1
|
Stringer BB, Szlag Silva RG, Kodanko JJ, Westrick JA. Structure, Toxicity, Prevalence, and Degradation of Six Understudied Freshwater Cyanopeptides. Toxins (Basel) 2025; 17:233. [PMID: 40423316 PMCID: PMC12116083 DOI: 10.3390/toxins17050233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/25/2025] [Accepted: 05/07/2025] [Indexed: 05/28/2025] Open
Abstract
Anthropogenic influences have increased global warming and eutrophication, escalating the frequency and severity of harmful cyanobacterial blooms (cHABs) in freshwater ecosystems. These blooms release cyanopeptides, a diverse class of bioactive compounds with varying acute and chronic toxicities upon ingestion. To date, research has prioritized acutely toxic cyanopeptides like microcystins. As a result, significantly less is known about other freshwater cyanopeptides. This review highlights six understudied cyanopeptide classes, anabaenopeptins, cyanopeptolins, aeruginosamides, aeruginosins, microginins, and cyclamides, and provides a comprehensive overview of their molecular structures, toxicological profiles, environmental concentrations, and known degradation pathways. Given the potential toxicity, increased environmental abundance, and environmental stability of many cyanopeptides in freshwater sources, further research is needed to understand if degraded cyanopeptides are still biologically active prior to entering drinking water to ensure public health.
Collapse
Affiliation(s)
| | | | | | - Judy A. Westrick
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA; (B.B.S.); (R.G.S.S.); (J.J.K.)
| |
Collapse
|
2
|
Adamczuk M, Bownik A, Pawlik-Skowrońska B. Single and mixture effect of cyanobacterial metabolites, cylindrospermopsin, anabaenopeptin-A, microginin-FR1 and aeruginosin 98-A, on behaviour, food uptake, oxygen consumption and muscular F-actin degradation of Thamnocephalus platyurus. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 115:104677. [PMID: 40122194 DOI: 10.1016/j.etap.2025.104677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 03/13/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025]
Abstract
This study showed that single cyanobacterial metabolites had various effects on the tested parameters. Among them, only cylindrospermopsin was lethal to the animals; cylindrospermopsin was also the most potent inhibitor of the remaining parameters. Cylindrospermopsin in binary mixtures with the other tested metabolites displayed antagonistic or additive effects for survival, movement, food uptake and oxygen consumption and synergistic effect for F-actin degradation. Aeruginosin 98 A at lower concentrations displayed an enhanced effect on movement, food uptake and oxygen consumption while inhibiting these parameters at higher concentrations. Anabaenopeptin-A at higher concentrations (> 250 µg/L) had a significant inhibitory effect on T. platyurus. Microginin-FR1 had the lowest impact on T. platyurus, but produced mainly synergistic effects in a binary mixture with aeruginosin 98 A and mostly antagonistic or additive effects in a mixture with anabaenopeptin-A. Quaternary mixtures of metabolites had mostly antagonistic effects on the examined parameters.
Collapse
Affiliation(s)
- Małgorzata Adamczuk
- Department of Hydrobiology, University of Life Sciences, B. Dobrzańskiego 37, Lublin 20-262, Poland.
| | - Adam Bownik
- Department of Hydrobiology, University of Life Sciences, B. Dobrzańskiego 37, Lublin 20-262, Poland
| | | |
Collapse
|
3
|
Liu X, Bian Z, Hu S, Dickinson CF, Benjamin MM, Jia J, Tian Y, Place A, Hanna GS, Luesch H, Croot P, Reddy MM, Thomas OP, Hardiman G, Puglisi MP, Yang M, Zhong Z, Lemasters JJ, Korte JE, Waters AL, Heltzel CE, Williamson RT, Strangman WK, Valeriote F, Tius MA, DiTullio GR, Ferreira D, Alekseyenko A, Wang S, Hamann MT, Wang X. The Chemistry of Phytoplankton. Chem Rev 2024; 124:13099-13177. [PMID: 39571071 PMCID: PMC11638913 DOI: 10.1021/acs.chemrev.4c00177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 08/12/2024] [Accepted: 08/26/2024] [Indexed: 12/12/2024]
Abstract
Phytoplankton have a high potential for CO2 capture and conversion. Besides being a vital food source at the base of oceanic and freshwater food webs, microalgae provide a critical platform for producing chemicals and consumer products. Enhanced nutrient levels, elevated CO2, and rising temperatures increase the frequency of algal blooms, which often have negative effects such as fish mortalities, loss of flora and fauna, and the production of algal toxins. Harmful algal blooms (HABs) produce toxins that pose major challenges to water quality, ecosystem function, human health, tourism, and the food web. These toxins have complex chemical structures and possess a wide range of biological properties with potential applications as new therapeutics. This review presents a balanced and comprehensive assessment of the roles of algal blooms in generating fixed carbon for the food chain, sequestering carbon, and their unique secondary metabolites. The structural complexity of these metabolites has had an unprecedented impact on structure elucidation technologies and total synthesis, which are highlighted throughout this review. In addition, the influence of biogeochemical environmental perturbations on algal blooms and their influence on biospheric environments is discussed. Lastly, we summarize work on management strategies and technologies for the control and treatment of HABs.
Collapse
Affiliation(s)
- Xiaoying Liu
- Department
of Pharmacy, Lanzhou University, Lanzhou 730000, Gansu China
| | - Zhiwei Bian
- Department
of Pharmacy, Lanzhou University, Lanzhou 730000, Gansu China
| | - Shian Hu
- Department
of Pharmacy, Lanzhou University, Lanzhou 730000, Gansu China
| | - Cody F. Dickinson
- Department
of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Menny M. Benjamin
- Department
of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Jia Jia
- School
of Life Sciences, Shanghai University, Shanghai 200031, China
| | - Yintai Tian
- Department
of Pharmacy, Lanzhou University, Lanzhou 730000, Gansu China
| | - Allen Place
- Institute
of Marine Biotechnology and Technology, University of Maryland Center for Environmental Science, Baltimore, Maryland 21202, United States
| | - George S. Hanna
- Department
of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Hendrik Luesch
- Department
of Medicinal Chemistry and Center for Natural Products, Drug Discovery
and Development, University of Florida, Gainesville, Florida 32610, United States
- Program
in Cancer and Stem Cell Technology, Duke-NUS
Medical School, Singapore 169857, Singapore
| | - Peter Croot
- Irish
Centre
for Research in Applied Geoscience, Earth and Ocean Sciences and Ryan
Institute, School of Natural Sciences, University
of Galway, Galway H91TK33, Ireland
| | - Maggie M. Reddy
- School
of
Biological and Chemical Sciences, Ryan Institute, University of Galway, H91TK33 Galway, Ireland
| | - Olivier P. Thomas
- School
of
Biological and Chemical Sciences, Ryan Institute, University of Galway, H91TK33 Galway, Ireland
| | - Gary Hardiman
- School of
Biological Sciences Institute for Global Food Security, Queen’s University Belfast, Belfast, Northern Ireland BT7 1NN, U.K.
| | - Melany P. Puglisi
- Department
of Pharmaceutical Sciences, Chicago State
University, Chicago, Illinois 60628, United States
| | - Ming Yang
- Department
of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Zhi Zhong
- Department
of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - John J. Lemasters
- Department
of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Jeffrey E. Korte
- Department
of Public Health Sciences, College of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Amanda L. Waters
- Department
of Chemistry, University of Central Oklahoma, Edmond, Oklahoma 73034, United States
| | - Carl E. Heltzel
- Department
of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - R. Thomas Williamson
- Department
of Chemistry and Biochemistry, University
of North Carolina Wilmington, Wilmington, North Carolina 28409, United States
| | - Wendy K. Strangman
- Department
of Chemistry and Biochemistry, University
of North Carolina Wilmington, Wilmington, North Carolina 28409, United States
| | - Fred Valeriote
- Henry
Ford Health Systems, Detroit, Michigan 48202, United States
| | - Marcus A. Tius
- Department
of Chemistry, University of Hawaii, Honolulu, Hawaii 96822, United States
| | - Giacomo R. DiTullio
- Department
of Oceanography, College of Charleston, Charleston, South Carolina 29403, United States
| | - Daneel Ferreira
- Department
of BioMolecular Sciences, Division of Pharmacognosy, University of Mississippi, Oxford, Mississippi 38677, United States
| | - Alexander Alekseyenko
- Department
of Public Health Sciences, College of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Shengpeng Wang
- State Key
Laboratory of Quality Research in Chinese Medicine, Institute of Chinese
Medical Sciences, University of Macau, Macau 999078, China
| | - Mark T. Hamann
- Department
of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Xiaojuan Wang
- Department
of Pharmacy, Lanzhou University, Lanzhou 730000, Gansu China
| |
Collapse
|
4
|
Overlingė D, Cegłowska M, Konkel R, Mazur-Marzec H. Aeruginosin 525 (AER525) from Cyanobacterium Aphanizomenon Sp. (KUCC C2): A New Serine Proteases Inhibitor. Mar Drugs 2024; 22:506. [PMID: 39590786 PMCID: PMC11595689 DOI: 10.3390/md22110506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/01/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Aeruginosins (AERs) are one of the most common classes of cyanobacterial peptides synthesised through a hybrid non-ribosomal peptide synthase/polyketide synthase pathway. They have been found in Microcystis, Nodularia spumigena, Oscillatoria/Plantothrix, and Nostoc. The presence of AER in Aphanizomenon isolated from the Curonian Lagoon was reported for the first time in our previous work. Here, the structure of aeruginosin 525 (AER525), isolated from Aphanizomenon sp. KUCC C2, was characterised based on high-resolution mass spectrometry. This new AER variant shows potent activity against thrombin. It also inhibits trypsin and carboxypeptidase A but has no effect on elastase and chymotrypsin. In terms of the N-terminal residue and biological activity, AER525 displaces some similarity to dysinosins, which belongs to the most potent inhibitors of thrombin among AERs. The findings underline the potential of AER525 as a new anticoagulant agent.
Collapse
Affiliation(s)
- Donata Overlingė
- Marine Research Institute, Klaipėda University, Universiteto av. 17, LT-92294 Klaipėda, Lithuania
| | - Marta Cegłowska
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, PL-81712 Sopot, Poland;
| | - Robert Konkel
- Department of Marine Biology and Biotechnology, University of Gdańsk, M. J. Piłsudskiego 46, PL-81378 Gdynia, Poland; (R.K.); (H.M.-M.)
| | - Hanna Mazur-Marzec
- Department of Marine Biology and Biotechnology, University of Gdańsk, M. J. Piłsudskiego 46, PL-81378 Gdynia, Poland; (R.K.); (H.M.-M.)
| |
Collapse
|
5
|
Médice RV, Arruda RS, Yoon J, Borges RM, Noyma NP, Lürling M, Crnkovic CM, Marinho MM, Pinto E. Unlocking Biological Activity and Metabolomics Insights: Primary Screening of Cyanobacterial Biomass from a Tropical Reservoir. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:2222-2231. [PMID: 39110011 DOI: 10.1002/etc.5962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/20/2024] [Accepted: 07/02/2024] [Indexed: 09/25/2024]
Abstract
Cyanobacterial harmful algal blooms can pose risks to ecosystems and human health worldwide due to their capacity to produce natural toxins. The potential dangers associated with numerous metabolites produced by cyanobacteria remain unknown. Only select classes of cyanopeptides have been extensively studied with the aim of yielding substantial evidence regarding their toxicity, resulting in their inclusion in risk management and water quality regulations. Information about exposure concentrations, co-occurrence, and toxic impacts of several cyanopeptides remains largely unexplored. We used liquid chromatography-mass spectrometry (LC-MS)-based metabolomic methods associated with chemometric tools (NP Analyst and Data Fusion-based Discovery), as well as an acute toxicity essay, in an innovative approach to evaluate the association of spectral signatures and biological activity from natural cyanobacterial biomass collected in a eutrophic reservoir in southeastern Brazil. Four classes of cyanopeptides were revealed through metabolomics: microcystins, microginins, aeruginosins, and cyanopeptolins. The bioinformatics tools showed high bioactivity correlation scores for compounds of the cyanopeptolin class (0.54), in addition to microcystins (0.54-0.58). These results emphasize the pressing need for a comprehensive evaluation of the (eco)toxicological risks associated with different cyanopeptides, considering their potential for exposure. Our study also demonstrated that the combined use of LC-MS/MS-based metabolomics and chemometric techniques for ecotoxicological research can offer a time-efficient strategy for mapping compounds with potential toxicological risk. Environ Toxicol Chem 2024;43:2222-2231. © 2024 SETAC.
Collapse
Affiliation(s)
- Rhuana Valdetário Médice
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Renan Silva Arruda
- Department of Plant Biology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Jaewon Yoon
- Department of Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Ricardo Moreira Borges
- Walter Mors Natural Product Research Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Natália Pessoa Noyma
- Department of Plant Biology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Miquel Lürling
- Department of Environmental Sciences, Wageningen University, Wageningen, The Netherlands
| | - Camila Manoel Crnkovic
- Department of Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Marcelo Manzi Marinho
- Department of Plant Biology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Ernani Pinto
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| |
Collapse
|
6
|
Weisthal Algor S, Sukenik A, Carmeli S. Sulfated Aeruginosins from Lake Kinneret: Microcystis Bloom, Isolation, Structure Elucidation, and Biological Activity. Mar Drugs 2024; 22:389. [PMID: 39330270 PMCID: PMC11433283 DOI: 10.3390/md22090389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
Aeruginosins are common metabolites of cyanobacteria. In the course of re-isolation of the known aeruginosins KT608A and KT608B for bioassay studies, we isolated three new sulfated aeruginosins, named aeruginosins KT688 (1), KT718 (2), and KT575 (3), from the extract of a Microcystis cell mass collected during the 2016 spring bloom event in Lake Kinneret, Israel. The structures of the new compounds were established on the basis of analyses of the 1D and 2D NMR, as well as HRESIMS data. Marfey's method, coupled with HR ESI LCMS and chiral HPLC, was used to establish the absolute configuration of the amino acid and hydroxyphenyl lactic acid residues, respectively. Compounds 1-3 were tested for inhibition of the serine protease trypsin, and compounds 1 and 2 were found to exhibit IC50 values of 2.38 and 1.43 µM, respectively.
Collapse
Affiliation(s)
- Shira Weisthal Algor
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel;
| | - Assaf Sukenik
- The Yigal Allon Kinneret Limnological Laboratory, Israel Oceanographic & Limnological Research Institute, Migdal 49500, Israel;
| | - Shmuel Carmeli
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel;
| |
Collapse
|
7
|
Entfellner E, Baumann KBL, Edwards C, Kurmayer R. High Structural Diversity of Aeruginosins in Bloom-Forming Cyanobacteria of the Genus Planktothrix as a Consequence of Multiple Recombination Events. Mar Drugs 2023; 21:638. [PMID: 38132959 PMCID: PMC10744761 DOI: 10.3390/md21120638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
Many compounds produced by cyanobacteria act as serine protease inhibitors, such as the tetrapeptides aeruginosins (Aer), which are found widely distributed. The structural diversity of Aer is intriguingly high. However, the genetic basis of this remains elusive. In this study, we explored the genetic basis of Aer synthesis among the filamentous cyanobacteria Planktothrix spp. In total, 124 strains, isolated from diverse freshwater waterbodies, have been compared regarding variability within Aer biosynthesis genes and the consequences for structural diversity. The high structural variability could be explained by various recombination processes affecting Aer synthesis, above all, the acquisition of accessory enzymes involved in post synthesis modification of the Aer peptide (e.g., halogenases, glycosyltransferases, sulfotransferases) as well as a large-range recombination of Aer biosynthesis genes, probably transferred from the bloom-forming cyanobacterium Microcystis. The Aer structural composition differed between evolutionary Planktothrix lineages, adapted to either shallow or deep waterbodies of the temperate climatic zone. Thus, for the first time among bloom-forming cyanobacteria, chemical diversification of a peptide family related to eco-evolutionary diversification has been described. It is concluded that various Aer peptides resulting from the recombination event act in chemical defense, possibly as a replacement for microcystins.
Collapse
Affiliation(s)
- Elisabeth Entfellner
- Research Department for Limnology, Universität Innsbruck, Mondseestrasse 9, 5310 Mondsee, Austria; (E.E.); (K.B.L.B.)
| | - Kathrin B. L. Baumann
- Research Department for Limnology, Universität Innsbruck, Mondseestrasse 9, 5310 Mondsee, Austria; (E.E.); (K.B.L.B.)
| | - Christine Edwards
- CyanoSol Research Group, Pharmacy & Life Sciences, Robert Gordon University, Aberdeen AB10 7GJ, UK;
| | - Rainer Kurmayer
- Research Department for Limnology, Universität Innsbruck, Mondseestrasse 9, 5310 Mondsee, Austria; (E.E.); (K.B.L.B.)
| |
Collapse
|
8
|
Ricciardelli A, Pollio A, Costantini M, Zupo V. Harmful and beneficial properties of cyanotoxins: Two sides of the same coin. Biotechnol Adv 2023; 68:108235. [PMID: 37567398 DOI: 10.1016/j.biotechadv.2023.108235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 07/25/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Cyanotoxins are by definition "harmful agents" produced by cyanobacteria. Their toxicity has been extensively studied and reviewed over the years. Cyanotoxins have been commonly classified, based on their poisonous effects on mammals, into three main classes, neurotoxins, hepatotoxins and dermatotoxins, and, considering their chemical features, mainly identified as peptides, alkaloids and lipopolysaccharides. Here we propose a broader subdivision of cyanotoxins into eight distinct classes, taking into account their molecular structures, biosynthesis and modes of action: alkaloids, non-ribosomal peptides, polyketides, non-protein amino acids, indole alkaloids, organophosphates, lipopeptides and lipoglycans. For each class, the structures and primary mechanisms of toxicity of the main representative cyanotoxins are reported. Despite their powerful biological activities, only recently scientists have considered the biotechnological potential of cyanotoxins, and their applications both in medical and in industrial settings, even if only a few of these have reached the biotech market. In this perspective, we discuss the potential uses of cyanotoxins as anticancer, antimicrobial, and biocidal agents, as common applications for cytotoxic compounds. Furthermore, taking into account their mechanisms of action, we describe peculiar potential bioactivities for several cyanotoxin classes, such as local anaesthetics, antithrombotics, neuroplasticity promoters, immunomodulating and antifouling agents. In this review, we aim to stimulate research on the potential beneficial roles of cyanotoxins, which require interdisciplinary cooperation to facilitate the discovery of innovative biotechnologies.
Collapse
Affiliation(s)
- Annarita Ricciardelli
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, via Cinthìa, 80125 Naples, Italy.
| | - Antonino Pollio
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, via Cinthìa, 80125 Naples, Italy.
| | - Maria Costantini
- Ecosustainable Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Via Ammiraglio Ferdinando Acton, 80133 Naples, Italy.
| | - Valerio Zupo
- Ecosustainable Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Ischia Marine Centre, Punta San Pietro, 80077 Naples, Italy.
| |
Collapse
|
9
|
Yancey CE, Kiledal EA, Chaganti SR, Denef VJ, Errera RM, Evans JT, Hart LN, Isailovic D, James WS, Kharbush JJ, Kimbrel JA, Li W, Mayali X, Nitschky H, Polik CA, Powers MA, Premathilaka SH, Rappuhn NA, Reitz LA, Rivera SR, Zwiers CC, Dick GJ. The Western Lake Erie culture collection: A promising resource for evaluating the physiological and genetic diversity of Microcystis and its associated microbiome. HARMFUL ALGAE 2023; 126:102440. [PMID: 37290887 DOI: 10.1016/j.hal.2023.102440] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 06/10/2023]
Abstract
Cyanobacterial harmful algal blooms (cyanoHABs) dominated by Microcystis spp. have significant public health and economic implications in freshwater bodies around the world. These blooms are capable of producing a variety of cyanotoxins, including microcystins, that affect fishing and tourism industries, human and environmental health, and access to drinking water. In this study, we isolated and sequenced the genomes of 21 primarily unialgal Microcystis cultures collected from western Lake Erie between 2017 and 2019. While some cultures isolated in different years have a high degree of genetic similarity (genomic Average Nucleotide Identity >99%), genomic data show that these cultures also represent much of the breadth of known Microcystis diversity in natural populations. Only five isolates contained all the genes required for microcystin biosynthesis while two isolates contained a previously described partial mcy operon. Microcystin production within cultures was also assessed using Enzyme-Linked Immunosorbent Assay (ELISA) and supported genomic results with high concentrations (up to 900 μg L⁻¹) in cultures with complete mcy operons and no or low toxin detected otherwise. These xenic cultures also contained a substantial diversity of bacteria associated with Microcystis, which has become increasingly recognized as an essential component of cyanoHAB community dynamics. These results highlight the genomic diversity among Microcystis strains and associated bacteria in Lake Erie, and their potential impacts on bloom development, toxin production, and toxin degradation. This culture collection significantly increases the availability of environmentally relevant Microcystis strains from temperate North America.
Collapse
Affiliation(s)
- Colleen E Yancey
- Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - E Anders Kiledal
- Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Subba Rao Chaganti
- Cooperative Institute for Great Lakes Research (CIGLR), University of Michigan, 4840 S State Road, Ann Arbor, MI 48108, United States of America
| | - Vincent J Denef
- Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Reagan M Errera
- National Oceanic and Atmospheric Administration (NOAA), Great Lakes Environmental Research Laboratory (GLERL), 4840 S State Road, Ann Arbor, MI 48108, United States of America
| | - Jacob T Evans
- Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Lauren N Hart
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, United States of America; Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Dragan Isailovic
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, United States of America
| | - William S James
- Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Jenan J Kharbush
- Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Jeffrey A Kimbrel
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, United States of America
| | - Wei Li
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, United States of America
| | - Xavier Mayali
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, United States of America
| | - Helena Nitschky
- Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Catherine A Polik
- Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - McKenzie A Powers
- Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Sanduni H Premathilaka
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, United States of America
| | - Nicole A Rappuhn
- Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Laura A Reitz
- Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Sara R Rivera
- Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Claire C Zwiers
- Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Gregory J Dick
- Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109, United States of America; Cooperative Institute for Great Lakes Research (CIGLR), University of Michigan, 4840 S State Road, Ann Arbor, MI 48108, United States of America.
| |
Collapse
|
10
|
Yancey CE, Yu F, Tripathi A, Sherman DH, Dick GJ. Expression of Microcystis Biosynthetic Gene Clusters in Natural Populations Suggests Temporally Dynamic Synthesis of Novel and Known Secondary Metabolites in Western Lake Erie. Appl Environ Microbiol 2023; 89:e0209222. [PMID: 37070981 PMCID: PMC10231183 DOI: 10.1128/aem.02092-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/02/2023] [Indexed: 04/19/2023] Open
Abstract
Microcystis spp. produce diverse secondary metabolites within freshwater cyanobacterial harmful algal blooms (cyanoHABs) around the world. In addition to the biosynthetic gene clusters (BGCs) encoding known compounds, Microcystis genomes harbor numerous BGCs of unknown function, indicating a poorly understood chemical repertoire. While recent studies show that Microcystis produces several metabolites in the lab and field, little work has focused on analyzing the abundance and expression of its broader suite of BGCs during cyanoHAB events. Here, we use metagenomic and metatranscriptomic approaches to track the relative abundance of Microcystis BGCs and their transcripts throughout the 2014 western Lake Erie cyanoHAB. The results indicate the presence of several transcriptionally active BGCs that are predicted to synthesize both known and novel secondary metabolites. The abundance and expression of these BGCs shifted throughout the bloom, with transcript abundance levels correlating with temperature, nitrate, and phosphorus concentrations and the abundance of co-occurring predatory and competitive eukaryotic microorganisms, suggesting the importance of both abiotic and biotic controls in regulating expression. This work highlights the need for understanding the chemical ecology and potential risks to human and environmental health posed by secondary metabolites that are produced but often unmonitored. It also indicates the prospects for identifying pharmaceutical-like molecules from cyanoHAB-derived BGCs. IMPORTANCE Microcystis spp. dominate cyanobacterial harmful algal blooms (cyanoHABs) worldwide and pose significant threats to water quality through the production of secondary metabolites, many of which are toxic. While the toxicity and biochemistry of microcystins and several other compounds have been studied, the broader suite of secondary metabolites produced by Microcystis remains poorly understood, leaving gaps in our understanding of their impacts on human and ecosystem health. We used community DNA and RNA sequences to track the diversity of genes encoding synthesis of secondary metabolites in natural Microcystis populations and assess patterns of transcription in western Lake Erie cyanoHABs. Our results reveal the presence of both known gene clusters that encode toxic secondary metabolites as well as novel ones that may encode cryptic compounds. This research highlights the need for targeted studies of the secondary metabolite diversity in western Lake Erie, a vital freshwater source to the United States and Canada.
Collapse
Affiliation(s)
- Colleen E. Yancey
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Fengan Yu
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Ashootosh Tripathi
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
- Natural Products Discovery Core, University of Michigan, Ann Arbor, Michigan, USA
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - David H. Sherman
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Gregory J. Dick
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA
- Cooperative Institute for Great Lakes Research (CIGLR), University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
11
|
McDonald K, DesRochers N, Renaud JB, Sumarah MW, McMullin DR. Metabolomics Reveals Strain-Specific Cyanopeptide Profiles and Their Production Dynamics in Microcystis aeruginosa and M. flos-aquae. Toxins (Basel) 2023; 15:254. [PMID: 37104192 PMCID: PMC10147050 DOI: 10.3390/toxins15040254] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Cyanobacterial blooms that release biologically active metabolites into the environment are increasing in frequency as a result of the degradation of freshwater ecosystems globally. The microcystins are one group of cyanopeptides that are extensively studied and included in water quality risk management frameworks. Common bloom-forming cyanobacteria produce incredibly diverse mixtures of other cyanopeptides; however, data on the abundance, distribution, and biological activities of non-microcystin cyanopeptides are limited. We used non-targeted LC-MS/MS metabolomics to study the cyanopeptide profiles of five Microcystis strains: four M. aeruginosa and one M. flos-aquae. Multivariate analysis and GNPS molecular networking demonstrated that each Microcystis strain produced a unique mixture of cyanopeptides. In total, 82 cyanopeptides from the cyanopeptolin (n = 23), microviridin (n = 18), microginin (n = 12), cyanobactin (n = 14), anabaenopeptin (n = 6), aeruginosin (n = 5), and microcystin (n = 4) classes were detected. Microcystin diversity was low compared with the other detected cyanopeptide classes. Based on surveys of the literature and spectral databases, most cyanopeptides represented new structures. To identify growth conditions yielding high amounts of multiple cyanopeptide groups, we next examined strain-specific cyanopeptide co-production dynamics for four of the studied Microcystis strains. When strains were cultivated in two common Microcystis growth media (BG-11 and MA), the qualitative cyanopeptides profiles remained unchanged throughout the growth cycle. For each of the cyanopeptide groups considered, the highest relative cyanopeptide amounts were observed in the mid-exponential growth phase. The outcomes of this study will guide the cultivation of strains producing common and abundant cyanopeptides contaminating freshwater ecosystems. The synchronous production of each cyanopeptide group by Microcystis highlights the need to make more cyanopeptide reference materials available to investigate their distributions and biological functions.
Collapse
Affiliation(s)
| | - Natasha DesRochers
- London Research and Development Center, Agriculture and Agri-Food Canada, London, ON N5V 4T3, Canada
| | - Justin B. Renaud
- London Research and Development Center, Agriculture and Agri-Food Canada, London, ON N5V 4T3, Canada
| | - Mark W. Sumarah
- London Research and Development Center, Agriculture and Agri-Food Canada, London, ON N5V 4T3, Canada
| | - David R. McMullin
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
12
|
Liu J, Zhang M, Huang Z, Fang J, Wang Z, Zhou C, Qiu X. Diversity, Biosynthesis and Bioactivity of Aeruginosins, a Family of Cyanobacteria-Derived Nonribosomal Linear Tetrapeptides. Mar Drugs 2023; 21:md21040217. [PMID: 37103356 PMCID: PMC10143770 DOI: 10.3390/md21040217] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/14/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
Aeruginosins, a family of nonribosomal linear tetrapeptides discovered from cyanobacteria and sponges, exhibit in vitro inhibitory activity on various types of serine proteases. This family is characterized by the existence of the 2-carboxy-6-hydroxy-octahydroindole (Choi) moiety occupied at the central position of the tetrapeptide. Aeruginosins have attracted much attention due to their special structures and unique bioactivities. Although many studies on aeruginosins have been published, there has not yet been a comprehensive review that summarizes the diverse research ranging from biogenesis, structural characterization and biosynthesis to bioactivity. In this review, we provide an overview of the source, chemical structure as well as spectrum of bioactivities of aeruginosins. Furthermore, possible opportunities for future research and development of aeruginosins were discussed.
Collapse
Affiliation(s)
- Jiameng Liu
- Ministry of Education Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ningbo 315800, China
- Institute of Marine Biotechnology, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315800, China
| | - Mengli Zhang
- Ministry of Education Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ningbo 315800, China
- Institute of Marine Biotechnology, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315800, China
| | - Zhenkuai Huang
- Ministry of Education Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ningbo 315800, China
- Institute of Marine Biotechnology, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315800, China
| | - Jiaqi Fang
- Ministry of Education Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ningbo 315800, China
- Institute of Marine Biotechnology, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315800, China
| | - Zhongyuan Wang
- Ministry of Education Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ningbo 315800, China
- Institute of Marine Biotechnology, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315800, China
| | - Chengxu Zhou
- Ministry of Education Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ningbo 315800, China
- Institute of Marine Biotechnology, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315800, China
| | - Xiaoting Qiu
- Ministry of Education Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ningbo 315800, China
- Institute of Marine Biotechnology, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315800, China
- Correspondence:
| |
Collapse
|
13
|
Interspecific Interactions Drive Nonribosomal Peptide Production in Nodularia spumigena. Appl Environ Microbiol 2022; 88:e0096622. [PMID: 35862669 PMCID: PMC9361812 DOI: 10.1128/aem.00966-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nodularia spumigena is a bloom-forming cyanobacterium that produces several classes of nonribosomal peptides (NRPs) that are biologically active; however, the ecological roles of specific NRPs remain largely unknown. Here, we explored the involvement of NRPs produced by N. spumigena in interspecific interactions by coculturing the cyanobacterium and its algal competitors, the diatom Phaeodactylum tricornutum and the cryptomonad Rhodomonas salina, and measuring NRP levels and growth responses in all three species. Contrary to the expected growth suppression in the algae, it was N. spumigena that was adversely affected by the diatom, while the cryptomonad had no effect. Reciprocal effects of N. spumigena on the algae were manifested as the prolonged lag phase in R. salina and growth stimulation in P. tricornutum; however, these responses were largely attributed to elevated pH and not to specific NRPs. Nevertheless, the NRP levels in the cocultures were significantly higher than in the monocultures, with an up to 5-fold upregulation of cell-bound nodularins and exudation of nodularin and anabaenopeptin. Thus, chemically mediated interspecific interactions can promote NRP production and release by cyanobacteria, resulting in increased input of these compounds into the water. IMPORTANCE NRPs were involved in growth responses of both cyanobacteria and algae; however, the primary driver of the growth trajectories was high pH induced by N. spumigena. Thus, the pH-mediated inhibition of eukaryotic phytoplankton may be involved in the bloom formation of N. spumigena. We also report, for the first time, the reciprocal growth inhibition of N. spumigena by diatoms resistant to alkaline conditions. As all species in this study can co-occur in the Baltic Sea during summer, these findings are highly relevant for understanding ecological interactions in planktonic communities in this and other systems experiencing regular cyanobacteria blooms.
Collapse
|
14
|
Saad MH, El-Fakharany EM, Salem MS, Sidkey NM. The use of cyanobacterial metabolites as natural medical and biotechnological tools: review article. J Biomol Struct Dyn 2022; 40:2828-2850. [PMID: 33164673 DOI: 10.1080/07391102.2020.1838948] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/14/2020] [Indexed: 10/23/2022]
Abstract
Cyanobacteria are photosynthetic, Gram-negative bacteria that are considered one of the most morphologically diverse groups of prokaryotes with a chief role in the global nutrient cycle as they fixed gaseous carbon dioxide and nitrogen to organic materials. Cyanobacteria have significant adaptability to survive in harsh conditions due to they have different metabolic pathways with unique compounds, effective defensive mechanisms, and wide distribution in different habitats. Besides, they are successfully used to face different challenges in several fields, including industry, aquaculture, agriculture, food, dairy products, pollution control, bioenergy, and pharmaceutics. Analysis of 680 publications revealed that nearly 1630 cyanobacterial molecules belong to different families have a wide range of applications in several fields, including cosmetology, agriculture, pharmacology (immunosuppressant, anticancer, antibacterial, antiprotozoal, antifungal, anti-inflammatory, antimalarial, anticoagulant, anti-tuberculosis, antitumor, and antiviral activities) and food industry. In this review, we nearly mentioned 92 examples of cyanobacterial molecules that are considered the most relevant effects related to anti-inflammatory, antioxidant, antimicrobial, antiviral, and anticancer activities as well as their roles that can be used in various biotechnological fields. These cyanobacterial products might be promising candidates for fighting various diseases and can be used in managing viral and microbial infections.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mabroka H Saad
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technology Applications (SRTA-City), New Borg EL Arab, Alexandria, Egypt
- Botany & Microbiology Department, Faculty of Science, Al Azhar University (Girls Branch), Nasr City, Egypt
| | - Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technology Applications (SRTA-City), New Borg EL Arab, Alexandria, Egypt
| | - Marwa S Salem
- Botany & Microbiology Department, Faculty of Science, Al Azhar University (Girls Branch), Nasr City, Egypt
| | - Nagwa M Sidkey
- Botany & Microbiology Department, Faculty of Science, Al Azhar University (Girls Branch), Nasr City, Egypt
| |
Collapse
|
15
|
Ahmed MN, Wahlsten M, Jokela J, Nees M, Stenman UH, Alvarenga DO, Strandin T, Sivonen K, Poso A, Permi P, Metsä-Ketelä M, Koistinen H, Fewer DP. Potent Inhibitor of Human Trypsins from the Aeruginosin Family of Natural Products. ACS Chem Biol 2021; 16:2537-2546. [PMID: 34661384 PMCID: PMC8609519 DOI: 10.1021/acschembio.1c00611] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
Serine proteases
regulate many physiological processes and play
a key role in a variety of cancers. Aeruginosins are a family of natural
products produced by cyanobacteria that exhibit pronounced structural
diversity and potent serine protease inhibition. Here, we sequenced
the complete genome of Nodularia sphaerocarpa UHCC 0038 and identified the 43.7 kb suomilide biosynthetic gene
cluster. Bioinformatic analysis demonstrated that suomilide belongs
to the aeruginosin family of natural products. We identified 103 complete
aeruginosin biosynthetic gene clusters from 12 cyanobacterial genera
and showed that they encode an unexpected chemical diversity. Surprisingly,
purified suomilide inhibited human trypsin-2 and -3, with IC50 values of 4.7 and 11.5 nM, respectively, while trypsin-1 was inhibited
with an IC50 of 104 nM. Molecular dynamics simulations
suggested that suomilide has a long residence time when bound to trypsins.
This was confirmed experimentally for trypsin-1 and -3 (residence
times of 1.5 and 57 min, respectively). Suomilide also inhibited the
invasion of aggressive and metastatic PC-3M prostate cancer cells
without affecting cell proliferation. The potent inhibition of trypsin-3,
together with a long residence time and the ability to inhibit prostate
cancer cell invasion, makes suomilide an attractive drug lead for
targeting cancers that overexpress trypsin-3. These results substantially
broaden the genetic and chemical diversity of the aeruginosin family
and suggest that aeruginosins may be a source of selective inhibitors
of human serine proteases.
Collapse
Affiliation(s)
- Muhammad N. Ahmed
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Viikinkaari 9, Biocenter 1, P.O. Box 56, Helsinki FIN-00014, Finland
- Department of Clinical Chemistry and Haematology, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 8, P.O. Box 63, Helsinki FIN-00014, Finland
| | - Matti Wahlsten
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Viikinkaari 9, Biocenter 1, P.O. Box 56, Helsinki FIN-00014, Finland
| | - Jouni Jokela
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Viikinkaari 9, Biocenter 1, P.O. Box 56, Helsinki FIN-00014, Finland
| | - Matthias Nees
- Department of Biochemistry and Molecular Biology, Medical University in Lublin, ul. Chodzki 1, Lublin 20-093, Poland
- Institute of Biomedicine and Western Cancer Centre FICAN West, University of Turku, Turku 20101, Finland
| | - Ulf-Håkan Stenman
- Department of Clinical Chemistry and Haematology, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 8, P.O. Box 63, Helsinki FIN-00014, Finland
| | - Danillo O. Alvarenga
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Viikinkaari 9, Biocenter 1, P.O. Box 56, Helsinki FIN-00014, Finland
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Tomas Strandin
- Department of Virology, Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, P.O. Box 21, Helsinki FIN-00014, Finland
| | - Kaarina Sivonen
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Viikinkaari 9, Biocenter 1, P.O. Box 56, Helsinki FIN-00014, Finland
| | - Antti Poso
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, Kuopio FIN-70211, Finland
- Dept. of Internal Medicine VIII, University Hospital Tübingen, Otfried-Müller-Strasse 14, Tübingen DE-72076, Germany
| | - Perttu Permi
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, Jyväskylä FI-40014, Finland
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, P.O. Box
35, Jyväskylä FI-40014, Finland
| | - Mikko Metsä-Ketelä
- Department of Biochemistry, University of Turku, Turku FIN-20014, Finland
| | - Hannu Koistinen
- Department of Clinical Chemistry and Haematology, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 8, P.O. Box 63, Helsinki FIN-00014, Finland
| | - David P. Fewer
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Viikinkaari 9, Biocenter 1, P.O. Box 56, Helsinki FIN-00014, Finland
| |
Collapse
|
16
|
Chen M, Xu C, Wang X, Wu Y, Li L. Nonribosomal peptide synthetases and nonribosomal cyanopeptides synthesis in Microcystis: A comparative genomics study. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Spatial and Temporal Diversity of Cyanometabolites in the Eutrophic Curonian Lagoon (SE Baltic Sea). WATER 2021. [DOI: 10.3390/w13131760] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This work aims to determine the profiles of cyanopeptides and anatoxin synthetized by cyanobacteria in the Lithuanian part of the Curonian Lagoon (SE Baltic Sea) and to characterize their spatial and temporal patterns in this ecosystem. Cyanometabolites were analysed by a LC-MS/MS system and were coupled to a hybrid triple quadrupole/linear ion trap mass spectrometer. During the investigation period (2013–2017), 10 microcystins, nodularin, anatoxin-a, 16 anabaenopeptins, including 1 oscillamide, 12 aeruginosins, 1 aeruginosamide, 3 cyanopeptolins and 4 microginins were detected. The most frequently detected metabolites were found at all investigated sites. Demethylated microcystin variants and anabaenopeptins had the strongest relationship with Planktothrix agardhii, while non-demethylated microcystin variants and anatoxin had the strongest relationship with Microcystis spp. Low concentrations of some microcystins: [Asp3]MC-RR, MC-RR, MC-LR, as well as a few other cyanopeptides: AP-A and AEG-A were found during the cold period (December–March). Over the study period, Aphanizomenon, Planktothrix and Microcystis were the main dominant cyanobacteria species, while Planktothrix, Microcystis, and Dolichospermum were potentially producers of cyanopeptides and anatoxin detected in samples from the Curonian Lagoon.
Collapse
|
18
|
Jones MR, Pinto E, Torres MA, Dörr F, Mazur-Marzec H, Szubert K, Tartaglione L, Dell'Aversano C, Miles CO, Beach DG, McCarron P, Sivonen K, Fewer DP, Jokela J, Janssen EML. CyanoMetDB, a comprehensive public database of secondary metabolites from cyanobacteria. WATER RESEARCH 2021; 196:117017. [PMID: 33765498 DOI: 10.1016/j.watres.2021.117017] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 02/26/2021] [Accepted: 03/06/2021] [Indexed: 05/06/2023]
Abstract
Harmful cyanobacterial blooms, which frequently contain toxic secondary metabolites, are reported in aquatic environments around the world. More than two thousand cyanobacterial secondary metabolites have been reported from diverse sources over the past fifty years. A comprehensive, publically-accessible database detailing these secondary metabolites would facilitate research into their occurrence, functions and toxicological risks. To address this need we created CyanoMetDB, a highly curated, flat-file, openly-accessible database of cyanobacterial secondary metabolites collated from 850 peer-reviewed articles published between 1967 and 2020. CyanoMetDB contains 2010 cyanobacterial metabolites and 99 structurally related compounds. This has nearly doubled the number of entries with complete literature metadata and structural composition information compared to previously available open access databases. The dataset includes microcytsins, cyanopeptolins, other depsipeptides, anabaenopeptins, microginins, aeruginosins, cyclamides, cryptophycins, saxitoxins, spumigins, microviridins, and anatoxins among other metabolite classes. A comprehensive database dedicated to cyanobacterial secondary metabolites facilitates: (1) the detection and dereplication of known cyanobacterial toxins and secondary metabolites; (2) the identification of novel natural products from cyanobacteria; (3) research on biosynthesis of cyanobacterial secondary metabolites, including substructure searches; and (4) the investigation of their abundance, persistence, and toxicity in natural environments.
Collapse
Affiliation(s)
- Martin R Jones
- Department of Environmental Chemistry, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Duebendorf, Switzerland
| | - Ernani Pinto
- Centre for Nuclear Energy in Agriculture, University of São Paulo, CEP 13418-260 Piracicaba, SP, Brazil
| | - Mariana A Torres
- School of Pharmaceutical Sciences, University of São Paulo, CEP 05508-900, São Paulo - SP, Brazil
| | - Fabiane Dörr
- School of Pharmaceutical Sciences, University of São Paulo, CEP 05508-900, São Paulo - SP, Brazil
| | - Hanna Mazur-Marzec
- Division of Marine Biotechnology, University of Gdansk, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Karolina Szubert
- Division of Marine Biotechnology, University of Gdansk, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Luciana Tartaglione
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Carmela Dell'Aversano
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Christopher O Miles
- Biotoxin Metrology, National Research Council Canada, 1411 Oxford Street, Nova Scotia, Halifax B3H 3Z1, Canada
| | - Daniel G Beach
- Biotoxin Metrology, National Research Council Canada, 1411 Oxford Street, Nova Scotia, Halifax B3H 3Z1, Canada
| | - Pearse McCarron
- Biotoxin Metrology, National Research Council Canada, 1411 Oxford Street, Nova Scotia, Halifax B3H 3Z1, Canada
| | - Kaarina Sivonen
- Department of Microbiology, University of Helsinki, 00014 Helsinki, Finland
| | - David P Fewer
- Department of Microbiology, University of Helsinki, 00014 Helsinki, Finland
| | - Jouni Jokela
- Department of Microbiology, University of Helsinki, 00014 Helsinki, Finland
| | - Elisabeth M-L Janssen
- Department of Environmental Chemistry, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Duebendorf, Switzerland.
| |
Collapse
|
19
|
Jacinavicius FR, Geraldes V, Crnkovic CM, Delbaje E, Fiore MF, Pinto E. Effect of ultraviolet radiation on the metabolomic profiles of potentially toxic cyanobacteria. FEMS Microbiol Ecol 2021; 97:6006873. [PMID: 33242088 DOI: 10.1093/femsec/fiaa243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 11/24/2020] [Indexed: 11/13/2022] Open
Abstract
Interactions between climate change and ultraviolet radiation (UVR) have a substantial impact on aquatic ecosystems, especially on photosynthetic organisms. To counteract the damaging effects of UVR, cyanobacteria developed adaptive strategies such as the biosynthesis of secondary metabolites. This study aimed to evaluate the effects of UVR on the metabolomic profiles of potentially toxic cyanobacteria. Twelve strains were irradiated with ultraviolet A and ultraviolet B radiation and parabolic aluminized reflector lamps for 3 days, followed by liquid chromatography-tandem mass spectometry (LC-MS/MS) analysis to assess changes in metabolomic profiles. Matrices were used to generate principal component analysis biplots, and molecular networks were obtained using the Global Natural Products platform. Most strains showed significant changes in their metabolomic profiles after UVR exposure. On average, 7% of MS features were shown to be exclusive to metabolomic profiles before UVR exposure, while 9% were unique to metabolomic profiles after UVR exposure. The identified compounds included aeruginosins, spumigins, cyanopeptolins, microginins, namalides, pseudospumigins, anabaenopeptins, mycosporine-like amino acids, nodularins and microcystins. Data showed that cyanobacteria display broad metabolic plasticity upon UVR exposure, including the synthesis and differential expression of a variety of secondary metabolites. This could result in a competitive advantage, supporting cyanobacterial blooms under various UVR light exposures.
Collapse
Affiliation(s)
| | - Vanessa Geraldes
- University of São Paulo, School of Pharmaceutical Sciences, São Paulo-SP, Brazil
| | - Camila M Crnkovic
- University of São Paulo, School of Pharmaceutical Sciences, São Paulo-SP, Brazil
| | - Endrews Delbaje
- University of São Paulo, Centre for Nuclear Energy in Agriculture, Piracicaba-SP, Brazil
| | - Marli F Fiore
- University of São Paulo, Centre for Nuclear Energy in Agriculture, Piracicaba-SP, Brazil
| | - Ernani Pinto
- University of São Paulo, School of Pharmaceutical Sciences, São Paulo-SP, Brazil.,University of São Paulo, Centre for Nuclear Energy in Agriculture, Piracicaba-SP, Brazil
| |
Collapse
|
20
|
Nowruzi B, Porzani SJ. Toxic compounds produced by cyanobacteria belonging to several species of the order Nostocales: A review. J Appl Toxicol 2020; 41:510-548. [PMID: 33289164 DOI: 10.1002/jat.4088] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022]
Abstract
Cyanobacteria are well recognised as producers of a wide range of natural compounds that are in turn recognised as toxins that have potential and useful applications in the future as pharmaceutical agents. The order Nostocales, which is largely overlooked in this regard, has become increasingly recognised as a source of toxin producers including Anabaena, Nostoc, Hapalosiphon, Fischerella, Anabaenopsis, Aphanizomenon, Gloeotrichia, Cylindrospermopsis, Scytonema, Raphidiopsis, Cuspidothrix, Nodularia, Stigonema, Calothrix, Cylindrospermum and Desmonostoc species. The toxin compounds (i.e., microcystins, nodularin, anatoxins, ambiguines, fischerindoles and welwitindolinones) and metabolites are about to have a destructive effect on both inland and aquatic environment aspects. The present review gives an overview of the various toxins that are extracted by the order Nostocales. The current research suggests that these compounds that are produced by cyanobacterial species have promising future considerations as potentially harmful algae and as promising leads for drug discovery.
Collapse
Affiliation(s)
- Bahareh Nowruzi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Samaneh Jafari Porzani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
21
|
Kust A, Řeháková K, Vrba J, Maicher V, Mareš J, Hrouzek P, Chiriac MC, Benedová Z, Tesařová B, Saurav K. Insight into Unprecedented Diversity of Cyanopeptides in Eutrophic Ponds Using an MS/MS Networking Approach. Toxins (Basel) 2020; 12:E561. [PMID: 32878042 PMCID: PMC7551678 DOI: 10.3390/toxins12090561] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/24/2020] [Accepted: 08/28/2020] [Indexed: 12/18/2022] Open
Abstract
Man-made shallow fishponds in the Czech Republic have been facing high eutrophication since the 1950s. Anthropogenic eutrophication and feeding of fish have strongly affected the physicochemical properties of water and its aquatic community composition, leading to harmful algal bloom formation. In our current study, we characterized the phytoplankton community across three eutrophic ponds to assess the phytoplankton dynamics during the vegetation season. We microscopically identified and quantified 29 cyanobacterial taxa comprising non-toxigenic and toxigenic species. Further, a detailed cyanopeptides (CNPs) profiling was performed using molecular networking analysis of liquid chromatography-tandem mass spectrometry (LC-MS/MS) data coupled with a dereplication strategy. This MS networking approach, coupled with dereplication, on the online global natural product social networking (GNPS) web platform led us to putatively identify forty CNPs: fourteen anabaenopeptins, ten microcystins, five cyanopeptolins, six microginins, two cyanobactins, a dipeptide radiosumin, a cyclooctapeptide planktocyclin, and epidolastatin 12. We applied the binary logistic regression to estimate the CNPs producers by correlating the GNPS data with the species abundance. The usage of the GNPS web platform proved a valuable approach for the rapid and simultaneous detection of a large number of peptides and rapid risk assessments for harmful blooms.
Collapse
Affiliation(s)
- Andreja Kust
- Laboratory of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic; (A.K.); (J.M.); (P.H.)
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, 37005 České Budějovice, Czech Republic; (K.Ř.); (J.V.); (M.-C.C.)
| | - Klára Řeháková
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, 37005 České Budějovice, Czech Republic; (K.Ř.); (J.V.); (M.-C.C.)
- Institute of Botany of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic
| | - Jaroslav Vrba
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, 37005 České Budějovice, Czech Republic; (K.Ř.); (J.V.); (M.-C.C.)
- Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic
| | - Vincent Maicher
- Nicholas School of the Environment, Duke University, Durham, NC 27710, USA;
| | - Jan Mareš
- Laboratory of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic; (A.K.); (J.M.); (P.H.)
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, 37005 České Budějovice, Czech Republic; (K.Ř.); (J.V.); (M.-C.C.)
- Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic
| | - Pavel Hrouzek
- Laboratory of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic; (A.K.); (J.M.); (P.H.)
- Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic
| | - Maria-Cecilia Chiriac
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, 37005 České Budějovice, Czech Republic; (K.Ř.); (J.V.); (M.-C.C.)
| | - Zdeňka Benedová
- ENKI, o.p.s. Třeboň, Dukelská 145, 37901 Třeboň, Czech Republic; (Z.B.); (B.T.)
| | - Blanka Tesařová
- ENKI, o.p.s. Třeboň, Dukelská 145, 37901 Třeboň, Czech Republic; (Z.B.); (B.T.)
- Faculty of Agriculture, University of South Bohemia, Applied Ecology Laboratory, 37005 České Budějovice, Czech Republic
| | - Kumar Saurav
- Laboratory of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic; (A.K.); (J.M.); (P.H.)
| |
Collapse
|
22
|
Racine M, Saleem A, Pick FR. Metabolome Variation between Strains of Microcystis aeruginosa by Untargeted Mass Spectrometry. Toxins (Basel) 2019; 11:E723. [PMID: 31835794 PMCID: PMC6950387 DOI: 10.3390/toxins11120723] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/01/2019] [Accepted: 12/04/2019] [Indexed: 12/19/2022] Open
Abstract
Cyanobacteria are notorious for their potential to produce hepatotoxic microcystins (MCs), but other bioactive compounds synthesized in the cells could be as toxic, and thus present interest for characterization. Ultra performance liquid chromatography and high-resolution accurate mass spectrometry (UPLC-QTOF-MS/MS) combined with untargeted analysis was used to compare the metabolomes of five different strains of the common bloom-forming cyanobacterium, Microcystis aeruginosa. Even in microcystin-producing strains, other classes of oligopeptides including cyanopeptolins, aeruginosins, and aerucyclamides, were often the more dominant compounds. The distinct and large variation between strains of the same widespread species highlights the need to characterize the metabolome of a larger number of cyanobacteria, especially as several metabolites other than microcystins can affect ecological and human health.
Collapse
Affiliation(s)
- Marianne Racine
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (A.S.); (F.R.P.)
- Current address: Environment and Climate Change Canada, Canada Centre for Inland Waters, Burlington, ON L7S 1A1, Canada
| | - Ammar Saleem
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (A.S.); (F.R.P.)
| | - Frances R. Pick
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (A.S.); (F.R.P.)
| |
Collapse
|
23
|
Bioactive Peptides Produced by Cyanobacteria of the Genus Nostoc: A Review. Mar Drugs 2019; 17:md17100561. [PMID: 31569531 PMCID: PMC6835634 DOI: 10.3390/md17100561] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/24/2019] [Accepted: 09/27/2019] [Indexed: 11/17/2022] Open
Abstract
Cyanobacteria of the genus Nostoc are widespread in all kinds of habitats. They occur in a free-living state or in association with other organisms. Members of this genus belong to prolific producers of bioactive metabolites, some of which have been recognized as potential therapeutic agents. Of these, peptides and peptide-like structures show the most promising properties and are of a particular interest for both research laboratories and pharmaceutical companies. Nostoc is a sole source of some lead compounds such as cytotoxic cryptophycins, antiviral cyanovirin-N, or the antitoxic nostocyclopeptides. Nostoc also produces the same bioactive peptides as other cyanobacterial genera, but they frequently have some unique modifications in the structure. This includes hepatotoxic microcystins and potent proteases inhibitors such as cyanopeptolins, anabaenopeptins, and microginins. In this review, we described the most studied peptides produced by Nostoc, focusing especially on the structure, the activity, and a potential application of the compounds.
Collapse
|
24
|
Huang IS, Zimba PV. Cyanobacterial bioactive metabolites-A review of their chemistry and biology. HARMFUL ALGAE 2019; 86:139-209. [PMID: 31358273 DOI: 10.1016/j.hal.2019.05.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/14/2018] [Accepted: 11/16/2018] [Indexed: 06/10/2023]
Abstract
Cyanobacterial blooms occur when algal densities exceed baseline population concentrations. Cyanobacteria can produce a large number of secondary metabolites. Odorous metabolites affect the smell and flavor of aquatic animals, whereas bioactive metabolites cause a range of lethal and sub-lethal effects in plants, invertebrates, and vertebrates, including humans. Herein, the bioactivity, chemistry, origin, and biosynthesis of these cyanobacterial secondary metabolites were reviewed. With recent revision of cyanobacterial taxonomy by Anagnostidis and Komárek as part of the Süβwasserflora von Mitteleuropa volumes 19(1-3), names of many cyanobacteria that produce bioactive compounds have changed, thereby confusing readers. The original and new nomenclature are included in this review to clarify the origins of cyanobacterial bioactive compounds. Due to structural similarity, the 157 known bioactive classes produced by cyanobacteria have been condensed to 55 classes. This review will provide a basis for more formal procedures to adopt a logical naming system. This review is needed for efficient management of water resources to understand, identify, and manage cyanobacterial harmful algal bloom impacts.
Collapse
Affiliation(s)
- I-Shuo Huang
- Center for Coastal Studies, Texas A&M University-Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA.
| | - Paul V Zimba
- Center for Coastal Studies, Texas A&M University-Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA
| |
Collapse
|
25
|
Demay J, Bernard C, Reinhardt A, Marie B. Natural Products from Cyanobacteria: Focus on Beneficial Activities. Mar Drugs 2019; 17:E320. [PMID: 31151260 PMCID: PMC6627551 DOI: 10.3390/md17060320] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/21/2019] [Accepted: 05/21/2019] [Indexed: 12/28/2022] Open
Abstract
Cyanobacteria are photosynthetic microorganisms that colonize diverse environments worldwide, ranging from ocean to freshwaters, soils, and extreme environments. Their adaptation capacities and the diversity of natural products that they synthesize, support cyanobacterial success in colonization of their respective ecological niches. Although cyanobacteria are well-known for their toxin production and their relative deleterious consequences, they also produce a large variety of molecules that exhibit beneficial properties with high potential in various fields (e.g., a synthetic analog of dolastatin 10 is used against Hodgkin's lymphoma). The present review focuses on the beneficial activities of cyanobacterial molecules described so far. Based on an analysis of 670 papers, it appears that more than 90 genera of cyanobacteria have been observed to produce compounds with potentially beneficial activities in which most of them belong to the orders Oscillatoriales, Nostocales, Chroococcales, and Synechococcales. The rest of the cyanobacterial orders (i.e., Pleurocapsales, Chroococcidiopsales, and Gloeobacterales) remain poorly explored in terms of their molecular diversity and relative bioactivity. The diverse cyanobacterial metabolites possessing beneficial bioactivities belong to 10 different chemical classes (alkaloids, depsipeptides, lipopeptides, macrolides/lactones, peptides, terpenes, polysaccharides, lipids, polyketides, and others) that exhibit 14 major kinds of bioactivity. However, no direct relationship between the chemical class and the respective bioactivity of these molecules has been demonstrated. We further selected and specifically described 47 molecule families according to their respective bioactivities and their potential uses in pharmacology, cosmetology, agriculture, or other specific fields of interest. With this up-to-date review, we attempt to present new perspectives for the rational discovery of novel cyanobacterial metabolites with beneficial bioactivity.
Collapse
Affiliation(s)
- Justine Demay
- UMR 7245 MCAM, Muséum National d'Histoire Naturelle-CNRS, Paris, 12 rue Buffon, CP 39, 75231 Paris CEDEX 05, France.
- Thermes de Balaruc-les-Bains, 1 rue du Mont Saint-Clair BP 45, 34540 Balaruc-Les-Bains, France.
| | - Cécile Bernard
- UMR 7245 MCAM, Muséum National d'Histoire Naturelle-CNRS, Paris, 12 rue Buffon, CP 39, 75231 Paris CEDEX 05, France.
| | - Anita Reinhardt
- Thermes de Balaruc-les-Bains, 1 rue du Mont Saint-Clair BP 45, 34540 Balaruc-Les-Bains, France.
| | - Benjamin Marie
- UMR 7245 MCAM, Muséum National d'Histoire Naturelle-CNRS, Paris, 12 rue Buffon, CP 39, 75231 Paris CEDEX 05, France.
| |
Collapse
|
26
|
Riba M, Kiss-Szikszai A, Gonda S, Boros G, Vitál Z, Borsodi AK, Krett G, Borics G, Ujvárosi AZ, Vasas G. Microcystis Chemotype Diversity in the Alimentary Tract of Bigheaded Carp. Toxins (Basel) 2019; 11:E288. [PMID: 31121822 PMCID: PMC6563263 DOI: 10.3390/toxins11050288] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/04/2019] [Accepted: 05/17/2019] [Indexed: 12/22/2022] Open
Abstract
Most cyanobacterial organisms included in the genus Microcystis can produce a wide repertoire of secondary metabolites. In the mid-2010s, summer cyanobacterial blooms of Microcystis sp. occurred regularly in Lake Balaton. During this period, we investigated how the alimentary tract of filter-feeding bigheaded carps could deliver different chemotypes of viable cyanobacteria with specific peptide patterns. Twenty-five Microcystis strains were isolated from pelagic plankton samples (14 samples) and the hindguts of bigheaded carp (11 samples), and three bloom samples were collected from the scums of cyanobacterial blooms. An LC-MS/MS-based untargeted approach was used to analyze peptide patterns, which identified 36 anabaenopeptin, 17 microginin, and 13 microcystin variants. Heat map clustering visualization was used to compare the identified chemotypes. A lack of separation was observed in peptide patterns of Microcystis that originated from hindguts, water samples, and bloom-samples. Except for 13 peptides, all other congeners were detected from the viable and cultivated chemotypes of bigheaded carp. This finding suggests that the alimentary tract of bigheaded carps is not simply an extreme habitat, but may also supply the cyanobacterial strains that represent the pelagic chemotypes.
Collapse
Affiliation(s)
- Milán Riba
- Department of Botany, Institute of Biology and Ecology, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary.
| | - Attila Kiss-Szikszai
- Department of Organic Chemistry, Institute of Chemistry, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary.
| | - Sándor Gonda
- Department of Botany, Institute of Biology and Ecology, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary.
| | - Gergely Boros
- Balaton Limnological Institute, MTA Centre for Ecological Research, H-8237 Tihany, Hungary.
| | - Zoltán Vitál
- Balaton Limnological Institute, MTA Centre for Ecological Research, H-8237 Tihany, Hungary.
| | - Andrea Kériné Borsodi
- Department of Microbiology, ELTE Eötvös Loránd University, H-1117 Budapest, Hungary.
- Danube Research Institute, MTA Centre for Ecological Research, H-1113 Budapest, Hungary.
| | - Gergely Krett
- Department of Microbiology, ELTE Eötvös Loránd University, H-1117 Budapest, Hungary.
| | - Gábor Borics
- Danube Research Institute, MTA Centre for Ecological Research, H-1113 Budapest, Hungary.
| | - Andrea Zsuzsanna Ujvárosi
- Department of Botany, Institute of Biology and Ecology, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary.
| | - Gábor Vasas
- Department of Botany, Institute of Biology and Ecology, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary.
| |
Collapse
|
27
|
Huang IS, Zimba PV. Cyanobacterial bioactive metabolites-A review of their chemistry and biology. HARMFUL ALGAE 2019; 83:42-94. [PMID: 31097255 DOI: 10.1016/j.hal.2018.11.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/14/2018] [Accepted: 11/16/2018] [Indexed: 06/09/2023]
Abstract
Cyanobacterial blooms occur when algal densities exceed baseline population concentrations. Cyanobacteria can produce a large number of secondary metabolites. Odorous metabolites affect the smell and flavor of aquatic animals, whereas bioactive metabolites cause a range of lethal and sub-lethal effects in plants, invertebrates, and vertebrates, including humans. Herein, the bioactivity, chemistry, origin, and biosynthesis of these cyanobacterial secondary metabolites were reviewed. With recent revision of cyanobacterial taxonomy by Anagnostidis and Komárek as part of the Süβwasserflora von Mitteleuropa volumes 19(1-3), names of many cyanobacteria that produce bioactive compounds have changed, thereby confusing readers. The original and new nomenclature are included in this review to clarify the origins of cyanobacterial bioactive compounds. Due to structural similarity, the 157 known bioactive classes produced by cyanobacteria have been condensed to 55 classes. This review will provide a basis for more formal procedures to adopt a logical naming system. This review is needed for efficient management of water resources to understand, identify, and manage cyanobacterial harmful algal bloom impacts.
Collapse
Affiliation(s)
- I-Shuo Huang
- Center for Coastal Studies, Texas A&M University Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA.
| | - Paul V Zimba
- Center for Coastal Studies, Texas A&M University Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA
| |
Collapse
|
28
|
Hasin O, Carmeli S. Isolation and Structure Elucidation of Secondary Metabolites from a Microcystis sp. Bloom Material Collected in Southern Israel. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801301020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The hydrophilic extract of Microcystis sp. bloom material collected from Bror Hayil Reservoir in southern Israel afforded four new metabolites, (2 S,3 S)-3-hydeoxy-1,4-diphenylbutan-2-yl-acetate, aeruginosins BH604, BH462A and BH462B, and two known metabolites cyanopeptolins S and SS. The planar structure of 1–4 was established by analyses of their 1D and 2D NMR data and mass spectrometric data. The absolute configurations of the chiral centers of 1 were established by Mosher method and analysis of the coupling constants between H-2 and H-3, and those of 2–4 by Merfay's method and advanced Merfay's method and chiral HPLC. The compounds do not inhibit the serine proteases trypsin and thrombin.
Collapse
Affiliation(s)
- Ohad Hasin
- Raymond and Beverly Sackler School of Chemistry and Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Shmuel Carmeli
- Raymond and Beverly Sackler School of Chemistry and Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| |
Collapse
|
29
|
Inhibitors of Serine Proteases from a Microcystis sp. Bloom Material Collected from Timurim Reservoir, Israel. Mar Drugs 2017; 15:md15120371. [PMID: 29194403 PMCID: PMC5742831 DOI: 10.3390/md15120371] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 11/19/2017] [Accepted: 11/20/2017] [Indexed: 01/13/2023] Open
Abstract
Two new natural products, micropeptin TR1058 (1) and aeruginosin TR642 (2), were isolated from the hydrophilic extract of bloom material of Microcystis sp. collected from the Timurim water reservoir in Israel. The structures of compounds 1 and 2 were determined using 1D and 2D NMR spectroscopy and HR ESI MS and MS/MS techniques. Micropeptin TR1058 (1) was extremely unstable under the isolation conditions, and several degradation products were identified. NMR analysis of aeruginosin TR642 (2) revealed a mixture of eight isomers, and elucidation of its structure was challenging. Aeruginosin TR642 contains a 4,5-didehydroaraginal subunit that has not been described before. Micropeptin TR1058 (1) inhibited chymotrypsin with an IC50 of 6.78 µM, and aeruginosin TR642 (2) inhibited trypsin and thrombin with inhibition concentration (IC50) values of 3.80 and 0.85 µM, respectively. The structures and biological activities of the new compounds are discussed.
Collapse
|
30
|
FVIIa-sTF and Thrombin Inhibitory Activities of Compounds Isolated from Microcystis aeruginosa K-139. Mar Drugs 2017; 15:md15090275. [PMID: 28867804 PMCID: PMC5618414 DOI: 10.3390/md15090275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 08/11/2017] [Accepted: 08/25/2017] [Indexed: 01/09/2023] Open
Abstract
The rise of bleeding and bleeding complications caused by oral anticoagulant use are serious problems nowadays. Strategies that block the initiation step in blood coagulation involving activated factor VII-tissue factor (fVIIa-TF) have been considered. This study explores toxic Microcystis aeruginosa K-139, from Lake Kasumigaura, Ibaraki, Japan, as a promising cyanobacterium for isolation of fVIIa-sTF inhibitors. M. aeruginosa K-139 underwent reversed-phase solid-phase extraction (ODS-SPE) from 20% MeOH to MeOH elution with 40%-MeOH increments, which afforded aeruginosin K-139 in the 60% MeOH fraction; micropeptin K-139 and microviridin B in the MeOH fraction. Aeruginosin K-139 displayed an fVIIa-sTF inhibitory activity of ~166 µM, within a 95% confidence interval. Micropeptin K-139 inhibited fVIIa-sTF with EC50 10.62 µM, which was more efficient than thrombin inhibition of EC50 26.94 µM. The thrombin/fVIIa-sTF ratio of 2.54 in micropeptin K-139 is higher than those in 4-amidinophenylmethane sulfonyl fluoride (APMSF) and leupeptin, when used as positive controls. This study proves that M. aeruginosa K-139 is a new source of fVIIa-sTF inhibitors. It also opens a new avenue for micropeptin K-139 and related depsipeptides as fVIIa-sTF inhibitors.
Collapse
|
31
|
Chen J, Meng S, Xu H, Zhang Z, Wu X. Effects of Microcystis on Hypothalamic-Pituitary-Gonadal-Liver Axis in Nile Tilapia (Oreochromis niloticus). BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 98:562-566. [PMID: 28236009 DOI: 10.1007/s00128-017-2051-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 02/17/2017] [Indexed: 06/06/2023]
Abstract
In the present study, Nile tilapia (Oreochromis niloticus) were used to assess the endocrine disruption potential of Microcytis aeruginosa. Male Nile tilapia were exposed to lyophilized M. aeruginosa or purified microcystin-LR (8.3 μg/L) for 28 days. The levels of serum hormones (17β-estradiol and testosterone) and transcripts of selected genes in the hypothalamus-pituitary-gonadal-liver axis were analyzed. The results showed that serum hormones were significantly up-regulated, and transcripts of 13 genes (GHRH, PACAP, GH, GHR1, GHR2, IGF1, IGF2, CYP19a, CYP19b, 3β-HSD1, 20β-HSD, 17β-HSD1 and 17β-HSD8) were significantly altered after Microcytis exposure. These results indicate that fish reproduction can be altered in a Microcystis bloom-contaminated aquatic environment.
Collapse
Affiliation(s)
- Jiazhang Chen
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
- Key Laboratory of Fishery Eco-environment Assessment and Resource Conservation in Middle and Lower Reaches of the Yangtze River, CAFS, Wuxi, 214081, China
| | - Shunlong Meng
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
- Key Laboratory of Fishery Eco-environment Assessment and Resource Conservation in Middle and Lower Reaches of the Yangtze River, CAFS, Wuxi, 214081, China
| | - Hai Xu
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Zhen Zhang
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Xiangyang Wu
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| |
Collapse
|
32
|
Total Synthesis and Stereochemical Assignment of Nostosin B. Mar Drugs 2017; 15:md15030058. [PMID: 28264450 PMCID: PMC5367015 DOI: 10.3390/md15030058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 02/22/2017] [Indexed: 02/04/2023] Open
Abstract
Nostosins A and B were isolated from a hydrophilic extract of Nostoc sp. strain from Iran, which exhibits excellent tryps inhibitory activity. Nostosin A was the most potent natural tripeptide aldehyde as trypsin inhibitor up to now. Both R- and S-2-hydroxy-4-(4-hydroxy-phenyl) butanoic acid (Hhpba) were prepared and incorporated into the total synthesis of nostosin B, respectively. Careful comparison of the NMR spectra and optical rotation data of synthetic nostosin B (1a and 1b) with the natural product led to the unambiguous identification of the R-configuration of the Hhpba fragment, which was further confirmed by co-injection with the authentic sample on HPLC using both reversed phase column and the chiral AD-RH column.
Collapse
|
33
|
Chung MC, Chan YH, Chang WJ, Hou DR. Synthesis of 2,3-dihydro-1H-pyrroles by intramolecular cyclization of N-(3-butynyl)-sulfonamides. Org Biomol Chem 2017; 15:3783-3790. [DOI: 10.1039/c7ob00528h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydroamination of 3-butynamine derivatives to give non-aromatic 2,3-dihydropyrroles was achieved by using PdCl2 or AuCl as the catalyst.
Collapse
Affiliation(s)
- Min-Ching Chung
- Department of Chemistry
- National Central University
- Jhong-li
- Taiwan
| | - Yung-Hsiang Chan
- Department of Chemistry
- National Central University
- Jhong-li
- Taiwan
| | - Wen-Jung Chang
- Department of Chemistry
- National Central University
- Jhong-li
- Taiwan
| | - Duen-Ren Hou
- Department of Chemistry
- National Central University
- Jhong-li
- Taiwan
| |
Collapse
|
34
|
Mazur-Marzec H, Bertos-Fortis M, Toruńska-Sitarz A, Fidor A, Legrand C. Chemical and Genetic Diversity of Nodularia spumigena from the Baltic Sea. Mar Drugs 2016; 14:md14110209. [PMID: 27834904 PMCID: PMC5128752 DOI: 10.3390/md14110209] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 10/26/2016] [Accepted: 11/02/2016] [Indexed: 12/31/2022] Open
Abstract
Nodularia spumigena is a toxic, filamentous cyanobacterium occurring in brackish waters worldwide, yet forms extensive recurrent blooms in the Baltic Sea. N. spumigena produces several classes of non-ribosomal peptides (NRPs) that are active against several key metabolic enzymes. Previously, strains from geographically distant regions showed distinct NRP metabolic profiles. In this work, conspecific diversity in N. spumigena was studied using chemical and genetic approaches. NRP profiles were determined in 25 N. spumigena strains isolated in different years and from different locations in the Baltic Sea using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Genetic diversity was assessed by targeting the phycocyanin intergenic spacer and flanking regions (cpcBA-IGS). Overall, 14 spumigins, 5 aeruginosins, 2 pseudaeruginosins, 2 nodularins, 36 anabaenopeptins, and one new cyanopeptolin-like peptide were identified among the strains. Seven anabaenopeptins were new structures; one cyanopeptolin-like peptide was discovered in N. spumigena for the first time. Based on NRP profiles and cpcBA-IGS sequences, the strains were grouped into two main clusters without apparent influence of year and location, indicating persistent presence of these two subpopulations in the Baltic Sea. This study is a major step in using chemical profiling to explore conspecific diversity with a higher resolution than with a sole genetic approach.
Collapse
Affiliation(s)
- Hanna Mazur-Marzec
- Department of Marine Biotechnology, University of Gdansk, Marszałka J. Piłusudskiego 46, 81378 Gdynia, Poland.
| | - Mireia Bertos-Fortis
- Department of Biology and Environmental Science, Center of Ecology and Evolution in Microbial Model Systems, Linnaeus University, 39182 Kalmar, Sweden.
| | - Anna Toruńska-Sitarz
- Department of Marine Biotechnology, University of Gdansk, Marszałka J. Piłusudskiego 46, 81378 Gdynia, Poland.
| | - Anna Fidor
- Department of Marine Biotechnology, University of Gdansk, Marszałka J. Piłusudskiego 46, 81378 Gdynia, Poland.
| | - Catherine Legrand
- Department of Biology and Environmental Science, Center of Ecology and Evolution in Microbial Model Systems, Linnaeus University, 39182 Kalmar, Sweden.
| |
Collapse
|
35
|
|
36
|
Lyu K, Meng Q, Zhu X, Dai D, Zhang L, Huang Y, Yang Z. Changes in iTRAQ-Based Proteomic Profiling of the Cladoceran Daphnia magna Exposed to Microcystin-Producing and Microcystin-Free Microcystis aeruginosa. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:4798-4807. [PMID: 27057760 DOI: 10.1021/acs.est.6b00101] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Global warming and increased nutrient fluxes cause cyanobacterial blooms in freshwater ecosystems. These phenomena have increased the concern for human health and ecosystem services. The mass occurrences of toxic cyanobacteria strongly affect freshwater zooplankton communities, especially the unselective filter feeder Daphnia. However, the molecular mechanisms of cyanobacterial toxicity remain poorly understood. This study is the first to combine the established body growth rate (BGR), which is an indicator of life-history fitness, with differential peptide labeling (iTRAQ)-based proteomics in Daphnia magna influenced by microcystin-producing (MP) and microcystin-free (MF) Microcystis aeruginosa. A significant decrease in BGR was detected when D. magna was exposed to MP or MF M. aeruginosa. Conducting iTRAQ proteomic analyses, we successfully identified and quantified 211 proteins with significant changes in expression. A cluster of orthologous groups revealed that M. aeruginosa-affected differential proteins were strongly associated with lipid, carbohydrate, amino acid, and energy metabolism. These parameters could potentially explain the reduced fitness based on the cost of the substance metabolism.
Collapse
Affiliation(s)
- Kai Lyu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University , 1 Wenyuan Road, Nanjing 210023, China
| | - Qingguo Meng
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University , 1 Wenyuan Road, Nanjing 210023, China
| | - Xuexia Zhu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University , 1 Wenyuan Road, Nanjing 210023, China
| | - Daoxin Dai
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University , 1 Wenyuan Road, Nanjing 210023, China
| | - Lu Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University , 1 Wenyuan Road, Nanjing 210023, China
| | - Yuan Huang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University , 1 Wenyuan Road, Nanjing 210023, China
| | - Zhou Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University , 1 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
37
|
Busto E, Simon RC, Richter N, Kroutil W. One-Pot, Two-Module Three-Step Cascade To Transform Phenol Derivatives to Enantiomerically Pure (R)- or (S)-p-Hydroxyphenyl Lactic Acids. ACS Catal 2016. [DOI: 10.1021/acscatal.6b00030] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Eduardo Busto
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, A-8010-Graz, Austria
| | - Robert C. Simon
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, A-8010-Graz, Austria
| | - Nina Richter
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, A-8010-Graz, Austria
- Austrian Centre of Industrial Biotechnology (ACIB), Petersgasse 14, 8010 Graz, Austria
| | - Wolfgang Kroutil
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, A-8010-Graz, Austria
| |
Collapse
|
38
|
Determination of FVIIa-sTF Inhibitors in Toxic Microcystis Cyanobacteria by LC-MS Technique. Mar Drugs 2015; 14:7. [PMID: 26729138 PMCID: PMC4728504 DOI: 10.3390/md14010007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/18/2015] [Accepted: 12/21/2015] [Indexed: 11/29/2022] Open
Abstract
The blood coagulation cascade involves the human coagulation factors thrombin and an activated factor VII (fVIIa). Thrombin and fVIIa are vitamin-K-dependent clotting factors associated with bleeding, bleeding complications and disorders. Thrombin and fVIIa cause excessive bleeding when treated with vitamin-K antagonists. In this research, we explored different strains of toxic Microcystis aeruginosa and cyanobacteria blooms for the probable fVIIa-soluble Tissue Factor (fVIIa-sTF) inhibitors. The algal cells were subjected to acidification, and reverse phase (ODS) chromatography-solid phase extraction eluted by water to 100% MeOH with 20%-MeOH increments except for M. aeruginosa NIES-89, from the National Institute for Environmental Studies (NIES), which was eluted with 5%-MeOH increments as an isolation procedure to separate aeruginosins 89A and B from co-eluting microcystins. The 40%–80% MeOH fractions of the cyanobacterial extract are active against fVIIa-sTF. The fVIIa-sTF active fractions from cultured cyanobacteria and cyanobacteria blooms were subjected to liquid chromatography-mass spectrometry (LC-MS). The 60% MeOH fraction of M. aeruginosa K139 exhibited an m/z 603 [M + H]+ attributed to aeruginosin K139, and the 40% MeOH fraction of M. aeruginosa NIES-89 displayed ions with m/z 617 [M − SO3 + H]+ and m/z [M + H]+ 717, which attributed to aeruginosin 89. Aeruginosins 102A/B and 298A/B were also observed from other toxic strains of M. aeruginosa with positive fVIIa-sTF inhibitory activity. The active fractions contained cyanobacterial peptides of the aeruginosin class as fVIIa-sTF inhibitors detected by LC-MS.
Collapse
|
39
|
Mazur-Marzec H, Sutryk K, Hebel A, Hohlfeld N, Pietrasik A, Błaszczyk A. Nodularia spumigena peptides--accumulation and effect on aquatic invertebrates. Toxins (Basel) 2015; 7:4404-20. [PMID: 26529012 PMCID: PMC4663510 DOI: 10.3390/toxins7114404] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 10/21/2015] [Accepted: 10/23/2015] [Indexed: 01/24/2023] Open
Abstract
Thus far, the negative effects of Nodularia spumigena blooms on aquatic organisms have been mainly attributed to the production of the hepatotoxic nodularin (NOD). In the current work, the accumulation of other N. spumigena metabolites in blue mussels and crustaceans, and their effect on Thamnocephalus platyurus and Artemia franciscana, were examined. The liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses provided evidence that both blue mussels collected after a cyanobacterial bloom in the Baltic Sea and the crustaceans exposed under laboratory conditions to N. spumigena extract accumulated the cyclic anabaenopeptins (APs). In the crustaceans, the linear peptides, spumigins (SPUs) and aeruginosins (AERs), were additionally detected. Exposure of T. platyurus and A. franciscana to N. spumigena extract confirmed the negative effect of nodularin on the organisms. However, high numbers of dead crustaceans were also recorded in the nodularin-free fraction, which contained protease inhibitors classified to spumigins and aeruginosins. These findings indicate that cyanobacterial toxicity to aquatic organisms is a complex phenomenon and the induced effects can be attributed to diverse metabolites, not only to the known hepatotoxins.
Collapse
Affiliation(s)
- Hanna Mazur-Marzec
- Department of Marine Biotechnology, Institute of Oceanography, University of Gdańsk, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland.
| | - Katarzyna Sutryk
- Department of Marine Biotechnology, Institute of Oceanography, University of Gdańsk, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland.
| | - Agnieszka Hebel
- Department of Marine Biotechnology, Institute of Oceanography, University of Gdańsk, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland.
| | - Natalia Hohlfeld
- Department of Marine Biotechnology, Institute of Oceanography, University of Gdańsk, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland.
| | - Anna Pietrasik
- Department of Marine Biotechnology, Institute of Oceanography, University of Gdańsk, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland.
| | - Agata Błaszczyk
- Department of Marine Biotechnology, Institute of Oceanography, University of Gdańsk, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland.
| |
Collapse
|
40
|
Sanz M, Andreote APD, Fiore MF, Dörr FA, Pinto E. Structural Characterization of New Peptide Variants Produced by Cyanobacteria from the Brazilian Atlantic Coastal Forest Using Liquid Chromatography Coupled to Quadrupole Time-of-Flight Tandem Mass Spectrometry. Mar Drugs 2015; 13:3892-919. [PMID: 26096276 PMCID: PMC4483662 DOI: 10.3390/md13063892] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 05/14/2015] [Accepted: 05/21/2015] [Indexed: 12/25/2022] Open
Abstract
Cyanobacteria from underexplored and extreme habitats are attracting increasing attention in the search for new bioactive substances. However, cyanobacterial communities from tropical and subtropical regions are still largely unknown, especially with respect to metabolite production. Among the structurally diverse secondary metabolites produced by these organisms, peptides are by far the most frequently described structures. In this work, liquid chromatography/electrospray ionization coupled to high resolution quadrupole time-of-flight tandem mass spectrometry with positive ion detection was applied to study the peptide profile of a group of cyanobacteria isolated from the Southeastern Brazilian coastal forest. A total of 38 peptides belonging to three different families (anabaenopeptins, aeruginosins, and cyanopeptolins) were detected in the extracts. Of the 38 peptides, 37 were detected here for the first time. New structural features were proposed based on mass accuracy data and isotopic patterns derived from full scan and MS/MS spectra. Interestingly, of the 40 surveyed strains only nine were confirmed to be peptide producers; all of these strains belonged to the order Nostocales (three Nostoc sp., two Desmonostoc sp. and four Brasilonema sp.).
Collapse
Affiliation(s)
- Miriam Sanz
- Faculty of Pharmaceutical Science, University of São Paulo, Avenida Lineu Prestes 580, Bl-17-05508-900 São Paulo, SP, Brazil.
| | - Ana Paula Dini Andreote
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário 303, 13400-970 Piracicaba, SP, Brazil.
| | - Marli Fatima Fiore
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário 303, 13400-970 Piracicaba, SP, Brazil.
| | - Felipe Augusto Dörr
- Faculty of Pharmaceutical Science, University of São Paulo, Avenida Lineu Prestes 580, Bl-17-05508-900 São Paulo, SP, Brazil.
| | - Ernani Pinto
- Faculty of Pharmaceutical Science, University of São Paulo, Avenida Lineu Prestes 580, Bl-17-05508-900 São Paulo, SP, Brazil.
| |
Collapse
|
41
|
Dailler D, Danoun G, Ourri B, Baudoin O. Divergent Synthesis of Aeruginosins Based on a C(sp3)H Activation Strategy. Chemistry 2015; 21:9370-9. [DOI: 10.1002/chem.201501370] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Indexed: 02/03/2023]
|
42
|
Dailler D, Danoun G, Baudoin O. A General and Scalable Synthesis of Aeruginosin Marine Natural Products Based on Two Strategic C(sp3)H Activation Reactions. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201500066] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
43
|
Dailler D, Danoun G, Baudoin O. A General and Scalable Synthesis of Aeruginosin Marine Natural Products Based on Two Strategic C(sp3)H Activation Reactions. Angew Chem Int Ed Engl 2015; 54:4919-22. [DOI: 10.1002/anie.201500066] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Indexed: 11/09/2022]
|
44
|
High levels of structural diversity observed in microcystins from Microcystis CAWBG11 and characterization of six new microcystin congeners. Mar Drugs 2014; 12:5372-95. [PMID: 25402827 PMCID: PMC4245536 DOI: 10.3390/md12115372] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 10/21/2014] [Accepted: 10/23/2014] [Indexed: 01/18/2023] Open
Abstract
Microcystins (MCs) are cyclic peptides produced by cyanobacteria, which can be harmful to humans and animals when ingested. Differences in the coding of the non‑ribosomal peptide synthetase/polyketide synthase enzyme complex responsible for microcystin production have resulted in more than 100 microcystin variants being reported to date. The microcystin diversity of Microcystis CAWBG11 was investigated using matrix-assisted laser desorption/ionization-time of flight mass spectrometry and liquid chromatography-mass spectrometry. This revealed that CAWBG11 simultaneously produced 21 known microcystins and six new congeners: [Asp3] MC-RA, [Asp3] MC-RAba, [Asp3] MC-FA, [Asp3] MC-WA, MC-FAba and MC-FL. The new congeners were putatively characterized by tandem mass spectrometry and chemical derivatization. A survey of the microcystin congeners produced by 49 cyanobacterial strains documented in scientific literature showed that cyanobacteria generally produce four microcystin congeners, but strains which produce up to 47 microcystin congeners have been reported. Microcystis CAWBG11 (which produces at least 27 congeners) was positioned in the top ten percentile of the strains surveyed, and showed fluidity of the amino acids incorporated into both position two and position four.
Collapse
|
45
|
Grabowska M, Kobos J, Toruńska-Sitarz A, Mazur-Marzec H. Non-ribosomal peptides produced by Planktothrix agardhii from Siemianówka Dam Reservoir SDR (northeast Poland). Arch Microbiol 2014; 196:697-707. [PMID: 24972671 PMCID: PMC4168019 DOI: 10.1007/s00203-014-1008-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 06/12/2014] [Accepted: 06/12/2014] [Indexed: 10/31/2022]
Abstract
Planktothtrix agardhii (Oscillatoriales) is a filamentous cyanobacterium, which frequently forms blooms in shallow, polymictic and eutrophicated waters. This species is also a rich source of unique linear and cyclic peptides. In the current study, the profile of the peptides in samples from the P. agardhii-dominated Siemianówka Dam Reservoir (SDR) (northeast Poland) was analyzed for four subsequent years (2009-2012). The LC-MS/MS analyses revealed the presence of 33 peptides. Twelve of the most abundant ones, including five microcystins, five anabaenopeptins, one aeruginosin and one planktocyclin, were present in all field samples collected during the study. The detection of different peptides in two P. agardhii isolates indicated that the SDR population was composed of several chemotypes, characterized by different peptide patterns. The total concentration of microcystins (MCs) positively correlated with the biomass of P. agardhii. Between subsequent years, the changes in the ratio of the total MCs concentration to the biomass of P. agardhii were noticed, but they were less than threefold. This is the first study on the production of different classes of non-ribosomal peptides by freshwater cyanobacteria in Poland.
Collapse
Affiliation(s)
- Magdalena Grabowska
- Department of Hydrobiology, University of Białystok, Świerkowa 20B, 15-950 Białystok, Poland
| | - Justyna Kobos
- Institute of Oceanography, University of Gdańsk, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Anna Toruńska-Sitarz
- Institute of Oceanography, University of Gdańsk, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Hanna Mazur-Marzec
- Institute of Oceanography, University of Gdańsk, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland
| |
Collapse
|
46
|
Kohler E, Grundler V, Häussinger D, Kurmayer R, Gademann K, Pernthaler J, Blom JF. The toxicity and enzyme activity of a chlorine and sulfate containing aeruginosin isolated from a non-microcystin-producing Planktothrix strain. HARMFUL ALGAE 2014; 39:154-160. [PMID: 28100989 PMCID: PMC5238944 DOI: 10.1016/j.hal.2014.07.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The toxicity of six different Planktothrix strains was examined in acute toxicity assays with the crustacean Thamnocephalus platyurus. The presence of toxicity in two strains could be explained by the occurrence of microcystins. The other four Planktothrix strains were not able to produce microcystins due to different mutations in the microcystin synthetase (mcy) gene cluster. In these strains, toxicity was attributed to the presence of chlorine and sulfate containing compounds. The main representative, called aeruginosin 828A, of such a compound in the Planktothrix strain 91/1 was isolated, and structure elucidation by 2D-NMR and MS methods revealed the presence of phenyllactic acid (Pla), chloroleucine (Cleu), 2-carboxy-6-(4'-sulfo-xylosyl)-octahydroindole (Choi), and 3-aminoethyl-1-N-amidino-Δ-3-pyrroline (Aeap) residues. Aeruginosin 828A was found to be toxic for Thamnocephalus platyurus with a LC50 value of 22.4 µM, which is only slightly higher than the toxicity found for microcystins. Additionally, very potent inhibition values for thrombin (IC50 = 21.8 nM) and for trypsin (IC50 = 112 nM) have been determined for aeruginosin 828A. These data support the hypothesis that aeruginosins containing chlorine and sulfate groups, which were found in microcystin-deficient Planktothrix strains, can be considered as another class of toxins.
Collapse
Affiliation(s)
- Esther Kohler
- Limnological Station, Institute of Plant Biology, University of Zürich, Seestrasse 187, CH-8802 Kilchberg, Switzerland
| | - Verena Grundler
- University of Basel, Department of Chemistry, St. Johanns-Ring 19, CH-4056 Basel, Switzerland
| | - Daniel Häussinger
- University of Basel, Department of Chemistry, St. Johanns-Ring 19, CH-4056 Basel, Switzerland
| | - Rainer Kurmayer
- Research Institute for Limnology, University of Innsbruck, Mondseestrasse 9, A-5310 Mondsee, Austria
| | - Karl Gademann
- University of Basel, Department of Chemistry, St. Johanns-Ring 19, CH-4056 Basel, Switzerland
| | - Jakob Pernthaler
- Limnological Station, Institute of Plant Biology, University of Zürich, Seestrasse 187, CH-8802 Kilchberg, Switzerland
| | - Judith F. Blom
- Limnological Station, Institute of Plant Biology, University of Zürich, Seestrasse 187, CH-8802 Kilchberg, Switzerland
- corresponding author: Tel.: +41 44 634 9212; fax +41 44 634 9225;
| |
Collapse
|
47
|
Three aeruginosins and a microviridin from a bloom assembly of Microcystis spp. collected from a fishpond near Kibbutz Lehavot HaBashan, Israel. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.07.057] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
48
|
Liu L, Jokela J, Wahlsten M, Nowruzi B, Permi P, Zhang YZ, Xhaard H, Fewer DP, Sivonen K. Nostosins, Trypsin Inhibitors Isolated from the Terrestrial Cyanobacterium Nostoc sp. Strain FSN. JOURNAL OF NATURAL PRODUCTS 2014; 77:1784-1790. [PMID: 25069058 DOI: 10.1021/np500106w] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Two new trypsin inhibitors, nostosin A (1) and B (2), were isolated from a hydrophilic extract of Nostoc sp. strain FSN, which was collected from a paddy field in the Golestan Province of Iran. Nostosins A (1) and B (2) are composed of three subunits, 2-hydroxy-4-(4-hydroxyphenyl)butanoic acid (Hhpba), L-Ile, and L-argininal (1) or argininol (2). Nostosins A (1) and B (2) exhibited IC50 values of 0.35 and 55 μM against porcine trypsin, respectively, suggesting that the argininal aldehyde group plays a crucial role in the efficient inhibition of trypsin. Molecular docking of nostosin A (1) (449 Da), leupeptin (426 Da, IC50 0.5 μM), and spumigin E (610 Da, IC50 < 0.1 μM) with trypsin suggested prominent binding similarity between nostosin A (1) and leupeptin but only partial binding similarity with spumigin E. The number of hydrogen bonds between ligands and trypsin increased according to the length and size of the ligand molecule, and the docking affinity values followed the measured IC50 values. Nostosin A (1) is the first highly potent three-subunit trypsin inhibitor with potency comparable to the known commercial trypsin inhibitor leupeptin. These findings expand the known diversity of short-chain linear peptide protease inhibitors produced by cyanobacteria.
Collapse
Affiliation(s)
- Liwei Liu
- Division of Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of Helsinki , P.O. Box 56, 00014, Helsinki, Finland
| | - Jouni Jokela
- Division of Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of Helsinki , P.O. Box 56, 00014, Helsinki, Finland
| | - Matti Wahlsten
- Division of Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of Helsinki , P.O. Box 56, 00014, Helsinki, Finland
| | - Bahareh Nowruzi
- Department of Biology, Faculty of Science, Tarbiat Moallem University , 49 Dr. Mofatteh Avenue, P.O. Box 158153587, 15614, Tehran, Iran
| | - Perttu Permi
- Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki , P.O. Box 65, 00014, Helsinki, Finland
| | - Yue Zhou Zhang
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki , P.O. Box 56, 00014, Helsinki, Finland
| | - Henri Xhaard
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki , P.O. Box 56, 00014, Helsinki, Finland
| | - David P Fewer
- Division of Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of Helsinki , P.O. Box 56, 00014, Helsinki, Finland
| | - Kaarina Sivonen
- Division of Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of Helsinki , P.O. Box 56, 00014, Helsinki, Finland
| |
Collapse
|
49
|
Agha R, Quesada A. Oligopeptides as biomarkers of cyanobacterial subpopulations. Toward an understanding of their biological role. Toxins (Basel) 2014; 6:1929-50. [PMID: 24960202 PMCID: PMC4073138 DOI: 10.3390/toxins6061929] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 06/09/2014] [Accepted: 06/16/2014] [Indexed: 11/25/2022] Open
Abstract
Cyanobacterial oligopeptides comprise a wide range of bioactive and/or toxic compounds. While current research is strongly focused on exploring new oligopeptide variants and their bioactive properties, the biological role of these compounds remains elusive. Oligopeptides production abilities show a remarkably patchy distribution among conspecific strains. This observation has prompted alternative approaches to unveil their adaptive value, based on the use of cellular oligopeptide compositions as biomarkers of intraspecific subpopulations or chemotypes in freshwater cyanobacteria. Studies addressing the diversity, distribution, and dynamics of chemotypes in natural systems have provided important insights into the structure and ecology of cyanobacterial populations and the adaptive value of oligopeptides. This review presents an overview of the fundamentals of this emerging approach and its most relevant findings, and discusses our current understanding of the role of oligopeptides in the ecology of cyanobacteria.
Collapse
Affiliation(s)
- Ramsy Agha
- Departamento de Biología, Universidad Autónoma de Madrid, C/Darwin, 2, Madrid 28049, Spain.
| | - Antonio Quesada
- Departamento de Biología, Universidad Autónoma de Madrid, C/Darwin, 2, Madrid 28049, Spain.
| |
Collapse
|
50
|
Elkobi-Peer S, Singh RK, Mohapatra TM, Tiwari SP, Carmeli S. Aeruginosins from a Microcystis sp. bloom material collected in Varanasi, India. JOURNAL OF NATURAL PRODUCTS 2013; 76:1187-1190. [PMID: 23777401 DOI: 10.1021/np4001152] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Two novel biologically active short peptides, aeruginosins IN608 and IN652, were isolated from the cyanobacterium Microcystis sp. strain BHU006, which was collected from Durgakund water reservoir in Varanasi, India. Aeruginosins IN608 and IN652 are linear modified peptides containing four building blocks, one of which is the arogenate-derived modified amino acid 2-carboxy-6-hydroxyoctahydroindole. Aeruginosin IN608 and aeruginosin IN652 inhibit the activity of the proteolytic enzyme trypsin with IC50's of 4.3 and 4.1 μM, respectively.
Collapse
Affiliation(s)
- Shira Elkobi-Peer
- Raymond and Beverly Sackler School of Chemistry and Faculty of Exact Sciences, Tel-Aviv University, Ramat Aviv, Tel-Aviv 69978, Israel
| | | | | | | | | |
Collapse
|