1
|
Semmouri I, Janssen CR, Asselman J. Health risks associated with the consumption of sea turtles: A review of chelonitoxism incidents and the presumed responsible phycotoxins. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176330. [PMID: 39293768 DOI: 10.1016/j.scitotenv.2024.176330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/05/2024] [Accepted: 09/15/2024] [Indexed: 09/20/2024]
Abstract
Consuming the meat of some marine turtles can lead to a specific type of seafood poisoning known as chelonitoxism. A recent poisoning event (March 2024) on the Tanzanian island Pemba, resulting in the death of 9 people and hospitalization of 78 others, underscores the need to obtain an up to date overview and understanding of chelonitoxism. Here, we document a global overview of poisoning incidents resulting from the consumption of sea turtle flesh worldwide. All events combined involved over 2400 victims and 420 fatalities. Incidents were predominantly reported in remote regions (often islands) across the Indo-Pacific region. Reported health effects of consuming poisonous sea turtles include epigastric pain, diarrhea, vomiting, a burning mouth and throat sensation, and dehydration. In addition, ulcerative oeso-gastro-duodenal lesions, which occasionally have resulted in hospitalization and death, have been reported. Lyngbyatoxins have been suggested as (one of) the causative agents, originating from the cyanobacterium Moorena producens, growing epiphytically on the seagrass and seaweed consumed by green turtles. However, due to the limited evidence of their involvement, the actual etiology of chelonitoxism remains unresolved and other compounds may be responsible. The data outlined in this review offer valuable insights to both regulatory bodies and the general public regarding the potential risks linked to consuming sea turtles.
Collapse
Affiliation(s)
- Ilias Semmouri
- Blue Growth Research Lab, Faculty of Bioscience Engineering, Ghent University, Bluebridge, Wetenschapspark 1, 8400 Ostend, Belgium.
| | - Colin R Janssen
- Blue Growth Research Lab, Faculty of Bioscience Engineering, Ghent University, Bluebridge, Wetenschapspark 1, 8400 Ostend, Belgium
| | - Jana Asselman
- Blue Growth Research Lab, Faculty of Bioscience Engineering, Ghent University, Bluebridge, Wetenschapspark 1, 8400 Ostend, Belgium
| |
Collapse
|
2
|
Díaz PA, Araya M, Cantarero B, Miranda C, Varela D, Figueroa RI, Basti L, Carbonell P, Aravena Á, Pérez-Santos I, Nieves MG, Álvarez G. Are yessotoxins an emerging problem in Chile? Context and perspectives following the first report of YTX levels exceeding the regulatory limit in the Patagonian fjord system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124844. [PMID: 39209054 DOI: 10.1016/j.envpol.2024.124844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/15/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
In late summer and early autumn 2022, an intense bloom of Protoceratium reticulatum-the main yessotoxin (YTX) producer along Chilean coasts and a major threat to artisanal fisheries, the aquaculture industry, and environmental health-was recorded in the Patagonian fjord system. The high YTX levels (>3.75 mg kg-1) resulted in the first ban of shellfish collection in Chile. At Puyuhuapi Fjord, a global "hotspot" of harmful algal bloom events, the cell density of P. reticulatum determined in integrated tube samples (0-10 m) at the end of April 2022 reached 407,000 cells L-1. At the same time, YTX levels well exceeded the regulatory limit by roughly 2.5-fold, with concentrations as high as 9.42 mg kg-1 measured in native populations of the blue mussel Mytilus chilensis. Five different YTX analogues, 45-OH-YTX, COOH-45-keto-YTX, COOH-45-OH-YTX, COOH-YTX, and 45,55-diOH-YTX, were also detected in relevant amounts. While the ban lasted close to 3 months, accumulation and detoxification processes were monitored over a 1-year period. This study assessed the implications of high levels of YTXs and their analogues on the local economy and ecosystem health, given the increase in P. reticulatum blooms predicted for NW Patagonia in the context of a changing climate.
Collapse
Affiliation(s)
- Patricio A Díaz
- Centro i∼mar, Universidad de Los Lagos, Casilla 557, Puerto Montt, Chile; CeBiB, Universidad de Los Lagos, Casilla 557, Puerto Montt, Chile.
| | - Michael Araya
- Centro de Investigación y Desarrollo Tecnológico en Algas (CIDTA), Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile
| | - Bárbara Cantarero
- Centro i∼mar, Universidad de Los Lagos, Casilla 557, Puerto Montt, Chile
| | - Carolina Miranda
- Centro i∼mar, Universidad de Los Lagos, Casilla 557, Puerto Montt, Chile
| | - Daniel Varela
- Centro i∼mar, Universidad de Los Lagos, Casilla 557, Puerto Montt, Chile
| | - Rosa I Figueroa
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO-CSIC), Subida a Radio Faro 50, 36390, Vigo, Spain
| | - Leila Basti
- WorldFish Headquarters, Jalan Batu Maung, Batu Maung, 11960 Bayan Lepas, Penang, Malaysia; College of Agriculture and Veterinary Science, Department of Integrative Agriculture, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates; Faculty of Marine Resources and Environment, Tokyo University of Marine Science and Technology, 108-8477, Tokyo, Japan
| | - Pamela Carbonell
- Centro de Estudios de Algas Nocivas (CREAN), Instituto de Fomento Pesquero (IFOP), Padre Harter 574, Puerto Montt, Chile
| | - Álvaro Aravena
- Centro i∼mar, Universidad de Los Lagos, Casilla 557, Puerto Montt, Chile
| | - Iván Pérez-Santos
- Centro i∼mar, Universidad de Los Lagos, Casilla 557, Puerto Montt, Chile; Center for Oceanographic Research COPAS COASTAL, Universidad de Concepción, Chile; Centro de Investigaciones en Ecosistemas de la Patagonia (CIEP), Coyhaique, Chile
| | - María Gabriela Nieves
- Programa de Doctorado en Acuicultura, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Gonzalo Álvarez
- Centro de Investigación y Desarrollo Tecnológico en Algas (CIDTA), Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile; Facultad de Ciencias del Mar, Departamento de Acuicultura, Universidad Católica del Norte, Coquimbo, Chile; Center for Ecology and Sustainable Management of Oceanic Islands (ESMOI), Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile; Centro de Innovación Acuícola AQUAPACIFICO, Larrondo 1281, Coquimbo, Chile
| |
Collapse
|
3
|
Rodríguez-Santos L, Costas C, Louzao MC, Cagide E, Alvarez M, Rodríguez-Cañás I, Raposo-García S, Vale C, Vieytes MR, Lolo M, Botana LM. Bioavailability profiling shows differences in OA, DTX1 and DTX2 toxins that justify their toxicity. CHEMOSPHERE 2024; 366:143419. [PMID: 39349070 DOI: 10.1016/j.chemosphere.2024.143419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/16/2024] [Accepted: 09/25/2024] [Indexed: 10/02/2024]
Abstract
The marine toxins of the Okadaic acid (OA) group are natural compounds produced by dinoflagellates that enters the food chain by accumulating in seafood. They are responsible for Diarrhetic Shellfish Poisoning (DSP) events in humans over the world and therefore are also jointly named as Diarrhetic Shellfish Toxins (DSTs). The main objective of this study was to evaluate symptoms, toxicity, absorption, distribution, and elimination of OA, Dinophysistoxin-1 (DTX1), and Dinophysistoxin-2 (DTX2) at the sublethal dose of 90 μg toxin/kg bw administered through voluntary feeding to mice. The toxin comparison highlighted that OA and DTX1 induced more severe and specific symptoms such as diarrhea. After oral ingestion toxins were distributed through the entire organism being detected in liver, kidney, stomach, small and large intestine. Predominant excretion of the toxins was observed in feces, with OA exhibiting fast elimination, while DTX2 was showing prolonged excretion. The passage and accumulation of toxins in gastrointestinal organs instigated macroscopic damage in the stomach, small and large intestine that could persist up to 120 h. These findings highlight the importance of pharmacokinetic of sublethal doses of DSTs administered by voluntary feeding in their toxicity and their implication for public health.
Collapse
Affiliation(s)
- Luis Rodríguez-Santos
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | - Celia Costas
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | - M Carmen Louzao
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain.
| | | | | | - Inés Rodríguez-Cañás
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain; Laboratorio Cifga, Lugo, Spain
| | - Sandra Raposo-García
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | - Carmen Vale
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | - Mercedes R Vieytes
- Departamento de Fisiología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | | | - Luis M Botana
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| |
Collapse
|
4
|
Wang Y, Javeed A, Jian C, Zeng Q, Han B. Precautions for seafood consumers: An updated review of toxicity, bioaccumulation, and rapid detection methods of marine biotoxins. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116201. [PMID: 38489901 DOI: 10.1016/j.ecoenv.2024.116201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 03/03/2024] [Accepted: 03/08/2024] [Indexed: 03/17/2024]
Abstract
Seafood products are globally consumed, and there is an increasing demand for the quality and safety of these products among consumers. Some seafoods are easily contaminated by marine biotoxins in natural environments or cultured farming processes. When humans ingest different toxins accumulated in seafood, they may exhibit different poisoning symptoms. According to the investigations, marine toxins produced by harmful algal blooms and various other marine organisms mainly accumulate in the body organs such as liver and digestive tract of seafood animals. Several regions around the world have reported incidents of seafood poisoning by biotoxins, posing a threat to human health. Thus, most countries have legislated to specify the permissible levels of these biotoxins in seafood. Therefore, it is necessary for seafood producers and suppliers to conduct necessary testing of toxins in seafood before and after harvesting to prohibit excessive toxins containing seafood from entering the market, which therefore can reduce the occurrence of seafood poisoning incidents. In recent years, some technologies which can quickly, conveniently, and sensitively detect biological toxins in seafood, have been developed and validated, these technologies have the potential to help seafood producers, suppliers and regulatory authorities. This article reviews the seafood toxins sources and types, mechanism of action and bioaccumulation of marine toxins, as well as legislation and rapid detection technologies for biotoxins in seafood for official and fishermen supervision.
Collapse
Affiliation(s)
- Yifan Wang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Laboratory of Antiallergic Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Ansar Javeed
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Laboratory of Antiallergic Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Cuiqin Jian
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Laboratory of Antiallergic Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Qiuyu Zeng
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Laboratory of Antiallergic Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Bingnan Han
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Laboratory of Antiallergic Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
5
|
Blanco J, Moroño Á, Arévalo F, Correa J, Lamas JP. Yessotoxins in Mollusks of the Galician Coast from 2014 to 2022: Variability, Biotransformation, and Resistance to Alkaline Hydrolysis. Toxins (Basel) 2023; 15:661. [PMID: 37999524 PMCID: PMC10674579 DOI: 10.3390/toxins15110661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023] Open
Abstract
The presence of yessotoxins (YTXs) was analyzed in 10,757 samples of Galician bivalves from 2014 to 2022. Only YTX and 45-OH YTX were found. YTX was detected in 31% of the samples, while 45-OH YTX was found in 11.6% of them. Among the samples containing YTX, 45-OH YTX was detected in 37.3% of cases. The maximum recorded levels were 1.4 and 0.16 mg of YTX-equivalentsg-1, for YTX and 45-OH YTX, respectively, which are well below the regulatory limit of the European Union. The YTX and 45-OH YTX toxicities in the raw extracts and extracts subjected to alkaline hydrolysis were strongly and linearly related. Due to the lack of homo-YTX in Galician samples, the effect of alkaline hydrolysis on homo-YTX and 45OH-Homo-YTX was only checked in 23 additional samples, observing no negative effect but a high correlation between raw and hydrolyzed extracts. Hydrolyzed samples can be used instead of raw ones to carry out YTXs determinations in monitoring systems, which may increase the efficiency of those systems where okadaic acid episodes are very frequent and therefore a higher number of hydrolyzed samples are routinely analyzed. The presence of YTX in the studied bivalves varied with the species, with mussels and cockles having the highest percentages of YTX-detected samples. The presence of 45-OH YTX was clearly related to YTX and was detected only in mussels and cockles. Wild populations of mussels contained proportionally more 45-OH YTX than those that were raft-cultured. Spatially, toxin toxicities varied across the sampling area, with higher levels in raft-cultured mussels except those of Ría de Arousa. Ría de Ares (ARE) was the most affected geographical area, although in other northern locations, lower toxin levels were detected. Seasonally, YTX and 45-OH YTX toxicities showed similar patterns, with higher levels in late summer and autumn but lower toxicities of the 45-OH toxin in August. The relationship between the two toxins also varied seasonally, in general with a minimum proportion of 45-OH YTX in July-August but with different maximum levels for raft-cultured and wild mussel populations. Interannually, the average toxicities of YTX decreased from 2014 to 2017 and newly increased from 2018 to 2021, but decreased slightly in 2022. The relationship between 45-OH YTX and YTX also varied over the years, but neither a clear trend nor a similar trend for wild and raft mussels was observed.
Collapse
Affiliation(s)
- Juan Blanco
- Centro de Investigacións Mariñas (CIMA), Xunta de Galicia, 36611 Pontevedra, Spain
| | - Ángeles Moroño
- Instituto Tecnolóxico para o Control do Medio Mariño de Galicia (Intecmar), 36611 Pontevedra, Spain
| | - Fabiola Arévalo
- Instituto Tecnolóxico para o Control do Medio Mariño de Galicia (Intecmar), 36611 Pontevedra, Spain
| | - Jorge Correa
- Instituto Tecnolóxico para o Control do Medio Mariño de Galicia (Intecmar), 36611 Pontevedra, Spain
| | - Juan Pablo Lamas
- Instituto Tecnolóxico para o Control do Medio Mariño de Galicia (Intecmar), 36611 Pontevedra, Spain
| |
Collapse
|
6
|
Park SY, Kang JH, Jung HJ, Hwang JH, Chun HS, Yoon YS, Oh SH. Okadaic Acid Is at Least as Toxic as Dinophysistoxin-1 after Repeated Administration to Mice by Gavage. Toxins (Basel) 2023; 15:587. [PMID: 37888618 PMCID: PMC10611360 DOI: 10.3390/toxins15100587] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/07/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023] Open
Abstract
Okadaic acid (OA) and its analogues cause diarrhetic shellfish poisoning (DSP) in humans, and risk assessments of these toxins require toxicity equivalency factors (TEFs), which represent the relative toxicities of analogues. However, no human death by DSP toxin has been reported, and its current TEF value is based on acute lethality. To properly reflect the symptoms of DSP, such as diarrhea without death, the chronic toxicity of DSP toxins at sublethal doses should be considered. In this study, we obtained acute oral LD50 values for OA and dinophysistoxin-1 (DTX-1) (1069 and 897 μg/kg, respectively) to set sublethal doses. Mice were treated with sublethal doses of OA and DTX-1 for 7 days. The mice lost body weight, and the disease activity index and intestinal crypt depths increased. Furthermore, these changes were more severe in OA-treated mice than in the DTX-1-treated mice. Strikingly, ascites was observed, and its severity was greater in mice treated with OA. Our findings suggest that OA is at least as toxic as DTX-1 after repeated oral administration at a low dose. This is the first study to compare repeated oral dosing of DSP toxins. Further sub-chronic and chronic studies are warranted to determine appropriate TEF values for DSP toxins.
Collapse
Affiliation(s)
- Se Yong Park
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea;
| | - Ju-Hee Kang
- College of Pharmacy, Gachon University, Incheon 21963, Republic of Korea; (J.-H.K.); (H.J.J.); (J.H.H.)
| | - Hyun Jin Jung
- College of Pharmacy, Gachon University, Incheon 21963, Republic of Korea; (J.-H.K.); (H.J.J.); (J.H.H.)
| | - Jung Ho Hwang
- College of Pharmacy, Gachon University, Incheon 21963, Republic of Korea; (J.-H.K.); (H.J.J.); (J.H.H.)
| | - Hyang Sook Chun
- Food Toxicology Laboratory, School of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea;
| | - Yeo Sung Yoon
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea;
| | - Seung Hyun Oh
- College of Pharmacy, Gachon University, Incheon 21963, Republic of Korea; (J.-H.K.); (H.J.J.); (J.H.H.)
| |
Collapse
|
7
|
Liu Y, Yuan TQ, Zheng JW, Li DW, Jiao YH, Li HY, Li RM, Yang WD. Exposure to okadaic acid could disrupt the colonic microenvironment in rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115376. [PMID: 37597294 DOI: 10.1016/j.ecoenv.2023.115376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/28/2023] [Accepted: 08/13/2023] [Indexed: 08/21/2023]
Abstract
Okadaic acid (OA) is one of the most prevalent marine phycotoxin with complex toxicity, which can lead to toxic symptoms such as diarrhea, vomiting, nausea, abdominal pain, and gastrointestinal discomfort. Studies have shown that the main affected tissue of OA is digestive tract. However, its toxic mechanism is not yet fully understood. In this study, we investigated the changes that occurred in the epithelial microenvironment following OA exposure, including the epithelial barrier and gut bacteria. We found that impaired epithelial cell junctions, mucus layer destruction, cytoskeletal remodeling, and increased bacterial invasion occurred in colon of rats after OA exposure. At the same time, the gut bacteria decreased in the abundance of beneficial bacteria and increased in the abundance of pathogenic bacteria, and there was a significant negative correlation between the abundance of pathogenic bacteria represented by Escherichia/Shigella and animal body weight. Metagenomic analysis inferred that Escherichia coli and Shigella spp. in Escherichia/Shigella may be involved in the process of cytoskeletal remodeling and mucosal layer damage caused by OA. Although more evidence is needed, our results suggest that opportunistic pathogens may be involved in the complex toxicity of OA during OA-induced epithelial barrier damage.
Collapse
Affiliation(s)
- Yang Liu
- Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China; Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Tian-Qing Yuan
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jian-Wei Zheng
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Da-Wei Li
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yu-Hu Jiao
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hong-Ye Li
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Rui-Man Li
- Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| | - Wei-Dong Yang
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
8
|
Vaccaro E, Ciccotelli V, Oliveri P, Battistini R, Capelli C, Lottici S, Melchiorre N, Smirnova E, Ferro M, Costa E, Betti B, Vivaldi B, Masotti C, Serracca L, Iacona F, Orlandi M, Ercolini C. Shellfish sanitation monitoring in La Spezia gulf: Chemometric evaluation of data from 2015 to 2021. Heliyon 2023; 9:e17032. [PMID: 37383211 PMCID: PMC10293677 DOI: 10.1016/j.heliyon.2023.e17032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 06/30/2023] Open
Abstract
Shellfish sanitary controls are very important to guarantee consumer health because bivalve molluscs (BVM) are filter-feeders so they can accumulate pathogens, environmental contaminants and biotoxins produced by some algae, causing infections and food poisoning in humans after ingestion. The purpose of this work was to analyse with chemometric methods the historical data relating to routine analyses carried out by the competent authority (Liguria Local Health Unit, National Health Service) on the BVM reared in a shellfish farm located in the Gulf of La Spezia (Italy). Chemometric analysis was aimed at identifying any correlations between the variables, as well as any seasonal trends and similarities between the stations, in order to be able to provide further material for a more accurate risk assessment and to improve the monitoring organization for example by reducing sampling stations and/or sampling frequency. The dataset used included 31 variables classified as biotoxicological, microbiological and chemical variables, measured twice a week, monthly or half yearly respectively, for a total of 6 years (from 2015 to 2021), on samples of Mytilus galloprovincialis coming from 7 monitoring stations. The results obtained by the application of principal component analysis have shown positive alga-biotoxin correlations, as well as seasonal trends linked to algae growth, with a greater algal biomass and their toxins during the spring months. In addition, periods characterised by low rainfall were found to affect algal development, promoting especially species such as Dinophysis spp. Considering the microbiological and biotoxicological variables, significant differences between the monitoring stations were not found. However, stations could be distinguished on the basis of the nature of the predominant chemical pollutants.
Collapse
Affiliation(s)
- Erica Vaccaro
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | - Valentina Ciccotelli
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | - Paolo Oliveri
- Dipartimento di Farmacia (DIFAR), Università degli Studi di, Genova, Italy
| | - Roberta Battistini
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | | | | | | | | | | | - Erica Costa
- Liguria Local Health Unit-ASL5, Complex Unit of Hygiene of Food and Animal Origin, La Spezia, Italy
| | - Barbara Betti
- Liguria Local Health Unit-ASL5, Complex Unit of Hygiene of Food and Animal Origin, La Spezia, Italy
| | - Barbara Vivaldi
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | - Chiara Masotti
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | - Laura Serracca
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | - Francesco Iacona
- Liguria Local Health Unit-ASL5, Complex Unit of Hygiene of Food and Animal Origin, La Spezia, Italy
| | - Mino Orlandi
- Liguria Local Health Unit-ASL5, Complex Unit of Hygiene of Food and Animal Origin, La Spezia, Italy
| | - Carlo Ercolini
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| |
Collapse
|
9
|
Finch SC, Boundy MJ, Webb NG, Harwood DT. The Effect of Experimental Protocol on the Toxicity of Saxitoxin in Mice. Toxins (Basel) 2023; 15:290. [PMID: 37104228 PMCID: PMC10146210 DOI: 10.3390/toxins15040290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/04/2023] [Accepted: 04/14/2023] [Indexed: 04/28/2023] Open
Abstract
Regulatory limits for toxins in shellfish are required to ensure the health of consumers. However, these limits also impact the profitability of shellfish industries making it critical that they are fit for purpose. Since human toxicity data is rarely available, the setting of regulatory limits is dependent on animal data which can then be extrapolated for use in the assessment of human risk. The dependence on animal data to keep humans safe means that it is critical that the toxicity data used is robust and of high quality. Worldwide, the protocols used in toxicity testing are varied, making it hard to compare results and adding confusion over which results better reflect the true toxicity. In this study, we look at the effect of mouse gender, i.p. dose volume, mouse body weight and feeding protocols (both acute and sub-acute) on the toxicity of saxitoxin. This allowed the effect of different variables used in toxicity testing to be understood and showed that the feeding protocol used in both acute and sub-acute studies greatly influenced the toxicity of saxitoxin in mice. Therefore, the adoption of a standard protocol for the testing of shellfish toxins is recommended.
Collapse
Affiliation(s)
- Sarah C. Finch
- AgResearch Ltd. Ruakura Research Centre, Private Bag 3123, Hamilton 3240, New Zealand;
| | - Michael J. Boundy
- Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand; (M.J.B.); (D.T.H.)
| | - Nicola G. Webb
- AgResearch Ltd. Ruakura Research Centre, Private Bag 3123, Hamilton 3240, New Zealand;
| | - D. Tim Harwood
- Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand; (M.J.B.); (D.T.H.)
| |
Collapse
|
10
|
Acute Toxicity by Oral Co-Exposure to Palytoxin and Okadaic Acid in Mice. Mar Drugs 2022; 20:md20120735. [PMID: 36547882 PMCID: PMC9781071 DOI: 10.3390/md20120735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
The frequent occurrence of marine dinoflagellates producing palytoxin (PLTX) or okadaic acid (OA) raises concern for the possible co-presence of these toxins in seafood, leading to additive or synergistic adverse effects in consumers. Thus, the acute oral toxicity of PLTX and OA association was evaluated in mice: groups of eight female CD-1 mice were administered by gavage with combined doses of PLTX (30, 90 or 270 μg/kg) and OA (370 μg/kg), or with each individual toxin, recording signs up to 24 h (five mice) and 14 days (three mice). Lethal effects occurred only after PLTX (90 or 270 μg/kg) exposure, alone or combined with OA, also during the 14-day recovery. PLTX induced scratching, piloerection, abdominal swelling, muscle spasms, paralysis and dyspnea, which increased in frequency or duration when co-administered with OA. The latter induced only diarrhea. At 24 h, PLTX (90 or 270 μg/kg) and OA caused wall redness in the small intestine or pale fluid accumulation in its lumen, respectively. These effects co-occurred in mice co-exposed to PLTX (90 or 270 μg/kg) and OA, and were associated with slight ulcers and inflammation at forestomach. PLTX (270 μg/kg alone or 90 μg/kg associated with OA) also decreased the liver/body weight ratio, reducing hepatocyte glycogen (270 μg/kg, alone or combined with OA). No alterations were recorded in surviving mice after 14 days. Overall, the study suggests additive effects of PLTX and OA that should be considered for their risk assessment as seafood contaminants.
Collapse
|
11
|
Costas C, Louzao MC, Raposo-García S, Vale C, Vieytes MR, Botana LM. Intestinal secretory mechanisms in Okadaic acid induced diarrhoea. Food Chem Toxicol 2022; 169:113449. [DOI: 10.1016/j.fct.2022.113449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/13/2022] [Accepted: 09/21/2022] [Indexed: 10/31/2022]
|
12
|
Dzhembekova N, Moncheva S, Slabakova N, Zlateva I, Nagai S, Wietkamp S, Wellkamp M, Tillmann U, Krock B. New Knowledge on Distribution and Abundance of Toxic Microalgal Species and Related Toxins in the Northwestern Black Sea. Toxins (Basel) 2022; 14:685. [PMID: 36287954 PMCID: PMC9610735 DOI: 10.3390/toxins14100685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/19/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023] Open
Abstract
Numerous potentially toxic plankton species commonly occur in the Black Sea, and phycotoxins have been reported. However, the taxonomy, phycotoxin profiles, and distribution of harmful microalgae in the basin are still understudied. An integrated microscopic (light microscopy) and molecular (18S rRNA gene metabarcoding and qPCR) approach complemented with toxin analysis was applied at 41 stations in the northwestern part of the Black Sea for better taxonomic coverage and toxin profiling in natural populations. The combined dataset included 20 potentially toxic species, some of which (Dinophysis acuminata, Dinophysis acuta, Gonyaulax spinifera, and Karlodinium veneficum) were detected in over 95% of the stations. In parallel, pectenotoxins (PTX-2 as a major toxin) were registered in all samples, and yessotoxins were present at most of the sampling points. PTX-1 and PTX-13, as well as some YTX variants, were recorded for the first time in the basin. A positive correlation was found between the cell abundance of Dinophysis acuta and pectenotoxins, and between Lingulodinium polyedra and Protoceratium reticulatum and yessotoxins. Toxic microalgae and toxin variant abundance and spatial distribution was associated with environmental parameters. Despite the low levels of the identified phycotoxins and their low oral toxicity, chronic toxic exposure could represent an ecosystem and human health hazard.
Collapse
Affiliation(s)
- Nina Dzhembekova
- Institute of Oceanology “Fridtjof Nansen”—Bulgarian Academy of Sciences, 9000 Varna, Bulgaria
| | - Snejana Moncheva
- Institute of Oceanology “Fridtjof Nansen”—Bulgarian Academy of Sciences, 9000 Varna, Bulgaria
| | - Nataliya Slabakova
- Institute of Oceanology “Fridtjof Nansen”—Bulgarian Academy of Sciences, 9000 Varna, Bulgaria
| | - Ivelina Zlateva
- Institute of Oceanology “Fridtjof Nansen”—Bulgarian Academy of Sciences, 9000 Varna, Bulgaria
| | - Satoshi Nagai
- Fisheries Research and Education Agency, Fisheries Technology Institute, Yokohama 236-8648, Kanagawa, Japan
| | - Stephan Wietkamp
- Alfred Wegener Institut-Helmholtz Zentrum für Polar- und Meeresforschung, Ökologische Chemie, 0471 Bremerhaven, Germany
| | - Marvin Wellkamp
- Alfred Wegener Institut-Helmholtz Zentrum für Polar- und Meeresforschung, Ökologische Chemie, 0471 Bremerhaven, Germany
| | - Urban Tillmann
- Alfred Wegener Institut-Helmholtz Zentrum für Polar- und Meeresforschung, Ökologische Chemie, 0471 Bremerhaven, Germany
| | - Bernd Krock
- Alfred Wegener Institut-Helmholtz Zentrum für Polar- und Meeresforschung, Ökologische Chemie, 0471 Bremerhaven, Germany
| |
Collapse
|
13
|
Evaluation of okadaic acid toxicity in human retinal cells and zebrafish retinas. Toxicology 2022; 473:153209. [DOI: 10.1016/j.tox.2022.153209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 11/17/2022]
|
14
|
Liu Y, Lu Y, Jiao YH, Li DW, Li HY, Yang WD. Multi-omics analysis reveals metabolism of okadaic acid in gut lumen of rat. Arch Toxicol 2022; 96:831-843. [PMID: 35037095 DOI: 10.1007/s00204-021-03219-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/23/2021] [Indexed: 11/29/2022]
Abstract
Okadaic acid (OA) is an important marine lipophilic phycotoxin with various pathological properties, responsible for diarrheal shellfish poisoning events in human beings over the world. However, to date no mechanism can well explain the toxicity and symptom of OA, even diarrhea. Here, to reveal the toxic mechanism of OA to mammals, we analyzed the metabolism of OA in rat and the effects of OA exposure on the composition and function of gut bacteria using a multi-omics strategy and rRNA high-throughput technology. We found that OA exerted great effects on gut bacteria, mainly featured in heavy fluctuation of dominant genera and significant changes in the mapped bacterial function genes, including not only virulence genes of pathogenic bacteria, but also bacterial metabolism genes. In the feces of the OA-exposed group, we detected dinophysistoxin-2 (DTX-2), lespedezaflavanone F and tolytoxin, suggesting that OA could be transformed into other metabolites like DTX-2. Other metabolic biomarkers such as N-Acetyl-a-neuraminic acid, N,N-dihydroxy-L-tyrosine, nalbuphine, and coproporphyrin I and III were also highly correlated with OA content, which made the toxicity of OA more complicated and confusing. Spearman correlation test demonstrated that Bacteroides and Romboutsia were the genera most related to OA transformation, suggesting that Bacteroides and Romboutsia might play a key role in the complicated and confusing toxicity of OA. In this study, we found for the first time that OA may be converted into other metabolites in gut, especially DTX-2. This finding could not only help to reveal the complex toxicity of OA, but also have important significance for clarifying the transportation, metabolism, and environmental fate of OA in the food chain.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Yang Lu
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Yu-Hu Jiao
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Da-Wei Li
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Hong-Ye Li
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Wei-Dong Yang
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
15
|
DSP Toxin Distribution across Organs in Mice after Acute Oral Administration. Mar Drugs 2021; 19:md19010023. [PMID: 33430011 PMCID: PMC7826939 DOI: 10.3390/md19010023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 12/29/2020] [Accepted: 01/06/2021] [Indexed: 12/18/2022] Open
Abstract
Okadaic acid (OA) and its main structural analogs dinophysistoxin-1 (DTX1) and dinophysistoxin-2 (DTX2) are marine lipophilic phycotoxins distributed worldwide that can be accumulated by edible shellfish and can cause diarrheic shellfish poisoning (DSP). In order to study their toxicokinetics, mice were treated with different doses of OA, DTX1, or DTX2 and signs of toxicity were recorded up to 24 h. Toxin distribution in the main organs from the gastrointestinal tract was assessed by liquid chromatography-mass spectrometry (LC/MS/MS) analysis. Our results indicate a dose-dependency in gastrointestinal absorption of these toxins. Twenty-four hours post-administration, the highest concentration of toxin was detected in the stomach and, in descending order, in the large intestine, small intestine, and liver. There was also a different toxicokinetic pathway between OA, DTX1, and DTX2. When the same toxin doses are compared, more OA than DTX1 is detected in the small intestine. OA and DTX1 showed similar concentrations in the stomach, liver, and large intestine tissues, but the amount of DTX2 is much lower in all these organs, providing information on DSP toxicokinetics for human safety assessment.
Collapse
|
16
|
Wu H, Chen J, Peng J, Zhong Y, Zheng G, Guo M, Tan Z, Zhai Y, Lu S. Nontarget Screening and Toxicity Evaluation of Diol Esters of Okadaic Acid and Dinophysistoxins Reveal Intraspecies Difference of Prorocentrum lima. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:12366-12375. [PMID: 32902972 DOI: 10.1021/acs.est.0c03691] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
High-resolution mass spectrometry (HRMS) analysis with the assistance of molecular networking was used to investigate intracellular toxin profiles of five Prorocentrum lima (P. lima) strains sampled from the north Yellow Sea and South China Sea. Mice were used as a model species for testing the acute toxicity of intracellular okadaic acid (OA) and dinophysistoxins (DTXs) in free and esterified states. Results showed that OA and DTX1 esterified derivatives were detected in all P. lima samples, accounting for 55%-96% of total toxins in five strains. A total of 24 esters and 1 stereoisomer of DTX1 (35S DTX1) were identified based on molecular networking and MS data analysis, 15 esters of which have been reported first. All P. lima strains displayed specific toxin profiles, and preliminary analysis suggested that toxin profiles of the five P. lima strains might be region-related. Moreover, acute toxicity in mice suggested higher toxicity of esters compared with free toxins, which highlights the importance and urgency of attention to esterified toxins in P. lima.
Collapse
Affiliation(s)
- Haiyan Wu
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Jiaqi Chen
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Jixing Peng
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Yun Zhong
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Guanchao Zheng
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Mengmeng Guo
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Zhijun Tan
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China
| | - Yuxiu Zhai
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China
| | - Songhui Lu
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
17
|
Liu Y, Zheng JW, Peng XC, Li HY, Huang L, Li DW, Liu JS, Yang WD. Changes in colonic microbiotas in rat after long-term exposure to low dose of okadaic acid. CHEMOSPHERE 2020; 254:126874. [PMID: 32361543 DOI: 10.1016/j.chemosphere.2020.126874] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/05/2020] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
Okadaic acid (OA), one of the most important phycotoxins, is widely distributed around the world, concerning diarrheic shellfish poisoning (DSP), and even colorectal cancer. Here, we found that long-term exposure of OA at a low dose (80 μg kg-1 body weight) had certain effects on colonic microbiotas and tract in rat. In the OA-exposed rat, colonic epithelium layer was damaged, and relative abundance of some microbiotas were significantly changed, especially genera in Clostridiales. However, no intestinal inflammation or significant disease was observed. Combined with the increase in relative abundance of some genera in Clostridiales induced by OA in the fermentation experiment, we proposed that OA could cause damage to the intestinal epithelium and increase the relative abundance of pathogenic bacteria, thereby increasing the probability of contact between intestinal epithelium and pathogenic bacteria and leading to an easier pathogenicity.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Jian-Wei Zheng
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Xi-Chun Peng
- Department of Food Science and Engineering, Jinan University, Guangzhou, 510630, China
| | - Hong-Ye Li
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Lu Huang
- Department of Pathology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Da-Wei Li
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Jie-Sheng Liu
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Wei-Dong Yang
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
18
|
Alarcan J, Barbé S, Kopp B, Hessel-Pras S, Braeuning A, Lampen A, Le Hégarat L, Fessard V. Combined effects of okadaic acid and pectenotoxin-2, 13-desmethylspirolide C or yessotoxin in human intestinal Caco-2 cells. CHEMOSPHERE 2019; 228:139-148. [PMID: 31029959 DOI: 10.1016/j.chemosphere.2019.04.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/27/2019] [Accepted: 04/03/2019] [Indexed: 06/09/2023]
Abstract
Lipophilic phycotoxins are secondary metabolites produced by phytoplanktonic species. They accumulate in filtering shellfish and can cause human intoxications. Humans can be exposed to combinations of several phycotoxins. The toxicological effects of phycotoxin mixtures on human health are largely unknown. Published data on phycotoxin co-exposure show that okadaic acid (OA) is simultaneously found with pectenetoxin-2 (PTX-2), 13-desmethylspirolide C (also known as SPX-1), or yessotoxin (YTX). Therefore, the aim of this study was to examine the effects of three binary mixtures, OA/PTX-2, OA/SPX-1 and OA/YTX on human intestinal Caco-2 cells. A multi-parametric approach for cytotoxicity determination was applied using a high-content analysis platform, including markers for cell viability, oxidative stress, inflammation, and DNA damage. Mixtures effects were analyzed using two additivity mathematical models. Our assays revealed that OA induced cytotoxicity, DNA strand breaks and interleukin 8 release. PTX-2 slightly induced DNA strand breaks, whereas SPX-1 and YTX did not affect the investigated endpoints. The combination of OA with another toxin resulted in reduced toxicity at low concentrations, suggesting antagonistic effects, but in increased effects at higher concentrations, suggesting additive or synergistic effects. Taken together, our results demonstrated that the cytotoxic effects of binary mixtures of lipophilic phycotoxins could not be predicted by additivity mathematical models. In conclusion, the present data suggest that combined effects of phycotoxins may occur which might have the potential to impact on risk assessment of these compounds.
Collapse
Affiliation(s)
- Jimmy Alarcan
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Fougeres-Laboratory, Toxicology of Contaminants Unit, 10B Rue Claude Bourgelat, 35306, Fougères, France; German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany.
| | - Sabrina Barbé
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Fougeres-Laboratory, Toxicology of Contaminants Unit, 10B Rue Claude Bourgelat, 35306, Fougères, France.
| | - Benjamin Kopp
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Fougeres-Laboratory, Toxicology of Contaminants Unit, 10B Rue Claude Bourgelat, 35306, Fougères, France.
| | - Stefanie Hessel-Pras
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany.
| | - Albert Braeuning
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany.
| | - Alfonso Lampen
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany.
| | - Ludovic Le Hégarat
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Fougeres-Laboratory, Toxicology of Contaminants Unit, 10B Rue Claude Bourgelat, 35306, Fougères, France.
| | - Valérie Fessard
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Fougeres-Laboratory, Toxicology of Contaminants Unit, 10B Rue Claude Bourgelat, 35306, Fougères, France.
| |
Collapse
|
19
|
Dhanji-Rapkova M, O'Neill A, Maskrey BH, Coates L, Swan SC, Teixeira Alves M, Kelly RJ, Hatfield RG, Rowland-Pilgrim SJ, Lewis AM, Turner AD. Variability and profiles of lipophilic toxins in bivalves from Great Britain during five and a half years of monitoring: azaspiracids and yessotoxins. HARMFUL ALGAE 2019; 87:101629. [PMID: 31349886 DOI: 10.1016/j.hal.2019.101629] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/04/2019] [Accepted: 06/11/2019] [Indexed: 06/10/2023]
Abstract
Cefas has been responsible for the delivery of official control biotoxin testing of bivalve molluscs from Great Britain for just over a decade. Liquid chromatography tandem mass spectrometric (LC-MS/MS) methodology has been used for the quantitation of lipophilic toxins (LTs) since 2011. The temporal and spatial distribution of okadaic acid group toxins and profiles in bivalves between 2011 and 2016 have been recently reported. Here we present data on the two other groups of regulated lipophilic toxins, azaspiracids (AZAs) and yessotoxins (YTXs), over the same period. The latter group has also been investigated for a potential link with Protoceratium reticulatum and Lingulodinium polyedra, both previously recognised as YTXs producing phytoplankton. On average, AZAs were quantified in 3.2% of all tested samples but notable inter-annual variation in abundance was observed. The majority of all AZA contaminated samples were found between July 2011 and August 2013 in Scotland, while only two, three-month long, AZA events were observed in 2015 and 2016 in the south-west of England. Maximum concentrations were generally reached in late summer or early autumn. Reasons for AZAs persistence during the 2011/2012 and 2012/2013 winters are discussed. Only one toxin profile was identified, represented by both AZA1 and AZA2 toxins at an approximate ratio of 2 : 1, suggesting a single microalgal species was the source of AZAs in British bivalves. Although AZA1 was always the most dominant toxin, its proportion varied between mussels, Pacific oysters and surf clams. The YTXs were the least represented group among regulated LTs. YTXs were found almost exclusively on the south-west coast of Scotland, with the exception of 2013, when the majority of contaminated samples originated from the Shetland Islands. The highest levels were recorded in the summer months and followed a spike in Protoceratium reticulatum cell densities. YTX was the most dominant toxin in shellfish, further strengthening the link to P. reticulatum as the YTX source. Neither homo-YTX, nor 45-OH homo-YTX were detected throughout the monitored period. 45-OH YTX, thought to be a shellfish metabolite associated with YTX elimination, contributed on average 26% in mussels. Although the correlation between 45-OH YTX abundance and the speed of YTX depuration could not be confirmed, we noted the half-life of YTX was more than two-times longer in queen scallops, which contained 100% YTX, than in mussels. No other bivalve species were affected by YTXs. This is the first detailed evaluation of AZAs and YTXs occurrences and their profiles in shellfish from Great Britain over a period of multiple years.
Collapse
Affiliation(s)
- Monika Dhanji-Rapkova
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), The Nothe, Barrack Road, Weymouth, Dorset, DT4 8UB, United Kingdom.
| | - Alison O'Neill
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), The Nothe, Barrack Road, Weymouth, Dorset, DT4 8UB, United Kingdom
| | - Benjamin H Maskrey
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), The Nothe, Barrack Road, Weymouth, Dorset, DT4 8UB, United Kingdom
| | - Lewis Coates
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), The Nothe, Barrack Road, Weymouth, Dorset, DT4 8UB, United Kingdom
| | - Sarah C Swan
- Scottish Association for Marine Science (SAMS), Scottish Marine Institute, Oban, Argyll, PA37 1QA, Scotland, United Kingdom
| | - Mickael Teixeira Alves
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), The Nothe, Barrack Road, Weymouth, Dorset, DT4 8UB, United Kingdom
| | - Rebecca J Kelly
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), The Nothe, Barrack Road, Weymouth, Dorset, DT4 8UB, United Kingdom
| | - Robert G Hatfield
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), The Nothe, Barrack Road, Weymouth, Dorset, DT4 8UB, United Kingdom
| | - Stephanie J Rowland-Pilgrim
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), The Nothe, Barrack Road, Weymouth, Dorset, DT4 8UB, United Kingdom
| | - Adam M Lewis
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), The Nothe, Barrack Road, Weymouth, Dorset, DT4 8UB, United Kingdom
| | - Andrew D Turner
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), The Nothe, Barrack Road, Weymouth, Dorset, DT4 8UB, United Kingdom
| |
Collapse
|
20
|
Dietrich J, Grass I, Günzel D, Herek S, Braeuning A, Lampen A, Hessel-Pras S. The marine biotoxin okadaic acid affects intestinal tight junction proteins in human intestinal cells. Toxicol In Vitro 2019; 58:150-160. [PMID: 30926360 DOI: 10.1016/j.tiv.2019.03.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/20/2019] [Accepted: 03/25/2019] [Indexed: 12/17/2022]
Abstract
Okadaic acid (OA) is a lipophilic phycotoxin that accumulates in the hepatopancreas and fatty tissue of shellfish. Consumption of highly OA-contaminated seafood leads to diarrhetic shellfish poisoning which provokes severe gastrointestinal symptoms associated with a disruption of the intestinal epithelium. Since the molecular mechanisms leading to intestinal barrier disruption are not fully elucidated, we investigated the influence of OA on intestinal tight junction proteins (TJPs) in differentiated Caco-2 cells. We found a concentration- and time-dependent deregulation of genes encoding for intestinal TJPs of the claudin family, occludin, as well as zonula occludens (ZO) 1 and 2. Immunofluorescence staining showed concentration-dependent effects on the structural organization of TJPs already after treatment with a subtoxic but human-relevant concentration of OA. In addition, changes in the structural organization of cytoskeletal F-actin as well as its associated protein ZO-1 were observed. In summary, we demonstrated effects of OA on TJPs in intestinal Caco-2 cells. TJP expressions were affected after treatment with food-relevant OA concentrations. These results might explain the high potential of OA to disrupt the intestinal barrier in vivo as its first target. Thereby the present data contribute to a better understanding of the OA-dependent induction of molecular effects within the intestinal epithelium.
Collapse
Affiliation(s)
- Jessica Dietrich
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Irina Grass
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Dorothee Günzel
- Institute of Clinical Physiology, Campus Benjamin Franklin, Charité Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Saadet Herek
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Albert Braeuning
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Alfonso Lampen
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Stefanie Hessel-Pras
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany.
| |
Collapse
|
21
|
Coates CJ, Lim J, Harman K, Rowley AF, Griffiths DJ, Emery H, Layton W. The insect, Galleria mellonella, is a compatible model for evaluating the toxicology of okadaic acid. Cell Biol Toxicol 2018; 35:219-232. [PMID: 30426330 PMCID: PMC6556153 DOI: 10.1007/s10565-018-09448-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 10/04/2018] [Indexed: 02/08/2023]
Abstract
The polyether toxin, okadaic acid, causes diarrhetic shellfish poisoning in humans. Despite extensive research into its cellular targets using rodent models, we know little about its putative effect(s) on innate immunity. We inoculated larvae of the greater wax moth, Galleria mellonella, with physiologically relevant doses of okadaic acid by direct injection into the haemocoel (body cavity) and/or gavage (force-feeding). We monitored larval survival and employed a range of cellular and biochemical assays to assess the potential harmful effects of okadaic acid. Okadaic acid at concentrations ≥ 75 ng/larva (≥ 242 μg/kg) led to significant reductions in larval survival (> 65%) and circulating haemocyte (blood cell) numbers (> 50%) within 24 h post-inoculation. In the haemolymph, okadaic acid reduced haemocyte viability and increased phenoloxidase activities. In the midgut, okadaic acid induced oxidative damage as determined by increases in superoxide dismutase activity and levels of malondialdehyde (i.e. lipid peroxidation). Our observations of insect larvae correspond broadly to data published using rodent models of shellfish-poisoning toxidrome, including complementary LD50 values: 206–242 μg/kg in mice, ~ 239 μg/kg in G. mellonella. These data support the use of this insect as a surrogate model for the investigation of marine toxins, which offers distinct ethical and financial incentives.
Collapse
Affiliation(s)
- Christopher J Coates
- Department of Biosciences, College of Science, Swansea University, Swansea, Wales, SA2 8PP, UK.
| | - Jenson Lim
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland, FK9 4LA, UK
| | - Katie Harman
- Department of Biosciences, College of Science, Swansea University, Swansea, Wales, SA2 8PP, UK
| | - Andrew F Rowley
- Department of Biosciences, College of Science, Swansea University, Swansea, Wales, SA2 8PP, UK
| | - David J Griffiths
- Department of Biosciences, College of Science, Swansea University, Swansea, Wales, SA2 8PP, UK
| | - Helena Emery
- Department of Biosciences, College of Science, Swansea University, Swansea, Wales, SA2 8PP, UK
| | - Will Layton
- Department of Biosciences, College of Science, Swansea University, Swansea, Wales, SA2 8PP, UK
| |
Collapse
|
22
|
Peter C, Krock B, Cembella A. Effects of salinity variation on growth and yessotoxin composition in the marine dinoflagellate Lingulodinium polyedra from a Skagerrak fjord system (western Sweden). HARMFUL ALGAE 2018; 78:9-17. [PMID: 30196929 DOI: 10.1016/j.hal.2018.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/05/2018] [Accepted: 07/05/2018] [Indexed: 06/08/2023]
Abstract
The marine dinoflagellate Lingulodinium polyedra is a toxigenic species capable of forming high magnitude and occasionally harmful algal blooms (HABs), particularly in temperate coastal waters throughout the world. Three cultured isolates of L. polyedra from a fjord system on the Skagerrak coast of Sweden were analyzed for their growth characteristics and to determine the effects of a strong salinity gradient on toxin cell quotas and composition. The cell quota of yessotoxin (YTX) analogs, as determined by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS), ranged widely among strains. For two strains, the total toxin content remained constant over time in culture, but for the third strain, the YTX cell quota significantly decreased (by 32%) during stationary growth phase. The toxin profiles of the three strains differed markedly and none produced YTX. The analog 41a-homo-YTX (m/z 1155), its putative methylated derivative 9-Me-41a-homo-YTX (m/z 1169) and an unspecified keto-YTX (m/z 1047) were detected in strain LP29-10H, whereas strain LP30-7B contained nor-YTX (m/z 1101), and two unspecified YTX analogs at m/z 1159 and m/z 1061. The toxin profile of strain LP30-8D comprised two unspecified YTX analogs at m/z 1061 and m/z 991 and carboxy-YTX (m/z 1173). Strain LP30-7B cultured at multiple salinities (10, 16, 22, 28 and 34) did not tolerate the lowest salinity (10), but there was a statistically significant decrease (by 21%) in toxin cell quota between growth at the highest versus lower permissible salinities. The toxin profile for strain LP30-7B remained constant over time for a given salinity. At lower salinities, however, the proportion of the unspecified YTX analog (m/z 1061) was significantly higher, especially with respect to nor-YTX (m/z 1101). This study shows high intra-specific variability in yessotoxin composition among strains from the same geographical region and inconsistency in toxin cell quota under different environmental regimes and growth stages in culture. This variation has important implications for the kinetics of YTX production and food web transfer in natural bloom populations from diverse geographical regions.
Collapse
Affiliation(s)
- Carolin Peter
- Universität Bremen, Bibliothekstraße 1, 28359 Bremen, Germany.
| | - Bernd Krock
- Alfred-Wegener-Institut, Helmholtz Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570 Bremerhaven, Germany.
| | - Allan Cembella
- Alfred-Wegener-Institut, Helmholtz Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570 Bremerhaven, Germany.
| |
Collapse
|
23
|
Abstract
The mouse bioassay for diarrhetic shellfish poisoning toxins has been used worldwide. In
this study, dinophysistoxin-1 (DTX-1) and okadaic acid (OA) were compared for toxicity.
The lethality rate increased and the median survival time decreased in a dose-dependent
manner in both DTX-1 and OA. The median lethal dose value was 150.4 µg/kg
(95% confidence interval=130.1–171.2 µg/kg) for DTX-1 and 185.6
µg/kg (95% confidence interval=161.2–209.6 µg/kg) for
OA. The toxicity equivalent factor 1:1 has been used for OA and DTX-1 in the EU and Japan.
Thus, it may be considered that toxicity potential of DTX-1 has remained underestimated as
compared to that of OA and DTX-1 might be more toxic than OA.
Collapse
Affiliation(s)
- Hodaka Suzuki
- Laboratory of Food Microbiology and Toxicology, College of Agriculture, Ibaraki University, 3-21-1 Chuo, Ami, Inashiki, Ibaraki 300-0393, Japan.,Division of Biomedical Food Research, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-9501, Japan
| | - Yumiko Okada
- Division of Biomedical Food Research, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-9501, Japan
| |
Collapse
|
24
|
Bodero M, Hoogenboom RL, Bovee TF, Portier L, de Haan L, Peijnenburg A, Hendriksen PJ. Whole genome mRNA transcriptomics analysis reveals different modes of action of the diarrheic shellfish poisons okadaic acid and dinophysis toxin-1 versus azaspiracid-1 in Caco-2 cells. Toxicol In Vitro 2018; 46:102-112. [DOI: 10.1016/j.tiv.2017.09.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 09/12/2017] [Accepted: 09/18/2017] [Indexed: 01/09/2023]
|
25
|
|
26
|
Sakai T. Convergent Synthesis of Fused Ring Systems in Large Polycyclic Ethers. YAKUGAKU ZASSHI 2017; 137:1095-1101. [DOI: 10.1248/yakushi.17-00116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Nikaido Y, Furukawa T, Shimoyama S, Yamada J, Migita K, Koga K, Kushikata T, Hirota K, Kanematsu T, Hirata M, Ueno S. Propofol Anesthesia Is Reduced in Phospholipase C-Related Inactive Protein Type-1 Knockout Mice. J Pharmacol Exp Ther 2017; 361:367-374. [PMID: 28404686 DOI: 10.1124/jpet.116.239145] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 04/04/2017] [Indexed: 11/22/2022] Open
Abstract
The GABA type A receptor (GABAA-R) is a major target of intravenous anesthetics. Phospholipase C-related inactive protein type-1 (PRIP-1) is important in GABAA-R phosphorylation and membrane trafficking. In this study, we investigated the role of PRIP-1 in general anesthetic action. The anesthetic effects of propofol, etomidate, and pentobarbital were evaluated in wild-type and PRIP-1 knockout (PRIP-1 KO) mice by measuring the latency and duration of loss of righting reflex (LORR) and loss of tail-pinch withdrawal response (LTWR). The effect of pretreatment with okadaic acid (OA), a protein phosphatase 1/2A inhibitor, on propofol- and etomidate-induced LORR was also examined. PRIP-1 deficiency provided the reduction of LORR and LTWR induced by propofol but not by etomidate or pentobarbital, indicating that PRIP-1 could determine the potency of the anesthetic action of propofol. Pretreatment with OA recovered the anesthetic potency induced by propofol in PRIP-1 KO mice. OA injection enhanced phosphorylation of cortical the GABAA-R β3 subunit in PRIP-1 KO mice. These results suggest that PRIP-1-mediated GABAA-R β3 subunit phosphorylation might be involved in the general anesthetic action induced by propofol but not by etomidate or pentobarbital.
Collapse
Affiliation(s)
- Yoshikazu Nikaido
- Graduate School of Medicine (Y.N.), Department of Neurophysiology (Y.N., T.F., K.K., S.U.) and Department of Anesthesiology, Graduate School of Medicine (Y.N., T.Ku., K.H.), Research Center for Child Mental Development, Graduate School of Medicine (S.S., S.U.), and Department of Biomedical Sciences, Division of Medical Life Sciences, Graduate School of Health Sciences (J.Y.), Hirosaki University, Hirosaki, Japan; Department of Drug Informatics, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan (K.M.); Department of Cellular and Molecular Pharmacology, Division of Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan (T.Ka.); Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, Fukuoka, Japan (M.H.); Fukuoka Dental College, Fukuoka, Japan (M.H.)
| | - Tomonori Furukawa
- Graduate School of Medicine (Y.N.), Department of Neurophysiology (Y.N., T.F., K.K., S.U.) and Department of Anesthesiology, Graduate School of Medicine (Y.N., T.Ku., K.H.), Research Center for Child Mental Development, Graduate School of Medicine (S.S., S.U.), and Department of Biomedical Sciences, Division of Medical Life Sciences, Graduate School of Health Sciences (J.Y.), Hirosaki University, Hirosaki, Japan; Department of Drug Informatics, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan (K.M.); Department of Cellular and Molecular Pharmacology, Division of Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan (T.Ka.); Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, Fukuoka, Japan (M.H.); Fukuoka Dental College, Fukuoka, Japan (M.H.)
| | - Shuji Shimoyama
- Graduate School of Medicine (Y.N.), Department of Neurophysiology (Y.N., T.F., K.K., S.U.) and Department of Anesthesiology, Graduate School of Medicine (Y.N., T.Ku., K.H.), Research Center for Child Mental Development, Graduate School of Medicine (S.S., S.U.), and Department of Biomedical Sciences, Division of Medical Life Sciences, Graduate School of Health Sciences (J.Y.), Hirosaki University, Hirosaki, Japan; Department of Drug Informatics, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan (K.M.); Department of Cellular and Molecular Pharmacology, Division of Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan (T.Ka.); Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, Fukuoka, Japan (M.H.); Fukuoka Dental College, Fukuoka, Japan (M.H.)
| | - Junko Yamada
- Graduate School of Medicine (Y.N.), Department of Neurophysiology (Y.N., T.F., K.K., S.U.) and Department of Anesthesiology, Graduate School of Medicine (Y.N., T.Ku., K.H.), Research Center for Child Mental Development, Graduate School of Medicine (S.S., S.U.), and Department of Biomedical Sciences, Division of Medical Life Sciences, Graduate School of Health Sciences (J.Y.), Hirosaki University, Hirosaki, Japan; Department of Drug Informatics, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan (K.M.); Department of Cellular and Molecular Pharmacology, Division of Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan (T.Ka.); Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, Fukuoka, Japan (M.H.); Fukuoka Dental College, Fukuoka, Japan (M.H.)
| | - Keisuke Migita
- Graduate School of Medicine (Y.N.), Department of Neurophysiology (Y.N., T.F., K.K., S.U.) and Department of Anesthesiology, Graduate School of Medicine (Y.N., T.Ku., K.H.), Research Center for Child Mental Development, Graduate School of Medicine (S.S., S.U.), and Department of Biomedical Sciences, Division of Medical Life Sciences, Graduate School of Health Sciences (J.Y.), Hirosaki University, Hirosaki, Japan; Department of Drug Informatics, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan (K.M.); Department of Cellular and Molecular Pharmacology, Division of Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan (T.Ka.); Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, Fukuoka, Japan (M.H.); Fukuoka Dental College, Fukuoka, Japan (M.H.)
| | - Kohei Koga
- Graduate School of Medicine (Y.N.), Department of Neurophysiology (Y.N., T.F., K.K., S.U.) and Department of Anesthesiology, Graduate School of Medicine (Y.N., T.Ku., K.H.), Research Center for Child Mental Development, Graduate School of Medicine (S.S., S.U.), and Department of Biomedical Sciences, Division of Medical Life Sciences, Graduate School of Health Sciences (J.Y.), Hirosaki University, Hirosaki, Japan; Department of Drug Informatics, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan (K.M.); Department of Cellular and Molecular Pharmacology, Division of Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan (T.Ka.); Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, Fukuoka, Japan (M.H.); Fukuoka Dental College, Fukuoka, Japan (M.H.)
| | - Tetsuya Kushikata
- Graduate School of Medicine (Y.N.), Department of Neurophysiology (Y.N., T.F., K.K., S.U.) and Department of Anesthesiology, Graduate School of Medicine (Y.N., T.Ku., K.H.), Research Center for Child Mental Development, Graduate School of Medicine (S.S., S.U.), and Department of Biomedical Sciences, Division of Medical Life Sciences, Graduate School of Health Sciences (J.Y.), Hirosaki University, Hirosaki, Japan; Department of Drug Informatics, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan (K.M.); Department of Cellular and Molecular Pharmacology, Division of Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan (T.Ka.); Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, Fukuoka, Japan (M.H.); Fukuoka Dental College, Fukuoka, Japan (M.H.)
| | - Kazuyoshi Hirota
- Graduate School of Medicine (Y.N.), Department of Neurophysiology (Y.N., T.F., K.K., S.U.) and Department of Anesthesiology, Graduate School of Medicine (Y.N., T.Ku., K.H.), Research Center for Child Mental Development, Graduate School of Medicine (S.S., S.U.), and Department of Biomedical Sciences, Division of Medical Life Sciences, Graduate School of Health Sciences (J.Y.), Hirosaki University, Hirosaki, Japan; Department of Drug Informatics, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan (K.M.); Department of Cellular and Molecular Pharmacology, Division of Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan (T.Ka.); Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, Fukuoka, Japan (M.H.); Fukuoka Dental College, Fukuoka, Japan (M.H.)
| | - Takashi Kanematsu
- Graduate School of Medicine (Y.N.), Department of Neurophysiology (Y.N., T.F., K.K., S.U.) and Department of Anesthesiology, Graduate School of Medicine (Y.N., T.Ku., K.H.), Research Center for Child Mental Development, Graduate School of Medicine (S.S., S.U.), and Department of Biomedical Sciences, Division of Medical Life Sciences, Graduate School of Health Sciences (J.Y.), Hirosaki University, Hirosaki, Japan; Department of Drug Informatics, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan (K.M.); Department of Cellular and Molecular Pharmacology, Division of Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan (T.Ka.); Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, Fukuoka, Japan (M.H.); Fukuoka Dental College, Fukuoka, Japan (M.H.)
| | - Masato Hirata
- Graduate School of Medicine (Y.N.), Department of Neurophysiology (Y.N., T.F., K.K., S.U.) and Department of Anesthesiology, Graduate School of Medicine (Y.N., T.Ku., K.H.), Research Center for Child Mental Development, Graduate School of Medicine (S.S., S.U.), and Department of Biomedical Sciences, Division of Medical Life Sciences, Graduate School of Health Sciences (J.Y.), Hirosaki University, Hirosaki, Japan; Department of Drug Informatics, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan (K.M.); Department of Cellular and Molecular Pharmacology, Division of Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan (T.Ka.); Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, Fukuoka, Japan (M.H.); Fukuoka Dental College, Fukuoka, Japan (M.H.)
| | - Shinya Ueno
- Graduate School of Medicine (Y.N.), Department of Neurophysiology (Y.N., T.F., K.K., S.U.) and Department of Anesthesiology, Graduate School of Medicine (Y.N., T.Ku., K.H.), Research Center for Child Mental Development, Graduate School of Medicine (S.S., S.U.), and Department of Biomedical Sciences, Division of Medical Life Sciences, Graduate School of Health Sciences (J.Y.), Hirosaki University, Hirosaki, Japan; Department of Drug Informatics, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan (K.M.); Department of Cellular and Molecular Pharmacology, Division of Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan (T.Ka.); Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, Fukuoka, Japan (M.H.); Fukuoka Dental College, Fukuoka, Japan (M.H.)
| |
Collapse
|
28
|
Subacute immunotoxicity of the marine phycotoxin yessotoxin in rats. Toxicon 2017; 129:74-80. [DOI: 10.1016/j.toxicon.2017.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 02/02/2017] [Accepted: 02/11/2017] [Indexed: 01/06/2023]
|
29
|
Abal P, Louzao MC, Cifuentes JM, Vilariño N, Rodriguez I, Alfonso A, Vieytes MR, Botana LM. Characterization of the dinophysistoxin-2 acute oral toxicity in mice to define the Toxicity Equivalency Factor. Food Chem Toxicol 2017; 102:166-175. [PMID: 28223118 DOI: 10.1016/j.fct.2017.02.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 02/14/2017] [Accepted: 02/15/2017] [Indexed: 01/08/2023]
Abstract
Ingestion of shellfish with dinophysistoxin-2 (DTX2) can lead to diarrheic shellfish poisoning (DSP). The official control method of DSP toxins in seafood is the liquid chromatography-mass spectrometry analysis (LC-MS). However in order to calculate the total toxicity of shellfish, the concentration of each compound must be multiplied by individual Toxicity Equivalency Factor (TEF). Considering that TEFs caused some controversy and the scarce information about DTX2 toxicity, the aim of this study was to characterize the oral toxicity of DTX2 in mice. A 4-Level Up and Down Procedure allowed the characterization of DTX2 effects and the estimation of DTX2 oral TEF based on determination of the lethal dose 50 (LD50). DTX2 passed the gastrointestinal barrier and was detected in urine and feces. Acute toxicity symptoms include diarrhea and motionless, however anatomopathology study and ultrastructural images restricted the toxin effects to the gastrointestinal tract. Nevertheless enterocytes microvilli and tight junctions were not altered, disconnecting DTX2 diarrheic effects from paracellular epithelial permeability. This is the first report of DTX2 oral LD50 (2262 μg/kg BW) indicating that its TEF is about 0.4. This result suggests reevaluation of the present TEFs for the DSP toxins to better determine the actual risk to seafood consumers.
Collapse
Affiliation(s)
- Paula Abal
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo 27002, Spain
| | - M Carmen Louzao
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo 27002, Spain.
| | - José Manuel Cifuentes
- Departamento de Anatomía, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo 27002, Spain
| | - Natalia Vilariño
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo 27002, Spain
| | - Ines Rodriguez
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo 27002, Spain
| | - Amparo Alfonso
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo 27002, Spain
| | - Mercedes R Vieytes
- Departamento de Fisiología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo 27002, Spain
| | - Luis M Botana
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo 27002, Spain.
| |
Collapse
|
30
|
Botana LM, Hess P, Munday R, Nathalie A, DeGrasse SL, Feeley M, Suzuki T, van den Berg M, Fattori V, Garrido Gamarro E, Tritscher A, Nakagawa R, Karunasagar I. Derivation of toxicity equivalency factors for marine biotoxins associated with Bivalve Molluscs. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2016.09.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Yessotoxin, a Marine Toxin, Exhibits Anti-Allergic and Anti-Tumoural Activities Inhibiting Melanoma Tumour Growth in a Preclinical Model. PLoS One 2016; 11:e0167572. [PMID: 27973568 PMCID: PMC5156389 DOI: 10.1371/journal.pone.0167572] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 11/15/2016] [Indexed: 01/29/2023] Open
Abstract
Yessotoxins (YTXs) are a group of marine toxins produced by the dinoflagellates Protoceratium reticulatum, Lingulodinium polyedrum and Gonyaulax spinifera. They may have medical interest due to their potential role as anti-allergic but also anti-cancer compounds. However, their biological activities remain poorly characterized. Here, we show that the small molecular compound YTX causes a slight but significant reduction of the ability of mast cells to degranulate. Strikingly, further examination revealed that YTX had a marked and selective cytotoxicity for the RBL-2H3 mast cell line inducing apoptosis, while primary bone marrow derived mast cells were highly resistant. In addition, YTX exhibited strong cytotoxicity against the human B-chronic lymphocytic leukaemia cell line MEC1 and the murine melanoma cell line B16F10. To analyse the potential role of YTX as an anti-cancer drug in vivo we used the well-established B16F10 melanoma preclinical mouse model. Our results demonstrate that a few local application of YTX around established tumours dramatically diminished tumour growth in the absence of any significant toxicity as determined by the absence of weight loss and haematological alterations. Our data support that YTX may have a minor role as an anti-allergic drug, but reveals an important potential for its use as an anti-cancer drug.
Collapse
|
32
|
Ferreiro SF, Vilariño N, Carrera C, Louzao MC, Cantalapiedra AG, Santamarina G, Cifuentes JM, Vieira AC, Botana LM. Subacute Cardiotoxicity of Yessotoxin: In Vitro and in Vivo Studies. Chem Res Toxicol 2016; 29:981-90. [PMID: 27104637 DOI: 10.1021/acs.chemrestox.6b00012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Yessotoxin (YTX) is a marine phycotoxin produced by dinoflagellates and accumulated in filter feeding shellfish. Although no human intoxication episodes have been reported, YTX content in shellfish is regulated by many food safety authorities due to their worldwide distribution. YTXs have been related to ultrastructural heart damage in vivo, but the functional consequences in the long term have not been evaluated. In this study, we explored the accumulative cardiotoxic potential of YTX in vitro and in vivo. Preliminary in vitro evaluation of cardiotoxicity was based on the effect on hERG (human ether-a-go-go related gene) channel trafficking. In vivo experiments were performed in rats that received repeated administrations of YTX followed by recordings of electrocardiograms, arterial blood pressure, plasmatic cardiac biomarkers, and analysis of myocardium structure and ultrastructure. Our results showed that an exposure to 100 nM YTX for 12 or 24 h caused an increase of extracellular surface hERG channels. Furthermore, remarkable bradycardia and hypotension, structural heart alterations, and increased plasma levels of tissue inhibitor of metalloproteinases-1 were observed in rats after four intraperitoneal injections of YTX at doses of 50 or 70 μg/kg that were administered every 4 days along a period of 15 days. Therefore, and for the first time, YTX-induced subacute cardiotoxicity is supported by evidence of cardiovascular function alterations related to its repeated administration. Considering international criteria for marine toxin risk estimation and that the regulatory limit for YTX has been recently raised in many countries, YTX cardiotoxicity might pose a health risk to humans and especially to people with previous cardiovascular risk.
Collapse
Affiliation(s)
- Sara F Ferreiro
- Departamento de Farmacología, ‡Departamento de Ciencias Clínicas Veterinarias, §Hospital Veterinario Universitario Rof Codina and ∥Departamento de Anatomía y Producción Animal, Facultad de Veterinaria, Universidade de Santiago de Compostela , 27002 Lugo, Spain
| | - Natalia Vilariño
- Departamento de Farmacología, ‡Departamento de Ciencias Clínicas Veterinarias, §Hospital Veterinario Universitario Rof Codina and ∥Departamento de Anatomía y Producción Animal, Facultad de Veterinaria, Universidade de Santiago de Compostela , 27002 Lugo, Spain
| | - Cristina Carrera
- Departamento de Farmacología, ‡Departamento de Ciencias Clínicas Veterinarias, §Hospital Veterinario Universitario Rof Codina and ∥Departamento de Anatomía y Producción Animal, Facultad de Veterinaria, Universidade de Santiago de Compostela , 27002 Lugo, Spain
| | - M Carmen Louzao
- Departamento de Farmacología, ‡Departamento de Ciencias Clínicas Veterinarias, §Hospital Veterinario Universitario Rof Codina and ∥Departamento de Anatomía y Producción Animal, Facultad de Veterinaria, Universidade de Santiago de Compostela , 27002 Lugo, Spain
| | - Antonio G Cantalapiedra
- Departamento de Farmacología, ‡Departamento de Ciencias Clínicas Veterinarias, §Hospital Veterinario Universitario Rof Codina and ∥Departamento de Anatomía y Producción Animal, Facultad de Veterinaria, Universidade de Santiago de Compostela , 27002 Lugo, Spain
| | - Germán Santamarina
- Departamento de Farmacología, ‡Departamento de Ciencias Clínicas Veterinarias, §Hospital Veterinario Universitario Rof Codina and ∥Departamento de Anatomía y Producción Animal, Facultad de Veterinaria, Universidade de Santiago de Compostela , 27002 Lugo, Spain
| | - J Manuel Cifuentes
- Departamento de Farmacología, ‡Departamento de Ciencias Clínicas Veterinarias, §Hospital Veterinario Universitario Rof Codina and ∥Departamento de Anatomía y Producción Animal, Facultad de Veterinaria, Universidade de Santiago de Compostela , 27002 Lugo, Spain
| | - Andrés C Vieira
- Departamento de Farmacología, ‡Departamento de Ciencias Clínicas Veterinarias, §Hospital Veterinario Universitario Rof Codina and ∥Departamento de Anatomía y Producción Animal, Facultad de Veterinaria, Universidade de Santiago de Compostela , 27002 Lugo, Spain
| | - Luis M Botana
- Departamento de Farmacología, ‡Departamento de Ciencias Clínicas Veterinarias, §Hospital Veterinario Universitario Rof Codina and ∥Departamento de Anatomía y Producción Animal, Facultad de Veterinaria, Universidade de Santiago de Compostela , 27002 Lugo, Spain
| |
Collapse
|
33
|
Ferron PJ, Dumazeau K, Beaulieu JF, Le Hégarat L, Fessard V. Combined Effects of Lipophilic Phycotoxins (Okadaic Acid, Azapsiracid-1 and Yessotoxin) on Human Intestinal Cells Models. Toxins (Basel) 2016; 8:50. [PMID: 26907345 PMCID: PMC4773803 DOI: 10.3390/toxins8020050] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 01/29/2016] [Accepted: 02/01/2016] [Indexed: 12/02/2022] Open
Abstract
Phycotoxins are monitored in seafood because they can cause food poisonings in humans. Phycotoxins do not only occur singly but also as mixtures in shellfish. The aim of this study was to evaluate the in vitro toxic interactions of binary combinations of three lipophilic phycotoxins commonly found in Europe (okadaic acid (OA), yessotoxin (YTX) and azaspiracid-1 (AZA-1)) using the neutral red uptake assay on two human intestinal cell models, Caco-2 and the human intestinal epithelial crypt-like cells (HIEC). Based on the cytotoxicity of individual toxins, we studied the interactions between toxins in binary mixtures using the combination index-isobologram equation, a method widely used in pharmacology to study drug interactions. This method quantitatively classifies interactions between toxins in mixtures as synergistic, additive or antagonistic. AZA-1/OA, and YTX/OA mixtures showed increasing antagonism with increasing toxin concentrations. In contrast, the AZA-1/YTX mixture showed increasing synergism with increasing concentrations, especially for mixtures with high YTX concentrations. These results highlight the hazard potency of AZA-1/YTX mixtures with regard to seafood intoxication.
Collapse
Affiliation(s)
- Pierre-Jean Ferron
- Toxicology of Contaminants Unit, French Agency for Food, Environmental and Occupational Health & Safety, Fougères 35300, France.
| | - Kevin Dumazeau
- Toxicology of Contaminants Unit, French Agency for Food, Environmental and Occupational Health & Safety, Fougères 35300, France.
| | - Jean-François Beaulieu
- Laboratory of Intestinal Physiopathology, University of Sherbrooke, Sherbrooke, QC J1G 0A2, Canada.
| | - Ludovic Le Hégarat
- Toxicology of Contaminants Unit, French Agency for Food, Environmental and Occupational Health & Safety, Fougères 35300, France.
| | - Valérie Fessard
- Toxicology of Contaminants Unit, French Agency for Food, Environmental and Occupational Health & Safety, Fougères 35300, France.
| |
Collapse
|
34
|
Alfonso A, Vieytes MR, Botana LM. Yessotoxin, a Promising Therapeutic Tool. Mar Drugs 2016; 14:md14020030. [PMID: 26828502 PMCID: PMC4771983 DOI: 10.3390/md14020030] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 01/15/2016] [Accepted: 01/18/2016] [Indexed: 02/05/2023] Open
Abstract
Yessotoxin (YTX) is a polyether compound produced by dinoflagellates and accumulated in filter feeding shellfish. No records about human intoxications induced by this compound have been published, however it is considered a toxin. Modifications in second messenger levels, protein levels, immune cells, cytoskeleton or activation of different cellular death types have been published as consequence of YTX exposure. This review summarizes the main intracellular pathways modulated by YTX and their pharmacological and therapeutic implications.
Collapse
Affiliation(s)
- Amparo Alfonso
- Department of Pharmacology, Faculty of Veterinary, University of Santiago of Compostela, 27002 Lugo, Spain.
| | - Mercedes R Vieytes
- Department of Physiology, Faculty of Veterinary, University of Santiago of Compostela, 27002 Lugo, Spain.
| | - Luis M Botana
- Department of Physiology, Faculty of Veterinary, University of Santiago of Compostela, 27002 Lugo, Spain.
| |
Collapse
|
35
|
Wang XZ, Cheng Y, Li N, Wen HM, Liu R, Shan CX, Chai C, Wu H. Occurrence and Seasonal Variations of Lipophilic Marine Toxins in Commercial Clam Species along the Coast of Jiangsu, China. Toxins (Basel) 2015; 8:E8. [PMID: 26712791 PMCID: PMC4728530 DOI: 10.3390/toxins8010008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/11/2015] [Accepted: 12/17/2015] [Indexed: 01/22/2023] Open
Abstract
Recent studies have examined lipophilic marine toxins (LMTs) in shellfish and toxic algae worldwide, but the occurrence and seasonal variations of LMTs in commercial clams (including Mactra veneriformis, Ruditapes philippinarum, Meretrix meretrix, and Cyclina sinensis) at their major culturing area in Jiangsu, China, remain largely unexplored. In this study, a new solid phase extraction (SPE) in combination with an ultra-fast liquid chromatography and triple-quadrupole linear ion trap mass spectrometry (UFLC-TQ-MS) method was developed to determine the presence of 10 typical LMTs (okadaic acid (OA), yessotoxins (YTXs), azaspiracids (AZA1-3), pectenotoxins (PTX2), gymnodimine (GYM), dinophysistoxins (DTX1&2), and spirolides (SPX1)) in the aforementioned four clam matrices. After confirmation of its sensitivity and precision, this method was used to evaluate the amounts of LMTs in clam samples harvested in five aquaculture zones of the Jiangsu coastal area. Monthly variations of GYM, PTX2, OA, and DTX1&2 in 400 clam samples from the sample areas were determined from January 2014 through August 2015. Peak values were observed during May and August. This is the first systematic report of LMTs detected in clam samples harvested in Jiangsu. Follow-up research and the implementation of protective measures are needed to ensure the safety of clams harvested in this area.
Collapse
Affiliation(s)
- Xin-Zhi Wang
- School of Pharmacy, Nanjing University of Chinese Medicines, Xianlin Avenue No. 138, Nanjing 210023, China.
| | - Ying Cheng
- Marine Drug Research and Development Center of Jiangsu Province, Xianlin Avenue No. 138, Nanjing 210023, China.
| | - Na Li
- Marine Drug Research and Development Center of Jiangsu Province, Xianlin Avenue No. 138, Nanjing 210023, China.
| | - Hong-Mei Wen
- School of Pharmacy, Nanjing University of Chinese Medicines, Xianlin Avenue No. 138, Nanjing 210023, China.
| | - Rui Liu
- School of Pharmacy, Nanjing University of Chinese Medicines, Xianlin Avenue No. 138, Nanjing 210023, China.
| | - Chen-Xiao Shan
- School of Pharmacy, Nanjing University of Chinese Medicines, Xianlin Avenue No. 138, Nanjing 210023, China.
| | - Chuan Chai
- School of Pharmacy, Nanjing University of Chinese Medicines, Xianlin Avenue No. 138, Nanjing 210023, China.
| | - Hao Wu
- School of Pharmacy, Nanjing University of Chinese Medicines, Xianlin Avenue No. 138, Nanjing 210023, China.
- Marine Drug Research and Development Center of Jiangsu Province, Xianlin Avenue No. 138, Nanjing 210023, China.
| |
Collapse
|
36
|
Assimilation, Accumulation, and Metabolism of Dinophysistoxins (DTXs) and Pectenotoxins (PTXs) in the Several Tissues of Japanese Scallop Patinopecten yessoensis. Toxins (Basel) 2015; 7:5141-54. [PMID: 26633503 PMCID: PMC4690120 DOI: 10.3390/toxins7124870] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 11/16/2015] [Accepted: 11/17/2015] [Indexed: 11/16/2022] Open
Abstract
Japanese scallops, Patinopecten yessoensis, were fed with the toxic dinoflagellate Dinophysis fortii to elucidate the relative magnitude of assimilation, accumulation, and metabolism of diarrhetic shellfish toxins (DSTs) and pectenotoxins (PTXs). Three individual scallops were separately exposed to cultured D. fortii for four days. The average cell number of D. fortii assimilated by each individual scallop was 7.7 × 10⁵. Dinophysistoxin-1 (DTX1), pectenotoxin-2 (PTX2) and their metabolites were analyzed by liquid chromatography tandem mass spectrometry (LC/MS/MS) and the toxin content in individual tissues (digestive gland, adductor muscle, gill, gonad, mantle, and the others), feces and the seawater medium were quantified. Toxins were almost exclusively accumulated in the digestive gland with only low levels being detected in the gills, mantles, gonads, and adductor muscles. DTX1 and PTX2 were the dominant toxins in the D. fortii cells fed to the scallops, whereas the dominant toxins detected in the digestive gland of scallops were PTX6 and esterified acyl-O-DTX1 (DTX3). In other tissues PTX2 was the dominant toxin observed. The ratio of accumulated to assimilated toxins was 21%-39% and 7%-23% for PTXs and DTXs respectively. Approximately 54%-75% of PTX2 and 52%-70% of DTX1 assimilated by the scallops was directly excreted into the seawater mainly without metabolic transformation.
Collapse
|
37
|
Acute cardiotoxicity evaluation of the marine biotoxins OA, DTX-1 and YTX. Toxins (Basel) 2015; 7:1030-47. [PMID: 25826053 PMCID: PMC4417953 DOI: 10.3390/toxins7041030] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 03/17/2015] [Accepted: 03/18/2015] [Indexed: 11/29/2022] Open
Abstract
Phycotoxins are marine toxins produced by phytoplankton that can get accumulated in filter feeding shellfish. Human intoxication episodes occur due to contaminated seafood consumption. Okadaic acid (OA) and dynophysistoxins (DTXs) are phycotoxins responsible for a severe gastrointestinal syndrome called diarrheic shellfish poisoning (DSP). Yessotoxins (YTXs) are marine toxins initially included in the DSP class but currently classified as a separated group. Food safety authorities from several countries have regulated the content of DSPs and YTXs in shellfish to protect human health. In mice, OA and YTX have been associated with ultrastructural heart damage in vivo. Therefore, this study explored the potential of OA, DTX-1 and YTX to cause acute heart toxicity. Cardiotoxicity was evaluated in vitro by measuring hERG (human èter-a-go-go gene) channel activity and in vivo using electrocardiogram (ECG) recordings and cardiac damage biomarkers. The results demonstrated that these toxins do not exert acute effects on hERG channel activity. Additionally, in vivo experiments showed that these compounds do not alter cardiac biomarkers and ECG in rats acutely. Despite the ultrastructural damage to the heart reported for these toxins, no acute alterations of heart function have been detected in vivo, suggesting a functional compensation in the short term.
Collapse
|
38
|
Soliño L, Sureda FX, Diogène J. Evaluation of okadaic acid, dinophysistoxin-1 and dinophysistoxin-2 toxicity on Neuro-2a, NG108-15 and MCF-7 cell lines. Toxicol In Vitro 2014; 29:59-62. [PMID: 25238672 DOI: 10.1016/j.tiv.2014.09.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 05/21/2014] [Accepted: 09/06/2014] [Indexed: 10/24/2022]
Abstract
Marine dinoflagelates from the genus Dynophisis are important producers of Diarrhetic Shellfish Poisoning (DSP) toxins which are responsible for human intoxications. The present work is an approach to study the relative toxicity of DSP toxins effects on Neuro-2a, NG108-15 and MCF-7 cell-lines. Certified standards of okadaic acid (OA), dinophysistoxin-1 (DTX-1) and dinophysistoxin-2 (DTX-2) were used. Our results show that the three toxins exhibit similar cytotoxicity in Neuro-2a and NG108-15 cell lines. Conversely, MCF-7 cells were the least sensitive to these toxins. DTX-1 displayed the most toxic effect in the three tested cell lines.
Collapse
Affiliation(s)
- Lucia Soliño
- IRTA, Marine Monitoring Subprogram, Ctra. Poble Nou, Km 5.5, 43540 Sant Carles de la Ràpita, Tarragona, Spain; Universitat Rovira i Virgili, Faculty of Medicine & Health Sciences, Pharmacology Unit, c./ St. Llorenç 21, 43201 Reus, Tarragona, Spain
| | - Francesc X Sureda
- Universitat Rovira i Virgili, Faculty of Medicine & Health Sciences, Pharmacology Unit, c./ St. Llorenç 21, 43201 Reus, Tarragona, Spain
| | - Jorge Diogène
- IRTA, Marine Monitoring Subprogram, Ctra. Poble Nou, Km 5.5, 43540 Sant Carles de la Ràpita, Tarragona, Spain.
| |
Collapse
|
39
|
Wu H, Guo M, Tan Z, Cheng H, Li Z, Zhai Y. Liquid chromatography quadrupole linear ion trap mass spectrometry for multiclass screening and identification of lipophilic marine biotoxins in bivalve mollusks. J Chromatogr A 2014; 1358:172-80. [DOI: 10.1016/j.chroma.2014.06.105] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 05/22/2014] [Accepted: 06/21/2014] [Indexed: 10/25/2022]
|
40
|
Zhang NS, Li HY, Liu JS, Yang WD. Gene expression profiles in zebrafish (Danio rerio) liver after acute exposure to okadaic acid. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 37:791-802. [PMID: 24637248 DOI: 10.1016/j.etap.2014.02.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 02/05/2014] [Accepted: 02/06/2014] [Indexed: 06/03/2023]
Abstract
Okadaic acid (OA), a main component of diarrheic shellfish poisoning (DSP) toxins, is a strong and specific inhibitor of the serine/threonine protein phosphatases PP1 and PP2A. However, not all of the OA-induced effects can be explained by this phosphatase inhibition, and controversial results on OA are increasing. To provide clues on potential mechanisms of OA other than phosphatase inhibition, here, acute toxicity of OA was evaluated in zebrafish, and changes in gene expression in zebrafish liver tissues upon exposure to OA were observed by microarray. The i.p. ED50 (6 h) of OA on zebrafish was 1.54 μg OA/g body weight (bw). Among the genes analyzed on the zebrafish array, 55 genes were significantly up-regulated and 36 down-regulated in the fish liver tissue upon exposure to 0.176 μg OA/g bw (low-dose group, LD) compared with the low ethanol control (LE). However, there were no obvious functional clusters for them. On the contrary, fish exposure to 1.760 μg OA/g bw (high-dose group, HD) yielded a great number of differential expressed genes (700 up and 285 down) compared with high ethanol control (HE), which clustered in several functional terms such as p53 signaling pathway, Wnt signaling pathway, glutathione metabolism and protein processing in endoplasmic reticulum, etc. These genes were involved in protein phosphatase activity, translation factor activity, heat shock protein binding, as well as transmembrane transporter activity. Our findings may give some useful information on the pathways of OA-induced injury in fish.
Collapse
Affiliation(s)
- Nai-sheng Zhang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China; Wageningen University and Research Centre, Centre for Water and Climate, Alterra, PO Box 47, 6700AA Wageningen, The Netherlands
| | - Hong-ye Li
- College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China; Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, P. R. China
| | - Jie-sheng Liu
- College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China; Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, P. R. China
| | - Wei-dong Yang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China; Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, P. R. China.
| |
Collapse
|
41
|
Kittler K, Fessard V, Maul R, Hurtaud-Pessel D. CYP3A4 activity reduces the cytotoxic effects of okadaic acid in HepaRG cells. Arch Toxicol 2014; 88:1519-26. [DOI: 10.1007/s00204-014-1206-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 01/20/2014] [Indexed: 11/29/2022]
|
42
|
Experimental basis for the high oral toxicity of dinophysistoxin 1: a comparative study of DSP. Toxins (Basel) 2014; 6:211-28. [PMID: 24394641 PMCID: PMC3920258 DOI: 10.3390/toxins6010211] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/23/2013] [Accepted: 12/28/2013] [Indexed: 01/29/2023] Open
Abstract
Okadaic acid (OA) and its analogues, dinophysistoxin 1 (DTX1) and dinophysistoxin 2 (DTX2), are lipophilic and heat-stable marine toxins produced by dinoflagellates, which can accumulate in filter-feeding bivalves. These toxins cause diarrheic shellfish poisoning (DSP) in humans shortly after the ingestion of contaminated seafood. Studies carried out in mice indicated that DSP poisonous are toxic towards experimental animals with a lethal oral dose 2–10 times higher than the intraperitoneal (i.p.) lethal dose. The focus of this work was to study the absorption of OA, DTX1 and DTX2 through the human gut barrier using differentiated Caco-2 cells. Furthermore, we compared cytotoxicity parameters. Our data revealed that cellular viability was not compromised by toxin concentrations up to 1 μM for 72 h. Okadaic acid and DTX2 induced no significant damage; nevertheless, DTX1 was able to disrupt the integrity of Caco-2 monolayers at concentrations above 50 nM. In addition, confocal microscopy imaging confirmed that the tight-junction protein, occludin, was affected by DTX1. Permeability assays revealed that only DTX1 was able to significantly cross the intestinal epithelium at concentrations above 100 nM. These data suggest a higher oral toxicity of DTX1 compared to OA and DTX2.
Collapse
|
43
|
Ciminiello P, Dell'Aversano C, Forino M, Tartaglione L. Marine Toxins in Italy: The More You Look, the More You Find. European J Org Chem 2013. [DOI: 10.1002/ejoc.201300991] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
44
|
Bellassoued K, Makni-Ayadi F, Van Pelt J, Elfeki A. Hepatotoxicity in rats induced by the poisonous dreamfish (Sarpa salpa). Toxicol Mech Methods 2013; 24:151-60. [PMID: 24274667 DOI: 10.3109/15376516.2013.869781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
AIMS The present study was aimed to assess the cytotoxic effects of not-yet identified compounds present in organ extracts of Sarpa salpa, collected in autumn, the period with a peak in health problems. METHODS The toxicity was assessed by mouse bioassay of extract of the fish's organs. Wistar rats received daily extracts of different organs of S. salpa by gastric gavage for 7 d (0.3 ml of extract/100 g body weight, BW). The dose of tissue extracts of viscera, liver, brain and flesh of S. salpa administered to rats were as follows: 17.2, 31.3, 205, 266 mg/100g BW, respectively. No deaths occurred during the period of treatment. RESULTS The lethal dose (LD50%) determined for the crude ciguatoxin (neurotoxins) extracts of viscera, liver, brain and flesh of S. salpa were as follows: 1.2, 2.2, 14.4, 18.6 g/kg mouse, respectively. Changes in locomotor activity during the first 2 h and failure breathing and no evident signs of gastrointestinal problems were recorded. We observed: (1) Induction of oxidative stress, indicated by an increase in lipid peroxidation (TBARS) in groups that received extracts of liver (+490%) or viscera (+592%). Accompanied by a significant decrease in antioxidant enzyme activities (SOD, CAT, GPx) in liver tissue by 15%, 17%, 18% (LT: animals receiving liver extracts) and by 19%, 22%, 22% (VT: animals receiving viscera extracts), respectively. In contrast the administration of extracts of flesh and brain induced an increase in antioxidant enzyme activities (SOD, CAT, GPx) in liver tissue by 15%, 19%, 15% (FT: flesh extract) and 18%, 55%, 55% (BT: brain extract), respectively; (2) A significant increase in total metallothionein levels in liver tissue was recorded in (FT), (BT), (LT) and (VT) by 55%, 88%, 255% and 277%, respectively, (3) The histological findings confirmed the biochemical results. CONCLUSIONS Liver and especially visceral part of S. salpa presented toxicity, which clearly indicates the danger of using this fish as food.
Collapse
Affiliation(s)
- Khaled Bellassoued
- Animal Ecophysiology Laboratory, Department of Life Sciences, Sciences Faculty of Sfax , Sfax , Tunisia
| | | | | | | |
Collapse
|
45
|
Munday R, Reeve J. Risk assessment of shellfish toxins. Toxins (Basel) 2013; 5:2109-37. [PMID: 24226039 PMCID: PMC3847717 DOI: 10.3390/toxins5112109] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 10/23/2013] [Accepted: 10/30/2013] [Indexed: 01/24/2023] Open
Abstract
Complex secondary metabolites, some of which are highly toxic to mammals, are produced by many marine organisms. Some of these organisms are important food sources for marine animals and, when ingested, the toxins that they produce may be absorbed and stored in the tissues of the predators, which then become toxic to animals higher up the food chain. This is a particular problem with shellfish, and many cases of poisoning are reported in shellfish consumers each year. At present, there is no practicable means of preventing uptake of the toxins by shellfish or of removing them after harvesting. Assessment of the risk posed by such toxins is therefore required in order to determine levels that are unlikely to cause adverse effects in humans and to permit the establishment of regulatory limits in shellfish for human consumption. In the present review, the basic principles of risk assessment are described, and the progress made toward robust risk assessment of seafood toxins is discussed. While good progress has been made, it is clear that further toxicological studies are required before this goal is fully achieved.
Collapse
Affiliation(s)
- Rex Munday
- AgResearch Ltd, Ruakura Research Centre, Private Bag 3123, Hamilton, New Zealand
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +64-7-838-5138; Fax: +64-7-838-5012
| | - John Reeve
- Ministry of Primary Industries, PO Box 2526, Wellington, New Zealand; E-Mail:
| |
Collapse
|
46
|
Oral toxicity of okadaic acid in mice: study of lethality, organ damage, distribution and effects on detoxifying gene expression. Toxins (Basel) 2013; 5:2093-108. [PMID: 24217398 PMCID: PMC3847716 DOI: 10.3390/toxins5112093] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 10/15/2013] [Accepted: 11/05/2013] [Indexed: 02/07/2023] Open
Abstract
In vivo, after administration by gavage to mice and rats, okadaic acid has been reported to produce lesions in liver, small intestine and forestomach. Because several reports differ in the damage detected in different organs, and on okadaic acid distribution after consumption, we determined the toxicity of this compound after oral administration to mice. After 24 hours, histopathological examination showed necrotic foci and lipid vacuoles in the livers of intoxicated animals. By immunohistochemical analysis, we detected this toxin in the liver and kidneys of intoxicated animals. Okadaic acid induces oxidative stress and can be activated in vitro into reactive compounds by the post-mitochondrial S9 fraction, so we studied the okadaic effect on the gene expression of antioxidant and phase II detoxifying enzymes in liver. We observed a downregulation in the expression of these enzymes and a reduction of protein expression of catalase and superoxide dismutase 1 in intoxicated animals.
Collapse
|
47
|
Repeated oral co-exposure to yessotoxin and okadaic acid: a short term toxicity study in mice. Toxicon 2013; 76:94-102. [PMID: 24060376 DOI: 10.1016/j.toxicon.2013.09.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 08/30/2013] [Accepted: 09/12/2013] [Indexed: 11/24/2022]
Abstract
The polyethers yessotoxin (YTX) and okadaic acid (OA) are two marine algal toxins frequently associated as edible shellfish contaminants. Seafood contamination by these compounds, also at low concentrations and for a long period of time, can increase the possibility of their simultaneous and repeated ingestion, with possible synergistic toxic effects. Thus, in vivo toxicity by repeated oral exposure to a combination of fixed doses of YTX and OA (1 mg YTX/kg and 0.185 mg OA/kg, daily for 7 days) was investigated in mice, in comparison to that of each toxin alone. No mortality, signs of toxicity, diarrhea or hematological changes was induced by the toxins co-administration or by the single toxins. Light microscopy revealed changes at gastric level (multifocal subacute inflammation, erosions and epithelial hyperplasia) in 2/5 mice co-administered with the toxins. In animals dosed only with OA, epithelial hyperplasia of forestomach and slight focal subacute inflammation of its submucosa were noted. No changes were induced by the treatment with YTX. Ultrastructural analysis of the heart revealed some cardiomyocytes with "loose packing" of myofibrils and aggregated rounded mitochondria in mice co-administered with the toxins or with YTX; OA-treated mice showed only occasional mitochondrial assemblage and dilated sarcomeres. Thus, the combined oral doses of YTX (1 mg/kg/day) and OA (0.185 mg/kg/day) did not exert cumulative or additive toxic effects in mice, in comparison to the single toxins.
Collapse
|
48
|
Shi J, Feng M, Zhang X, Wei Z, Wang Z. Acute oral toxicity and liver oxidant/antioxidant stress of halogenated benzene, phenol, and diphenyl ether in mice: a comparative and mechanism exploration. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:6138-6149. [PMID: 23546852 DOI: 10.1007/s11356-013-1622-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 03/11/2013] [Indexed: 06/02/2023]
Abstract
The lethal doses (LD50s) of fluorinated, chlorinated, brominated, and iodinated benzene, phenol, and diphenyl ether in mice were ascertained respectively under the consistent condition. The acute toxicity of four benzenes orders in fluorobenzene (FB) < iodobenzene < chlorobenzene≈bromobenzene, that of four phenols orders in 4-iodophenol≈4-bromophenol < 4-chlorophenol (4-MCP) < 4-fluorophenol (4-MFP), and that of four diphenyl ethers orders in 4,4'-iododiphenyl ether < 4,4'-difluorodiphenyl ether < 4,4'-dichlorodiphenyl ether≈4,4'-dibromodiphenyl ether. General behavior adverse effects were observed, and poisoned mouse were dissected to observe visceral lesions. FB, 4-MCP, and 4-MFP produced toxic faster than other halogenated benzenes and phenols, as they had lower octanol-water partition coefficients. Pathological changes in liver and liver/kidney weight changes were also observed. Hepatic superoxide dismutase, catalase activities, and malondialdehyde level were tested after a 28-day exposure, which reflects a toxicity order basically consistent with that reflected by the LD50s. By theoretical calculation and building models, the toxicity of benzene, phenol, and diphenyl ether were influenced by different structural properties.
Collapse
Affiliation(s)
- Jiaqi Shi
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Jiangsu, Nanjing, 210023, People's Republic of China
| | | | | | | | | |
Collapse
|
49
|
Korsnes MS, Espenes A, Hermansen LC, Loader JI, Miles CO. Cytotoxic responses in BC3H1 myoblast cell lines exposed to 1-desulfoyessotoxin. Toxicol In Vitro 2013; 27:1962-9. [DOI: 10.1016/j.tiv.2013.06.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 05/27/2013] [Accepted: 06/24/2013] [Indexed: 12/19/2022]
|
50
|
Tobío A, Fernández-Araujo A, Alfonso A, Botana LM. Role of yessotoxin in calcium and cAMP-crosstalks in primary and K-562 human lymphocytes: the effect is mediated by anchor kinase A mitochondrial proteins. J Cell Biochem 2013; 113:3752-61. [PMID: 22807343 DOI: 10.1002/jcb.24249] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Yessotoxin (YTX) is a marine polyether toxin previously described as a phosphodiesterase (PDE) activator in fresh human lymphocytes. This toxin induces a decrease of adenosine 3',5'-cyclic monophosphate (cAMP) levels in fresh human lymphocytes in a medium with calcium (Ca(2+) ), whereas the contrary effect has been observed in a Ca(2+) -free medium. In the present article, the effect of YTX in K-562 lymphocytes cell line has been analysed. Surprisingly, results obtained in K-562 cell line are completely opposite than in fresh human lymphocytes, since in K-562 cells YTX induces an increase of cAMP levels. YTX cytotoxicity was also studied in both K-562 cell line and fresh human lymphocytes. Results demonstrate that YTX does not modify fresh human lymphocytes viability, whereas in K-562 cells, YTX has a highly cytotoxic effect. It has been described in a previous study that YTX induces a small cytosolic Ca(2+) increase in fresh human lymphocytes but no effect was observed on Ca(2+) pools depletion in these cells. However, our results show that, in K-562 cells, YTX has no effect on cytosolic Ca(2+) levels in a medium with Ca(2+) and induces an increase on Ca(2+) pools depletion followed by a Ca(2+) influx. As far as Ca(2+) modulation is concerned these results demonstrate that YTX has a clear opposite effect in tumoural and fresh human lymphocytes. In addition, intracellular Ca(2+) reservoirs affected by YTX are different than thapsigargin-sensible pools. Furthermore, YTX-dependent Ca(2+) pools depletion was abolished by cAMP analogue (dibutyryl cAMP), phosphodiesterase-4 (PDE4) inhibitor (rolipram), protein kinase A inhibitor (H89) and oxidative phosphorylation uncoupler carbonyl cyanide p-(trifluoromethoxy) (FCCP) treatments. This evidences the crosstalks between Ca(2+) , YTX and cAMP pathways. Also, results obtain demonstrate that YTX-dependent Ca(2+) influx was only abolished by FCCP pre-treatment, which indicates a link between YTX and mitochondria in K-562 cell line. Cytosolic expression of A-kinase anchor proteins (AKAPs), the proteins which integrates phosphodiesterases (PDEs) and PKA to the mitochondria, was determined in both cell models. On the one hand, in human fresh lymphocytes, YTX increases AKAP149 cytosolic expression. This fact is accompanied with a decrease in cAMP levels, and therefore PDEs activation, which finally leads to cell survival. On the other hand, in tumoural lymphocytes, YTX has an opposite effect since decreases AKAP149 cytosolic expression and increase cAMP levels which leads to cell death. This is the first time that YTX and mitochondrial AKAPs proteins relationship is characterised.
Collapse
Affiliation(s)
- Araceli Tobío
- Departamento de Farmacología, Facultad de Veterinaria, 27002 Lugo, Spain
| | | | | | | |
Collapse
|