in combination with gemcitabine. During a 36 days period, quantitative BLI could be used to follow the tumor progression and we demonstrated that plasma gun induced an inhibition of MIA PaCa2-luc cells proliferation in vitro and in vivo and that this effect could be improved by association with gemcitabine possibly thanks to its radiosensitizing properties.
Collapse
Affiliation(s)
- Laura Brullé
- Centre d'Imagerie du Petit Animal-CIPA TAAM, UPS44 CNRS, Orléans, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Momiyama M, Kumamoto T, Suetugu A, Kishimoto H, Chishima T, Tanaka K, Akiyama H, Ichikawa Y, Bouvet M, Endo I, Hoffman RM. Major liver resection stimulates stromal recruitment and metastasis compared with repeated minor resection. J Surg Res 2012; 178:280-7. [PMID: 22487397 PMCID: PMC3396724 DOI: 10.1016/j.jss.2012.03.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Revised: 02/18/2012] [Accepted: 03/09/2012] [Indexed: 02/04/2023]
Abstract
BACKGROUND The present study examined the effects of types of liver resection on the growth of liver and lung metastases. METHODS Experimental liver metastases were established by spleen injection of the Colon 26 murine adenocarcinoma cell line expressing green fluorescent protein (GFP) into transgenic nude mice expressing red fluorescent protein. Experimental lung metastases were established by tail-vein injection with Colon 26-GFP. Three days after cell injection, groups of mice underwent (35% + 35% repeated minor resection versus 70% major resection versus 35% minor resection). Metastatic tumor growth was measured by color-coded fluorescence imaging of the GFP-expressing cancer cells and red fluorescent protein-expressing stroma. RESULTS Although major and repeated minor resection removed the same total volume of liver parenchyma, the 2 procedures had very different effects on metastatic tumor growth. Major resection stimulated liver and lung metastatic growth and recruitment of host-derived stroma compared with repeated minor resection. Repeated minor resection did not stimulate metastasis or stromal recruitment. No significant difference was found in liver regeneration between the 2 groups. Host-derived stroma density, which was stimulated by major resection compared with repeated minor resection, might stimulate growth in the liver-metastatic tumor. Transforming growth factor-β is also preferentially stimulated by major resection and might play a role in stromal and metastasis stimulation. CONCLUSIONS The results of the present study indicate that when liver resection is necessary, repeated minor liver resection will be superior to major liver resection, because major resection, unlike repeated minor resection, stimulates metastasis. This should be taken into consideration in clinical situations that require liver resection.
Collapse
Affiliation(s)
- Masashi Momiyama
- AntiCancer, Inc., 7917 Ostrow Street, San Diego, CA 92111
- Department of Surgery, University of California, San Diego, 200 West Arbor Drive, San Diego, California 92103-8220
- Department of Gastroenterological Surgery, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Takafumi Kumamoto
- Department of Gastroenterological Surgery, Yokohama City University, Yokohama, Kanagawa, Japan
| | | | | | - Takashi Chishima
- Department of Gastroenterological Surgery, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Kuniya Tanaka
- Department of Gastroenterological Surgery, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Hirotoshi Akiyama
- Department of Gastroenterological Surgery, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Yasushi Ichikawa
- Department of Gastroenterological Surgery, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Michael Bouvet
- Department of Surgery, University of California, San Diego, 200 West Arbor Drive, San Diego, California 92103-8220
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Robert M. Hoffman
- AntiCancer, Inc., 7917 Ostrow Street, San Diego, CA 92111
- Department of Surgery, University of California, San Diego, 200 West Arbor Drive, San Diego, California 92103-8220
| |
Collapse
|
41
|
Caysa H, Hoffmann S, Luetzkendorf J, Mueller LP, Unverzagt S, Mäder K, Mueller T. Monitoring of xenograft tumor growth and response to chemotherapy by non-invasive in vivo multispectral fluorescence imaging. PLoS One 2012; 7:e47927. [PMID: 23112873 PMCID: PMC3480443 DOI: 10.1371/journal.pone.0047927] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 09/17/2012] [Indexed: 01/01/2023] Open
Abstract
A continuous monitoring of the whole tumor burden of individuals in orthotopic tumor models is a desirable aim and requires non-invasive imaging methods. Here we investigated whether quantification of a xenograft tumor intrinsic fluorescence signal can be used to evaluate tumor growth and response to chemotherapy. Stably fluorescence protein (FP) expressing cell clones of colorectal carcinoma and germ cell tumor lines were generated by lentiviral transduction using the FPs eGFP, dsRed2, TurboFP635, and mPlum. Applying subcutaneous tumor models in different experimental designs, specific correlations between measured total fluorescence intensity (FI) and the tumor volume (V) could be established. The accuracy of correlation of FI and V varied depending on the cell model used. The application of deep-red FP expressing xenografts (TurboFP635, mPlum) was observed to result in improved correlations. This was also reflected by the results of a performed error analysis. In a model of visceral growing mPlum tumors, measurements of FI could be used to follow growth and response to chemotherapy. However, in some cases final necropsy revealed the existence of additional, deeper located tumors that had not been detected in vivo by their mPlum signal. Consistently, only the weights of the tumors that were detected in vivo based on their mPlum signal correlated with FI. In conclusion, as long as tumors are visualized by their fluorescence signal the FI can be used to evaluate tumor burden. Deep-red FPs are more suitable for in vivo applications as compared to eGFP and dsRed2.
Collapse
Affiliation(s)
- Henrike Caysa
- Department of Internal Medicine IV (Oncology/Hematology), Martin-Luther-University Halle-Wittenberg, Halle/Saale, Germany
- Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle/Saale, Germany
| | - Stefan Hoffmann
- Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle/Saale, Germany
| | - Jana Luetzkendorf
- Department of Internal Medicine IV (Oncology/Hematology), Martin-Luther-University Halle-Wittenberg, Halle/Saale, Germany
| | - Lutz Peter Mueller
- Department of Internal Medicine IV (Oncology/Hematology), Martin-Luther-University Halle-Wittenberg, Halle/Saale, Germany
| | - Susanne Unverzagt
- Institute of Medical Epidemiology, Biostatistics and Informatics, Martin-Luther-University Halle-Wittenberg, Halle/Saale, Germany
| | - Karsten Mäder
- Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle/Saale, Germany
| | - Thomas Mueller
- Department of Internal Medicine IV (Oncology/Hematology), Martin-Luther-University Halle-Wittenberg, Halle/Saale, Germany
- * E-mail:
| |
Collapse
|
42
|
Hoffman RM. Orthotopic mouse models expressing fluorescent proteins for cancer drug discovery. Expert Opin Drug Discov 2012; 5:851-66. [PMID: 22823260 DOI: 10.1517/17460441.2010.510129] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
IMPORTANCE OF THE FIELD Currently used rodent tumor models, including transgenic tumor models, or subcutaneously growing human tumors in immunodeficient mice, do not sufficiently represent clinical cancer, especially with regard to metastasis and drug sensitivity. AREAS COVERED IN THIS REVIEW To obtain clinically accurate models, we have developed the technique of surgical orthotopic implantation (SOI) to transplant histologically intact fragments of human cancer, including tumors taken directly from the patient, to the corresponding organ of immunodeficient rodents. SOI allows the growth and metastatic potential of the transplanted tumors to be expressed and reflects clinical cancer of all types. Effective drugs can be discovered and evaluated in the SOI models utilizing human tumor cell lines and patient tumors. Visualization of many aspects of cancer initiation and progression in vivo has been achieved with fluorescent proteins. Tumors and metastases in the SOI models that express fluorescent proteins can be visualized noninvasively in intact animals, greatly facilitating drug discovery. WHAT THE READER WILL GAIN This review will provide information on the imageable mouse models of cancer that are clinically relevant, especially regarding metastasis and their use for drug discovery and evaluation. TAKE HOME MESSAGE SOI mouse models of cancer reproduce the features of clinical cancer.
Collapse
Affiliation(s)
- Robert M Hoffman
- AntiCancer, Inc., 7917 Ostrow Street, San Diego, CA 92111, USA +1 858 654 2555 ; +1 858 268 4175 ;
| |
Collapse
|
43
|
Eyol E, Murtaga A, Zhivkova-Galunska M, Georges R, Zepp M, Djandji D, Kleeff J, Berger MR, Adwan H. Few genes are associated with the capability of pancreatic ductal adenocarcinoma cells to grow in the liver of nude rats. Oncol Rep 2012; 28:2177-87. [PMID: 23007550 DOI: 10.3892/or.2012.2049] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 08/17/2012] [Indexed: 11/05/2022] Open
Abstract
Owing to aggressiveness and chemoresistance, pancreatic ductal adenocarcinoma (PDAC) is characterised by a poor prognosis. To address this disease-spe-cific dilemma we aimed to establish animal models, which can be used for identifying new specific tumor markers, as well as serving as tools for potential therapeutic approaches. From a panel of sixteen pancreatic cancer cell lines, two human (Suit2-007 and Suit2-013) and a rat (ASML) cell line were selected for their properties to grow in the liver of male RNU rats and mimic liver metastasis of PDAC. For better monitoring of metastatic tumor growth in vivo, all three pancreatic cancer cell lines were stably transfected with eGFP and luciferase marker genes. In addition, the mRNA expression profile of 13 human PDAC cell lines was analyzed by BeadChip array analysis. Only 33 genes and 5 signaling pathways were identified as significantly associated with the ability of the cell lines to grow initially and/or consistently in rat liver. Only a minority of these genes (osteopontin, matrix metalloproteinase-1 and insulin-like growth factor 1) has been intensively studied and shown to be closely related to cancer progression. The function of the remaining 30 genes ranges from moderate to poorly investigated, and their function in cancer progression is still unclear. The ensuing three pancreatic cancer liver metastasis models vary in their aggressiveness and macroscopic growth. They will be used for preclinical evaluation of new therapeutic approaches aiming at the genes identified.
Collapse
Affiliation(s)
- Ergül Eyol
- Toxicology and Chemotherapy Unit, German Cancer Research Center, G401, Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Metildi CA, Kaushal S, Hardamon C, Snyder CS, Pu M, Messer KS, Talamini MA, Hoffman RM, Bouvet M. Fluorescence-guided surgery allows for more complete resection of pancreatic cancer, resulting in longer disease-free survival compared with standard surgery in orthotopic mouse models. J Am Coll Surg 2012; 215:126-35; discussion 135-6. [PMID: 22632917 PMCID: PMC3383387 DOI: 10.1016/j.jamcollsurg.2012.02.021] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 02/19/2012] [Accepted: 02/20/2012] [Indexed: 12/19/2022]
Abstract
BACKGROUND Negative surgical margins are vital to achieve cure and prolong survival in patients with pancreatic cancer. We inquired if fluorescence-guided surgery (FGS) could improve surgical outcomes and reduce recurrence rates in orthotopic mouse models of human pancreatic cancer. STUDY DESIGN A randomized active-control preclinical trial comparing bright light surgery (BLS) to FGS was used. Orthotopic mouse models of human pancreatic cancer were established using the BxPC-3 pancreatic cancer cell line expressing red fluorescent protein (RFP). Two weeks after orthotopic implantation, tumors were resected with BLS or FGS. Pre- and postoperative images were obtained with the OV-100 Small Animal Imaging System to assess completeness of surgical resection in real time. Postoperatively, noninvasive whole body imaging was done to assess recurrence and follow tumor progression. Six weeks postoperatively, mice were sacrificed to evaluate primary pancreatic and metastatic tumor burden at autopsy. RESULTS A more complete resection of pancreatic cancer was achieved using FGS compared with BLS: 98.9% vs 77.1%, p = 0.005. The majority of mice undergoing BLS (63.2%) had evidence of gross disease with no complete resections; 20% of mice undergoing FGS had complete resection and an additional 75% had only minimal residual disease (p = 0.0001). The mean postoperative tumor burden was significantly less with FGS compared with BLS: 0.08 ± 0.06 mm(2) vs 2.64 ± 0.63 mm(2), p = 0.001. The primary tumor burden at termination was significantly less with FGS compared with BLS: 19.3 ± 5.3 mm(2) vs 6.2 ± 3.6 mm(2), p = 0.048. FGS resulted in significantly longer disease-free survival than BLS (p = 0.02, hazard ratio = 0.39, 95% CI 0.17, 0.88). CONCLUSIONS Surgical outcomes were improved in pancreatic cancer using fluorescence-guidance. This novel approach has significant potential to improve surgical treatment of cancer.
Collapse
Affiliation(s)
- Cristina A Metildi
- Department of Surgery, University of California San Diego, San Diego, CA
| | - Sharmeela Kaushal
- Department of Surgery, University of California San Diego, San Diego, CA
| | - Chanae Hardamon
- Department of Surgery, University of California San Diego, San Diego, CA
| | - Cynthia S Snyder
- Department of Surgery, University of California San Diego, San Diego, CA
| | - Minya Pu
- Department of Surgery, University of California San Diego, San Diego, CA
| | - Karen S Messer
- Department of Surgery, University of California San Diego, San Diego, CA
| | - Mark A Talamini
- Department of Surgery, University of California San Diego, San Diego, CA
| | - Robert M Hoffman
- Department of Surgery, University of California San Diego, San Diego, CA
- AntiCancer, Inc, San Diego, CA
| | - Michael Bouvet
- Department of Surgery, University of California San Diego, San Diego, CA
| |
Collapse
|
45
|
High accuracy of mesoscopic epi-fluorescence tomography for non-invasive quantitative volume determination of fluorescent protein-expressing tumours in mice. Eur Radiol 2012; 22:1955-62. [PMID: 22544295 DOI: 10.1007/s00330-012-2462-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 02/15/2012] [Accepted: 02/16/2012] [Indexed: 01/11/2023]
Abstract
OBJECTIVES To compare mesoscopic epi-fluorescence tomography (MEFT) and EPRI-illumination reflectance imaging (EPRI) for quantitative tumour size assessment in mice. METHODS Tumour xenografts of green/red fluorescent protein (GFP/RFP)-expressing colon cancer cells were measured using MEFT, EPRI, ultrasound (US) and micro computed tomography (μCT) at day 14 post-injection (n = 6). Results from MEFT and EPRI were correlated with each other and with US and μCT (reference methods). Tumour volumes were measured ex vivo by GFP and RFP fluorescence imaging on cryoslices and compared with the in vivo measurements. RESULTS High correlation and congruency were observed between MEFT, US and μCT (MEFT/US: GFP: r (2) = 0.96; RFP: r (2) = 0.97, both P < 0.05; MEFT/μCT: GFP: r (2) = 0.93; RFP: r (2) = 0.90; both P < 0.05). Additionally, in vivo MEFT data were highly correlated and congruent with ex vivo cryoslice imaging results (GFP: r (2) = 0.96; RFP: r (2) = 0.99; both P < 0.05). In comparison, EPRI significantly overestimated tumour volumes (P < 0.05), although there was a significant correlation with US and μCT (EPRI/US: GFP: r (2) = 0.95; RFP: r (2) = 0.94; both P < 0.05; EPRI/μCT GFP: r (2) = 0.86; RFP: r (2) = 0.86; both P < 0.05). CONCLUSIONS Fluorescence distribution reconstruction using MEFT affords highly accurate three-dimensional (3D) tumour volume data showing superior accuracy compared to EPRI. Thus, MEFT is a very suitable technique for quantitatively assessing fluorescence distribution in superficial tumours at high spatial resolution.
Collapse
|
46
|
Metildi CA, Kaushal S, Lee C, Hardamon CR, Snyder CS, Luiken GA, Talamini MA, Hoffman RM, Bouvet M. An LED light source and novel fluorophore combinations improve fluorescence laparoscopic detection of metastatic pancreatic cancer in orthotopic mouse models. J Am Coll Surg 2012; 214:997-1007.e2. [PMID: 22542065 DOI: 10.1016/j.jamcollsurg.2012.02.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 02/05/2012] [Accepted: 02/13/2012] [Indexed: 12/27/2022]
Abstract
BACKGROUND The aim of this study was to improve fluorescence laparoscopy of pancreatic cancer in an orthotopic mouse model with the use of a light-emitting diode (LED) light source and optimal fluorophore combinations. STUDY DESIGN Human pancreatic cancer models were established with fluorescent FG-RFP, MiaPaca2-GFP, BxPC-3-RFP, and BxPC-3 cancer cells implanted in 6-week-old female athymic mice. Two weeks postimplantation, diagnostic laparoscopy was performed with a Stryker L9000 LED light source or a Stryker X8000 xenon light source 24 hours after tail-vein injection of CEA antibodies conjugated with Alexa 488 or Alexa 555. Cancer lesions were detected and localized under each light mode. Intravital images were also obtained with the OV-100 Olympus and Maestro CRI Small Animal Imaging Systems, serving as a positive control. Tumors were collected for histologic analysis. RESULTS Fluorescence laparoscopy with a 495-nm emission filter and an LED light source enabled real-time visualization of the fluorescence-labeled tumor deposits in the peritoneal cavity. The simultaneous use of different fluorophores (Alexa 488 and Alexa 555), conjugated to antibodies, brightened the fluorescence signal, enhancing detection of submillimeter lesions without compromising background illumination. Adjustments to the LED light source permitted simultaneous detection of tumor lesions of different fluorescent colors and surrounding structures with minimal autofluorescence. CONCLUSIONS Using an LED light source with adjustments to the red, blue, and green wavelengths, it is possible to simultaneously identify tumor metastases expressing fluorescent proteins of different wavelengths, which greatly enhanced the signal without compromising background illumination. Development of this fluorescence laparoscopy technology for clinical use can improve staging and resection of pancreatic cancer.
Collapse
Affiliation(s)
- Cristina A Metildi
- Department of Surgery, University of California San Diego, La Jolla, CA 92093-0987, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
van der Horst G, van der Pluijm G. Preclinical imaging of the cellular and molecular events in the multistep process of bone metastasis. Future Oncol 2012; 8:415-30. [DOI: 10.2217/fon.12.33] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Bone metastasis is a complex process that ultimately leads to devastating metastatic bone disease. It is therefore of key interest to unravel the mechanisms underlying the multistep process of skeletal metastasis and cancer-induced bone disease, and to develop better treatment and management of patients with this devastating disease. Fortunately, novel technologies are rapidly emerging that allow real-time imaging of molecules, pathogenic processes, drug delivery and drug response in preclinical in vivo models. The outcome of these experimental studies will facilitate clinical cancer research by improving the detection of cancer cell invasion, metastasis and therapy response.
Collapse
Affiliation(s)
- Geertje van der Horst
- Department of Urology, Leiden University Medical Center, J3–100, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Gabri van der Pluijm
- Department of Urology, Leiden University Medical Center, J3–100, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
48
|
van der Horst G, van der Pluijm G. Preclinical models that illuminate the bone metastasis cascade. Recent Results Cancer Res 2012; 192:1-31. [PMID: 22307368 DOI: 10.1007/978-3-642-21892-7_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this chapter currently available preclinical models of tumor progression and bone metastasis, including genetically engineered mice that develop primary and metastatic carcinomas and transplantable animal models, will be described. Understanding the multistep process of incurable bone metastasis is pivotal to the development of new therapeutic strategies. Novel technologies for imaging molecules or pathologic processes in cancers and their surrounding stroma have emerged rapidly and have greatly facilitated cancer research, in particular the cellular behavior of osteotropic tumors and their response to new and existing therapeutic agents. Optical imaging, in particular, has become an important tool in preclinical bone metastasis models, clinical trials and medical practice. Advances in experimental and clinical imaging will-in the long run-result in significant improvements in diagnosis, tumor localization, enhanced drug delivery and treatment.
Collapse
|
49
|
Yu Z, Zhou J, Hoffman RM. Lentivirus-based DsRed-2-transfected pancreatic cancer cells for deep in vivo imaging of metastatic disease. Methods Mol Biol 2012; 872:69-83. [PMID: 22700404 DOI: 10.1007/978-1-61779-797-2_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Pancreatic cancer is one of the most aggressive human malignancies. One of the leading causes of pancreatic cancer death is metastasis. The early stages of tumor progression and micrometastasis formation have been difficult to analyze and have been hampered by the inability to identify small numbers of tumor cells against a background of many host cells. The intrinsic brightness of fluorescent proteins has been taken advantage of to develop a technology of whole-body imaging of tumors and gene expression in mouse internal organs. Stable transformation with fluorescent protein genes can be effected using lentiviral vectors containing a selectable marker such as neomycin resistance. The cells that stably express fluorescent proteins can then be transplanted into appropriate mouse models. For whole-body imaging, nude mice are very appropriate, the hair does not need to be removed by shaving or depilation. The instruments used are very simple, they need appropriate excitation and emission filters. It is crucial that proper filters be used such that background autofluorescence is minimal. Fluorescent protein-based imaging technology can be used for whole-body imaging of fluorescent cells on essentially all organs.
Collapse
Affiliation(s)
- Zeqian Yu
- Department of General Surgery, Zhongda Hospital, Southeast University, Nan Jing City, Jiang Su Province, China.
| | | | | |
Collapse
|
50
|
Bouvet M, Hoffman RM. In vivo imaging of pancreatic cancer with fluorescent proteins in mouse models. Methods Mol Biol 2012; 872:51-67. [PMID: 22700403 DOI: 10.1007/978-1-61779-797-2_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In this chapter, we describe protocols for clinically-relevant, metastatic orthotopic mouse models of pancreatic cancer, made imageable with genetic reporters. These models utilize human pancreatic-cancer cell lines which have been genetically engineered to selectively express high levels of green fluorescent protein (GFP) or red fluorescent protein (RFP). Tumors with fluorescent genetic reporters are established subcutaneously in nude mice by injection of the GFP- or RFP-expressing pancreatic cancer cell lines, and fragments of the subcutaneous tumors are then surgically transplanted onto the pancreas of additional nude mice. Loco-regional tumor growth and distant metastasis of these orthotopic tumors occurs spontaneously and rapidly throughout the abdomen in a manner consistent with clinical human disease. Highly-specific, high-resolution, real-time quantitative fluorescence imaging of tumor growth, and metastasis is achieved in vivo without the need for contrast agents, invasive techniques, or expensive imaging equipment. Transplantation of RFP-expressing tumor fragments onto the pancreas of GFP- or cyan fluorescent protein (CFP)-expressing transgenic nude mice was used to facilitate visualization of tumor-host interaction between the pancreatic cancer cells and host-derived stroma and vasculature. Such in vivo models have enabled us to visualize in real time and acquire images of the progression of pancreatic cancer in the live animal. These models can demonstrate the real-time antitumor and antimetastatic effects of novel therapeutic strategies on pancreatic malignancy. These fluorescent models are therefore powerful and reliable tools with which to investigate metastatic human pancreatic cancer and novel therapeutic strategies directed against it.
Collapse
Affiliation(s)
- Michael Bouvet
- GI Cancer Unit, Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.
| | | |
Collapse
|