1
|
Ocklenburg S, Güntürkün O. Handedness. HANDBOOK OF CLINICAL NEUROLOGY 2025; 208:379-391. [PMID: 40074409 DOI: 10.1016/b978-0-443-15646-5.00016-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
This chapter offers an overview of the literature on human handedness and its assessment in clinical neurologic practice and research. There are two major forms of handedness: hand preference, which describes a subjective preference to use one hand over the other for skilled motor activities like writing, and hand skill, which describes objectively measured mother skill. This chapter gives an overview of widely used questionnaires and tests to assess hand preference and hand skill, as well as suggestions on how to determine handedness categories such as left-handed, right-handed, and mixed-handed based on the results of these questionnaires and tests. Handedness is just one form of hemispheric asymmetry in the human motor system, and the chapter also provides an overview of its association with other motor asymmetries such as footedness. Moreover, the associations of handedness with functional brain activation as well as with structural markers on the cortical, subcortical, cerebellar, and spinal levels are discussed. Furthermore, the potential relevance of handedness retraining for clinical neurologic research and the association of handedness and cognitive abilities are discussed. The chapter concludes with an outlook on the critical importance of including handedness in clinical neurologic research and practice.
Collapse
Affiliation(s)
- Sebastian Ocklenburg
- ICAN Institute for Cognitive and Affective Neuroscience, MSH Medical School Hamburg, Hamburg, Germany; Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany.
| | - Onur Güntürkün
- Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany; Research Center One Health Ruhr, Research Alliance Ruhr, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
2
|
Hopkins WD, Meguerditchian A. Handedness and brain asymmetries in nonhuman primates. HANDBOOK OF CLINICAL NEUROLOGY 2025; 208:197-210. [PMID: 40074397 DOI: 10.1016/b978-0-443-15646-5.00007-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
A majority of humans are right-handed and exhibit left hemisphere specialization for the comprehension and production of language. To what extent population-level behavioral and brain asymmetries are unique to humans remains a topic of interest across a wide range of scientific disciplines. In this chapter, we present current findings on the expression of population-level behavioral and brain asymmetries in nonhuman primates. We further present data on the association between communication functions, and especially gestures and individual variation in neuroanatomic asymmetries in nonhuman primates, with an emphasis on data from chimpanzees and baboons. The collective data are interpreted within the context of different theories on the evolution of language lateralization.
Collapse
Affiliation(s)
- William D Hopkins
- Department of Comparative Medicine, The University of Texas MD Anderson Cancer Center, Bastrop, TX, United States.
| | - Adrien Meguerditchian
- Laboratoire de Psychologie Cognitive, CNRS, Aix-Marseille University, Institute of Language, Communication and the Brain, Marseille, France
| |
Collapse
|
3
|
Wang L, Pu H, Zhou J, Liu W, Zhang S, Tan Q, Wan X, Wang W, Zhou D, Yue Q, Gong Q. Abnormal metabolites in the dorsolateral prefrontal cortex of female epilepsy patients with migraine without aura. Neuroreport 2024; 35:1155-1162. [PMID: 39526657 PMCID: PMC11540266 DOI: 10.1097/wnr.0000000000002110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 08/22/2024] [Indexed: 11/16/2024]
Abstract
Epilepsy and migraine without aura (MWoA) are often comorbid, but the exact mechanisms are unclear. Magnetic resonance spectroscopy (1H-MRS) may help to understand the neurometabolic mechanisms in patients with epilepsy comorbid with MWoA (EWM). In this prospective cross-sectional study, we recruited 64 female patients, including 24 with EWM, 20 with epilepsy, and 20 with MWoA, as well as 20 age-level-matched and educational-level-matched female healthy controls from our hospital between August 2021 and November 2022. A single-voxel point-resolved spectroscopy sequence was used to acquire spectra of the bilateral dorsolateral prefrontal cortices (DLPFCs). Metabolites were quantified by linear combination model software, and the values were corrected for the partial volume effect of cerebrospinal fluid. MRS data comparisons were performed with multivariate analyses of variance. Correlation analyses were calculated between metabolites and main clinical data. The results showed that N-acetyl aspartate (NAA) was asymmetrical between the bilateral DLPFCs. Both NAA and myoinositol were significantly reduced in EWM than in healthy controls. Choline-containing compounds (Cho) were higher in MWoA than in the other three groups. Correlation analyses revealed that NAA of the right DLPFC and Cho of the bilateral DLPFCs in EWM were negatively related to migraine frequency. In addition, glutamate and glutamine (Glu and Gln, Glx) of the right DLPFC in EWM were negatively correlated with migraine severity. Our findings suggested that comorbid epilepsy and MWoA in female patients can lead to a synergistic reduction of both NAA and myoinositol, reflecting more serious injuries of neurons and glial cells.
Collapse
Affiliation(s)
- Liping Wang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences
| | - Huaxia Pu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences
| | - Jingyuan Zhou
- Mental Health Center, West China Hospital of Sichuan University, Sichuan Clinical Medical Research Center for Mental Disorders
| | | | | | - Qiaoyue Tan
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University
| | - Xinyue Wan
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University
| | - Weina Wang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University
| | | | - Qiang Yue
- Department of Radiology, West China Hospital of Sichuan University
| | - Qiyong Gong
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China
| |
Collapse
|
4
|
He Z, Zhang T, Wang Q, Zhang S, Cao G, Liu T, Zhao S, Jiang X, Guo L, Yuan Y, Han J. Brain functional gradients are related to cortical folding gradient. Cereb Cortex 2024; 34:bhae453. [PMID: 39569627 DOI: 10.1093/cercor/bhae453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/12/2024] [Accepted: 11/05/2024] [Indexed: 11/22/2024] Open
Abstract
Cortical folding is closely linked to brain functions, with gyri acting more like local functional "hubs" to integrate information than sulci do. However, understanding how anatomical constraints relate to complex functions remains fragmented. One possible reason is that the relationship is estimated on brain mosaics divided by brain functions and cortical folding patterns. The boundaries of these hypothetical hard-segmented mosaics could be subject to the selection of functional/morphological features and as well as the thresholds. In contrast, functional gradient and folding gradient could provide a more feasible and unitless platform to mitigate the uncertainty introduced by boundary definition. Based on the MRI datasets, we used cortical surface curvature as the folding gradient and related it to the functional connectivity transition gradient. We found that, at the local scale, the functional gradient exhibits different function transition patterns between convex/concave cortices, with positive/negative curvatures, respectively. At the global scale, a cortex with more positive curvature could provide more function transition efficiency and play a more dominant role in more abstractive functional networks. These results reveal a novel relation between cortical morphology and brain functions, providing new clues to how anatomical constraint is related to the rise of an efficient brain function architecture.
Collapse
Affiliation(s)
- Zhibin He
- School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
| | - Tuo Zhang
- School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
| | - Qiyu Wang
- School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
| | - Songyao Zhang
- Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
| | - Guannan Cao
- School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
| | - Tianming Liu
- Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA 30602, USA
| | - Shijie Zhao
- School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
| | - Xi Jiang
- School of Life Science and Technology, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Lei Guo
- School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yixuan Yuan
- Electronic Engineering Department, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Junwei Han
- School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
5
|
Zhao X, Wang Y, Wu X, Liu S. An MRI Study of Morphology, Asymmetry, and Sex Differences of Inferior Precentral Sulcus. Brain Topogr 2024; 37:748-763. [PMID: 38374489 PMCID: PMC11393153 DOI: 10.1007/s10548-024-01035-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/15/2024] [Indexed: 02/21/2024]
Abstract
Numerous studies utilizing magnetic resonance imaging (MRI) have observed sex and interhemispheric disparities in sulcal morphology, which could potentially underpin certain functional disparities in the human brain. Most of the existing research examines the precentral sulcus comprehensively, with a rare focus on its subsections. To explore the morphology, asymmetry, and sex disparities within the inferior precentral sulcus (IPCS), we acquired 3.0T magnetic resonance images from 92 right-handed Chinese adolescents. Brainvisa was used to reconstruct the IPCS structure and calculate its mean depth (MD). Based on the morphological patterns of IPCS, it was categorized into five distinct types. Additionally, we analyzed four different types of spatial relationships between IPCS and inferior frontal sulcus (IFS). There was a statistically significant sex disparity in the MD of IPCS, primarily observed in the right hemisphere. Females exhibited significantly greater asymmetry in the MD of IPCS compared to males. No statistically significant sex or hemispheric variations were identified in sulcal patterns. Our findings expand the comprehension of inconsistencies in sulcal structure, while also delivering an anatomical foundation for the study of related regions' function.
Collapse
Affiliation(s)
- Xinran Zhao
- Department of Clinical Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong, China
- Institute for Sectional Anatomy and Digital Human, Department of Anatomy and Neurobiology, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yu Wang
- Institute for Sectional Anatomy and Digital Human, Department of Anatomy and Neurobiology, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China
| | - Xiaokang Wu
- Department of Clinical Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong, China
- Institute for Sectional Anatomy and Digital Human, Department of Anatomy and Neurobiology, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China
| | - Shuwei Liu
- Institute for Sectional Anatomy and Digital Human, Department of Anatomy and Neurobiology, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
6
|
Reinke P, Deneke L, Ocklenburg S. Asymmetries in event-related potentials part 1: A systematic review of face processing studies. Int J Psychophysiol 2024; 202:112386. [PMID: 38914138 DOI: 10.1016/j.ijpsycho.2024.112386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/06/2024] [Accepted: 06/18/2024] [Indexed: 06/26/2024]
Abstract
The human brain shows distinct lateralized activation patterns for a range of cognitive processes. One such function, which is thought to be lateralized to the right hemisphere (RH), is human face processing. Its importance for social communication and interaction has led to a plethora of studies investigating face processing in health and disease. Temporally highly resolved methods, like event-related potentials (ERPs), allow for a detailed characterization of different processing stages and their specific lateralization patterns. This systematic review aimed at disentangling some of the contradictory findings regarding the RH specialization in face processing focusing on ERP research in healthy participants. Two databases were searched for studies that investigated left and right electrodes while participants viewed (mostly neutral) facial stimuli. The included studies used a variety of different tasks, which ranged from passive viewing to memorizing faces. The final data selection highlights, that strongest lateralization to the RH was found for the N170, especially for right-handed young male participants. Left-handed, female, and older participants showed less consistent lateralization patterns. Other ERP components like the P1, P2, N2, P3, and the N400 were overall less clearly lateralized. The current review highlights that many of the assumed lateralization patterns are less clear than previously thought and that the variety of stimuli, tasks, and EEG setups used, might contribute to the ambiguous findings.
Collapse
Affiliation(s)
- Petunia Reinke
- Department of Psychology, MSH Medical School Hamburg, Hamburg, Germany; ICAN Institute for Cognitive and Affective Neuroscience, MSH Medical School Hamburg, Hamburg, Germany.
| | - Lisa Deneke
- Department of Psychology, MSH Medical School Hamburg, Hamburg, Germany
| | - Sebastian Ocklenburg
- Department of Psychology, MSH Medical School Hamburg, Hamburg, Germany; ICAN Institute for Cognitive and Affective Neuroscience, MSH Medical School Hamburg, Hamburg, Germany; Institute of Cognitive Neuroscience, Biopsychology, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
7
|
Speranza BE, Hill AT, Do M, Donaldson PH, Enticott PG, Kirkovski M. Fear is more right lateralized than happiness and anger: Evidence for the motivational hypothesis of emotional face perception? Laterality 2024; 29:365-379. [PMID: 39018422 DOI: 10.1080/1357650x.2024.2377633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/03/2024] [Indexed: 07/19/2024]
Abstract
Facial emotion processing (FEP) tends to be right hemisphere lateralized. This right-hemispheric bias (RHB) for FEP varies within and between individuals. The aim of the present research was to examine evidence pertaining to the prominent theories of FEP hemispheric bias as measured by a half-emotional half-neutral (no emotion) chimeric faces task. FEP hemispheric bias was indexed using laterality quotients (LQs) calculated from a Chimeric Faces Task completed by 427 adults recruited from the general population aged 18-67 years. Participants indicated which of two identical (but mirrored) emotional-neutral chimeric faces were more emotive. While all investigated emotions (fear, anger, and happiness) were right lateralized, fear was significantly more right lateralized than anger and happiness. These results provide evidence for both the right hemisphere hypothesis and the motivational hypothesis of emotion perception.
Collapse
Affiliation(s)
- Bridgette E Speranza
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, Australia
| | - Aron T Hill
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, Australia
| | - Michael Do
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, Australia
| | - Peter H Donaldson
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, Australia
| | - Peter G Enticott
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, Australia
| | - Melissa Kirkovski
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, Australia
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| |
Collapse
|
8
|
Cobia D, Haut MW, Revill KP, Rellick SL, Nudo RJ, Wischnewski M, Buetefisch CM. Gray matter volume of functionally relevant primary motor cortex is causally related to learning a hand motor task. Cereb Cortex 2024; 34:bhae210. [PMID: 38771243 PMCID: PMC11107379 DOI: 10.1093/cercor/bhae210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/24/2024] [Accepted: 04/28/2024] [Indexed: 05/22/2024] Open
Abstract
Variability in brain structure is associated with the capacity for behavioral change. However, a causal link between specific brain areas and behavioral change (such as motor learning) has not been demonstrated. We hypothesized that greater gray matter volume of a primary motor cortex (M1) area active during a hand motor learning task is positively correlated with subsequent learning of the task, and that the disruption of this area blocks learning of the task. Healthy participants underwent structural MRI before learning a skilled hand motor task. Next, participants performed this learning task during fMRI to determine M1 areas functionally active during this task. This functional ROI was anatomically constrained with M1 boundaries to create a group-level "Active-M1" ROI used to measure gray matter volume in each participant. Greater gray matter volume in the left hemisphere Active-M1 ROI was related to greater motor learning in the corresponding right hand. When M1 hand area was disrupted with repetitive transcranial stimulation (rTMS), learning of the motor task was blocked, confirming its causal link to motor learning. Our combined imaging and rTMS approach revealed greater cortical volume in a task-relevant M1 area is causally related to learning of a hand motor task in healthy humans.
Collapse
Affiliation(s)
- Derin Cobia
- Department of Psychology and Neuroscience Center, 1036 KMBL, Brigham Young University, Provo, UT 84602, USA
| | - Marc W Haut
- Department of Behavioral Medicine and Psychiatry, Rockefeller Neuroscience Institute, 33 Medical Center Dr., West Virginia University, Morgantown, WV 26506, USA
- Department of Neurology, Rockefeller Neuroscience Institute, 33 Medical Center Dr., West Virginia University, Morgantown, WV 26506, USA
- Department of Radiology, Rockefeller Neuroscience Institute, 33 Medical Center Dr., West Virginia University, Morgantown, WV 26506, USA
| | - Kate P Revill
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA 30322, USA
| | - Stephanie L Rellick
- Department of Behavioral Medicine and Psychiatry, Rockefeller Neuroscience Institute, 33 Medical Center Dr., West Virginia University, Morgantown, WV 26506, USA
| | - Randolph J Nudo
- Department of Rehabilitation Medicine, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Miles Wischnewski
- Department of Neurology, Emory University, 1441 Clifton Road NE, Suite 236 C, Atlanta, GA 30322, USA
| | - Cathrin M Buetefisch
- Department of Neurology, Emory University, 1441 Clifton Road NE, Suite 236 C, Atlanta, GA 30322, USA
- Department of Rehabilitation Medicine, Emory University, 1441 Clifton Road NE, Suite 236 C, Atlanta, GA 30322, USA
- Department of Radiology, Emory University, 1441 Clifton Road NE, Suite 236 C, Atlanta, GA 30322, USA
| |
Collapse
|
9
|
Zhang H, Zhao L, Lu X, Peng W, Zhang L, Zhang Z, Hu L, Cao J, Tu Y. Multimodal covarying brain patterns mediate genetic and psychological contributions to individual differences in pain sensitivity. Pain 2024; 165:1074-1085. [PMID: 37943083 DOI: 10.1097/j.pain.0000000000003103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/20/2023] [Indexed: 11/10/2023]
Abstract
ABSTRACT Individuals vary significantly in their pain sensitivity, with contributions from the brain, genes, and psychological factors. However, a multidimensional model integrating these factors is lacking due to their complex interactions. To address this, we measured pain sensitivity (ie, pain threshold and pain tolerance) using the cold pressor test, collected magnetic resonance imaging (MRI) data and genetic data, and evaluated psychological factors (ie, pain catastrophizing, pain-related fear, and pain-related anxiety) from 450 healthy participants with both sexes (160 male, 290 female). Using multimodal MRI fusion methods, we identified 2 pairs of covarying structural and functional brain patterns associated with pain threshold and tolerance, respectively. These patterns primarily involved regions related to self-awareness, sensory-discriminative, cognitive-evaluative, motion preparation and execution, and emotional aspects of pain. Notably, pain catastrophizing was negatively correlated with pain tolerance, and this relationship was mediated by the multimodal covarying brain patterns in male participants only. Furthermore, we identified an association between the single-nucleotide polymorphism rs4141964 within the fatty acid amide hydrolase gene and pain threshold, mediated by the identified multimodal covarying brain patterns across all participants. In summary, we suggested a model that integrates the brain, genes, and psychological factors to elucidate their role in shaping interindividual variations in pain sensitivity, highlighting the important contribution of the multimodal covarying brain patterns as important biological mediators in the associations between genes/psychological factors and pain sensitivity.
Collapse
Affiliation(s)
- Huijuan Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Lei Zhao
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xuejing Lu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Weiwei Peng
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Li Zhang
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, China
| | - Zhiguo Zhang
- School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, China
- Peng Cheng Laboratory, Shenzhen, China
| | - Li Hu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jin Cao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yiheng Tu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Colas JT, O’Doherty JP, Grafton ST. Active reinforcement learning versus action bias and hysteresis: control with a mixture of experts and nonexperts. PLoS Comput Biol 2024; 20:e1011950. [PMID: 38552190 PMCID: PMC10980507 DOI: 10.1371/journal.pcbi.1011950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/26/2024] [Indexed: 04/01/2024] Open
Abstract
Active reinforcement learning enables dynamic prediction and control, where one should not only maximize rewards but also minimize costs such as of inference, decisions, actions, and time. For an embodied agent such as a human, decisions are also shaped by physical aspects of actions. Beyond the effects of reward outcomes on learning processes, to what extent can modeling of behavior in a reinforcement-learning task be complicated by other sources of variance in sequential action choices? What of the effects of action bias (for actions per se) and action hysteresis determined by the history of actions chosen previously? The present study addressed these questions with incremental assembly of models for the sequential choice data from a task with hierarchical structure for additional complexity in learning. With systematic comparison and falsification of computational models, human choices were tested for signatures of parallel modules representing not only an enhanced form of generalized reinforcement learning but also action bias and hysteresis. We found evidence for substantial differences in bias and hysteresis across participants-even comparable in magnitude to the individual differences in learning. Individuals who did not learn well revealed the greatest biases, but those who did learn accurately were also significantly biased. The direction of hysteresis varied among individuals as repetition or, more commonly, alternation biases persisting from multiple previous actions. Considering that these actions were button presses with trivial motor demands, the idiosyncratic forces biasing sequences of action choices were robust enough to suggest ubiquity across individuals and across tasks requiring various actions. In light of how bias and hysteresis function as a heuristic for efficient control that adapts to uncertainty or low motivation by minimizing the cost of effort, these phenomena broaden the consilient theory of a mixture of experts to encompass a mixture of expert and nonexpert controllers of behavior.
Collapse
Affiliation(s)
- Jaron T. Colas
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, California, United States of America
- Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, California, United States of America
- Computation and Neural Systems Program, California Institute of Technology, Pasadena, California, United States of America
| | - John P. O’Doherty
- Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, California, United States of America
- Computation and Neural Systems Program, California Institute of Technology, Pasadena, California, United States of America
| | - Scott T. Grafton
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, California, United States of America
| |
Collapse
|
11
|
Marneweck M, Gardner C, Dundon NM, Smith J, Frey SH. Reorganization of sensorimotor representations of the intact limb after upper but not lower limb traumatic amputation. Neuroimage Clin 2023; 39:103499. [PMID: 37634375 PMCID: PMC10470418 DOI: 10.1016/j.nicl.2023.103499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/16/2023] [Indexed: 08/29/2023]
Abstract
It is becoming increasingly clear that limb loss induces wider spread reorganization of representations of the body that are nonadjacent to the affected cortical territory. Data from upper extremity amputees reveal intrusion of the representation of the ipsilateral intact limb into the former hand territory. Here we test for the first time whether this reorganization of the intact limb into the deprived cortex is specific to the neurological organization of the upper limbs or reflects large scale adaptation that is triggered by any unilateral amputation. BOLD activity was measured as human subjects with upper limb and lower limb traumatic amputation and their controls moved the toes on each foot, open and closed each hand and pursed their lips. Subjects with amputation were asked to imagine moving the missing limb while remaining still. Bayesian pattern component modeling of fMRI data showed that intact ipsilateral movements and contralateral movements of the hand and foot were distinctly represented in the deprived sensorimotor cortex years after upper limb amputation. In contrast, there was evidence reminiscent of contralateral specificity for hand and foot movements following lower limb amputation, like that seen in controls. We propose the cortical reorganization of the intact limb to be a function of use-dependent plasticity that is more specific to the consequence of upper limb loss of forcing an asymmetric reliance on the intact hand and arm. The contribution of this reorganization to phantom pain or a heightened risk of overuse and resultant maladaptive plasticity needs investigating before targeting such reorganization in intervention.
Collapse
Affiliation(s)
| | - Cooper Gardner
- Department of Human Physiology, University of Oregon, Eugene, OR, USA
| | - Neil M Dundon
- Department of Brain and Psychological Sciences, University of California Santa Barbara, Santa Barbara, CA, USA; Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, University of Freiburg, 79104 Freiburg, Germany
| | - Jolinda Smith
- Department of Human Physiology, University of Oregon, Eugene, OR, USA
| | - Scott H Frey
- Department of Psychological Sciences, University of Missouri, Columbia, MO, USA
| |
Collapse
|
12
|
Sun R, Su S, He Q. Method for Assessing the Motor Coordination of Runners Based on the Analysis of Multichannel EMGs. Appl Bionics Biomech 2023; 2023:7126696. [PMID: 37250363 PMCID: PMC10219771 DOI: 10.1155/2023/7126696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 05/31/2023] Open
Abstract
In this paper, we propose a method to evaluate the motor coordination of runners based on the analysis of amplitude and spatiotemporal dynamics of multichannel electromyography. A new diagnostic index for the coordination of runners was proposed, including the amplitude of electromyography, the spatiotemporal stability coefficient, and the symmetry coefficient of muscle force. The motor coordination of 13 professional runners was studied. Detailed anthropometric information was recorded about the professional runners. It has been found that professional athletes are characterized by the stability of movement repetition (more than 83%) and the high degree of symmetry of muscle efforts of the left and right legs (more than 81%) regardless of the changes in load during running at a speed of 8-12 km/hr. Scientific and technological means can support the scientific training of athletes. The end of the Winter Olympic Games has shown us the powerful power of a series of intelligent scientific equipment, including electro-magnetic gun, in sports training. We also look forward to the continuous innovation of these advanced technologies, which will contribute to the intelligent development of sports scientific research.
Collapse
Affiliation(s)
- Ren Sun
- Department of Physical, Beijing Institute of Technology, Zhuhai 519000, Guangdong, China
| | - Shuijun Su
- José Rizal University, Mandaluyong City 1552, Metro Manila, Philippines
| | - Quantao He
- Sport School of Shenzhen University, Shenzhen 518000, Guangdong, China
| |
Collapse
|
13
|
Raaf N, Westerhausen R. Hand preference and the corpus callosum: Is there really no association? NEUROIMAGE: REPORTS 2023. [DOI: 10.1016/j.ynirp.2023.100160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
14
|
Baizer JS, Witelson SF. Comparative analysis of four nuclei in the human brainstem: Individual differences, left-right asymmetry, species differences. Front Neuroanat 2023; 17:1069210. [PMID: 36874056 PMCID: PMC9978016 DOI: 10.3389/fnana.2023.1069210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/24/2023] [Indexed: 02/18/2023] Open
Abstract
Introduction It is commonly thought that while the organization of the cerebral cortex changes dramatically over evolution, the organization of the brainstem is conserved across species. It is further assumed that, as in other species, brainstem organization is similar from one human to the next. We will review our data on four human brainstem nuclei that suggest that both ideas may need modification. Methods We have studied the neuroanatomical and neurochemical organization of the nucleus paramedianus dorsalis (PMD), the principal nucleus of the inferior olive (IOpr), the arcuate nucleus of the medulla (Arc) and the dorsal cochlear nucleus (DC). We compared these human brainstem nuclei to nuclei in other mammals including chimpanzees, monkeys, cats and rodents. We studied human cases from the Witelson Normal Brain collection using Nissl and immunostained sections, and examined archival Nissl and immunostained sections from other species. Results We found significant individual variability in the size and shape of brainstem structures among humans. There is left-right asymmetry in the size and appearance of nuclei, dramatically so in the IOpr and Arc. In humans there are nuclei, e.g., the PMD and the Arc, not seen in several other species. In addition, there are brainstem structures that are conserved across species but show major expansion in humans, e.g., the IOpr. Finally, there are nuclei, e.g. the DC, that show major differences in structure among species. Discussion Overall, the results suggest several principles of human brainstem organization that distinguish humans from other species. Studying the functional correlates of, and the genetic contributions to, these brainstem characteristics are important future research directions.
Collapse
Affiliation(s)
- Joan S Baizer
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Sandra F Witelson
- Department of Psychiatry and Behavioural Neurosciences, Michael G. DeGroote School of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
15
|
Hemispheric Asymmetry of the Hand Motor Representations in Patients with Highly Malignant Brain Tumors: Implications for Surgery and Clinical Practice. Brain Sci 2022; 12:brainsci12101274. [PMID: 36291208 PMCID: PMC9599694 DOI: 10.3390/brainsci12101274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 12/02/2022] Open
Abstract
We addressed both brain pre-surgical functional and neurophysiological aspects of the hand representation in 18 right-handed patients harboring a highly malignant brain tumor in the sensorimotor (SM) cortex (10 in the left hemisphere, LH, and 8 in the right hemisphere, RH) and 10 healthy controls, who performed an fMRI hand-clenching task with both hands alternatively. We extracted the main ROI in the SM cortex and compared ROI values and volumes between hemispheres and groups, in addition to their motor neurophysiological measures. Hemispheric asymmetry in the fMRI signal was observed for healthy controls, namely higher signal for the left-hand movements, but not for either patients’ groups. ROI values, although altered in patients vs. controls, did not differ significantly between groups. ROI volumes associated with right-hand movement were lower for both patients’ groups vs. controls, and those associated with left-hand movement were lower in the RH group vs. all groups. These results are relevant to interpret potential preoperative plasticity and make inferences about postoperative plasticity and can be integrated in the surgical planning to increase surgery success and postoperative prognosis and quality of life.
Collapse
|
16
|
Wang Y, Zhao J, Inada H, Négyesi J, Nagatomi R. Impact of handedness on interlimb transfer depending on the task complexity combined with motor and cognitive skills. Neurosci Lett 2022; 785:136775. [PMID: 35817313 DOI: 10.1016/j.neulet.2022.136775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/29/2022] [Accepted: 07/05/2022] [Indexed: 12/01/2022]
Abstract
PURPOSE Task complexity could affect acquisition efficiency of motor skills and interlimb transfer; however, how task complexity affects interlimb transfer remains unclear. We hypothesized that left- and right-handed participants may have different interlimb transfer efficiency depending on the task complexity. METHODS Left-hand (n = 28) and right-hand (n = 28) dominant participants (age = 24.70 ± 4.02 years, male:female = 28:28) performed a finger sequence test with two levels of complexity (simple: one-digit with four fingers vs. complex: two-digit with five fingers) before and after ten trials of 2-min practice each on the same apparatus. The speed and task errors were measured and analyzed. RESULTS Right-handed participants failed to improve performance on their right hand (non-trained hand) after contralateral left-hand practice in the simple finger sequence task. In contrast, the left-handed participants improved performance on non-trained hands both right and left after contralateral practices. In the complex task, however, both the left- and right-handed participants improved performance on non-trained hands by contralateral practices. CONCLUSION Our results showed that task complexity of skilled practice gave different effects on interlimb transfer between right- and left-handed subjects. It appears that a certain level of appropriate complexity is necessary to detect inter-limb transfers in motor learning in right-handed subjects.
Collapse
Affiliation(s)
- YiFan Wang
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Jun Zhao
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Hitoshi Inada
- Division of Biomedical Engineering for Health & Welfare, Tohoku University Graduate School of Biomedical Engineering, 6-6-12, Aramaki Aza Aoba Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - János Négyesi
- Division of Biomedical Engineering for Health & Welfare, Tohoku University Graduate School of Biomedical Engineering, 6-6-12, Aramaki Aza Aoba Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Ryoichi Nagatomi
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan; Division of Biomedical Engineering for Health & Welfare, Tohoku University Graduate School of Biomedical Engineering, 6-6-12, Aramaki Aza Aoba Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
17
|
Hau J, Baker A, Chaaban C, Kohli JS, Jao Keehn RJ, Linke AC, Mash LE, Wilkinson M, Kinnear MK, Müller RA, Carper RA. Reduced asymmetry of the hand knob area and decreased sensorimotor u-fiber connectivity in middle-aged adults with autism. Cortex 2022; 153:110-125. [PMID: 35640320 PMCID: PMC9988270 DOI: 10.1016/j.cortex.2022.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 12/07/2021] [Accepted: 04/06/2022] [Indexed: 01/27/2023]
Abstract
Individuals with autism spectrum disorder (ASD) frequently present with impairments in motor skills (e.g., limb coordination, handwriting and balance), which are observed across the lifespan but remain largely untreated. Many adults with ASD may thus experience adverse motor outcomes in aging, when physical decline naturally occurs. The 'hand knob' of the sensorimotor cortex is an area that is critical for motor control of the fingers and hands. However, this region has received little attention in ASD research, especially in adults after midlife. The hand knob area of the precentral (PrChand) and postcentral (PoChand) gyri was semi-manually delineated in 49 right-handed adults (25 ASD, 24 typical comparison [TC] participants, aged 41-70 years). Using multimodal (T1-weighted, diffusion-weighted, and resting-state functional) MRI, we examined the morphology, ipsilateral connectivity and laterality of these regions. We also explored correlations between hand knob measures with motor skills and autism symptoms, and between structural and functional connectivity measures. Bayesian analyses indicated moderate evidence of group effects with greater right PrChand volume and reduced leftward laterality of PrChand and PoChand volume in the ASD relative to TC group. Furthermore, the right PoC-PrChand u-fibers showed increased mean diffusivity in the ASD group. In the ASD group, right u-fiber volume positively correlated with corresponding functional connectivity but did not survive multiple comparisons correction. Correlations of hand knob measures and behavior were observed in the ASD group but did not survive multiple comparisons correction. Our findings suggest that morphological laterality and u-fiber connectivity of the sensorimotor network, putatively involved in hand motor/premotor function, may be diminished in middle-aged adults with ASD, perhaps rendering them more vulnerable to motor decline in old age. The altered morphology may relate to atypical functional motor asymmetries found in ASD earlier in life, possibly reflecting altered functional asymmetries over time.
Collapse
Affiliation(s)
- Janice Hau
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, CA, USA
| | - Ashley Baker
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, CA, USA
| | - Chantal Chaaban
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, CA, USA
| | - Jiwandeep S Kohli
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, CA, USA
| | - R Joanne Jao Keehn
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, CA, USA
| | - Annika C Linke
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, CA, USA
| | - Lisa E Mash
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, CA, USA
| | - Molly Wilkinson
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, CA, USA
| | - Mikaela K Kinnear
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, CA, USA
| | - Ralph-Axel Müller
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, CA, USA
| | - Ruth A Carper
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, CA, USA.
| |
Collapse
|
18
|
Archery under the (electroencephalography-)hood: Theta-lateralization as a marker for motor learning. Neuroscience 2022; 499:23-39. [PMID: 35870564 DOI: 10.1016/j.neuroscience.2022.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 11/22/2022]
Abstract
An intrinsic characteristic of the motor system is the preference of one side of the body. Lateralization is found in motor behavior and in the structural and functional correlates of cortical motor networks. While genetic factors have been elucidated as mechanisms leading to such asymmetries, findings in motor learning and experience from clinical experience demonstrate considerable additional plasticity during the lifespan. If and how functional lateralization develops in short timeframes during training of motor skills involving both sides of the body is still largely unclear. In the present exploratory study, we investigate lateralization of theta-, alpha- and beta-band oscillations during training of an ecologically valid skill - archery. We relate lateralization shift to performance improvement and elucidate the underlying cortical areas. To this end, healthy participants without any previous experience in archery underwent intensive training with 100 shots on each of three days. 64-channel electroencephalography was recorded simultaneously during the individual shots. We found that a central-parietal theta lateralization shift to the left immediately before the shot was associated with performance improvement. Lateralization of alpha or beta did not yield a significant association. Importantly, areas of maximum activation were not identical with areas showing the strongest associations with performance improvement. These data suggest that learning a complex bimanual motor skill is associated with a shift of theta-band oscillations to the left in central-parietal areas. The relationship with performance improvement may reflect increased cortical efficiency of task-relevant processing.
Collapse
|
19
|
Swissa Y, Hacohen S, Friedman J, Frenkel-Toledo S. Sensorimotor performance after high-definition transcranial direct current stimulation over the primary somatosensory or motor cortices in men versus women. Sci Rep 2022; 12:11117. [PMID: 35778465 PMCID: PMC9249866 DOI: 10.1038/s41598-022-15226-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 06/21/2022] [Indexed: 12/03/2022] Open
Abstract
The primary somatosensory (S1) cortex is a central structure in motor performance. However, transcranial direct current stimulation (tDCS) research aimed at improving motor performance usually targets the primary motor cortex (M1). Recently, sex was found to mediate tDCS response. Thus, we investigated whether tDCS with an anodal electrode placed over S1 improves motor performance and sensation perception in men versus women. Forty-five participants randomly received 15-min high-definition tDCS (HD-tDCS) at 1 mA to S1, M1, or sham stimulation. Reaching performance was tested before and immediately following stimulation. Two-point orientation discrimination (TPOD) of fingers and proprioception of a reaching movement were also tested. Although motor performance did not differ between groups, reaching reaction time improved in the M1 group men. Reaching movement time and endpoint error improved in women and men, respectively. Correct trials percentage for TPOD task was higher in the S1 compared to the M1 group in the posttest and improved only in the S1 group. Reaching movement time for the proprioception task improved, overall, and endpoint error did not change. Despite the reciprocal connections between S1 and M1, effects of active tDCS over S1 and M1 may specifically influence sensation perception and motor performance, respectively. Also, sex may mediate effects of HD-tDCS on motor performance.
Collapse
Affiliation(s)
- Yochai Swissa
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel
| | - Shlomi Hacohen
- Department of Mechanical Engineering, Ariel University, Ariel, Israel
| | - Jason Friedman
- Department of Physical Therapy, Stanley Steyer School of Health Professions, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Silvi Frenkel-Toledo
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel. .,Department of Neurological Rehabilitation, Loewenstein Rehabilitation Medical Center, Ra'anana, Israel.
| |
Collapse
|
20
|
de Jager EJ, Risser L, Mescam M, Fonta C, Beaudet A. Sulci 3D mapping from human cranial endocasts: A powerful tool to study hominin brain evolution. Hum Brain Mapp 2022; 43:4433-4443. [PMID: 35661328 PMCID: PMC9435008 DOI: 10.1002/hbm.25964] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 03/14/2022] [Accepted: 05/09/2022] [Indexed: 11/29/2022] Open
Abstract
Key questions in paleoneurology concern the timing and emergence of derived cerebral features within the human lineage. Endocasts are replicas of the internal table of the bony braincase that are widely used in paleoneurology as a proxy for reconstructing a timeline for hominin brain evolution in the fossil record. The accurate identification of cerebral sulci imprints in endocasts is critical for assessing the topographic extension and structural organisation of cortical regions in fossil hominins. High‐resolution imaging techniques combined with established methods based on population‐specific brain atlases offer new opportunities for tracking detailed endocranial characteristics. This study provides the first documentation of sulcal pattern imprints from the superolateral surface of the cerebrum using a population‐based atlas technique on extant human endocasts. Human crania from the Pretoria Bone Collection (South Africa) were scanned using micro‐CT. Endocasts were virtually extracted, and sulci were automatically detected and manually labelled. A density map method was applied to project all the labels onto an averaged endocast to visualise the mean distribution of each identified sulcal imprint. This method allowed for the visualisation of inter‐individual variation of sulcal imprints, for example, frontal lobe sulci, correlating with previous brain‐MRI studies and for the first time the extensive overlapping of imprints in historically debated areas of the endocast (e.g. occipital lobe). In providing an innovative, non‐invasive, observer‐independent method to investigate human endocranial structural organisation, our analytical protocol introduces a promising perspective for future research in paleoneurology and for discussing critical hypotheses on the evolution of cognitive abilities among hominins.
Collapse
Affiliation(s)
- Edwin John de Jager
- Department of Archaeology, University of Cambridge, Cambridge, UK.,Department of Anatomy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Laurent Risser
- Institute de Mathématiques de Toulouse, Université de Toulouse, UPS, Toulouse, France
| | - Muriel Mescam
- Centre de Recherche Cerveau et Cognition (CerCo), CNRS, Université de Toulouse, UPS, Toulouse, France
| | - Caroline Fonta
- Centre de Recherche Cerveau et Cognition (CerCo), CNRS, Université de Toulouse, UPS, Toulouse, France
| | - Amélie Beaudet
- Department of Archaeology, University of Cambridge, Cambridge, UK.,School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Johannesburg, South Africa.,Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
21
|
Tejavibulya L, Peterson H, Greene A, Gao S, Rolison M, Noble S, Scheinost D. Large-scale differences in functional organization of left- and right-handed individuals using whole-brain, data-driven analysis of connectivity. Neuroimage 2022; 252:119040. [PMID: 35272202 PMCID: PMC9013515 DOI: 10.1016/j.neuroimage.2022.119040] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 11/15/2022] Open
Abstract
Handedness influences differences in lateralization of language areas as well as dominance of motor and somatosensory cortices. However, differences in whole-brain functional connectivity (i.e., functional connectomes) due to handedness have been relatively understudied beyond pre-specified networks of interest. Here, we compared functional connectomes of left- and right-handed individuals at the whole brain level. We explored differences in functional connectivity of previously established regions of interest, and showed differences between primarily left- and primarily right-handed individuals in the motor, somatosensory, and language areas using functional connectivity. We then proceeded to investigate these differences in the whole brain and found that the functional connectivity of left- and right-handed individuals are not specific to networks of interest, but extend across every region of the brain. In particular, we found that connections between and within the cerebellum show distinct patterns of connectivity. To put these effects into context, we show that the effect sizes associated with handedness differences account for a similar amount of individual differences in the connectome as sex differences. Together these results shed light on regions of the brain beyond those traditionally explored that contribute to differences in the functional organization of left- and right-handed individuals and underscore that handedness effects are neurobiologically meaningful in addition to being statistically significant.
Collapse
Affiliation(s)
- Link Tejavibulya
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA.
| | - Hannah Peterson
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Abigail Greene
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA; MD PhD Program, Yale School of Medicine, New Haven, CT, USA
| | - Siyuan Gao
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Max Rolison
- Child Study Center, Yale School of Medicine, New Haven, CT, USA
| | - Stephanie Noble
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Dustin Scheinost
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA; Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Child Study Center, Yale School of Medicine, New Haven, CT, USA; Department of Statistics and Data Science, Yale University, New Haven, CT, USA
| |
Collapse
|
22
|
Structural Brain Asymmetries for Language: A Comparative Approach across Primates. Symmetry (Basel) 2022. [DOI: 10.3390/sym14050876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Humans are the only species that can speak. Nonhuman primates, however, share some ‘domain-general’ cognitive properties that are essential to language processes. Whether these shared cognitive properties between humans and nonhuman primates are the results of a continuous evolution [homologies] or of a convergent evolution [analogies] remain difficult to demonstrate. However, comparing their respective underlying structure—the brain—to determinate their similarity or their divergence across species is critical to help increase the probability of either of the two hypotheses, respectively. Key areas associated with language processes are the Planum Temporale, Broca’s Area, the Arcuate Fasciculus, Cingulate Sulcus, The Insula, Superior Temporal Sulcus, the Inferior Parietal lobe, and the Central Sulcus. These structures share a fundamental feature: They are functionally and structurally specialised to one hemisphere. Interestingly, several nonhuman primate species, such as chimpanzees and baboons, show human-like structural brain asymmetries for areas homologous to key language regions. The question then arises: for what function did these asymmetries arise in non-linguistic primates, if not for language per se? In an attempt to provide some answers, we review the literature on the lateralisation of the gestural communication system, which may represent the missing behavioural link to brain asymmetries for language area’s homologues in our common ancestor.
Collapse
|
23
|
Wang C, Zhou Y, Li C, Tian W, He Y, Fang P, Li Y, Yuan H, Li X, Li B, Luo X, Zhang Y, Liu X, Wu S. Working Memory Capacity of Biological Motion's Basic Unit: Decomposing Biological Motion From the Perspective of Systematic Anatomy. Front Psychol 2022; 13:830555. [PMID: 35391972 PMCID: PMC8980279 DOI: 10.3389/fpsyg.2022.830555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Abstract
Many studies have shown that about three biological motions (BMs) can be maintained in working memory. However, no study has yet analyzed the difficulties of experiment materials used, which partially affect the ecological validity of the experiment results. We use the perspective of system anatomy to decompose BM, and thoroughly explore the influencing factors of difficulties of BMs, including presentation duration, joints to execute motions, limbs to execute motions, type of articulation interference tasks, and number of joints and planes involved in the BM. We apply the change detection paradigm supplemented by the articulation interference task to measure the BM working memory capacity (WMC) of participants. Findings show the following: the shorter the presentation duration, the less participants remembered; the more their wrist moved, the less accurate their memory was; repeating verbs provided better results than did repeating numerals to suppress verbal encoding; the more complex the BM, the less participants remembered; and whether the action was executed by the handed limbs did not affect the WMC. These results indicate that there are many factors that can be used to adjust BM memory load. These factors can help sports psychology professionals to better evaluate the difficulty of BMs, and can also partially explain the differences in estimations of BM WMC in previous studies.
Collapse
Affiliation(s)
- Chaoxian Wang
- Department of Military Medical Psychology, Air Force Medical University, Xi'an, China
| | - Yue Zhou
- Department of Military Medical Psychology, Air Force Medical University, Xi'an, China
| | - Congchong Li
- Department of Military Medical Psychology, Air Force Medical University, Xi'an, China
| | - Wenqing Tian
- Department of Military Medical Psychology, Air Force Medical University, Xi'an, China
| | - Yang He
- Department of Military Medical Psychology, Air Force Medical University, Xi'an, China
| | - Peng Fang
- Department of Military Medical Psychology, Air Force Medical University, Xi'an, China
| | - Yijun Li
- Department of Military Medical Psychology, Air Force Medical University, Xi'an, China
| | - Huiling Yuan
- Department of Military Medical Psychology, Air Force Medical University, Xi'an, China
| | - Xiuxiu Li
- School of Computer Science and Engineering, Xi'an University of Technology, Xi'an, China
| | - Bin Li
- School of Information Technology, Northwest University, Xi'an, China
| | - Xuelin Luo
- School of Martial Arts, Xi'an Physical Education University, Xi'an, China
| | - Yun Zhang
- School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Xufeng Liu
- Department of Military Medical Psychology, Air Force Medical University, Xi'an, China
| | - Shengjun Wu
- Department of Military Medical Psychology, Air Force Medical University, Xi'an, China
| |
Collapse
|
24
|
Friedrich P, Patil KR, Mochalski LN, Li X, Camilleri JA, Kröll JP, Wiersch L, Eickhoff SB, Weis S. Is it left or is it right? A classification approach for investigating hemispheric differences in low and high dimensionality. Brain Struct Funct 2022; 227:425-440. [PMID: 34882263 PMCID: PMC8844166 DOI: 10.1007/s00429-021-02418-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 10/18/2021] [Indexed: 11/09/2022]
Abstract
Hemispheric asymmetries, i.e., differences between the two halves of the brain, have extensively been studied with respect to both structure and function. Commonly employed pairwise comparisons between left and right are suitable for finding differences between the hemispheres, but they come with several caveats when assessing multiple asymmetries. What is more, they are not designed for identifying the characterizing features of each hemisphere. Here, we present a novel data-driven framework-based on machine learning-based classification-for identifying the characterizing features that underlie hemispheric differences. Using voxel-based morphometry data from two different samples (n = 226, n = 216), we separated the hemispheres along the midline and used two different pipelines: First, for investigating global differences, we embedded the hemispheres into a two-dimensional space and applied a classifier to assess if the hemispheres are distinguishable in their low-dimensional representation. Second, to investigate which voxels show systematic hemispheric differences, we employed two classification approaches promoting feature selection in high dimensions. The two hemispheres were accurately classifiable in both their low-dimensional (accuracies: dataset 1 = 0.838; dataset 2 = 0.850) and high-dimensional (accuracies: dataset 1 = 0.966; dataset 2 = 0.959) representations. In low dimensions, classification of the right hemisphere showed higher precision (dataset 1 = 0.862; dataset 2 = 0.894) compared to the left hemisphere (dataset 1 = 0.818; dataset 2 = 0.816). A feature selection algorithm in the high-dimensional analysis identified voxels that most contribute to accurate classification. In addition, the map of contributing voxels showed a better overlap with moderate to highly lateralized voxels, whereas conventional t test with threshold-free cluster enhancement best resembled the LQ map at lower thresholds. Both the low- and high-dimensional classifiers were capable of identifying the hemispheres in subsamples of the datasets, such as males, females, right-handed, or non-right-handed participants. Our study indicates that hemisphere classification is capable of identifying the hemisphere in their low- and high-dimensional representation as well as delineating brain asymmetries. The concept of hemisphere classifiability thus allows a change in perspective, from asking what differs between the hemispheres towards focusing on the features needed to identify the left and right hemispheres. Taking this perspective on hemispheric differences may contribute to our understanding of what makes each hemisphere special.
Collapse
Affiliation(s)
- Patrick Friedrich
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, 52428, Jülich, Germany.
| | - Kaustubh R Patil
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, 52428, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Lisa N Mochalski
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, 52428, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Xuan Li
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, 52428, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Julia A Camilleri
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, 52428, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Jean-Philippe Kröll
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, 52428, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Lisa Wiersch
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, 52428, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, 52428, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Susanne Weis
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, 52428, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| |
Collapse
|
25
|
Becker Y, Claidière N, Margiotoudi K, Marie D, Roth M, Nazarian B, Anton JL, Coulon O, Meguerditchian A. Broca area homologue's asymmetry reflects gestural communication lateralisation in monkeys (Papio anubis). eLife 2022; 11:70521. [PMID: 35108197 PMCID: PMC8846582 DOI: 10.7554/elife.70521] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 02/01/2022] [Indexed: 11/23/2022] Open
Abstract
Manual gestures and speech recruit a common neural network, involving Broca’s area in the left hemisphere. Such speech-gesture integration gave rise to theories on the critical role of manual gesturing in the origin of language. Within this evolutionary framework, research on gestural communication in our closer primate relatives has received renewed attention for investigating its potential language-like features. Here, using in vivo anatomical MRI in 50 baboons, we found that communicative gesturing is related to Broca homologue’s marker in monkeys, namely the ventral portion of the Inferior Arcuate sulcus (IA sulcus). In fact, both direction and degree of gestural communication’s handedness – but not handedness for object manipulation are associated and correlated with contralateral depth asymmetry at this exact IA sulcus portion. In other words, baboons that prefer to communicate with their right hand have a deeper left-than-right IA sulcus, than those preferring to communicate with their left hand and vice versa. Interestingly, in contrast to handedness for object manipulation, gestural communication’s lateralisation is not associated to the Central sulcus depth asymmetry, suggesting a double dissociation of handedness’ types between manipulative action and gestural communication. It is thus not excluded that this specific gestural lateralisation signature within the baboons’ frontal cortex might reflect a phylogenetical continuity with language-related Broca lateralisation in humans.
Collapse
Affiliation(s)
- Yannick Becker
- UMR7290, Laboratoire de Psychologie Cognitive, CNRS, Aix-Marseille University, Marseille, France
| | - Nicolas Claidière
- UMR7290, Laboratoire de Psychologie Cognitive, CNRS, Aix-Marseille University, Marseille, France
| | - Konstantina Margiotoudi
- UMR7290, Laboratoire de Psychologie Cognitive, CNRS, Aix-Marseille University, Marseille, France
| | - Damien Marie
- UMR7290, Laboratoire de Psychologie Cognitive, CNRS, Aix-Marseille University, Marseille, France
| | - Muriel Roth
- Centre IRMf Institut de Neurosciences de la Timone, CNRS, Aix-Marseille University, Marseille, France
| | - Bruno Nazarian
- Centre IRM Institut de Neurosciences de la Timone, CNRS, Aix-Marseille University, Marseille, France
| | - Jean-Luc Anton
- Centre IRM Institut de Neurosciences de la Timone, CNRS, Aix-Marseille University, Marseille, France
| | - Olivier Coulon
- Institut de Neurosciences de la Timone, CNRS, Aix-Marseille University, Marseille, France
| | - Adrien Meguerditchian
- Laboratoire de Psychologie Cognitive, CNRS, Aix-Marseille University, Marseille, France
| |
Collapse
|
26
|
He Z, Du L, Huang Y, Jiang X, Lv J, Guo L, Zhang S, Zhang T. Gyral Hinges Account for the Highest Cost and the Highest Communication Capacity in a Corticocortical Network. Cereb Cortex 2021; 32:3359-3376. [PMID: 34875041 DOI: 10.1093/cercor/bhab420] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 12/11/2022] Open
Abstract
Prior studies reported the global structure of brain networks exhibits the "small-world" and "rich-world" attributes. However, the underlying structural and functional architecture highlighted by these graph theory findings hasn't been explicitly related to the morphology of the cortex. This could be attributed to the lower resolution of used folding patterns, such as gyro-sulcal patterns. By defining a novel gyral folding pattern, termed gyral hinge (GH), which is the conjunction of ordinary gyri from multiple directions, we found GHs possess the highest length and cost in the white matter fiber connective network, and the shortest paths in the network tend to travel through GHs in their middle part. Based on these findings, we would hypothesize GHs could reside in the centers of a network core, thereby accounting for the highest cost and the highest communication capacity in a corticocortical network. The following results further support our hypothesis: 1) GHs possess stronger functional network integration capacity. 2) Higher cost is found on the connection with GHs to hinges and GHs to GHs. 3) Moving GHs introduces higher extra network cost. Our findings and hypotheses could reveal a profound relationship among the cortical folding patterns, axonal wiring architectures, and brain functions.
Collapse
Affiliation(s)
- Zhibin He
- School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
| | - Lei Du
- School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
| | - Ying Huang
- School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xi Jiang
- School of Life Science and Technology, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jinglei Lv
- School of Biomedical Engineering, Sydney Imaging, Brain and Mind Centre, The University of Sydney, Camperdown, NSW 2050, Australia
| | - Lei Guo
- School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
| | - Shu Zhang
- School of Computer Science, Northwestern Polytechnical University, Xi'an 710072, China
| | - Tuo Zhang
- School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
27
|
The role of negative emotions in sex differences in pain sensitivity. Neuroimage 2021; 245:118685. [PMID: 34740794 DOI: 10.1016/j.neuroimage.2021.118685] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/24/2021] [Accepted: 10/25/2021] [Indexed: 01/09/2023] Open
Abstract
Pain perception varies widely among individuals due to the varying degrees of biological, psychological, and social factors. Notably, sex differences in pain sensitivity have been consistently observed in various experimental and clinical investigations. However, the neuropsychological mechanism underlying sex differences in pain sensitivity remains unclear. To address this issue, we quantified pain sensitivity (i.e., pain threshold and tolerance) using the cold pressure test and negative emotions (i.e., pain-related fear, pain-related anxiety, trait anxiety, and depression) using well-established questionnaires and collected magnetic resonance imaging (MRI) data (i.e., high-resolution T1 structural images and resting-state functional images) from 450 healthy subjects. We observed that, as compared to males, females exhibited lower pain threshold and tolerance. Notably, sex differences in pain sensitivity were mediated by pain-related fear and anxiety. Specifically, pain-related fear and anxiety were the complementary mediators of the relationship between sex and pain threshold, and they were the indirect-only mediators of the relationship between sex and pain tolerance. Besides, structural MRI data revealed that the amygdala subnuclei (i.e., the lateral and basal nuclei in the left hemisphere) volumes were the complementary mediators of the relationship between sex and pain-related fear, which further influenced pain sensitivity. Altogether, our results provided a comprehensive picture of how negative emotions (especially pain-related negative emotions) and related brain structures (especially the amygdala) contribute to sex differences in pain sensitivity. These results deepen our understanding of the neuropsychological underpinnings of sex differences in pain sensitivity, which is important to tailor a personalized method for treating pain according to sex and the level of pain-related negative emotions for patients with painful conditions.
Collapse
|
28
|
Nam H, Pae C, Eo J, Oh MK, Park HJ. Inter-species cortical registration between macaques and humans using a functional network property under a spherical demons framework. PLoS One 2021; 16:e0258992. [PMID: 34673832 PMCID: PMC8530290 DOI: 10.1371/journal.pone.0258992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/08/2021] [Indexed: 11/26/2022] Open
Abstract
Systematic evaluation of cortical differences between humans and macaques calls for inter-species registration of the cortex that matches homologous regions across species. For establishing homology across brains, structural landmarks and biological features have been used without paying sufficient attention to functional homology. The present study aimed to determine functional homology between the human and macaque cortices, defined in terms of functional network properties, by proposing an iterative functional network-based registration scheme using surface-based spherical demons. The functional connectivity matrix of resting-state functional magnetic resonance imaging (rs-fMRI) among cortical parcellations was iteratively calculated for humans and macaques. From the functional connectivity matrix, the functional network properties such as principal network components were derived to estimate a deformation field between the human and macaque cortices. The iterative registration procedure updates the parcellation map of macaques, corresponding to the human connectome project’s multimodal parcellation atlas, which was used to derive the macaque’s functional connectivity matrix. To test the plausibility of the functional network-based registration, we compared cortical registration using structural versus functional features in terms of cortical regional areal change. We also evaluated the interhemispheric asymmetry of regional area and its inter-subject variability in humans and macaques as an indirect validation of the proposed method. Higher inter-subject variability and interhemispheric asymmetry were found in functional homology than in structural homology, and the assessed asymmetry and variations were higher in humans than in macaques. The results emphasize the significance of functional network-based cortical registration across individuals within a species and across species.
Collapse
Affiliation(s)
- Haewon Nam
- Department of Liberal Arts, Hongik University, Sejong, Republic of Korea
| | - Chongwon Pae
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Center for Systems and Translational Brain Sciences, Institute of Human Complexity and Systems Science, Yonsei University, Seoul, Republic of Korea
| | - Jinseok Eo
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Center for Systems and Translational Brain Sciences, Institute of Human Complexity and Systems Science, Yonsei University, Seoul, Republic of Korea
- Department of Nuclear Medicine, Department of Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Maeng-Keun Oh
- Department of Nuclear Medicine, Department of Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hae-Jeong Park
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Center for Systems and Translational Brain Sciences, Institute of Human Complexity and Systems Science, Yonsei University, Seoul, Republic of Korea
- Department of Nuclear Medicine, Department of Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Cognitive Science, Yonsei University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
29
|
Ferreira F, Akram H, Ashburner J, Zrinzo L, Zhang H, Lambert C. Ventralis intermedius nucleus anatomical variability assessment by MRI structural connectivity. Neuroimage 2021; 238:118231. [PMID: 34089871 PMCID: PMC8960999 DOI: 10.1016/j.neuroimage.2021.118231] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/14/2021] [Accepted: 06/01/2021] [Indexed: 12/11/2022] Open
Abstract
The ventralis intermedius nucleus (Vim) is centrally placed in the dentato-thalamo-cortical pathway (DTCp) and is a key surgical target in the treatment of severe medically refractory tremor. It is not visible on conventional MRI sequences; consequently, stereotactic targeting currently relies on atlas-based coordinates. This fails to capture individual anatomical variability, which may lead to poor long-term clinical efficacy. Probabilistic tractography, combined with known anatomical connectivity, enables localisation of thalamic nuclei at an individual subject level. There are, however, a number of confounds associated with this technique that may influence results. Here we focused on an established method, using probabilistic tractography to reconstruct the DTCp, to identify the connectivity-defined Vim (cd-Vim) in vivo. Using 100 healthy individuals from the Human Connectome Project, our aim was to quantify cd-Vim variability across this population, measure the discrepancy with atlas-defined Vim (ad-Vim), and assess the influence of potential methodological confounds. We found no significant effect of any of the confounds. The mean cd-Vim coordinate was located within 1.88 mm (left) and 2.12 mm (right) of the average midpoint and 3.98 mm (left) and 5.41 mm (right) from the ad-Vim coordinates. cd-Vim location was more variable on the right, which reflects hemispheric asymmetries in the probabilistic DTC reconstructed. The method was reproducible, with no significant cd-Vim location differences in a separate test-retest cohort. The superior cerebellar peduncle was identified as a potential source of artificial variance. This work demonstrates significant individual anatomical variability of the cd-Vim that atlas-based coordinate targeting fails to capture. This variability was not related to any methodological confound tested. Lateralisation of cerebellar functions, such as speech, may contribute to the observed asymmetry. Tractography-based methods seem sensitive to individual anatomical variability that is missed by conventional neurosurgical targeting; these findings may form the basis for translational tools to improve efficacy and reduce side-effects of thalamic surgery for tremor.
Collapse
Affiliation(s)
- Francisca Ferreira
- EPSRC Centre for Doctoral Training in Intelligent, Integrated Imaging in Healthcare (i4health), University College London, Gower Street, London WC1E 6BT, United Kingdom; Functional Neurosurgery Unit, Department of Clinical and Motor Neurosciences, UCL Institute of Neurology, Queen Square, WC1N 3BG London, United Kingdom; Wellcome Centre for Human Neuroimaging, 12 Queen Square, London WC1N 3AR, United Kingdom.
| | - Harith Akram
- Functional Neurosurgery Unit, Department of Clinical and Motor Neurosciences, UCL Institute of Neurology, Queen Square, WC1N 3BG London, United Kingdom
| | - John Ashburner
- Wellcome Centre for Human Neuroimaging, 12 Queen Square, London WC1N 3AR, United Kingdom
| | - Ludvic Zrinzo
- Functional Neurosurgery Unit, Department of Clinical and Motor Neurosciences, UCL Institute of Neurology, Queen Square, WC1N 3BG London, United Kingdom
| | - Hui Zhang
- EPSRC Centre for Doctoral Training in Intelligent, Integrated Imaging in Healthcare (i4health), University College London, Gower Street, London WC1E 6BT, United Kingdom; Department of Computer Science and Centre for Medical Image Computing, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Christian Lambert
- Wellcome Centre for Human Neuroimaging, 12 Queen Square, London WC1N 3AR, United Kingdom
| |
Collapse
|
30
|
Abstract
The cytoarchitectonic properties of the primary motor cortex have shown two distinct sub-regions: Anterior Broadmann area 4 (BA4a) and Posterior Broadmann area 4 (BA4p). Some previous studies have suggested that these two sub-regions are functionally different and showed that in few fMRI experiments, these sub-regions may have different roles in brain functions. Resting-state fMRI (rsfMRI) is advanced technique that allows investigating in detail the functional connectivity and provides a greater understanding of the physiological behavior of different brain regions. In this study, 198 healthy subjects were examined using a region-based rsfMRI analysis to investigate whether BA4a and BA4p have similar or different connections to other brain networks. The finding shows that indeed these two sub-regions have distinct connectivity to different brain networks. BA4a has a greater connection to motor-related areas while BA4p has connections to nonmotor-related areas (such as sensory, attentional, and higher order regions), suggesting that these two sub-regions should be considered as two separate regions of interests.
Collapse
|
31
|
Broca's area and the search for anatomical asymmetry: commentary and perspectives. Brain Struct Funct 2021; 227:441-449. [PMID: 34390415 DOI: 10.1007/s00429-021-02357-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 07/28/2021] [Indexed: 10/20/2022]
Abstract
We present a brief commentary on the field's search for an anatomical asymmetry between Broca's area and its homologue in the non-dominant hemisphere, focusing on a selection of studies, including research from the last decade. We demonstrate that, several years after the influential review of Keller and colleagues from 2009, and despite recent advances in neuroimaging, the existence of a structural asymmetry of Broca's area is still controversial. This is especially the case for studies of the macroanatomy of this region. We point out the inconsistencies in methodology across studies that could account for the discrepancy in results. Investigations of the microstructure of Broca's area show a trend of a leftward asymmetry, but it is still unclear how these results relate to language dominance. We suggest that it may be necessary to combine multiple metrics in a systematic manner to find robust asymmetries and to expand the regional scope of structural investigations. Finally, based on the current state of the literature, we should not rule out the possibility that language dominance may simply not be reflected in local anatomical differences in the brain.
Collapse
|
32
|
Mehrabinejad MM, Rafei P, Sanjari Moghaddam H, Sinaeifar Z, Aarabi MH. Sex Differences are Reflected in Microstructural White Matter Alterations of Musical Sophistication: A Diffusion MRI Study. Front Neurosci 2021; 15:622053. [PMID: 34366766 PMCID: PMC8339302 DOI: 10.3389/fnins.2021.622053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 06/28/2021] [Indexed: 11/23/2022] Open
Abstract
Background: The human-specified ability to engage with different kinds of music in sophisticated ways is named “Musical Sophistication.” Herein, we investigated specific white matter (WM) tracts that are associated with musical sophistication and musicality in both genders, separately, using Diffusion MRI connectometry approach. We specifically aimed to explore potential sex differences regarding WM alterations correlated with musical sophistication. Methods: 123 healthy participants [70 (56.9%) were male, mean age = 36.80 ± 18.86 year], who were evaluated for musical sophistication using Goldsmiths Musical Sophistication Index (Gold-MSI) self-assessment instrument from the LEMON database, were recruited in this study. The WM correlates of two Gold-MSI subscales (active engagement and music training) were analyzed. Images were prepared and analyzed with diffusion connectometry to construct the local connectome. Multiple regression models were then fitted to address the correlation of local connectomes with Gold-MSI components with the covariates of age and handedness. Results: a significant positive correlation between WM integrity in the corpus callosum (CC), right corticospinal tract (CST), cingulum, middle cerebellar peduncle (MCP), bilateral parieto-pontine tract, bilateral cerebellum, and left arcuate fasciculus (AF) and both active engagement [false discovery rate (FDR) = 0.008] and music training (FDR = 0.057) was detected in males. However, WM integrity in the body of CC, MCP, and cerebellum in females showed an inverse association with active engagement (FDR = 0.046) and music training (FDR = 0.032). Conclusion: WM microstructures with functional connection with motor and somatosensory areas (CST, cortico-pontine tracts, CC, cerebellum, cingulum, and MCP) and language processing area (AF) have significant correlation with music engagement and training. Our findings show that these associations are different between males and females, which could potentially account for distinctive mechanisms related to musical perception and musical abilities across genders.
Collapse
Affiliation(s)
| | - Parnian Rafei
- Department of Psychology, Faculty of Psychology and Education, University of Tehran, Tehran, Iran
| | | | - Zeinab Sinaeifar
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hadi Aarabi
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Neuroscience, Padova Neuroscience Center (PNC), University of Padova, Padova, Italy
| |
Collapse
|
33
|
Statsenko Y, Habuza T, Charykova I, Gorkom KNV, Zaki N, Almansoori TM, Baylis G, Ljubisavljevic M, Belghali M. Predicting Age From Behavioral Test Performance for Screening Early Onset of Cognitive Decline. Front Aging Neurosci 2021; 13:661514. [PMID: 34322006 PMCID: PMC8312225 DOI: 10.3389/fnagi.2021.661514] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/07/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Neuronal reactions and cognitive processes slow down during aging. The onset, rate, and extent of changes vary considerably from individual to individual. Assessing the changes throughout the lifespan is a challenging task. No existing test covers all domains, and batteries of tests are administered. The best strategy is to study each functional domain separately by applying different behavioral tasks whereby the tests reflect the conceptual structure of cognition. Such an approach has limitations that are described in the article. Objective: Our aim was to improve the diagnosis of early cognitive decline. We estimated the onset of cognitive decline in a healthy population, using behavioral tests, and predicted the age group of an individual. The comparison between the predicted ("cognitive") and chronological age will contribute to the early diagnosis of accelerated aging. Materials and Methods: We used publicly available datasets (POBA, SSCT) and Pearson correlation coefficients to assess the relationship between age and tests results, Kruskal-Wallis test to compare distribution, clustering methods to find an onset of cognitive decline, feature selection to enhance performance of the clustering algorithms, and classification methods to predict an age group from cognitive tests results. Results: The major results of the psychophysiological tests followed a U-shape function across the lifespan, which reflected the known inverted function of white matter volume changes. Optimal values were observed in those aged over 35 years, with a period of stability and accelerated decline after 55-60 years of age. The shape of the age-related variance of the performance of major cognitive tests was linear, which followed the trend of lifespan gray matter volume changes starting from adolescence. There was no significant sex difference in lifelong dynamics of major tests estimates. The performance of the classification model for identifying subject age groups was high. Conclusions: ML models can be designed and utilized as computer-aided detectors of neurocognitive decline. Our study demonstrated great promise for the utility of classification models to predict age-related changes. These findings encourage further explorations combining several tests from the cognitive and psychophysiological test battery to derive the most reliable set of tests toward the development of a highly-accurate ML model.
Collapse
Affiliation(s)
- Yauhen Statsenko
- College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Big Data Analytics Center (BIDAC), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Tetiana Habuza
- Big Data Analytics Center (BIDAC), United Arab Emirates University, Al Ain, United Arab Emirates.,College of Information Technology, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Inna Charykova
- Laboratory of Psychology, Republican Scientific-Practical Center of Sports, Minsk, Belarus
| | - Klaus Neidl-Van Gorkom
- College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Nazar Zaki
- Big Data Analytics Center (BIDAC), United Arab Emirates University, Al Ain, United Arab Emirates.,College of Information Technology, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Taleb M Almansoori
- College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Gordon Baylis
- College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Milos Ljubisavljevic
- College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Maroua Belghali
- INSERM, COMETE, GIP CYCERON, Normandie University, UNICAEN, Caen, Research Unit: Aging, Health and Diseases, Caen, France.,College of Education, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
34
|
Ocklenburg S, Metzen D, Schlüter C, Fraenz C, Arning L, Streit F, Güntürkün O, Kumsta R, Genç E. Polygenic scores for handedness and their association with asymmetries in brain structure. Brain Struct Funct 2021; 227:515-527. [PMID: 34235564 PMCID: PMC8844179 DOI: 10.1007/s00429-021-02335-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 07/01/2021] [Indexed: 11/28/2022]
Abstract
Handedness is the most widely investigated motor preference in humans. The genetics of handedness and especially the link between genetic variation, brain structure, and right-left preference have not been investigated in detail. Recently, several well-powered genome-wide association studies (GWAS) on handedness have been published, significantly advancing the understanding of the genetic determinants of left and right-handedness. In the present study, we estimated polygenic scores (PGS) of handedness-based on the GWAS by de Kovel and Francks (Sci Rep 9: 5986, 2019) in an independent validation cohort (n = 296). PGS reflect the sum effect of trait-associated alleles across many genetic loci. For the first time, we could show that these GWAS-based PGS are significantly associated with individual handedness lateralization quotients in an independent validation cohort. Additionally, we investigated whether handedness-derived polygenic scores are associated with asymmetries in gray matter macrostructure across the whole brain determined using magnetic resonance imaging. None of these associations reached significance after correction for multiple comparisons. Our results implicate that PGS obtained from large-scale handedness GWAS are significantly associated with individual handedness in smaller validation samples with more detailed phenotypic assessment.
Collapse
Affiliation(s)
- Sebastian Ocklenburg
- Department of Biopsychology, Faculty of Psychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany.
| | - Dorothea Metzen
- Department of Biopsychology, Faculty of Psychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Caroline Schlüter
- Department of Biopsychology, Faculty of Psychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Christoph Fraenz
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Department of Psychology and Neurosciences, Dortmund, Germany
| | - Larissa Arning
- Department of Human Genetics, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Fabian Streit
- Medical Faculty Mannheim, Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | - Onur Güntürkün
- Department of Biopsychology, Faculty of Psychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Robert Kumsta
- Department of Genetic Psychology, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Erhan Genç
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Department of Psychology and Neurosciences, Dortmund, Germany
| |
Collapse
|
35
|
Hau J, S Kohli J, Shryock I, Kinnear MK, Schadler A, Müller RA, Carper RA. Supplementary and Premotor Aspects of the Corticospinal Tract Show Links with Restricted and Repetitive Behaviors in Middle-Aged Adults with Autism Spectrum Disorder. Cereb Cortex 2021; 31:3962-3972. [PMID: 33791751 PMCID: PMC8258444 DOI: 10.1093/cercor/bhab062] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/29/2021] [Accepted: 02/24/2021] [Indexed: 12/18/2022] Open
Abstract
Individuals with autism spectrum disorder (ASD) show motor impairment into adulthood and risk decline during aging, but little is known about brain changes in aging adults with ASD. Few studies of ASD have directly examined the corticospinal tract (CST)-the major descending pathway in the brain responsible for voluntary motor behavior-outside its primary motor (M1) connections. In 26 middle-aged adults with ASD and 26 age-matched typical comparison participants, we used diffusion imaging to examine the microstructure and volume of CST projections from M1, dorsal premotor (PMd), supplementary motor area (SMA), and primary somatosensory (S1) cortices with respect to age. We also examined relationships between each CST sub-tract (-cst), motor skills, and autism symptoms. We detected no significant group or age-related differences in tracts extending from M1 or other areas. However, sub-tracts of the CST extending from secondary (but not primary) motor areas were associated with core autism traits. Increased microstructural integrity of left PMd-cst and SMA-cst were associated with less-severe restricted and repetitive behaviors (RRB) in the ASD group. These findings suggest that secondary motor cortical areas, known to be involved in selecting motor programs, may be implicated in cognitive motor processes underlying RRB in ASD.
Collapse
Affiliation(s)
- Janice Hau
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, CA 92120, USA
| | - Jiwandeep S Kohli
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, CA 92120, USA
| | - Ian Shryock
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, CA 92120, USA
| | - Mikaela K Kinnear
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, CA 92120, USA
| | - Adam Schadler
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, CA 92120, USA
| | - Ralph-Axel Müller
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, CA 92120, USA
| | - Ruth A Carper
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, CA 92120, USA
| |
Collapse
|
36
|
Gajawelli N, Deoni SCL, Ramsy N, Dean DC, O'Muircheartaigh J, Nelson MD, Lepore N, Coulon O. Developmental changes of the central sulcus morphology in young children. Brain Struct Funct 2021; 226:1841-1853. [PMID: 34043074 PMCID: PMC11557372 DOI: 10.1007/s00429-021-02292-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 05/06/2021] [Indexed: 12/01/2022]
Abstract
The human brain grows rapidly in early childhood, reaching 95% of its final volume by age 6. Understanding brain growth in childhood is important both to answer neuroscience questions about anatomical changes in development, and as a comparison metric for neurological disorders. Metrics for neuroanatomical development including cortical measures pertaining to the sulci can be instrumental in early diagnosis, monitoring, and intervention for neurological diseases. In this paper, we examine the development of the central sulcus in children aged 12-60 months from structural magnetic resonance images. The central sulcus is one of the earliest sulci to develop at the fetal stage and is implicated in diseases such as Attention Deficit Hyperactive Disorder and Williams syndrome. We investigate the relationship between the changes in the depth of the central sulcus with respect to age. In our results, we observed a pattern of depth present early on, that had been previously observed in adults. Results also reveal the presence of a rightward depth asymmetry at 12 months of age at a location related to orofacial movements. That asymmetry disappears gradually, mostly between 12 and 24 months, and we suggest that it is related to the development of language skills.
Collapse
Affiliation(s)
- Niharika Gajawelli
- CIBORG Laboratory, Department of Radiology, Children's Hospital of Los Angeles, 4650 Sunset Blvd, Los Angeles, CA, 90027, USA
| | - Sean C L Deoni
- Advanced Baby Imaging Lab, Hasbro Children's Hospital, 593 Eddy Street Ground Level, Providence, RI, 02903, USA
- Pediatrics and Radiology, Warren Alpert Medical School, Brown University, 222 Richmond St, Providence, RI, 02903, USA
- Maternal, Newborn & Child Health Discovery & Tools at the Bill and Melinda Gates Foundation, 500 5th Ave N, Seattle, WA, 98109, USA
| | - Natalie Ramsy
- Carle Illinois College of Medicine, 807 S Wright St, Champaign, IL, 61820, USA
| | - Douglas C Dean
- Waisman Laboratory for Brain Imaging and Behavior, Waisman Center, University of Wisconsin-Madison, 1500 Highland Ave, Madison, WI, 53705, USA
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, WI, 53792, USA
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 750 Highland Ave, Madison, WI, 53705, USA
| | - Jonathan O'Muircheartaigh
- Department for Forensic and Neurodevelopmental Sciences, Centre for Neuroimaging Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 2nd FloorDenmark Hill, London, UK
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, 4th Floor, Lambeth Wing St. Thomas' Hospital Westminster Bridge Road SE17EH, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | - Marvin D Nelson
- CIBORG Laboratory, Department of Radiology, Children's Hospital of Los Angeles, 4650 Sunset Blvd, Los Angeles, CA, 90027, USA
- Department of Radiology, Keck School of Medicine, University of Southern California, 1500 San Pablo Street, Los Angeles, CA, 90033, USA
| | - Natasha Lepore
- CIBORG Laboratory, Department of Radiology, Children's Hospital of Los Angeles, 4650 Sunset Blvd, Los Angeles, CA, 90027, USA.
- Department of Radiology, Keck School of Medicine, University of Southern California, 1500 San Pablo Street, Los Angeles, CA, 90033, USA.
| | - Olivier Coulon
- Faculty of Medicine, Institut de Neurosciences de la Timone, Aix-Marseille University, CNRS UMR7289, 27, boulevard Jean Moulin, 13005, Marseille, France
| |
Collapse
|
37
|
Fraenz C, Schlüter C, Friedrich P, Jung RE, Güntürkün O, Genç E. Interindividual differences in matrix reasoning are linked to functional connectivity between brain regions nominated by Parieto-Frontal Integration Theory. INTELLIGENCE 2021. [DOI: 10.1016/j.intell.2021.101545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022]
|
38
|
Wang W, Wu X, Su X, Sun H, Tan Q, Zhang S, Lu L, Gao H, Liu W, Yang X, Zhou D, Kemp GJ, Yue Q, Gong Q. Metabolic alterations of the dorsolateral prefrontal cortex in sleep-related hypermotor epilepsy: A proton magnetic resonance spectroscopy study. J Neurosci Res 2021; 99:2657-2668. [PMID: 34133770 DOI: 10.1002/jnr.24866] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 05/11/2021] [Indexed: 02/05/2023]
Abstract
Sleep-related hypermotor epilepsy (SHE) is a focal epilepsy whose neurobiological underpinnings remain poorly understood. The present study aimed to identify possible neurochemical alterations in the dorsolateral prefrontal cortex (DLPFC) in participants with SHE using proton magnetic resonance spectroscopy (1 H MRS). Thirty-nine participants with SHE (mean age, 30.7 years ± 11.3 [standard deviation], 24 men) and 59 controls (mean age, 29.4 years ± 10.4, 29 men) were consecutively and prospectively recruited and underwent brain magnetic resonance imaging and 1 H MRS in the bilateral DLPFCs. Brain concentrations of metabolites, including N-acetyl aspartate (NAA), myo-inositol (mI), choline, creatine, the sum of glutamate and glutamine, glutathione (GSH) and γ-aminobutyric acid, were estimated with LCModel and corrected for the partial volume effect of cerebrospinal fluid using tissue segmentation. ANCOVA analyses revealed lower concentration of NAA in the left DLPFC in participants with SHE compared with controls. A significant difference of NAA concentration between DLPFC in the two hemispheres (left > right) was observed only in the control group. We further confirmed a higher GSH concentration in men than in women in SHE participants, which probably indicates that men are more susceptible to this disease. The mI concentration in the right DLPFC was negatively correlated with epilepsy duration. This study demonstrates that DLPFC is an important brain region involved in the pathophysiology of SHE, in which both neurons and astrocytes appear impaired, and the elevated GSH level may suggest an abnormality related to oxidative stress.
Collapse
Affiliation(s)
- Weina Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.,Department of Radiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xintong Wu
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Xiaorui Su
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Huaiqiang Sun
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Qiaoyue Tan
- Division of Radiation Physics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Simin Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Lu Lu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Hui Gao
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Wenyu Liu
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Xibiao Yang
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Dong Zhou
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Graham J Kemp
- Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Life Course and Medical Science, University of Liverpool, Liverpool, UK
| | - Qiang Yue
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.,Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China.,Functional and Molecular Imaging Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
39
|
Guder S, Frey BM, Backhaus W, Braass H, Timmermann JE, Gerloff C, Schulz R. The Influence of Cortico-Cerebellar Structural Connectivity on Cortical Excitability in Chronic Stroke. Cereb Cortex 2021; 30:1330-1344. [PMID: 31647536 DOI: 10.1093/cercor/bhz169] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/17/2019] [Accepted: 06/22/2019] [Indexed: 12/11/2022] Open
Abstract
Brain imaging has recently evidenced that the structural state of distinct reciprocal cortico-cerebellar fiber tracts, the dentato-thalamo-cortical tract (DTCT), and the cortico-ponto-cerebellar tract (CPCeT), significantly influences residual motor output in chronic stroke patients, independent from the level of damage to the corticospinal tract (CST). Whether such structural information might also directly relate to measures of cortical excitability is an open question. Eighteen chronic stroke patients with supratentorial ischemic lesions and 17 healthy controls underwent transcranial magnetic stimulation to assess recruitment curves of motor evoked potentials of both hemispheres. Diffusion-weighted imaging and probabilistic tractography were applied to reconstruct reciprocal cortico-cerebellar motor tracts between the primary motor cortex and the cerebellum. Tract-related microstructure was estimated by means of fractional anisotropy, and linear regression modeling was used to relate it to cortical excitability. The main finding was a significant association between cortical excitability and the structural integrity of the DTCT, the main cerebellar outflow tract, independent from the level of damage to the CST. A comparable relationship was neither detectable for the CPCeT nor for the healthy controls. This finding contributes to a mechanistic understanding of the putative supportive role of the cerebellum for residual motor output by facilitating cortical excitability after stroke.
Collapse
Affiliation(s)
- Stephanie Guder
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Benedikt M Frey
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Winifried Backhaus
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Hanna Braass
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Jan E Timmermann
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Christian Gerloff
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Robert Schulz
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| |
Collapse
|
40
|
Harvey A, Hou L, Davidson-Kelly K, Schaefer RS, Hong S, Mangin JF, Overy K, Roberts N. Increased representation of the non-dominant hand in pianists demonstrated by measurement of 3D morphology of the central sulcus. PSYCHORADIOLOGY 2021; 1:66-72. [PMID: 38665358 PMCID: PMC10939323 DOI: 10.1093/psyrad/kkab004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/15/2021] [Accepted: 03/24/2021] [Indexed: 04/28/2024]
Abstract
Background Post-mortem and magnetic resonance imaging (MRI) studies of the central sulcus, as an indicator of motor cortex, have shown that in the general population there is greater representation of the dominant compared to the non-dominant hand. Studies of musicians, who are highly skilled in performing complex finger movements, have suggested this dominance is affected by musical training, but methods and findings have been mixed. Objective In the present study, an automated image analysis pipeline using a 3D mesh approach was applied to measure central sulcus (CS) asymmetry on MR images obtained for a cohort of right-handed pianists and matched controls. Methods The depth, length, and surface area (SA) of the CS and thickness of the cortical mantle adjacent to the CS were measured in each cerebral hemisphere by applying the BrainVISA Morphologist 2012 software pipeline to 3D T1-weighted MR images of the brain obtained for 15 right-handed pianists and 14 controls, matched with respect to age, sex, and handedness. Asymmetry indices (AIs) were calculated for each parameter and multivariate analysis of covariance (MANCOVA), and post hoc tests were performed to compare differences between the pianist and control groups. Results A one-way MANCOVA across the four AIs, controlling for age and sex, revealed a significant main effect of group (P = 0.04), and post hoc analysis revealed that while SA was significantly greater in the left than the right cerebral hemisphere in controls (P < 0.001), there was no significant difference between left and right SA in the pianists (P = 0.634). Independent samples t-tests revealed that the SA of right CS was significantly larger in pianists compared to controls (P = 0.015), with no between-group differences in left CS. Conclusions Application of an image analysis pipeline to 3D MR images has provided robust evidence of significantly increased representation of the non-dominant hand in the brain of pianists compared to age-, sex-, and handedness-matched controls. This finding supports prior research showing structural differences in the central sulcus in musicians and is interpreted to reflect the long-term motor training and high skill level of right-handed pianists in using their left hand.
Collapse
Affiliation(s)
- Adam Harvey
- Reid School of Music, Alison House, 12 Nicolson Square, University of Edinburgh, EH8 9DF, UK
- School of Clinical Sciences, The Queen's Medical Research Institute (QMRI), University of Edinburgh, EH16 4TJ, UK
| | - Lewis Hou
- School of Clinical Sciences, The Queen's Medical Research Institute (QMRI), University of Edinburgh, EH16 4TJ, UK
| | | | - Rebecca S Schaefer
- Health, Medical and Neuropsychology Unit, Institute for Psychology, Leiden University, Leiden, The Netherlands
- Academy of Creative and Performing Arts, Leiden University, Leiden, The Netherlands
| | - Sujin Hong
- Neuropolitics Research Lab and Edinburgh Imaging, School of Social and Political Science, University of Edinburgh, EH8 9LN, UK
| | - Jean-François Mangin
- Université Paris-Saclay, CEA, Centre National de la Recherche Scientifique (CNRS), Neurospin, Baobab, Gif-sur-Yvette, France
| | - Katie Overy
- Reid School of Music, Alison House, 12 Nicolson Square, University of Edinburgh, EH8 9DF, UK
| | - Neil Roberts
- School of Clinical Sciences, The Queen's Medical Research Institute (QMRI), University of Edinburgh, EH16 4TJ, UK
| |
Collapse
|
41
|
Garcia MAC, Nogueira-Campos AA, Moraes VH, Souza VH. Can Corticospinal Excitability Shed Light Into the Effects of Handedness on Motor Performance? FRONTIERS IN NEUROERGONOMICS 2021; 2:651501. [PMID: 38235226 PMCID: PMC10790861 DOI: 10.3389/fnrgo.2021.651501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/01/2021] [Indexed: 01/19/2024]
Affiliation(s)
- Marco Antonio Cavalcanti Garcia
- Programa de Pós-Graduação em Ciências da Reabilitação e Desempenho Físico-Funcional, Faculdade de Fisioterapia, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
- Laboratório de Neurofisiologia Cognitiva (LabNeuro), Departamento de Fisiologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
- Grupo de Estudos em Neuro Biomecânica, Faculdade de Fisioterapia, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
- Núcleo de Pesquisas em Neurociências e Reabilitação Motora, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Anaelli Aparecida Nogueira-Campos
- Laboratório de Neurofisiologia Cognitiva (LabNeuro), Departamento de Fisiologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
- Grupo de Estudos em Neuro Biomecânica, Faculdade de Fisioterapia, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Victor Hugo Moraes
- Núcleo de Pesquisas em Neurociências e Reabilitação Motora, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Victor Hugo Souza
- Grupo de Estudos em Neuro Biomecânica, Faculdade de Fisioterapia, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| |
Collapse
|
42
|
Poirier C, Hamed SB, Garcia-Saldivar P, Kwok SC, Meguerditchian A, Merchant H, Rogers J, Wells S, Fox AS. Beyond MRI: on the scientific value of combining non-human primate neuroimaging with metadata. Neuroimage 2021; 228:117679. [PMID: 33359343 PMCID: PMC7903159 DOI: 10.1016/j.neuroimage.2020.117679] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/07/2020] [Accepted: 12/16/2020] [Indexed: 01/01/2023] Open
Abstract
Sharing and pooling large amounts of non-human primate neuroimaging data offer new exciting opportunities to understand the primate brain. The potential of big data in non-human primate neuroimaging could however be tremendously enhanced by combining such neuroimaging data with other types of information. Here we describe metadata that have been identified as particularly valuable by the non-human primate neuroimaging community, including behavioural, genetic, physiological and phylogenetic data.
Collapse
Affiliation(s)
- Colline Poirier
- Biosciences Institute & Centre for Behaviour and Evolution, Faculty of Medical Sciences, Newcastle 6, UK.
| | - Suliann Ben Hamed
- Institut des Sciences Cognitives Marc Jeannerod, UMR 5229, Université de Lyon - CNRS, France
| | - Pamela Garcia-Saldivar
- Instituto de Neurobiología, UNAM, Campus Juriquilla. Boulevard Juriquilla No. 3001 Querétaro, Qro. 76230 México
| | - Sze Chai Kwok
- Shanghai Key Laboratory of Brain Functional Genomics, Key Laboratory of Brain Functional Genomics Ministry of Education, Shanghai Key Laboratory of Magnetic Resonance, Affiliated Mental Health Center (ECNU), Shanghai Changning Mental Health Center, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China; Division of Natural and Applied Sciences, Duke Kunshan University, Duke Institute for Brain Sciences, Kunshan, Jiangsu, China; NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai, China
| | - Adrien Meguerditchian
- Laboratoire de Psychologie Cognitive, UMR7290, Université Aix-Marseille/CNRS, Institut Language, Communication and the Brain 13331 Marseille, France
| | - Hugo Merchant
- Instituto de Neurobiología, UNAM, Campus Juriquilla. Boulevard Juriquilla No. 3001 Querétaro, Qro. 76230 México
| | - Jeffrey Rogers
- Human Genome Sequencing Center and Dept. of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA 77030
| | - Sara Wells
- Centre for Macaques, MRC Harwell Institute, Porton Down, Salisbury, United Kingdom
| | - Andrew S Fox
- California National Primate Research Center, Department of Psychology, University of California, Davis, Davis, CA, 95616, USA
| |
Collapse
|
43
|
Groenendijk IM, Mehnert U, Groen J, Clarkson BD, Scheepe JR, Blok BFM. A systematic review and activation likelihood estimation meta-analysis of the central innervation of the lower urinary tract: Pelvic floor motor control and micturition. PLoS One 2021; 16:e0246042. [PMID: 33534812 PMCID: PMC7857581 DOI: 10.1371/journal.pone.0246042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 01/13/2021] [Indexed: 01/23/2023] Open
Abstract
Purpose Functional neuroimaging is a powerful and versatile tool to investigate central lower urinary tract (LUT) control. Despite the increasing body of literature there is a lack of comprehensive overviews on LUT control. Thus, we aimed to execute a coordinate based meta-analysis of all PET and fMRI evidence on descending central LUT control, i.e. pelvic floor muscle contraction (PFMC) and micturition. Materials and methods A systematic literature search of all relevant libraries was performed in August 2020. Coordinates of activity were extracted from eligible studies to perform an activation likelihood estimation (ALE) using a threshold of uncorrected p <0.001. Results 20 of 6858 identified studies, published between 1997 and 2020, were included. Twelve studies investigated PFMC (1xPET, 11xfMRI) and eight micturition (3xPET, 5xfMRI). The PFMC ALE analysis (n = 181, 133 foci) showed clusters in the primary motor cortex, supplementary motor cortex, cingulate gyrus, frontal gyrus, thalamus, supramarginal gyrus, and cerebellum. The micturition ALE analysis (n = 107, 98 foci) showed active clusters in the dorsal pons, including the pontine micturition center, the periaqueductal gray, cingulate gyrus, frontal gyrus, insula and ventral pons. Overlap of PFMC and micturition was found in the cingulate gyrus and thalamus. Conclusions For the first time the involved core brain areas of LUT motor control were determined using ALE. Furthermore, the involved brain areas for PFMC and micturition are partially distinct. Further neuroimaging studies are required to extend this ALE analysis and determine the differences between a healthy and a dysfunctional LUT. This requires standardization of protocols and task-execution.
Collapse
Affiliation(s)
- Ilse M. Groenendijk
- Department of Urology, Erasmus Medical Center, Erasmus University, Rotterdam, The Netherlands
- * E-mail:
| | - Ulrich Mehnert
- Department of Neuro-Urology, Balgrist University Hospital, University of Zürich, Zürich, Switzerland
| | - Jan Groen
- Department of Urology, Erasmus Medical Center, Erasmus University, Rotterdam, The Netherlands
| | - Becky D. Clarkson
- Division of Geriatric Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Jeroen R. Scheepe
- Department of Urology, Erasmus Medical Center, Erasmus University, Rotterdam, The Netherlands
| | - Bertil F. M. Blok
- Department of Urology, Erasmus Medical Center, Erasmus University, Rotterdam, The Netherlands
| |
Collapse
|
44
|
Kumar S, Voracek M, Singh M. The effects of hand preference and sex on right-left asymmetry in dorsal digit lengths among adults and children. Early Hum Dev 2021; 153:105293. [PMID: 33340946 DOI: 10.1016/j.earlhumdev.2020.105293] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 11/18/2022]
Abstract
BACKGROUND Right-hand preference is related to stronger right-directional asymmetry in the length of proximal upper-limb bones, although the relationships of hand preference with directional asymmetry in phalangeal bone lengths are not known. Furthermore, dorsal digit length is an easy-to-measure, faithful proxy of X-rayed phalangeal bone length (which is costly and difficult to measure). AIM To study the effects of hand preference, sex, and age on right-left (R-L) asymmetry in dorsal digit lengths. METHODS We measured all dorsal digit lengths (except the thumb) in comparable numbers of left-handers and right-handers in samples of adults (N = 151, age: M = 22.6 years, SD = 3.3) and children (N = 65, age: M = 5.0 years, SD = 1.0). RESULTS Right-handers and adults had stronger right-directional asymmetry in digit lengths than left-handers and children. A Bayesian analysis yielded an 'extremely strong likelihood' of no sex differences in the R-L asymmetry of dorsal digit lengths 2 and 4. CONCLUSIONS The effects of hand preference, sex, and age on R-L asymmetry appear to be similar for phalangeal bone length and other (proximal) upper-limb bone lengths. Two distinct biologic mechanisms (i.e., a general right-directional asymmetry mechanism and a handedness-related directional asymmetry mechanism) may contribute to observed R-L asymmetry in limbs. Fingertip fat and bone digit length do not seem to contribute to sex differences in the R-L asymmetry (Dr-l) of the widely studied second-to-fourth digit ratio (2D:4D).
Collapse
Affiliation(s)
- Sanjay Kumar
- Department of Psychology, D.A.V. College, Muzaffarnagar, Uttar Pradesh, India.
| | - Martin Voracek
- Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Austria.
| | - Maharaj Singh
- Department of Research and Graduate Studies, School of Dentistry, Marquette University, Milwaukee, WI, USA.
| |
Collapse
|
45
|
The effect of handedness on mental rotation of hands: a systematic review and meta-analysis. PSYCHOLOGICAL RESEARCH 2021; 85:2829-2881. [PMID: 33389042 DOI: 10.1007/s00426-020-01444-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/24/2020] [Indexed: 12/13/2022]
Abstract
Body-specific mental rotation is thought to rely upon internal representations of motor actions. Handedness is a source of distinctly different motor experience that shapes the development of such internal representations. Yet, the influence of handedness upon hand mental rotation has never been systematically evaluated. Five databases were searched for studies evaluating hand left/right judgement tasks in adults. Two independent reviewers performed screening, data extraction, and critical appraisal. Eighty-seven datasets were included, with 72 datasets pooled; all had unclear/high risk of bias. Meta-analyses showed that right-handers were faster, but not more accurate, than left-handers at hand mental rotation. A unique effect of handedness was found on performance facilitation for images corresponding to the dominant hand. Meta-analyses showed that right-handers were quicker at identifying images of right hands than left hands-a dominance advantage not evident in left-handers. Differing hand representations (more lateralised hand dominance in right-handers) likely underpin these findings. Given potential differences between hand preference and motor performance, future research exploring their distinct contributions to mental rotation is warranted.
Collapse
|
46
|
Säisänen L, Könönen M, Niskanen E, Lakka T, Lintu N, Vanninen R, Julkunen P, Määttä S. Primary hand motor representation areas in healthy children, preadolescents, adolescents, and adults. Neuroimage 2020; 228:117702. [PMID: 33385558 DOI: 10.1016/j.neuroimage.2020.117702] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/16/2020] [Accepted: 12/19/2020] [Indexed: 01/28/2023] Open
Abstract
The development of the organization of the motor representation areas in children and adolescents is not well-known. This cross-sectional study aimed to provide an understanding for the development of the functional motor areas of the upper extremity muscles by studying healthy right-handed children (6-9 years, n = 10), preadolescents (10-12 years, n = 13), adolescents (15-17 years, n = 12), and adults (22-34 years, n = 12). The optimal representation site and resting motor threshold (rMT) for the abductor pollicis brevis (APB) were assessed in both hemispheres using navigated transcranial magnetic stimulation (nTMS). Motor mapping was performed at 110% of the rMT while recording the EMG of six upper limb muscles in the hand and forearm. The association between the motor map and manual dexterity (box and block test, BBT) was examined. The mapping was well-tolerated and feasible in all but the youngest participant whose rMT exceeded the maximum stimulator output. The centers-of-gravity (CoG) for individual muscles were scattered to the greatest extent in the group of preadolescents and centered and became more focused with age. In preadolescents, the CoGs in the left hemisphere were located more laterally, and they shifted medially with age. The proportion of hand compared to arm representation increased with age (p = 0.001); in the right hemisphere, this was associated with greater fine motor ability. Similarly, there was less overlap between hand and forearm muscles representations in children compared to adults (p<0.001). There was a posterior-anterior shift in the APB hotspot coordinate with age, and the APB coordinate in the left hemisphere exhibited a lateral to medial shift with age from adolescence to adulthood (p = 0.006). Our results contribute to the elucidation of the developmental course in the organization of the motor cortex and its associations with fine motor skills. It was shown that nTMS motor mapping in relaxed muscles is feasible in developmental studies in children older than seven years of age.
Collapse
Affiliation(s)
- Laura Säisänen
- Department of Clinical Neurophysiology, Kuopio University Hospital, P.O. Box 100, 70029 KYS, Kuopio, Finland; Institute of Clinical Medicine, University of Eastern Finland, Finland; Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.
| | - Mervi Könönen
- Department of Clinical Neurophysiology, Kuopio University Hospital, P.O. Box 100, 70029 KYS, Kuopio, Finland; Department of Applied Physics, University of Eastern Finland, Kuopio, Finland; Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland
| | - Eini Niskanen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Timo Lakka
- Institute of Biomedicine, Faculty of Health Sciences, University of Eastern Finland, Finland; Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Niina Lintu
- Institute of Biomedicine, Faculty of Health Sciences, University of Eastern Finland, Finland
| | - Ritva Vanninen
- Institute of Clinical Medicine, University of Eastern Finland, Finland; Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland
| | - Petro Julkunen
- Department of Clinical Neurophysiology, Kuopio University Hospital, P.O. Box 100, 70029 KYS, Kuopio, Finland; Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Sara Määttä
- Department of Clinical Neurophysiology, Kuopio University Hospital, P.O. Box 100, 70029 KYS, Kuopio, Finland
| |
Collapse
|
47
|
Eichert N, Watkins KE, Mars RB, Petrides M. Morphological and functional variability in central and subcentral motor cortex of the human brain. Brain Struct Funct 2020; 226:263-279. [PMID: 33355695 PMCID: PMC7817568 DOI: 10.1007/s00429-020-02180-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/16/2020] [Indexed: 11/30/2022]
Abstract
There is a long-established link between anatomy and function in the somatomotor system in the mammalian cerebral cortex. The morphology of the central sulcus is predictive of the location of functional activation peaks relating to movement of different effectors in individuals. By contrast, morphological variation in the subcentral region and its relationship to function is, as yet, unknown. Investigating the subcentral region is particularly important in the context of speech, since control of the larynx during human speech production is related to activity in this region. Here, we examined the relationship between morphology in the central and subcentral region and the location of functional activity during movement of the hand, lips, tongue, and larynx at the individual participant level. We provide a systematic description of the sulcal patterns of the subcentral and adjacent opercular cortex, including the inter-individual variability in sulcal morphology. We show that, in the majority of participants, the anterior subcentral sulcus is not continuous, but consists of two distinct segments. A robust relationship between morphology of the central and subcentral sulcal segments and movement of different effectors is demonstrated. Inter-individual variability of underlying anatomy might thus explain previous inconsistent findings, in particular regarding the ventral larynx area in subcentral cortex. A surface registration based on sulcal labels indicated that such anatomical information can improve the alignment of functional data for group studies.
Collapse
Affiliation(s)
- Nicole Eichert
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK.
| | - Kate E Watkins
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, OX2 6GG, UK
| | - Rogier B Mars
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 AJ, Nijmegen, The Netherlands
| | - Michael Petrides
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, QC, H3A 2B4, Canada.,Department of Psychology, McGill University, 1205 Dr. Penfield Avenue, Montreal, QC, H3A 1B1, Canada
| |
Collapse
|
48
|
Zhang Z, Wang Y, Gao Y, Li Z, Zhang S, Lin X, Hou Z, Yu Q, Wang X, Liu S. Morphological changes in the central sulcus of children with isolated growth hormone deficiency versus idiopathic short stature. Dev Neurobiol 2020; 81:36-46. [PMID: 33277816 DOI: 10.1002/dneu.22797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 08/25/2020] [Accepted: 11/27/2020] [Indexed: 11/10/2022]
Abstract
In this study, the morphological changes in the central sulcus between children with isolated growth hormone deficiency (IGHD) and those with idiopathic short stature (ISS) were analyzed. Thirty children with IGHD (peak growth hormone < 5 µg/L) and 30 children with ISS (peak growth hormone > 10.0 µg/L) were included. Morphological measurements of the central sulcus were obtained from T1-weighted MRIs using BrainVISA, including the average sulcal width, maximum depth, average depth, top length, bottom length, and depth position-based profiles (DPPs). The bilateral average width of the central sulci was significantly wider, while the left maximum depth and right average depth of the central sulcus were significantly smaller, in children with IGHD than in children with ISS. There were no significant differences in the right maximum depth, left average depth, or bilateral top length and bottom length of the central sulcus between groups. The DPPs of the middle part of both central sulci (corresponding to the hand motor activation area) and the inferior part of the right central sulcus (corresponding to the oral movement area) near the Sylvian fissure were significantly smaller in children with IGHD than in controls before false discovery rate (FDR) correction. However, all the above significant DPP sites disappeared after FDR correction. There were significant morphological changes in the three-dimensional structure of the central sulcus in children with IGHD, which were the outcome of other more essential cortical or subcortical changes, resulting in their relatively slower development in motor, cognitive, and linguistic functional performance.
Collapse
Affiliation(s)
- Zhonghe Zhang
- Department of Medical Imaging, Shandong Provincial Hospital Affiliated to Shandong University, Shandong, China.,Department of Medical Imaging, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, China.,Research Center for Sectional and Imaging Anatomy, Shandong University Cheeloo College of Medicine, Shandong, China
| | - Yu Wang
- Research Center for Sectional and Imaging Anatomy, Shandong University Cheeloo College of Medicine, Shandong, China
| | - Yue Gao
- Department of Medical Imaging, Shandong Provincial Hospital Affiliated to Shandong University, Shandong, China.,Department of Medical Imaging, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, China
| | - Zhuoran Li
- Research Center for Sectional and Imaging Anatomy, Shandong University Cheeloo College of Medicine, Shandong, China
| | - Shuhan Zhang
- Department of Medical Imaging, Shandong Provincial Hospital Affiliated to Shandong University, Shandong, China.,Department of Medical Imaging, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, China
| | - Xiangtao Lin
- Department of Medical Imaging, Shandong Provincial Hospital Affiliated to Shandong University, Shandong, China.,Department of Medical Imaging, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, China.,Research Center for Sectional and Imaging Anatomy, Shandong University Cheeloo College of Medicine, Shandong, China
| | - Zhongyu Hou
- Department of Medical Imaging, Shandong Provincial Hospital Affiliated to Shandong University, Shandong, China.,Department of Medical Imaging, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, China.,Research Center for Sectional and Imaging Anatomy, Shandong University Cheeloo College of Medicine, Shandong, China
| | - Qiaowen Yu
- Department of Medical Imaging, Shandong Provincial Hospital Affiliated to Shandong University, Shandong, China.,Department of Medical Imaging, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, China.,Research Center for Sectional and Imaging Anatomy, Shandong University Cheeloo College of Medicine, Shandong, China
| | - Ximing Wang
- Department of Medical Imaging, Shandong Provincial Hospital Affiliated to Shandong University, Shandong, China.,Department of Medical Imaging, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, China
| | - Shuwei Liu
- Research Center for Sectional and Imaging Anatomy, Shandong University Cheeloo College of Medicine, Shandong, China
| |
Collapse
|
49
|
Gorniak SL, Ochoa N, Cox LIG, Khan A, Ansari S, Thames B, Ray H, Lu YF, Hibino H, Watson N, Dougherty PM. Sex-based differences and aging in tactile function loss in persons with type 2 diabetes. PLoS One 2020; 15:e0242199. [PMID: 33180801 PMCID: PMC7660517 DOI: 10.1371/journal.pone.0242199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/29/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Recent evidence of significant sex-based differences in the presentation of Type 2 Diabetes Mellitus (DM) and its complications has been found in humans, which may contribute to sex-based differences in reduced functionality and quality of life. Some functionality, such as tactile function of the hands, has significant direct impact on quality of life. The purpose of the current study was to explore the impact of DM and sex on tactile function, with consideration of variability in health state measures. RESEARCH DESIGN AND METHODS A case-control single time point observational study from 2012-2020 in an ethnically diverse population-based community setting. The sample consists of 132 adult individuals: 70 independent community dwelling persons with DM (PwDM) and 62 age- and sex-matched controls (42 males and 90 females in total). The Semmes-Weinstein monofilament test was used to evaluate tactile sensation of the hands. RESULTS Tactile sensation thresholds were adversely impacted by sex, age, degree of handedness, high A1c, diagnosis of DM, and neuropathy. Overall, strongly right-handed older adult males with poorly controlled DM and neuropathy possessed the poorest tactile discrimination thresholds. When self-identified minority status was included in a secondary analysis, DM diagnosis was no longer significant; negative impacts of age, neuropathy, degree of handedness, and high A1c remained significant. CONCLUSIONS The data indicate significant impacts of male sex, age, degree of handedness, self-identified minority status, and metabolic health on the development of poor tactile sensation. This combination of modifiable and non-modifiable factors are important considerations in the monitoring and treatment of DM complications.
Collapse
Affiliation(s)
- Stacey L. Gorniak
- Department of Health and Human Performance, University of Houston, Houston, TX, United States of America
- * E-mail:
| | - Nereyda Ochoa
- Department of Health and Human Performance, University of Houston, Houston, TX, United States of America
| | - Lauren I. Gulley Cox
- Department of Health and Human Performance, University of Houston, Houston, TX, United States of America
| | - Aisha Khan
- Department of Health and Human Performance, University of Houston, Houston, TX, United States of America
| | - Sahifah Ansari
- Department of Health and Human Performance, University of Houston, Houston, TX, United States of America
| | - Beatriz Thames
- Department of Health and Human Performance, University of Houston, Houston, TX, United States of America
| | - Haley Ray
- Department of Health and Human Performance, University of Houston, Houston, TX, United States of America
| | - Yoshimi F. Lu
- Department of Health and Human Performance, University of Houston, Houston, TX, United States of America
| | - Hidetaka Hibino
- Department of Health and Human Performance, University of Houston, Houston, TX, United States of America
| | - Nikita Watson
- Department of Health and Human Performance, University of Houston, Houston, TX, United States of America
| | - Patrick M. Dougherty
- Department of Pain Medicine Research, University of Texas M.D. Anderson Cancer Center, Houston, TX, United States of America
| |
Collapse
|
50
|
Abstract
The development and persistence of laterality is a key feature of human motor behavior, with the asymmetry of hand use being the most prominent. The idea that asymmetrical functions of the hands reflect asymmetries in terms of structural and functional brain organization has been tested many times. However, despite advances in laterality research and increased understanding of this population-level bias, the neural basis of handedness remains elusive. Recent developments in diffusion magnetic resonance imaging enabled the exploration of lateralized motor behavior also in terms of white matter and connectional neuroanatomy. Despite incomplete and partly inconsistent evidence, structural connectivity of both intrahemispheric and interhemispheric white matter seems to differ between left and right-handers. Handedness was related to asymmetry of intrahemispheric pathways important for visuomotor and visuospatial processing (superior longitudinal fasciculus), but not to projection tracts supporting motor execution (corticospinal tract). Moreover, the interindividual variability of the main commissural pathway corpus callosum seems to be associated with handedness. The review highlights the importance of exploring new avenues for the study of handedness and presents the latest state of knowledge that can be used to guide future neuroscientific and genetic research.
Collapse
Affiliation(s)
- Sanja Budisavljevic
- Department of General Psychology, University of Padova, Padova, Italy.,The School of Medicine, University of St. Andrews, St. Andrews, UK
| | - Umberto Castiello
- Department of General Psychology, University of Padova, Padova, Italy
| | - Chiara Begliomini
- Department of General Psychology, University of Padova, Padova, Italy
| |
Collapse
|