1
|
Ma JX, Li HJ, Jin C, Wang H, Tang LX, Si J, Cui BK. Assembly and comparative analysis of the complete mitochondrial genome of Daedaleopsissinensis (Polyporaceae, Basidiomycota), contributing to understanding fungal evolution and ecological functions. IMA Fungus 2025; 16:e141288. [PMID: 40052081 PMCID: PMC11882022 DOI: 10.3897/imafungus.16.141288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/02/2025] [Indexed: 03/09/2025] Open
Abstract
Daedaleopsissinensis is a crucial wood-decaying fungus with significant lignocellulose-degrading ability, which plays a vital role in the material cycle and energy flow of forest ecosystems. However, the mitochondrial genome of D.sinensis has not yet been revealed. In the present study, the complete mitochondrial genome of D.sinensis was assembled and compared with related species. The mitochondrial genome spans 69,155 bp and has a GC content of 25.0%. It comprises 15 protein-coding genes (PCGs), 26 transfer RNA genes, two ribosomal RNA genes and one DNA polymerase gene (dpo). Herein, we characterised and analysed the codon preferences, variation and evolution of PCGs, repeats, intron dynamics, as well as RNA editing events in the D.sinensis mitochondrial genome. Further, a phylogenetic analysis of D.sinensis and the other 86 Basidiomycota species was performed using mitochondrial genome data. The results revealed that four species, D.confragosa, D.sinensis, D.nitida and Fomesfomentarius, were grouped in a closely-related cluster with high support values, indicating that a close phylogenetic relationship existed between Daedaleopsis and Fomes. This study reported on the initial assembly and annotation of the mitochondrial genome of D.sinensis, which greatly improved the knowledge of the fungus. These results contribute to the limited understanding of the mitochondrial repository of wood-decaying fungi, thereby laying the foundation for subsequent research on fungal evolution and ecological functions.
Collapse
Affiliation(s)
- Jin-Xin Ma
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, ChinaBeijing Forestry UniversityBeijingChina
| | - Hai-Jiao Li
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, ChinaNational Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and PreventionBeijingChina
| | - Can Jin
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, ChinaBeijing Forestry UniversityBeijingChina
| | - Hao Wang
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, ChinaBeijing Forestry UniversityBeijingChina
| | - Lu-Xin Tang
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, ChinaBeijing Forestry UniversityBeijingChina
| | - Jing Si
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, ChinaBeijing Forestry UniversityBeijingChina
| | - Bao-Kai Cui
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, ChinaBeijing Forestry UniversityBeijingChina
| |
Collapse
|
2
|
Song X, Geng Y, Xu C, Li J, Guo Y, Shi Y, Ma Q, Li Q, Zhang M. The complete mitochondrial genomes of five critical phytopathogenic Bipolaris species: features, evolution, and phylogeny. IMA Fungus 2024; 15:15. [PMID: 38863028 PMCID: PMC11167856 DOI: 10.1186/s43008-024-00149-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/28/2024] [Indexed: 06/13/2024] Open
Abstract
In the present study, three mitogenomes from the Bipolaris genus (Bipolaris maydis, B. zeicola, and B. oryzae) were assembled and compared with the other two reported Bipolaris mitogenomes (B. oryzae and B. sorokiniana). The five mitogenomes were all circular DNA molecules, with lengths ranging from 106,403 bp to 135,790 bp. The mitogenomes of the five Bipolaris species mainly comprised the same set of 13 core protein-coding genes (PCGs), two rRNAs, and a certain number of tRNAs and unidentified open reading frames (ORFs). The PCG length, AT skew and GC skew showed large variability among the 13 PCGs in the five mitogenomes. Across the 13 core PCGs tested, nad6 had the least genetic distance among the 16 Pleosporales species we investigated, indicating that this gene was highly conserved. In addition, the Ka/Ks values for all 12 core PCGs (excluding rps3) were < 1, suggesting that these genes were subject to purifying selection. Comparative mitogenomic analyses indicate that introns were the main factor contributing to the size variation of Bipolaris mitogenomes. The introns of the cox1 gene experienced frequent gain/loss events in Pleosporales species. The gene arrangement and collinearity in the mitogenomes of the five Bipolaris species were almost highly conserved within the genus. Phylogenetic analysis based on combined mitochondrial gene datasets showed that the five Bipolaris species formed well-supported topologies. This study is the first report on the mitogenomes of B. maydis and B. zeicola, as well as the first comparison of mitogenomes among Bipolaris species. The findings of this study will further advance investigations into the population genetics, evolution, and genomics of Bipolaris species.
Collapse
Affiliation(s)
- Xinzheng Song
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yuehua Geng
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Chao Xu
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Jiaxin Li
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yashuang Guo
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yan Shi
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Qingzhou Ma
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, Henan, China.
| | - Qiang Li
- School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China.
| | - Meng Zhang
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, Henan, China.
| |
Collapse
|
3
|
Liu W, He P, Shi X, Zhang Y, Perez-Moreno J, Yu F. Large-Scale Field Cultivation of Morchella and Relevance of Basic Knowledge for Its Steady Production. J Fungi (Basel) 2023; 9:855. [PMID: 37623626 PMCID: PMC10455658 DOI: 10.3390/jof9080855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023] Open
Abstract
Morels are one of the most highly prized edible and medicinal mushrooms worldwide. Therefore, historically, there has been a large international interest in their cultivation. Numerous ecological, physiological, genetic, taxonomic, and mycochemical studies have been previously developed. At the beginning of this century, China finally achieved artificial cultivation and started a high-scale commercial development in 2012. Due to its international interest, its cultivation scale and area expanded rapidly in this country. However, along with the massive industrial scale, a number of challenges, including the maintenance of steady economic profits, arise. In order to contribute to the solution of these challenges, formal research studying selection, species recognition, strain aging, mating type structure, life cycle, nutrient metabolism, growth and development, and multi-omics has recently been boosted. This paper focuses on discussing current morel cultivation technologies, the industrial status of cultivation in China, and the relevance of basic biological research, including, e.g., the study of strain characteristics, species breeding, mating type structure, and microbial interactions. The main challenges related to the morel cultivation industry on a large scale are also analyzed. It is expected that this review will promote a steady global development of the morel industry based on permanent and robust basic scientific knowledge.
Collapse
Affiliation(s)
- Wei Liu
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (W.L.); (X.S.)
| | - Peixin He
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China;
| | - Xiaofei Shi
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (W.L.); (X.S.)
| | - Ya Zhang
- Sichuan Junyinong Agricultural Technology Co., Ltd., Chengdu 610023, China;
| | - Jesus Perez-Moreno
- Edafologia, Campus Montecillo, Colegio de Postgraduados, Texcoco 56230, Mexico
| | - Fuqiang Yu
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (W.L.); (X.S.)
| |
Collapse
|
4
|
Li Q, Luo Y, Sha A, Xiao W, Xiong Z, Chen X, He J, Peng L, Zou L. Analysis of synonymous codon usage patterns in mitochondrial genomes of nine Amanita species. Front Microbiol 2023; 14:1134228. [PMID: 36970689 PMCID: PMC10030801 DOI: 10.3389/fmicb.2023.1134228] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/14/2023] [Indexed: 03/10/2023] Open
Abstract
IntroductionCodon basis is a common and complex natural phenomenon observed in many kinds of organisms.MethodsIn the present study, we analyzed the base bias of 12 mitochondrial core protein-coding genes (PCGs) shared by nine Amanita species.ResultsThe results showed that the codons of all Amanita species tended to end in A/T, demonstrating the preference of mitochondrial codons of Amanita species for a preference for this codon. In addition, we detected the correlation between codon base composition and the codon adaptation index (CAI), codon bias index (CBI), and frequency of optimal codons (FOP) indices, indicating the influence of base composition on codon bias. The average effective number of codons (ENC) of mitochondrial core PCGs of Amanita is 30.81, which is <35, demonstrating the strong codon preference of mitochondrial core PCGs of Amanita. The neutrality plot analysis and PR2-Bias plot analysis further demonstrated that natural selection plays an important role in Amanita codon bias. In addition, we obtained 5–10 optimal codons (ΔRSCU > 0.08 and RSCU > 1) in nine Amanita species, and GCA and AUU were the most widely used optimal codons. Based on the combined mitochondrial sequence and RSCU value, we deduced the genetic relationship between different Amanita species and found large variations between them.DiscussionThis study promoted the understanding of synonymous codon usage characteristics and evolution of this important fungal group.
Collapse
|
5
|
Gebreegziabher Amare M, Westrick NM, Keller NP, Kabbage M. The conservation of IAP-like proteins in fungi, and their potential role in fungal programmed cell death. Fungal Genet Biol 2022; 162:103730. [PMID: 35998750 DOI: 10.1016/j.fgb.2022.103730] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/07/2022] [Indexed: 11/30/2022]
Abstract
Programmed cell death (PCD) is a tightly regulated process which is required for survival and proper development of all cellular life. Despite this ubiquity, the precise molecular underpinnings of PCD have been primarily characterized in animals. Attempts to expand our understanding of this process in fungi have proven difficult as core regulators of animal PCD are apparently absent in fungal genomes, with the notable exception of a class of proteins referred to as inhibitors of apoptosis proteins (IAPs). These proteins are characterized by the conservation of a distinct Baculovirus IAP Repeat (BIR) domain and animal IAPs are known to regulate a number of processes, including cellular death, development, organogenesis, immune system maturation, host-pathogen interactions and more. IAP homologs are broadly conserved throughout the fungal kingdom, but our understanding of both their mechanism and role in fungal development/virulence is still unclear. In this review, we provide a broad and comparative overview of IAP function across taxa, with a particular focus on fungal processes regulated by IAPs. Furthermore, their putative modes of action in the absence of canonical interactors will be discussed.
Collapse
Affiliation(s)
| | - Nathaniel M Westrick
- Department of Plant Pathology, University of Wisconsin - Madison, Madison, WI, USA
| | - Nancy P Keller
- Department of Plant Pathology, University of Wisconsin - Madison, Madison, WI, USA
| | - Mehdi Kabbage
- Department of Plant Pathology, University of Wisconsin - Madison, Madison, WI, USA.
| |
Collapse
|
6
|
Li Q, Bao Z, Tang K, Feng H, Tu W, Li L, Han Y, Cao M, Zhao C. First two mitochondrial genomes for the order Filobasidiales reveal novel gene rearrangements and intron dynamics of Tremellomycetes. IMA Fungus 2022; 13:7. [PMID: 35501936 PMCID: PMC9059411 DOI: 10.1186/s43008-022-00094-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 04/22/2022] [Indexed: 02/03/2023] Open
Abstract
In the present study, two mitogenomes from the Filobasidium genus were assembled and compared with other Tremellomycetes mitogenomes. The mitogenomes of F. wieringae and F. globisporum both comprised circular DNA molecules, with sizes of 27,861 bp and 71,783 bp, respectively. Comparative mitogenomic analysis revealed that the genetic contents, tRNAs, and codon usages of the two Filobasidium species differed greatly. The sizes of the two Filobasidium mitogenomes varied greatly with the introns being the main factor contributing to mitogenome expansion in F. globisporum. Positive selection was observed in several protein-coding genes (PCGs) in the Agaricomycotina, Pucciniomycotina, and Ustilaginomycotina species, including cob, cox2, nad2, and rps3 genes. Frequent intron loss/gain events were detected to have occurred during the evolution of the Tremellomycetes mitogenomes, and the mitogenomes of 17 species from Agaricomycotina, Pucciniomycotina, and Ustilaginomycotina have undergone large-scale gene rearrangements. Phylogenetic analyses based on Bayesian inference and the maximum likelihood methods using a combined mitochondrial gene set generated identical and well-supported phylogenetic trees, wherein Filobasidium species had close relationships with Trichosporonales species. This study, which is the first report on mitogenomes from the order Filobasidiales, provides a basis for understanding the genomics, evolution, and taxonomy of this important fungal group.
Collapse
Affiliation(s)
- Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Zhijie Bao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Ke Tang
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, China
| | - Huiyu Feng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Wenying Tu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Lijiao Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Yunlei Han
- Department of Pathogenic Biology, Chengdu Medical College, Chengdu, Sichuan, China
| | - Mei Cao
- Core Laboratory, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China. .,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, Sichuan, China.
| | - Changsong Zhao
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, China.
| |
Collapse
|
7
|
Warnsmann V, Meisterknecht J, Wittig I, Osiewacz HD. Aging of Podospora anserina Leads to Alterations of OXPHOS and the Induction of Non-Mitochondrial Salvage Pathways. Cells 2021; 10:cells10123319. [PMID: 34943827 PMCID: PMC8699231 DOI: 10.3390/cells10123319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 01/19/2023] Open
Abstract
The accumulation of functionally impaired mitochondria is a key event in aging. Previous works with the fungal aging model Podospora anserina demonstrated pronounced age-dependent changes of mitochondrial morphology and ultrastructure, as well as alterations of transcript and protein levels, including individual proteins of the oxidative phosphorylation (OXPHOS). The identified protein changes do not reflect the level of the whole protein complexes as they function in-vivo. In the present study, we investigated in detail the age-dependent changes of assembled mitochondrial protein complexes, using complexome profiling. We observed pronounced age-depen-dent alterations of the OXPHOS complexes, including the loss of mitochondrial respiratory supercomplexes (mtRSCs) and a reduction in the abundance of complex I and complex IV. Additionally, we identified a switch from the standard complex IV-dependent respiration to an alternative respiration during the aging of the P. anserina wild type. Interestingly, we identified proteasome components, as well as endoplasmic reticulum (ER) proteins, for which the recruitment to mitochondria appeared to be increased in the mitochondria of older cultures. Overall, our data demonstrate pronounced age-dependent alterations of the protein complexes involved in energy transduction and suggest the induction of different non-mitochondrial salvage pathways, to counteract the age-dependent mitochondrial impairments which occur during aging.
Collapse
Affiliation(s)
- Verena Warnsmann
- Institute of Molecular Biosciences, Faculty of Biosciences, Goethe-University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Jana Meisterknecht
- Functional Proteomics, Institute of Cardiovascular Physiology, Faculty of Medicine, Goethe-University, Theodor-Stein-Kai 7, 60590 Frankfurt am Main, Germany
| | - Ilka Wittig
- Functional Proteomics, Institute of Cardiovascular Physiology, Faculty of Medicine, Goethe-University, Theodor-Stein-Kai 7, 60590 Frankfurt am Main, Germany
| | - Heinz D Osiewacz
- Institute of Molecular Biosciences, Faculty of Biosciences, Goethe-University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| |
Collapse
|
8
|
Mitochondrial Phospholipid Homeostasis Is Regulated by the i-AAA Protease PaIAP and Affects Organismic Aging. Cells 2021; 10:cells10102775. [PMID: 34685755 PMCID: PMC8534651 DOI: 10.3390/cells10102775] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 11/27/2022] Open
Abstract
Mitochondria are ubiquitous organelles of eukaryotic organisms with a number of essential functions, including synthesis of iron-sulfur clusters, amino acids, lipids, and adenosine triphosphate (ATP). During aging of the fungal aging model Podospora anserina, the inner mitochondrial membrane (IMM) undergoes prominent morphological alterations, ultimately resulting in functional impairments. Since phospholipids (PLs) are key components of biological membranes, maintenance of membrane plasticity and integrity via regulation of PL biosynthesis is indispensable. Here, we report results from a lipidomic analysis of isolated mitochondria from P. anserina that revealed an age-related reorganization of the mitochondrial PL profile and the involvement of the i-AAA protease PaIAP in proteolytic regulation of PL metabolism. The absence of PaIAP enhances biosynthesis of characteristic mitochondrial PLs, leads to significant alterations in the acyl composition of the mitochondrial signature PL cardiolipin (CL), and induces mitophagy. These alterations presumably cause the lifespan increase of the PaIap deletion mutant under standard growth conditions. However, PaIAP is required at elevated temperatures and for degradation of superfluous CL synthase PaCRD1 during glycolytic growth. Overall, our study uncovers a prominent role of PaIAP in the regulation of PL homeostasis in order to adapt membrane plasticity to fluctuating environmental conditions as they occur in nature.
Collapse
|
9
|
Warnsmann V, Marschall LM, Osiewacz HD. Impaired F 1F o-ATP-Synthase Dimerization Leads to the Induction of Cyclophilin D-Mediated Autophagy-Dependent Cell Death and Accelerated Aging. Cells 2021; 10:757. [PMID: 33808173 PMCID: PMC8066942 DOI: 10.3390/cells10040757] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/22/2021] [Accepted: 03/27/2021] [Indexed: 01/11/2023] Open
Abstract
Mitochondrial F1Fo-ATP-synthase dimers play a critical role in shaping and maintenance of mitochondrial ultrastructure. Previous studies have revealed that ablation of the F1Fo-ATP-synthase assembly factor PaATPE of the ascomycete Podospora anserina strongly affects cristae formation, increases hydrogen peroxide levels, impairs mitochondrial function and leads to premature cell death. In the present study, we investigated the underlying mechanistic basis. Compared to the wild type, we observed a slight increase in non-selective and a pronounced increase in mitophagy, the selective vacuolar degradation of mitochondria. This effect depends on the availability of functional cyclophilin D (PaCYPD), the regulator of the mitochondrial permeability transition pore (mPTP). Simultaneous deletion of PaAtpe and PaAtg1, encoding a key component of the autophagy machinery or of PaCypD, led to a reduction of mitophagy and a partial restoration of the wild-type specific lifespan. The same effect was observed in the PaAtpe deletion strain after inhibition of PaCYPD by its specific inhibitor, cyclosporin A. Overall, our data identify autophagy-dependent cell death (ADCD) as part of the cellular response to impaired F1Fo-ATP-synthase dimerization, and emphasize the crucial role of functional mitochondria in aging.
Collapse
Affiliation(s)
| | | | - Heinz D. Osiewacz
- Faculty of Biosciences, Institute of Molecular Biosciences, Goethe University, 60438 Frankfurt, Germany; (V.W.); (L.-M.M.)
| |
Collapse
|
10
|
Heinz D, Krotova E, Hamann A, Osiewacz HD. Simultaneous Ablation of the Catalytic AMPK α-Subunit SNF1 and Mitochondrial Matrix Protease CLPP Results in Pronounced Lifespan Extension. Front Cell Dev Biol 2021; 9:616520. [PMID: 33748105 PMCID: PMC7969656 DOI: 10.3389/fcell.2021.616520] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/27/2021] [Indexed: 12/21/2022] Open
Abstract
Organismic aging is known to be controlled by genetic and environmental traits. Pathways involved in the control of cellular metabolism play a crucial role. Previously, we identified a role of PaCLPP, a mitochondrial matrix protease, in the control of the mitochondrial energy metabolism, aging, and lifespan of the fungal aging model Podospora anserina. Most surprisingly, we made the counterintuitive observation that the ablation of this component of the mitochondrial quality control network leads to lifespan extension. In the current study, we investigated the role of energy metabolism of P. anserina. An age-dependent metabolome analysis of the wild type and a PaClpP deletion strain verified differences and changes of various metabolites in cultures of the PaClpP mutant and the wild type. Based on these data, we generated and analyzed a PaSnf1 deletion mutant and a ΔPaSnf1/ΔPaClpP double mutant. In both mutants PaSNF1, the catalytic α-subunit of AMP-activated protein kinase (AMPK) is ablated. PaSNF1 was found to be required for the development of fruiting bodies and ascospores and the progeny of sexual reproduction of this ascomycete and impact mitochondrial dynamics and autophagy. Most interestingly, while the single PaSnf1 deletion mutant is characterized by a slight lifespan increase, simultaneous deletion of PaSnf1 and PaClpP leads to a pronounced lifespan extension. This synergistic effect is strongly reinforced in the presence of the mating-type "minus"-linked allele of the rmp1 gene. Compared to the wild type, culture temperature of 35°C instead of the standard laboratory temperature of 27°C leads to a short-lived phenotype of the ΔPaSnf1/ΔPaClpP double mutant. Overall, our study provides novel evidence for complex interactions of different molecular pathways involved in mitochondrial quality control, gene expression, and energy metabolism in the control of organismic aging.
Collapse
Affiliation(s)
| | | | | | - Heinz D. Osiewacz
- Institute of Molecular Biosciences, J.W. Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
11
|
Lighting Conditions Influence the Dynamics of Protease Synthesis and Proteasomal Activity in the White Rot Fungus Cerrena unicolor. Biomolecules 2020; 10:biom10091322. [PMID: 32942733 PMCID: PMC7565922 DOI: 10.3390/biom10091322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/09/2020] [Accepted: 09/14/2020] [Indexed: 01/25/2023] Open
Abstract
Recent transcriptomic and biochemical studies have revealed that light influences the global gene expression profile and metabolism of the white-rot fungus Cerrena unicolor. Here, we aimed to reveal the involvement of proteases and ubiquitin-mediated proteolysis by the 26S proteasome in the response of this fungus to white, red, blue and green lighting conditions and darkness. The changes in the expression profile of C. unicolor genes putatively engaged in proteolysis were found to be unique and specific to the applied wavelength of light. It was also demonstrated that the activity of proteases in the culture fluid and mycelium measured using natural and synthetic substrates was regulated by light and was substrate-dependent. A clear influence of light on protein turnover and the qualitative and quantitative changes in the hydrolytic degradation of proteins catalyzed by various types of proteases was shown. The analysis of activity associated with the 26S proteasome showed a key role of ATP-dependent proteolysis in the initial stages of adaptation of fungal cells to the stress factors. It was suggested that the light-sensing pathways in C. unicolor are cross-linked with stress signaling and secretion of proteases presumably serving as regulatory molecules.
Collapse
|
12
|
Du XH, Wu D, Kang H, Wang H, Xu N, Li T, Chen K. Heterothallism and potential hybridization events inferred for twenty-two yellow morel species. IMA Fungus 2020; 11:4. [PMID: 32617256 PMCID: PMC7325075 DOI: 10.1186/s43008-020-0027-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 01/06/2020] [Indexed: 01/22/2023] Open
Abstract
Mating-type genes are central to sexual reproduction in ascomycete fungi and result in the establishment of reproductive barriers. Together with hybridization, they both play important roles in the evolution of fungi. Recently, potential hybridization events and MAT genes were separately found in the Elata Clade of Morchella. Herein, we characterized the MAT1-1-1 and MAT1-2-1 genes of twenty-two species in the Esculenta Clade, another main group in the genus Morchella, and proved heterothallism to be the predominant mating strategy among the twenty-two species tested. Ascospores of these species were multi-nuclear and had many mitochondrial nucleoids. The number of ascospore nuclei might be positively related with the species distribution range. Phylogenetic analyses of MAT1-1-1, MAT1-2-1, intergenic spacer (IGS), and partial histone acetyltransferase ELP3 (F1) were performed and compared with the species phylogeny framework derived from the ribosomal internal transcribed spacer region (ITS) and translation elongation factor 1-alpha (EF1-a) to evaluate their species delimitation ability and investigate potential hybridization events. Conflicting topologies among these genes genealogies and the species phylogeny were revealed and hybridization events were detected between several species. Different evolutionary patterns were suggested for MAT genes between the Esculenta and the Elata Clades. Complex evolutionary trajectories of MAT1-1-1, MAT1-2-1, F1 and IGS in the Esculenta Clade were highlighted. These findings contribute to a better understanding of the importance of hybridization and gene transfer in Morchella and especially for the appearance of reproductive modes during its evolutionary process.
Collapse
Affiliation(s)
- Xi-Hui Du
- College of Life Sciences, Chongqing Normal University, Chongqing, 401331 China
| | - Dongmei Wu
- Biotechnology Research Institute, Xinjiang Academy Agricultural Reclamation of Sciences, Shihezi, 832000 China
| | - Heng Kang
- Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Hanchen Wang
- College of Life Sciences, Chongqing Normal University, Chongqing, 401331 China
| | - Nan Xu
- College of Life Sciences, Chongqing Normal University, Chongqing, 401331 China
| | - Tingting Li
- College of Life Sciences, Chongqing Normal University, Chongqing, 401331 China
| | - Keliang Chen
- College of Life Sciences, Chongqing Normal University, Chongqing, 401331 China
| |
Collapse
|
13
|
Ultra-Structural Alterations in Botrytis cinerea-The Causal Agent of Gray Mold-Treated with Salt Solutions. Biomolecules 2019; 9:biom9100582. [PMID: 31597236 PMCID: PMC6843600 DOI: 10.3390/biom9100582] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 11/17/2022] Open
Abstract
Potassium bicarbonate (PB), calcium chelate (CCh), and sodium silicate (SSi) have been extensively used as antifungal generally recognized as safe (GRAS) compounds against plant pathogenic fungi. In this research, in in vitro tests, the radial growth, conidial germination, and germ tube elongation of Botrytis cinerea was completely inhibited at 0.3% of PB, SSi, and CCh. In in vivo tests, application of PB, SSi, and CCh completely inhibited the occurrence of gray mold incidence of inoculated 'Italia' grape berries at concentrations of 1.0, 0.8, and 0.8%, respectively. In order to investigate the detailed mechanisms by which salts exhibited antifungal activity, we analyzed their influence on morphological changes by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) and also on reactive species of oxygen (ROS), mitochondrial membrane potential (MMP), and adenosine triphosphate (ATP) content. Defects such as malformation and excessive septation were detected on salt-treated hyphae morphology observed by SEM. The internal structure of conidia treated or not with salt solutions was examined by TEM. In treated conidia, most of the conidia were affected and cellular vacuolization and cytoplasmic disorganization was observed. For ROS accumulation, a higher increase was observed in fluorescent conidia in presence of PB, SSi, and CCh by 75, 68, and 70% as compared to control, respectively. MMP was significantly decreased after salt application indicating a loss of mitochondria function. Also, luminescence showed that B. cinerea-conidia treated with salts contained less ATP than the untreated conidia. The results obtained herein are a step towards a comprehensive understanding of the mode of action by which salts act as antifungal agents against B. cinerea.
Collapse
|
14
|
Xu X, Lei H, Ma X, Lai T, Song H, Shi X, Li J. Antifungal activity of 1-methylcyclopropene (1-MCP) against anthracnose (Colletotrichum gloeosporioides) in postharvest mango fruit and its possible mechanisms of action. Int J Food Microbiol 2016; 241:1-6. [PMID: 27728853 DOI: 10.1016/j.ijfoodmicro.2016.10.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 09/13/2016] [Accepted: 10/05/2016] [Indexed: 11/18/2022]
Abstract
Anthracnose caused by Colletotrichum gloeosporioides is one of the most important postharvest diseases in mango fruit, often causing huge economic losses. In this study, the effect of 1-methylcyclopropene (1-MCP) against anthracnose in postharvest mango fruit and the mechanisms involved were investigated. 1-MCP induced reactive oxygen species (ROS) generation, damaged the mitochondria and destroyed the integrity of plasma membrane of spores of C. gloeosporioides, significantly suppressing spore germination and mycelial growth of C. gloeosporioides. 1-MCP also decreased the decay incidence and lesion expansion of mango fruit caused by C. gloeosporioides. For the first time this study demonstrated that 1-MCP suppressed anthracnose of postharvest mango fruit by directly inhibiting spore germination and mycelial growth of C. gloeosporioides, thus providing a promising strategy for disease control.
Collapse
Affiliation(s)
- Xiangbin Xu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China.
| | - Huanhuan Lei
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Xiuyan Ma
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Tongfei Lai
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Hongmiao Song
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Xuequn Shi
- College of Food Science and Technology, Hainan University, Haikou 570228, China.
| | - Jiangkuo Li
- Tianjin Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, National Engineering and Technology Research Center for Preservation of Agricultural Products, Tianjin 300384, China.
| |
Collapse
|
15
|
Ramallo Guevara C, Philipp O, Hamann A, Werner A, Osiewacz HD, Rexroth S, Rögner M, Poetsch A. Global Protein Oxidation Profiling Suggests Efficient Mitochondrial Proteome Homeostasis During Aging. Mol Cell Proteomics 2016; 15:1692-709. [PMID: 26884511 DOI: 10.1074/mcp.m115.055616] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Indexed: 11/06/2022] Open
Abstract
The free radical theory of aging is based on the idea that reactive oxygen species (ROS) may lead to the accumulation of age-related protein oxidation. Because themajority of cellular ROS is generated at the respiratory electron transport chain, this study focuses on the mitochondrial proteome of the aging model Podospora anserina as target for ROS-induced damage. To ensure the detection of even low abundant modified peptides, separation by long gradient nLC-ESI-MS/MS and an appropriate statistical workflow for iTRAQ quantification was developed. Artificial protein oxidation was minimized by establishing gel-free sample preparation in the presence of reducing and iron-chelating agents. This first large scale, oxidative modification-centric study for P. anserina allowed the comprehensive quantification of 22 different oxidative amino acid modifications, and notably the quantitative comparison of oxidized and nonoxidized protein species. In total 2341 proteins were quantified. For 746 both protein species (unmodified and oxidatively modified) were detected and the modification sites determined. The data revealed that methionine residues are preferably oxidized. Further prominent identified modifications in decreasing order of occurrence were carbonylation as well as formation of N-formylkynurenine and pyrrolidinone. Interestingly, for the majority of proteins a positive correlation of changes in protein amount and oxidative damage were noticed, and a general decrease in protein amounts at late age. However, it was discovered that few proteins changed in oxidative damage in accordance with former reports. Our data suggest that P. anserina is efficiently capable to counteract ROS-induced protein damage during aging as long as protein de novo synthesis is functioning, ultimately leading to an overall constant relationship between damaged and undamaged protein species. These findings contradict a massive increase in protein oxidation during aging and rather suggest a protein damage homeostasis mechanism even at late age.
Collapse
Affiliation(s)
- Carina Ramallo Guevara
- From the ‡Plant Biochemistry, Faculty of Biology & Biotechnology, Ruhr University Bochum, Bochum-44801, Germany
| | - Oliver Philipp
- §Molecular Developmental Biology, Faculty of Biosciences and Cluster of Excellence 'Macromolecular Complexes', Johann Wolfgang Goethe University, Frankfurt am Main-60438, Germany; ¶Molecular Bioinformatics, Faculty of Computer Science and Mathematics and Cluster of Excellence 'Macromolecular Complexes', Johann Wolfgang Goethe University, Frankfurt am Main-60325, Germany
| | - Andrea Hamann
- §Molecular Developmental Biology, Faculty of Biosciences and Cluster of Excellence 'Macromolecular Complexes', Johann Wolfgang Goethe University, Frankfurt am Main-60438, Germany
| | - Alexandra Werner
- §Molecular Developmental Biology, Faculty of Biosciences and Cluster of Excellence 'Macromolecular Complexes', Johann Wolfgang Goethe University, Frankfurt am Main-60438, Germany
| | - Heinz D Osiewacz
- §Molecular Developmental Biology, Faculty of Biosciences and Cluster of Excellence 'Macromolecular Complexes', Johann Wolfgang Goethe University, Frankfurt am Main-60438, Germany
| | - Sascha Rexroth
- From the ‡Plant Biochemistry, Faculty of Biology & Biotechnology, Ruhr University Bochum, Bochum-44801, Germany
| | - Matthias Rögner
- From the ‡Plant Biochemistry, Faculty of Biology & Biotechnology, Ruhr University Bochum, Bochum-44801, Germany
| | - Ansgar Poetsch
- From the ‡Plant Biochemistry, Faculty of Biology & Biotechnology, Ruhr University Bochum, Bochum-44801, Germany;
| |
Collapse
|
16
|
Plohnke N, Hamann A, Poetsch A, Osiewacz HD, Rögner M, Rexroth S. Proteomic analysis of mitochondria from senescent Podospora anserina casts new light on ROS dependent aging mechanisms. Exp Gerontol 2014; 56:13-25. [PMID: 24556281 DOI: 10.1016/j.exger.2014.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 02/04/2014] [Accepted: 02/11/2014] [Indexed: 11/25/2022]
Abstract
The mitochondrial free radical theory of aging (MFRTA) states that reactive oxygen species (ROS) generated at the respiratory electron transport chain are active in causing age-related damage of biomolecules like lipids, nucleic acids and proteins. Accumulation of this kind of damage results in functional impairments, aging and death of biological systems. Here we report data of an analysis to monitor the age-related quantitative protein composition of the mitochondria of the fungal aging model Podospora anserina. The impact of senescence on mitochondrial protein composition was analyzed by LC-MS. In an untargeted proteomic approach, we identified 795 proteins in samples from juvenile and senescent wild-type cultures and obtained quantitative information for 226 of these proteins by spectral counting. Despite the broad coverage of the proteome, no substantial changes in known age-related pathways could be observed. For a more detailed analysis, a targeted proteome analysis was applied focusing on 15 proteins from respiratory, ROS-scavenging and quality control pathways. Analyzing six distinct age-stages from juvenile to senescent P. anserina cultures revealed low, but statistically significant changes for the mitochondrial respiratory complexes. A P. anserina PaSod3 over-expression mutant with a phenotype of mitochondrial ROS over-production was used for biological evaluation of changes observed during aging. LC-MS analysis of the mutant revealed severe changes to the mitochondrial proteome--substantially larger than observed during senescence. Interestingly the amount of ATP synthase subunit g, involved in cristae formation is significantly decreased in the mutant implicating ROS-induced impairments in ATP synthase dimer and cristae formation. The difference between protein-profiles of aging wild type and ROS stressed mutant suggests that oxidative stress within the mitochondria is not the dominating mechanism for the aging process in P. anserina. Collectively, while our data do not exclude an effect of ROS on specific proteins and in signaling and control of pathways which are governing aging of P. anserina, it contradicts increasing ROS as a cause of a gross general and non-selective accumulation of damaged proteins during senescence. Instead, ROS may be effective by controlling specific regulators of mitochondrial function.
Collapse
Affiliation(s)
- Nicole Plohnke
- Plant Biochemistry, Faculty of Biology & Biotechnology, Ruhr University Bochum, D-44780 Bochum, Germany.
| | - Andrea Hamann
- Institute of Molecular Biosciences, Faculty for Biosciences and Cluster of Excellence Macromolecular Complexes, Johann Wolfgang Goethe University, D-60438 Frankfurt, Germany.
| | - Ansgar Poetsch
- Plant Biochemistry, Faculty of Biology & Biotechnology, Ruhr University Bochum, D-44780 Bochum, Germany.
| | - Heinz D Osiewacz
- Institute of Molecular Biosciences, Faculty for Biosciences and Cluster of Excellence Macromolecular Complexes, Johann Wolfgang Goethe University, D-60438 Frankfurt, Germany.
| | - Matthias Rögner
- Plant Biochemistry, Faculty of Biology & Biotechnology, Ruhr University Bochum, D-44780 Bochum, Germany.
| | - Sascha Rexroth
- Plant Biochemistry, Faculty of Biology & Biotechnology, Ruhr University Bochum, D-44780 Bochum, Germany.
| |
Collapse
|
17
|
Philipp O, Hamann A, Servos J, Werner A, Koch I, Osiewacz HD. A genome-wide longitudinal transcriptome analysis of the aging model Podospora anserina. PLoS One 2013; 8:e83109. [PMID: 24376646 PMCID: PMC3869774 DOI: 10.1371/journal.pone.0083109] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 11/08/2013] [Indexed: 12/29/2022] Open
Abstract
Aging of biological systems is controlled by various processes which have a potential impact on gene expression. Here we report a genome-wide transcriptome analysis of the fungal aging model Podospora anserina. Total RNA of three individuals of defined age were pooled and analyzed by SuperSAGE (serial analysis of gene expression). A bioinformatics analysis identified different molecular pathways to be affected during aging. While the abundance of transcripts linked to ribosomes and to the proteasome quality control system were found to decrease during aging, those associated with autophagy increase, suggesting that autophagy may act as a compensatory quality control pathway. Transcript profiles associated with the energy metabolism including mitochondrial functions were identified to fluctuate during aging. Comparison of wild-type transcripts, which are continuously down-regulated during aging, with those down-regulated in the long-lived, copper-uptake mutant grisea, validated the relevance of age-related changes in cellular copper metabolism. Overall, we (i) present a unique age-related data set of a longitudinal study of the experimental aging model P. anserina which represents a reference resource for future investigations in a variety of organisms, (ii) suggest autophagy to be a key quality control pathway that becomes active once other pathways fail, and (iii) present testable predictions for subsequent experimental investigations.
Collapse
Affiliation(s)
- Oliver Philipp
- Molecular Developmental Biology, Institute of Molecular Biosciences, Faculty for Biosciences & Cluster of Excellence ‘Macromolecular Complexes’, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
- Molecular Bioinformatics, Institute of Computer Science, Faculty of Computer Science and Mathematics & Cluster of Excellence ‘Macromolecular Complexes’, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Andrea Hamann
- Molecular Developmental Biology, Institute of Molecular Biosciences, Faculty for Biosciences & Cluster of Excellence ‘Macromolecular Complexes’, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Jörg Servos
- Molecular Developmental Biology, Institute of Molecular Biosciences, Faculty for Biosciences & Cluster of Excellence ‘Macromolecular Complexes’, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Alexandra Werner
- Molecular Developmental Biology, Institute of Molecular Biosciences, Faculty for Biosciences & Cluster of Excellence ‘Macromolecular Complexes’, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Ina Koch
- Molecular Bioinformatics, Institute of Computer Science, Faculty of Computer Science and Mathematics & Cluster of Excellence ‘Macromolecular Complexes’, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Heinz D. Osiewacz
- Molecular Developmental Biology, Institute of Molecular Biosciences, Faculty for Biosciences & Cluster of Excellence ‘Macromolecular Complexes’, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
- * E-mail:
| |
Collapse
|
18
|
Age-related changes in the mitochondrial proteome of the fungus Podospora anserina analyzed by 2D-DIGE and LC-MS/MS. J Proteomics 2013; 91:358-74. [PMID: 23872087 DOI: 10.1016/j.jprot.2013.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 06/18/2013] [Accepted: 07/08/2013] [Indexed: 12/28/2022]
Abstract
UNLABELLED Many questions concerning the molecular processes during biological aging remain unanswered. Since mitochondria are central players in aging, we applied quantitative two-dimensional difference gel electrophoresis (2D-DIGE) coupled to protein identification by mass spectrometry to study the age-dependent changes in the mitochondrial proteome of the fungus Podospora anserina - a well-established aging model. 67 gel spots exhibited significant, but remarkably moderate intensity changes. While typically the observed changes in protein abundance occurred progressively with age, for several proteins a pronounced change was observed at late age, sometimes inverting the trend observed at younger age. The identified proteins were assigned to a wide range of metabolic pathways including several implicated previously in biological aging. An overall decrease for subunits of complexes I and V of oxidative phosphorylation was confirmed by Western blot analysis and blue-native electrophoresis. Changes in several groups of proteins suggested a general increase in protein biosynthesis possibly reflecting a compensatory mechanism for increased quality control-related protein degradation at later age. Age-related augmentation in abundance of proteins involved in biosynthesis, folding, and protein degradation pathways sustain these observations. Furthermore, a significant decrease of two enzymes involved in the degradation of γ-aminobutyrate (GABA) supported its previously suggested involvement in biological aging. BIOLOGICAL SIGNIFICANCE We have followed the time course of changes in protein abundance during aging of the fungus P. anserina. The observed moderate but significant changes provide insight into the molecular adaptations to biological aging and highlight the metabolic pathways involved, thereby offering new leads for future research.
Collapse
|
19
|
Teshima Y, Ikeda T, Imada K, Sasaki K, El-Sayed MA, Shigyo M, Tanaka S, Ito SI. Identification and biological activity of antifungal saponins from shallot ( Allium cepa L. Aggregatum group). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:7440-5. [PMID: 24138065 DOI: 10.1021/jf401720q] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The n-butanol extract of shallot basal plates and roots showed antifungal activity against plant pathogenic fungi. The purified compounds from the extract were examined for antifungal activity to determine the predominant antifungal compounds in the extract. Two major antifungal compounds purified were determined to be alliospiroside A (ALA) and alliospiroside B. ALA had prominent antifungal activity against a wide range of fungi. The products of acid hydrolysis of ALA showed a reduced antifungal activity, suggesting that the compound's sugar chain is essential for its antifungal activity. Fungal cells treated with ALA showed rapid production of reactive oxygen species. The fungicidal action of ALA was partially inhibited by a superoxide scavenger, Tiron, suggesting that superoxide anion generation in the fungal cells may be related to the compound's action. Inoculation experiments showed that ALA protected strawberry plants against Colletotrichum gloeosporioides , indicating that ALA has the potential to control anthracnose of the plant.
Collapse
Affiliation(s)
- Yoshiki Teshima
- Department of Biological and Environmental Sciences, Faculty of Agriculture, Yamaguchi University , Yamaguchi, Yamaguchi 753-8515, Japan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Podospora anserina is an extensively studied model organism to unravel the mechanism of organismal aging. This filamentous fungus is short-lived and accessible to experimentation. Aging and lifespan are controlled by genetic and environmental traits and, in this model, have a strong mitochondrial etiology. Here, we describe methods and protocols to manipulate and study the aging process in P. anserina at different levels including biochemistry, cell biology, genetics, and physiology.
Collapse
|
21
|
Gao K, Xiong Q, Xu J, Wang K, Wang K. CpBir1 is required for conidiation, virulence and anti-apoptotic effects and influences hypovirus transmission in Cryphonectria parasitica. Fungal Genet Biol 2012; 51:60-71. [PMID: 23084963 DOI: 10.1016/j.fgb.2012.09.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 09/21/2012] [Accepted: 09/24/2012] [Indexed: 12/29/2022]
Abstract
Inhibitors of apoptosis proteins (IAPs) are critically important in the regulation of unicellular yeast and metazoan apoptosis. All IAPs contain one to three baculovirus IAP repeat (BIR) domains, which are essential for the anti-apoptotic activity of the IAPs. A homolog of IAPs, CpBir1, which bears two BIR domains, was recently identified from the chestnut blight fungus Cryphonectria parasitica genome. CpIAP was deleted by gene replacement, and the phenotypes of ΔIAP were characterized. CpBir1 was significantly down-regulated by hypovirus infection but up-regulated by H(2)O(2). Similar to Saccharomyces cerevisiae Bir1p, the Cpbir1 mutant was sensitive to H(2)O(2), and constitutive overexpression of CpBir1 increased resistance to H(2)O(2). The Cpbir1 mutant also showed defects in aerial hyphal formation, colony growth, mycelial morphology, conidiogenesis, pigmentation, resistance to stress conditions and virulence. Genetic complementation with native Cpbir1 fully recovered all these defective phenotypes. The CpBir1-eGFP fusion protein was localized to the nucleus in juvenile cultures, while it was found in the cytoplasm in old cultures, suggesting that the localization pattern of CpBir1 may correlate with the process of anti-apoptosis. Increased accumulation of reactive oxygen species (ROS) in the Cpbir1 deletion mutant further supports the anti-apoptotic function of CpBir1. Among five selected vegetative compatible (vc) types of C. parasitica, Cpbir1 deletion was found to block virus from transferring between Cpbir1 mutants. However, hypovirus infected Cpbir1 mutants showed a similar ability to transmit virus to other virus-free isolates compared with the infected wild-type strain. In summary, Cpbir1 encodes an IAP CpBir1 that is down-regulated by hypovirus infection and required for conidiation, virulence and anti-apoptosis, as well as affects hypovirus transmission in chestnut blight fungus C. parasitica.
Collapse
Affiliation(s)
- Kun Gao
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing 210095, China
| | | | | | | | | |
Collapse
|
22
|
Shlezinger N, Goldfinger N, Sharon A. Apoptotic-like programed cell death in fungi: the benefits in filamentous species. Front Oncol 2012; 2:97. [PMID: 22891165 PMCID: PMC3412994 DOI: 10.3389/fonc.2012.00097] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Accepted: 07/23/2012] [Indexed: 11/13/2022] Open
Abstract
Studies conducted in the early 1990s showed for the first time that Saccharomyces cerevisiae can undergo cell death with hallmarks of animal apoptosis. These findings came as a surprise, since suicide machinery was unexpected in unicellular organisms. Today, apoptosis in yeast is well-documented. Apoptotic death of yeast cells has been described under various conditions and S. cerevisiae homologs of human apoptotic genes have been identified and characterized. These studies also revealed fundamental differences between yeast and animal apoptosis; in S. cerevisiae apoptosis is mainly associated with aging and stress adaptation, unlike animal apoptosis, which is essential for proper development. Further, many apoptosis regulatory genes are either missing, or highly divergent in S. cerevisiae. Therefore, in this review we will use the term apoptosis-like programed cell death (PCD) instead of apoptosis. Despite these significant differences, S. cerevisiae has been instrumental in promoting the study of heterologous apoptotic proteins, particularly from human. Work in fungi other than S. cerevisiae revealed differences in the manifestation of PCD in single cell (yeasts) and multicellular (filamentous) species. Such differences may reflect the higher complexity level of filamentous species, and hence the involvement of PCD in a wider range of processes and life styles. It is also expected that differences might be found in the apoptosis apparatus of yeast and filamentous species. In this review we focus on aspects of PCD that are unique or can be better studied in filamentous species. We will highlight the similarities and differences of the PCD machinery between yeast and filamentous species and show the value of using S. cerevisiae along with filamentous species to study apoptosis.
Collapse
Affiliation(s)
- Neta Shlezinger
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University,Tel Aviv, Israel
| | - Nir Goldfinger
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University,Tel Aviv, Israel
| | - Amir Sharon
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University,Tel Aviv, Israel
| |
Collapse
|
23
|
Massudi H, Grant R, Guillemin GJ, Braidy N. NAD+ metabolism and oxidative stress: the golden nucleotide on a crown of thorns. Redox Rep 2012; 17:28-46. [PMID: 22340513 DOI: 10.1179/1351000212y.0000000001] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
In the twentieth century, NAD+ research generated multiple discoveries. Identification of the important role of NAD+ as a cofactor in cellular respiration and energy production was followed by discoveries of numerous NAD+ biosynthesis pathways. In recent years, NAD+ has been shown to play a unique role in DNA repair and protein deacetylation. As discussed in this review, there are close interactions between oxidative stress and immune activation, energy metabolism, and cell viability in neurodegenerative disorders and ageing. Profound interactions with regard to oxidative stress and NAD+ have been highlighted in the present work. This review emphasizes the pivotal role of NAD+ in the regulation of DNA repair, stress resistance, and cell death, suggesting that NAD+ synthesis through the kynurenine pathway and/or salvage pathway is an attractive target for therapeutic intervention in age-associated degenerative disorders. NAD+ precursors have been shown to slow down ageing and extend lifespan in yeasts, and protect severed axons from degeneration in animal models neurodegenerative diseases.
Collapse
Affiliation(s)
- Hassina Massudi
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Faculty of Medicine, and Australasian Research Institute, Sydney Adventist Hospital, Sydney, Australia
| | | | | | | |
Collapse
|
24
|
Kowald A, Hamann A, Zintel S, Ullrich S, Klipp E, Osiewacz HD. A systems biological analysis links ROS metabolism to mitochondrial protein quality control. Mech Ageing Dev 2012; 133:331-7. [PMID: 22449407 DOI: 10.1016/j.mad.2012.03.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 01/16/2012] [Accepted: 03/06/2012] [Indexed: 12/17/2022]
Abstract
The analyses of previously generated Podospora anserina strains in which the mitochondrial superoxide dismutase, PaSOD3, is increased in abundance, revealed unexpected results, which, at first glance, are contradictory to the 'free radical theory of aging' (FRTA). To re-analyze these results, we performed additional experiments and developed a mathematical model consisting of a set of differential equations describing the time course of various ROS (reactive oxygen species), components of the cellular antioxidant system (PaSOD3 and mitochondrial peroxiredoxin, PaPRX1), and PaCLPP, a mitochondrial matrix protease involved in protein quality control. Incorporating these components we could identify a positive feed-back loop and demonstrate that the role of superoxide as the primary ROS responsible for age-related molecular damage is more complicated than originally stated by the FRTA. Our study is a first step towards the integration of the various pathways known to be involved in the control of biological aging.
Collapse
Affiliation(s)
- Axel Kowald
- Humboldt-Universität zu Berlin, Institute for Biology, Theoretical Biophysics, Invalidenstrasse 42, 10115 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
25
|
Rexroth S, Poetsch A, Rögner M, Hamann A, Werner A, Osiewacz HD, Schäfer ER, Seelert H, Dencher NA. Reactive oxygen species target specific tryptophan site in the mitochondrial ATP synthase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:381-7. [DOI: 10.1016/j.bbabio.2011.11.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 11/04/2011] [Accepted: 11/10/2011] [Indexed: 01/08/2023]
|
26
|
Scheckhuber CQ, Hamann A, Brust D, Osiewacz HD. Cellular homeostasis in fungi: impact on the aging process. Subcell Biochem 2012; 57:233-250. [PMID: 22094425 DOI: 10.1007/978-94-007-2561-4_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Cellular quality control pathways are needed for maintaining the biological function of organisms. If these pathways become compromised, the results are usually highly detrimental. Functional impairments of cell components can lead to diseases and in extreme cases to organismal death. Dysfunction of cells can be induced by a number of toxic by-products that are formed during metabolic activity, like reactive oxygen and nitrogen species, for example. A key source of reactive oxygen species (ROS) are the organelles of oxidative phosphorylation, mitochondria. Therefore mitochondrial function is also directly affected by ROS, especially if there is a compromised ROS-scavenging capacity. Biological systems therefore depend on several lines of defence to counteract the toxic effects of ROS and other damaging agents. The first level is active at the molecular level and consists of various proteases that bind and degrade abnormally modified and / or aggregated mitochondrial proteins. The second level is concerned with maintaining the quality of whole mitochondria. Among the pathways of this level are mitochondrial dynamics and autophagy (mitophagy). Mitochondrial dynamics describes the time-dependent fusion and fission of mitochondria. It is argued that this kind of organellar dynamics has the power to restore the function of impaired organelles by content mixing with intact organelles. If the first and second lines of defence against damage fail and mitochondria become damaged too severely, there is the option to remove affected cells before they can elicit more damage to their surrounding environment by apoptosis. This form of programmed cell death is strictly regulated by a complex network of interacting components and can be divided into mitochondria-dependent and mitochondria-independent modes of action. In this review we give an overview on various biological quality control systems in fungi (yeasts and filamentous fungi) with an emphasis on autophagy (mitophagy) and apoptosis and how these pathways allow fungal organisms to maintain a balanced cellular homeostasis.
Collapse
Affiliation(s)
- Christian Q Scheckhuber
- Faculty of Biosciences, Institute of Molecular Biosciences and Cluster of Excellence Macromolecular Complexes, Johann Wolfgang Goethe University, 60438, Frankfurt/Main, Germany,
| | | | | | | |
Collapse
|
27
|
Osiewacz HD. Regulation of the mitochondrial transition pore: impact on mammalian aging. Aging (Albany NY) 2011; 3:10-1. [PMID: 21248375 PMCID: PMC3047130 DOI: 10.18632/aging.100259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Heinz D Osiewacz
- Johann Wolfgang Goethe University, Faculty for Biosciences and Cluster of Excellence Molecular Complexes, Institute of Molecular Biosciences, Frankfurt, Germany. ‐frankfurt.de
| |
Collapse
|
28
|
Scheckhuber CQ, Houthoofd K, Weil AC, Werner A, De Vreese A, Vanfleteren JR, Osiewacz HD. Alternative oxidase dependent respiration leads to an increased mitochondrial content in two long-lived mutants of the aging model Podospora anserina. PLoS One 2011; 6:e16620. [PMID: 21305036 PMCID: PMC3029406 DOI: 10.1371/journal.pone.0016620] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 01/07/2011] [Indexed: 01/29/2023] Open
Abstract
The retrograde response constitutes an important signalling pathway from mitochondria to the nucleus which induces several genes to allow compensation of mitochondrial impairments. In the filamentous ascomycete Podospora anserina, an example for such a response is the induction of a nuclear-encoded and iron-dependent alternative oxidase (AOX) occurring when cytochrome-c oxidase (COX) dependent respiration is affected. Several long-lived mutants are known which predominantly or exclusively respire via AOX. Here we show that two AOX-utilising mutants, grisea and PaCox17::ble, are able to compensate partially for lowered OXPHOS efficiency resulting from AOX-dependent respiration by increasing mitochondrial content. At the physiological level this is demonstrated by an elevated oxygen consumption and increased heat production. However, in the two mutants, ATP levels do not reach WT levels. Interestingly, mutant PaCox17::ble is characterized by a highly increased release of the reactive oxygen species (ROS) hydrogen peroxide. Both grisea and PaCox17::ble contain elevated levels of mitochondrial proteins involved in quality control, i. e. LON protease and the molecular chaperone HSP60. Taken together, our work demonstrates that AOX-dependent respiration in two mutants of the ageing model P. anserina is linked to a novel mechanism involved in the retrograde response pathway, mitochondrial biogenesis, which might also play an important role for cellular maintenance in other organisms.
Collapse
Affiliation(s)
- Christian Q Scheckhuber
- Faculty for Biosciences, Molecular Developmental Biology, Cluster of Excellence Macromolecular Complexes, Johann Wolfgang Goethe University, Frankfurt, Germany.
| | | | | | | | | | | | | |
Collapse
|
29
|
Osiewacz HD, Brust D, Hamann A, Kunstmann B, Luce K, Müller-Ohldach M, Scheckhuber CQ, Servos J, Strobel I. Mitochondrial pathways governing stress resistance, life, and death in the fungal aging model Podospora anserina. Ann N Y Acad Sci 2010; 1197:54-66. [PMID: 20536834 DOI: 10.1111/j.1749-6632.2010.05190.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Work from more than 50 years of research has unraveled a number of molecular pathways that are involved in controlling aging of the fungal model system Podospora anserina. Early research revealed that wild-type strain aging is linked to gross reorganization of the mitochondrial DNA. Later it was shown that aging of P. anserina does also take place, although at a slower pace, when the wild-type specific mitochondrial DNA rearrangements do not occur. Now it is clear that a network of different pathways is involved in the control of aging. Branches of these pathways appear to be connected and constitute a hierarchical system of responses. Although cross talk between the individual pathways seems to be fundamental in the coordination of the overall system, the precise underlying interactions remain to be unraveled. Such a systematic approach aims at a holistic understanding of the process of biological aging, the ultimate goal of modern systems biology.
Collapse
Affiliation(s)
- Heinz D Osiewacz
- Institute of Molecular Biosciences, Faculty for Biosciences and Cluster of Excellence Macromolecular Complexes, Johann Wolfgang Goethe University, Frankfurt, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Deletion of the mitochondrial NADH kinase increases mitochondrial DNA stability and life span in the filamentous fungus Podospora anserina. Exp Gerontol 2010; 45:543-9. [PMID: 20096769 DOI: 10.1016/j.exger.2010.01.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 12/31/2009] [Accepted: 01/14/2010] [Indexed: 01/19/2023]
Abstract
In the filamentous fungus Podospora anserina, aging is systematically associated with mitochondrial DNA (mtDNA) instability. A causal link between deficiency of the cytochrome respiratory pathway and lifespan extension has been demonstrated. Knock out of the cytochrome respiratory pathway induces the expression of an alternative oxidase and is associated with a reduction in free radical production. The question of the links between mtDNA stability, ROS generation and lifespan is therefore clearly raised in this organism. NADPH lies at the heart of many anti-oxidant defenses of the cell. In Saccharomyces cerevisiae, the mitochondrial NADPH is largely provided by the Pos5 NADH kinase. We show here that disruption of PaNdk1 encoding the potential mitochondrial NADH kinase of P. anserina leads to severe somatic and sexual defects and to hypersensitivity to hydrogen peroxide and paraquat. Surprisingly, it also leads to a spectacular increase of mtDNA stability and lifespan. We propose that an adaptative metabolic change including the induction of the alternative oxidase can account for these results.
Collapse
|
31
|
PARP is involved in replicative aging in Neurospora crassa. Fungal Genet Biol 2010; 47:297-309. [PMID: 20045739 DOI: 10.1016/j.fgb.2009.12.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 12/10/2009] [Accepted: 12/29/2009] [Indexed: 11/22/2022]
Abstract
Modification of proteins by the addition of poly(ADP-ribose) is carried out by poly(ADP-ribose) polymerases (PARPs). PARPs have been implicated in a wide range of biological processes in eukaryotes, but no universal function has been established. A study of the Aspergillus nidulans PARP ortholog (PrpA) revealed that the protein is essential and involved in DNA repair, reminiscent of findings using mammalian systems. We found that a Neurospora PARP orthologue (NPO) is dispensable for cell survival, DNA repair and epigenetic silencing but that replicative aging of mycelia is accelerated in an npo mutant strain. We propose that PARPs may control aging as proposed for Sirtuins, which also consume NAD+ and function either as mono(ADP-ribose) transferases or protein deacetylases. PARPs may regulate aging by impacting NAD+/NAM availability, thereby influencing Sirtuin activity, or they may function in alternative NAD+-dependent or NAD+-independent aging pathways.
Collapse
|
32
|
Luce K, Weil AC, Osiewacz HD. Mitochondrial protein quality control systems in aging and disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 694:108-25. [PMID: 20886760 DOI: 10.1007/978-1-4419-7002-2_9] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Preserving the integrity of proteins, biomolecules prone to molecular damage, is a fundamental function of all biological systems. Impairments in protein quality control (PQC) may lead to degenerative processes, such as aging and various disorders and diseases. Fortunately, cells contain a hierarchical system of pathways coping protein damage. Specific molecular pathways detect misfolded proteins and act either to unfold or degrade them. Degradation of proteins generates peptides and amino acids that can be used for remodelling of impaired pathways and cellular functions. At increased levels of cellular damage whole organelles can be removed via autophagy, a process that depends on the activity oflysosomes. In addition, cells may undergo apoptosis, a form of programmed cell death, which in single-cellular and lower multicellular organisms can lead to death of the individual. Molecular damage of cellular compartments is mainly caused by reactive oxygen species (ROS). ROS is generated via different cellular pathways and frequently arises in the mitochondrial electron transport chain as a by-product of oxygenic energy transduction. Consequently, mitochondrial proteins are under high risk to become damaged. Perhaps for this reason mitochondria contain a very efficient PQC system that keeps mitochondrial proteins functional as long as damage does not reach a certain threshold and the components of this system themselves are not excessively damaged. The mitochondrial PQC system consists of chaperones that counteract protein aggregation through binding and refolding misfolded polypeptides and of membrane-bound and soluble ATP-dependent proteases that are involved in degradation of damaged proteins. During aging and in neurodegenerative diseases components of this PQC system, including Lon protease present in the mitochondrial matrix, become functionally impaired. In this chapter we summarise the current knowledge of cellular quality control systems with special emphasis on the role of the mitochondrial PQC system and its impact on biological aging and disease.
Collapse
Affiliation(s)
- Karin Luce
- Johann Wolfgang Goethe University, Faculty for Biosciences and Cluster of Excellence Macromolecular Complexes, Institute of Molecular Biosciences, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | | | | |
Collapse
|
33
|
Kunstmann B, Osiewacz HD. Over-expression of an S-adenosylmethionine-dependent methyltransferase leads to an extended lifespan of Podospora anserina without impairments in vital functions. Aging Cell 2008; 7:651-62. [PMID: 18616635 DOI: 10.1111/j.1474-9726.2008.00412.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
PaMTH1, a putative methyltransferase previously described to increase in abundance in total protein extracts during aging of Podospora anserina is demonstrated to accumulate in the mitochondrial cell fraction of senescent cultures. The protein is localized in the mitochondrial matrix and displays a methyltransferase activity utilizing flavonoids as substrates. Constitutive over-expression of PaMth1 in P. anserina results in a reduced carbonylation of proteins and an extended lifespan without impairing vital functions suggesting a protecting role of PaMTH1 against oxidative stress.
Collapse
Affiliation(s)
- Birgit Kunstmann
- Department of Biological Sciences & Cluster of Excellence Macromolecular Complexes, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt, Frankfurt am Main, Germany
| | | |
Collapse
|
34
|
Scheckhuber CQ, Osiewacz HD. Podospora anserina: a model organism to study mechanisms of healthy ageing. Mol Genet Genomics 2008; 280:365-74. [PMID: 18797929 DOI: 10.1007/s00438-008-0378-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Accepted: 08/29/2008] [Indexed: 12/18/2022]
Abstract
The filamentous ascomycete Podospora anserina has been extensively studied as an experimental ageing model for more than 50 years. As a result, a huge body of data has been accumulated and various molecular pathways have been identified as part of a molecular network involved in the control of ageing and life span. The aim of this review is to summarize data on P. anserina ageing, including aspects like respiration, cellular copper homeostasis, mitochondrial DNA (mtDNA) stability/instability, mitochondrial dynamics, apoptosis, translation efficiency and pathways directed against oxidative stress. It becomes clear that manipulation of several of these pathways bears the potential to extend the healthy period of time, the health span, within the life time of the fungus. Here we put special attention on recent work aimed to identify and characterize this type of long-lived P. anserina mutants. The study of the molecular pathways which are modified in these mutants can be expected to provide important clues for the elucidation of the mechanistic basis of this type of 'healthy ageing' at the organism level.
Collapse
Affiliation(s)
- Christian Q Scheckhuber
- Cluster of Excellence Macromolecular Complexes and Faculty for Biosciences, Molecular Developmental Biology, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt/Main, Germany
| | | |
Collapse
|
35
|
Scheckhuber CQ, Rödel E, Wüstehube J. Regulation of mitochondrial dynamics--characterization of fusion and fission genes in the ascomycete Podospora anserina. Biotechnol J 2008; 3:781-90. [PMID: 18428186 DOI: 10.1002/biot.200800010] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The filamentous ascomycete Podospora anserina is a model system for studying aging, a complex process that is regulated by multiple factors. Among these, mitochondria were shown to be of crucial importance. Recently, it was shown that the morphology of these organelles, which is dependent on dynamic fusion and fission processes, has profound effects on P. anserina aging. To further analyze this phenomenon, we characterized molecular components of the machinery regulating the dynamic behavior of mitochondria by utilizing transgenic strains in which fission genes (PaDnm1, PaFis1 and PaMdv1) and a fusion gene (PaFzo1) are overexpressed. While overexpression of PaFis1 has no phenotypic effects in the genetic background of the wild type, it surprisingly promotes mitochondrial fusion and decreases the life span in a mutant overexpressing PaDnm1. Remarkably, when grown on synthetic medium, overexpression of PaDnm1 leads to a decreased life span compared to the wild type. Increased expression of PaMdv1 results in the formation of ring-shaped mitochondria, a morphology of these organelles that has not been previously observed in P. anserina. Transformants with elevated PaFzo1 transcript levels show no altered life span, although the age-dependent fragmentation of mitochondria is impaired.
Collapse
Affiliation(s)
- Christian Q Scheckhuber
- Johann W. Goethe-Universität, Institut für Molekulare Biowissenschaften, Frankfurt am Main, Germany.
| | | | | |
Collapse
|
36
|
van Diepeningen AD, Debets AJM, Slakhorst SM, Hoekstra RF. Mitochondrial pAL2-1 plasmid homologs are senescence factors inPodospora anserina independent of intrinsic senescence. Biotechnol J 2008; 3:791-802. [DOI: 10.1002/biot.200800005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
37
|
Pletcher SD, Kabil H, Partridge L. Chemical Complexity and the Genetics of Aging. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2007; 38:299-326. [PMID: 25685107 PMCID: PMC4326673 DOI: 10.1146/annurev.ecolsys.38.091206.095634] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We examine how aging is impacted by various chemical challenges that organisms face and by the molecular mechanisms that have evolved to regulate lifespan in response to them. For example, environmental information, which is detected and processed through sensory systems, can modulate lifespan by providing information about the presence and quality of food as well as presence and density of conspecifics and predators. In addition, the diverse forms of molecular damage that result from constant exposure to damaging chemicals that are generated from the environment and from metabolism pose an informatic and energetic challenge for detoxification systems, which are important in ensuring longevity. Finally, systems of innate immunity are vital for recognizing and combating pathogens but are also seen as of increasing importance in causing the aging process. Integrating ideas of molecular mechanism with context derived from evolutionary considerations will lead to exciting new insights into the evolution of aging.
Collapse
Affiliation(s)
- Scott D. Pletcher
- Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030
| | - Hadise Kabil
- Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030
| | - Linda Partridge
- Center for Research on Ageing, University College London, Darwin Building, Gower Street, London, WC1E6BT
| |
Collapse
|
38
|
Muller FL, Lustgarten MS, Jang Y, Richardson A, Van Remmen H. Trends in oxidative aging theories. Free Radic Biol Med 2007; 43:477-503. [PMID: 17640558 DOI: 10.1016/j.freeradbiomed.2007.03.034] [Citation(s) in RCA: 703] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Revised: 03/29/2007] [Accepted: 03/29/2007] [Indexed: 12/11/2022]
Abstract
The early observations on the rate-of-living theory by Max Rubner and the report by Gershman that oxygen free radicals exist in vivo culminated in the seminal proposal in the 1950s by Denham Harman that reactive oxygen species are a cause of aging (free radical theory of aging). The goal of this review is to analyze recent findings relevant in evaluating Harman's theory using experimental results as grouped by model organisms (i.e., invertebrate models and mice). In this regard, we have focused primarily on recent work involving genetic manipulations. Because the free radical theory of aging is not the only theorem proposed to explain the mechanism(s) involved in aging at the molecular level, we also discuss how this theory is related to other areas of research in biogerontology, specifically, telomere/cell senescence, genomic instability, and the mitochondrial hypothesis of aging. We also discuss where we think the free radical theory is headed. It is now possible to give at least a partial answer to the question whether oxidative stress determines life span as Harman posed so long ago. Based on studies to date, we argue that a tentative case for oxidative stress as a life-span determinant can be made in Drosophila melanogaster. Studies in mice argue for a role of oxidative stress in age-related disease, especially cancer; however, with regard to aging per se, the data either do not support or remain inconclusive on whether oxidative stress determines life span.
Collapse
Affiliation(s)
- Florian L Muller
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA
| | | | | | | | | |
Collapse
|
39
|
Groebe K, Krause F, Kunstmann B, Unterluggauer H, Reifschneider NH, Scheckhuber CQ, Sastri C, Stegmann W, Wozny W, Schwall GP, Poznanović S, Dencher NA, Jansen-Dürr P, Osiewacz HD, Schrattenholz A. Differential proteomic profiling of mitochondria from Podospora anserina, rat and human reveals distinct patterns of age-related oxidative changes. Exp Gerontol 2007; 42:887-98. [PMID: 17689904 DOI: 10.1016/j.exger.2007.07.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Revised: 06/18/2007] [Accepted: 07/06/2007] [Indexed: 01/07/2023]
Abstract
According to the 'free radical theory of ageing', the generation and accumulation of reactive oxygen species are key events during ageing of biological systems. Mitochondria are a major source of ROS and prominent targets for ROS-induced damage. Whereas mitochondrial DNA and membranes were shown to be oxidatively modified with ageing, mitochondrial protein oxidation is not well understood. The purpose of this study was an unbiased investigation of age-related changes in mitochondrial proteins and the molecular pathways by which ROS-induced protein oxidation may disturb cellular homeostasis. In a differential comparison of mitochondrial proteins from young and senescent strains of the fungal ageing model Podospora anserina, from brains of young (5 months) vs. older rats (17 and 31 months), and human cells, with normal and chemically accelerated in vitro ageing, we found certain redundant posttranslationally modified isoforms of subunits of ATP synthase affected across all three species. These appear to represent general susceptible hot spot targets for oxidative chemical changes of proteins accumulating during ageing, and potentially initiating various age-related pathologies and processes. This type of modification is discussed using the example of SAM-dependent O-methyltransferase from P. anserina (PaMTH1), which surprisingly was found to be enriched in mitochondrial preparations of senescent cultures.
Collapse
|
40
|
Maas MFPM, Sellem CH, Hoekstra RF, Debets AJM, Sainsard-Chanet A. Integration of a pAL2-1 homologous mitochondrial plasmid associated with life span extension in Podospora anserina. Fungal Genet Biol 2007; 44:659-71. [PMID: 17166751 DOI: 10.1016/j.fgb.2006.10.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Revised: 09/29/2006] [Accepted: 10/27/2006] [Indexed: 11/16/2022]
Abstract
We isolated and characterized a novel spontaneous longevity mutant of Podospora anserina strain Wa32 carrying one of the pAL2-1 homologous mitochondrial plasmids. This mutant is at least ten fold longer-lived than the wild type, and is hence a formal suppressor of both the regular and the 'plasmid-based' senescence process. We show that the longevity trait is maternally inherited and coincides with the presence of a copy of the plasmid integrated in the 5' UTR of the mitochondrial Complex I genes nd2 and nd3. This mutation is associated with complex alterations in the respiratory chain, including a dispensable induction of the alternative oxidase. It is also associated with a stabilization of the mitochondrial chromosome and a reduction of the overall cellular level of reactive oxygen species.
Collapse
Affiliation(s)
- M F P M Maas
- CNRS, Centre de Génétique Moléculaire, 1 Avenue de la terrasse, 91198 Gif-sur-Yvette cedex, France.
| | | | | | | | | |
Collapse
|
41
|
Sellem CH, Marsy S, Boivin A, Lemaire C, Sainsard-Chanet A. A mutation in the gene encoding cytochrome c1 leads to a decreased ROS content and to a long-lived phenotype in the filamentous fungus Podospora anserina. Fungal Genet Biol 2007; 44:648-58. [PMID: 17081785 DOI: 10.1016/j.fgb.2006.09.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Revised: 09/19/2006] [Accepted: 09/22/2006] [Indexed: 11/21/2022]
Abstract
We present here the properties of a complex III loss-of-function mutant of the filamentous fungus Podospora anserina. The mutation corresponds to a single substitution in the second intron of the gene cyc1 encoding cytochrome c(1), leading to a splicing defect. The cyc1-1 mutant is long-lived, exhibits a defect in ascospore pigmentation, has a reduced growth rate and a reduced ROS production associated with a stabilisation of its mitochondrial DNA. We also show that increased longevity is linked with morphologically modified mitochondria and an increased number of mitochondrial genomes. Overexpression of the alternative oxidase rescues all these phenotypes and restores aging. Interestingly, the absence of complex III in this mutant is not paralleled with a deficiency in complex I activity as reported in mammals although the respiratory chain of P. anserina has recently been demonstrated to be organized according to the "respirasome" model.
Collapse
Affiliation(s)
- Carole H Sellem
- Centre de Génétique Moléculaire, UPR 2167, CNRS, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|
42
|
McElwee JJ, Schuster E, Blanc E, Piper MD, Thomas JH, Patel DS, Selman C, Withers DJ, Thornton JM, Partridge L, Gems D. Evolutionary conservation of regulated longevity assurance mechanisms. Genome Biol 2007; 8:R132. [PMID: 17612391 PMCID: PMC2323215 DOI: 10.1186/gb-2007-8-7-r132] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Revised: 05/16/2007] [Accepted: 07/05/2007] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND To what extent are the determinants of aging in animal species universal? Insulin/insulin-like growth factor (IGF)-1 signaling (IIS) is an evolutionarily conserved (public) regulator of longevity; yet it remains unclear whether the genes and biochemical processes through which IIS acts on aging are public or private (that is, lineage specific). To address this, we have applied a novel, multi-level cross-species comparative analysis to compare gene expression changes accompanying increased longevity in mutant nematodes, fruitflies and mice with reduced IIS. RESULTS Surprisingly, there is little evolutionary conservation at the level of individual, orthologous genes or paralogous genes under IIS regulation. However, a number of gene categories are significantly enriched for genes whose expression changes in long-lived animals of all three species. Down-regulated categories include protein biosynthesis-associated genes. Up-regulated categories include sugar catabolism, energy generation, glutathione-S-transferases (GSTs) and several other categories linked to cellular detoxification (that is, phase 1 and phase 2 metabolism of xenobiotic and endobiotic toxins). Protein biosynthesis and GST activity have recently been linked to aging and longevity assurance, respectively. CONCLUSION These processes represent candidate, regulated mechanisms of longevity-control that are conserved across animal species. The longevity assurance mechanisms via which IIS acts appear to be lineage-specific at the gene level (private), but conserved at the process level (or semi-public). In the case of GSTs, and cellular detoxification generally, this suggests that the mechanisms of aging against which longevity assurance mechanisms act are, to some extent, lineage specific.
Collapse
Affiliation(s)
- Joshua J McElwee
- Department of Biology, University College London, London WC1E 6BT, UK
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195-5065, USA
| | | | - Eric Blanc
- European Bioinformatics Institute, Hinxton CB10 1SD, UK
| | - Matthew D Piper
- Department of Biology, University College London, London WC1E 6BT, UK
| | - James H Thomas
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195-5065, USA
| | - Dhaval S Patel
- Department of Biology, University College London, London WC1E 6BT, UK
| | - Colin Selman
- Department of Medicine, University College London, London WC1E 6BT, UK
| | - Dominic J Withers
- Department of Medicine, University College London, London WC1E 6BT, UK
| | | | - Linda Partridge
- Department of Biology, University College London, London WC1E 6BT, UK
| | - David Gems
- Department of Biology, University College London, London WC1E 6BT, UK
| |
Collapse
|
43
|
Simkovic M, Ditte P, Chovanec P, Varecka L, Lakatos B. Changes in growth competence of aged Trichoderma viride vegetative mycelia. Antonie van Leeuwenhoek 2006; 91:407-16. [PMID: 17151955 DOI: 10.1007/s10482-006-9126-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Accepted: 10/16/2006] [Indexed: 10/23/2022]
Abstract
Identical masses of submerged Trichoderma viride mycelia of various ages were used as inoculum for a second submerged cultivation lasting for 24 h. It was found that the growth yield of secondary culture was dependent on the age of inoculum. The growth yields increased when the age of primary culture was less than 3 d, and decreased down to zero when older mycelia were inoculated. The mycelia were living even after 1 month of submerged cultivation, as they formed conidia after inoculating onto solid medium. In order to elucidate underlying biochemical processes, developmental changes of specific activities of organellar marker enzymes were measured in the mitochondrial/vacuolar and microsomal fractions of mycelia. These activities changed during the growth of mycelia in a biphasic manner and their time courses were remarkably similar. Only the H(+)-ATPase activity decreased monophasically with the age of mycelia. Membrane-bound proteases of both membrane fractions changed differently upon ageing. These results could not be explained as a consequence of nutrient starvation and indicate that the prolonged submerged cultivation triggers coordinated series of biochemical events which leads to the loss of growth competence.
Collapse
Affiliation(s)
- Martin Simkovic
- Department of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovakia
| | | | | | | | | |
Collapse
|
44
|
Lorin S, Dufour E, Sainsard-Chanet A. Mitochondrial metabolism and aging in the filamentous fungus Podospora anserina. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:604-10. [PMID: 16624249 DOI: 10.1016/j.bbabio.2006.03.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Revised: 03/06/2006] [Accepted: 03/07/2006] [Indexed: 11/18/2022]
Abstract
The filamentous fungus Podospora anserina has a limited lifespan. In this organism, aging is systematically associated to mitochondrial DNA instability. We recently provided evidence that the respiratory function is a key determinant of its lifespan. Loss of function of the cytochrome pathway leads to the compensatory induction of an alternative oxidase, to a decreased production of reactive oxygen species and to a striking increase in lifespan. These changes are associated to the stabilization of the mitochondrial DNA. Here we review and discuss the links between these different parameters and their implication in the control of lifespan. Since we demonstrated the central role of mitochondrial metabolism in aging, the same relationship has been evidenced in several model systems from yeast to mice, confirming the usefulness of simple organisms as P. anserina for studying lifespan regulation.
Collapse
Affiliation(s)
- Séverine Lorin
- Centre de Génétique Moléculaire, Centre National de la Recherche Scientifique, 91198 Gif-sur-Yvette Cedex, France
| | | | | |
Collapse
|
45
|
Lenaz G, Baracca A, Fato R, Genova ML, Solaini G. New insights into structure and function of mitochondria and their role in aging and disease. Antioxid Redox Signal 2006; 8:417-37. [PMID: 16677088 DOI: 10.1089/ars.2006.8.417] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This review covers some novel findings on mitochondrial biochemistry and discusses diseases due to mitochondrial DNA mutations as a model of the changes occurring during physiological aging. The random collision model of organization of the mitochondrial respiratory chain has been recently challenged on the basis of findings of supramolecular organization of respiratory chain complexes. The source of superoxide in Complex I is discussed on the basis of laboratory experiments using a series of specific inhibitors and is presumably iron sulfur center N2. Maternally inherited diseases due to mutations of structural genes in mitochondrial DNA are surveyed as a model of alterations mimicking those occurring during normal aging. The molecular defects in senescence are surveyed on the basis of the "Mitochondrial Theory of Aging", establishing mitochondrial DNA somatic mutations, caused by accumulation of oxygen radical damage, to be at the basis of cellular senescence. Mitochondrial production of reactive oxygen species increases with aging and mitochondrial DNA mutations and deletions accumulate and may be responsible for oxidative phosphorylation defects. Evidence is presented favoring the mitochondrial theory, with primary mitochondrial alterations, although the problem is made more complex by changes in the cross-talk between nuclear and mitochondrial DNA.
Collapse
Affiliation(s)
- Giorgio Lenaz
- Dipartimento di Biochimica, Università di Bologna, Bologna, Italy.
| | | | | | | | | |
Collapse
|
46
|
Maas MFPM, de Boer HJ, Debets AJM, Hoekstra RF. The mitochondrial plasmid pAL2-1 reduces calorie restriction mediated life span extension in the filamentous fungus Podospora anserina. Fungal Genet Biol 2004; 41:865-71. [PMID: 15288022 DOI: 10.1016/j.fgb.2004.04.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2004] [Accepted: 04/28/2004] [Indexed: 11/28/2022]
Abstract
Calorie restriction is the only life span extending regimen known that applies to all aging organisms. Although most fungi do not appear to senesce, all natural isolates of the modular filamentous fungus Podospora anserina have a limited life span. In this paper, we show that calorie restriction extends life span also in Podospora anserina. The response to glucose limitation varies significantly among 23 natural isolates from a local population in The Netherlands, ranging from no effect up to a 5-fold life span extension. The isolate dependent effect is largely due to the presence or absence of pAL2-1 homologous plasmids. These mitochondrial plasmids are associated with reduced life span under calorie restricted conditions, suggesting a causal link. This has been substantiated using three combinations of isogenic isolates with and without plasmids. A model is proposed to explain how pAL2-1 homologues influence the response to calorie restriction.
Collapse
Affiliation(s)
- Marc F P M Maas
- Laboratory of Genetics, Department of Plant Sciences Wageningen University, Arboretumlaan 4, 6703 BD, The Netherlands.
| | | | | | | |
Collapse
|
47
|
Abstract
Glutathione (GSH; gamma-L-glutamyl-L-cysteinyl-glycine), a non-protein thiol with a very low redox potential (E'0 = 240 mV for thiol-disulfide exchange), is present in high concentration up to 10 mM in yeasts and filamentous fungi. GSH is concerned with basic cellular functions as well as the maintenance of mitochondrial structure, membrane integrity, and in cell differentiation and development. GSH plays key roles in the response to several stress situations in fungi. For example, GSH is an important antioxidant molecule, which reacts non-enzymatically with a series of reactive oxygen species. In addition, the response to oxidative stress also involves GSH biosynthesis enzymes, NADPH-dependent GSH-regenerating reductase, glutathione S-transferase along with peroxide-eliminating glutathione peroxidase and glutaredoxins. Some components of the GSH-dependent antioxidative defence system confer resistance against heat shock and osmotic stress. Formation of protein-SSG mixed disulfides results in protection against desiccation-induced oxidative injuries in lichens. Intracellular GSH and GSH-derived phytochelatins hinder the progression of heavy metal-initiated cell injuries by chelating and sequestering the metal ions themselves and/or by eliminating reactive oxygen species. In fungi, GSH is mobilized to ensure cellular maintenance under sulfur or nitrogen starvation. Moreover, adaptation to carbon deprivation stress results in an increased tolerance to oxidative stress, which involves the induction of GSH-dependent elements of the antioxidant defence system. GSH-dependent detoxification processes concern the elimination of toxic endogenous metabolites, such as excess formaldehyde produced during the growth of the methylotrophic yeasts, by formaldehyde dehydrogenase and methylglyoxal, a by-product of glycolysis, by the glyoxalase pathway. Detoxification of xenobiotics, such as halogenated aromatic and alkylating agents, relies on glutathione S-transferases. In yeast, these enzymes may participate in the elimination of toxic intermediates that accumulate in stationary phase and/or act in a similar fashion as heat shock proteins. GSH S-conjugates may also form in a glutathione S-transferases-independent way, e.g. through chemical reaction between GSH and the antifugal agent Thiram. GSH-dependent detoxification of penicillin side-chain precursors was shown in Penicillium sp. GSH controls aging and autolysis in several fungal species, and possesses an anti-apoptotic feature.
Collapse
Affiliation(s)
- István Pócsi
- Department of Microbiology and Biotechnology, Faculty of Sciences, University of Debrecen, P.O. Box 63, H-4010 Debrecen, Hungary
| | | | | |
Collapse
|
48
|
Brunet-Rossinni AK. Reduced free-radical production and extreme longevity in the little brown bat (Myotis lucifugus) versus two non-flying mammals. Mech Ageing Dev 2004; 125:11-20. [PMID: 14706233 DOI: 10.1016/j.mad.2003.09.003] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The extended longevity of bats, despite their high metabolic rate, may provide insight to patterns and mechanisms of aging. Here I test predictions of the free radical or oxidative stress theory of aging as an explanation for differences in lifespan between the little brown bat, Myotis lucifugus (maximum lifespan potential MLSP=34 years), the short-tailed shrew, Blarina brevicauda (MLSP=2 years), and the white-footed mouse, Peromyscus leucopus (MLSP=8 years) by comparing whole-organism oxygen consumption, hydrogen peroxide production, and superoxide dismutase activity in heart, kidney, and brain tissue. Mitochondria from M. lucifugus produced half to one-third the amount of hydrogen peroxide per unit of oxygen consumed compared to mitochondria from B. brevicauda and P. leucopus, respectively. Superoxide dismutase (SOD) activity did not differ among the three species. These results are similar to those found for birds, which like bats have high metabolic rates and extended longevities, and provide support for the free radical theory of aging as an at least partial explanation for the extreme longevity of bats.
Collapse
Affiliation(s)
- Anja K Brunet-Rossinni
- Department of Ecology, Evolution and Behavior, James Ford Bell Museum of Natural History, University of Minnesota, Saint Paul, MN 55108, USA.
| |
Collapse
|