1
|
Yoshida K, Misumi M, Yamaoka M, Kyoizumi S, Ohishi W, Sugiyama H, Hayashi T, Kusunoki Y. Naive CD4 T Cells Highly Expressing the Inflammatory Chemokine Receptor CXCR3 Increase with Age and Radiation Exposure in Atomic Bomb Survivors. Radiat Res 2024; 201:71-76. [PMID: 37989111 DOI: 10.1667/rade-23-00065.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 11/03/2023] [Indexed: 11/23/2023]
Abstract
The numbers of naive T cells that react to novel pathogens not yet encountered by an immune system, decrease during aging, mainly due to age-associated involution of the thymus. CD45RA+ naive CD4 T cells consist of heterogeneous populations, including highly CXCR3-expressing cells that appear during the homeostatic proliferation of naive T cells and exhibit enhanced type-1 inflammatory phenotypes. Based on previous evidence of radiation-associated reductions in thymic function and peripheral blood naive CD4 T cells, we hypothesized that the homeostatic proliferation of naive CD4 T cells compensates for deficits in peripheral T-cell populations after radiation injury, which may increase the proportion of CXCR3high cells in naive CD4 T cells and enhance inflammation. The statistical models employed in this study revealed positive associations between the number of CXCR3high naive CD4 T cells and age as well as radiation dose among 580 Hiroshima atomic bomb survivors. In addition, the CXCR3high cells in these survivors increased not only with the levels of homeostatic cytokines, IL6 and IL7, but also with those of inflammatory indicators, CXCL10 and CRP. These results suggest that thymic T-cell production deficiency due to radiation and aging results in enhanced homeostatic proliferation that drives the appearance of CXCR3high naive CD4 T cells poised for an inflammatory response. Molecular mechanisms and clinical relevance of increasing CXCR3high cells in naive CD4 T populations should be further investigated in the context of inflammatory disease development long after radiation exposure.
Collapse
Affiliation(s)
- Kengo Yoshida
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima
| | - Munechika Misumi
- Department of Statistics, Radiation Effects Research Foundation, Hiroshima
| | - Mika Yamaoka
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima
| | - Seishi Kyoizumi
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima
| | - Waka Ohishi
- Department of Clinical Studies, Radiation Effects Research Foundation, Hiroshima
| | - Hiromi Sugiyama
- Department of Epidemiology, Radiation Effects Research Foundation, Hiroshima
| | - Tomonori Hayashi
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima
| | - Yoichiro Kusunoki
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima
| |
Collapse
|
2
|
Auma AWN, Shive CL, Kostadinova L, Anthony DD. Variable Normalization of Naïve CD4+ Lymphopenia and Markers of Monocyte and T Cell Activation over the Course of Direct-Acting Anti-Viral Treatment of Chronic Hepatitis C Virus Infection. Viruses 2021; 14:50. [PMID: 35062255 PMCID: PMC8780994 DOI: 10.3390/v14010050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic hepatitis C virus (HCV) infection is associated with naïve CD4+ T cell lymphopenia and long-standing/persistent elevation of cellular and soluble immune activation parameters, the latter heightened in the setting of HIV co-infection. The underlying mechanisms are not completely understood. However, we recently reported that accelerated peripheral cell death may contribute to naïve CD4+ T cell loss and that mechanistic relationships between monocyte activation, T cell activation, and soluble inflammatory mediators may also contribute. Chronic HCV infection can be cured by direct-acting anti-viral (DAA) therapy, and success is defined as sustained virological response (SVR, undetectable HCV RNA (ribonucleic acid) at 12 weeks after DAA treatment completion). However, there is no general consensus on the short-term and long-term immunological outcomes of DAA therapy. Here, we consolidate previous reports on the partial normalization of naïve CD4+ lymphopenia and T cell immune activation and the apparent irreversibility of monocyte activation following DAA therapy in HCV infected and HCV/HIV co-infected individuals. Further, advanced age and cirrhosis are associated with delayed or abrogation of immune reconstitution after DAA therapy, an indication that non-viral factors also likely contribute to host immune dysregulation in HCV infection.
Collapse
Affiliation(s)
- Ann W. N. Auma
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA; (A.W.N.A.); (C.L.S.)
| | - Carey L. Shive
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA; (A.W.N.A.); (C.L.S.)
- Cleveland VA Medical Center, Cleveland, OH 44106, USA;
| | | | - Donald D. Anthony
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA; (A.W.N.A.); (C.L.S.)
- Cleveland VA Medical Center, Cleveland, OH 44106, USA;
- Metro Health Medical Center, Division of Rheumatology, Cleveland, OH 44106, USA
| |
Collapse
|
3
|
Auma AWN, Shive CL, Lange A, Damjanovska S, Kowal C, Zebrowski E, Pandiyan P, Wilson B, Kalayjian RC, Canaday DH, Anthony DD. Naïve CD4+ T Cell Lymphopenia and Apoptosis in Chronic Hepatitis C Virus Infection Is Driven by the CD31+ Subset and Is Partially Normalized in Direct-Acting Antiviral Treated Persons. Front Immunol 2021; 12:641230. [PMID: 33912168 PMCID: PMC8075159 DOI: 10.3389/fimmu.2021.641230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/24/2021] [Indexed: 12/29/2022] Open
Abstract
Background The mechanisms underlying naïve CD4+ lymphopenia during chronic Hepatitis C Virus (HCV) infection are unclear. Whether direct-acting antiviral (DAA) therapy restores peripheral naïve CD4+ T cell numbers and function is unknown. Methods We enumerated frequencies and counts of peripheral naïve CD4+, CD4+CD31+ and CD4+CD31- T cells by flow cytometry in a cross sectional analysis comparing chronic HCV infected (n=34), DAA-treated(n=29), and age-range matched controls (n=25), as well as in a longitudinal cohort of HCV DAA treated persons (n=16). The cross-sectional cohort was stratified by cirrhosis state. Cell apoptosis/survival (AnnexinV+7AAD+/BCL-2 labeling) and cell cycle entry (Ki67 expression) of CD31+ and CD31- naïve CD4+ T cells was analyzed directly ex vivo and following 3 and 5 days of in vitro culture with media, interleukin (IL) -7 or CD3/CD28 activator. Results In the cross-sectional cohort, naïve CD4+ proportions were lower in chronic HCV infected persons compared to controls and DAA-treated persons, an effect in part attributed to cirrhosis. Age was associated with naïve cell counts and proportions in HCV infected and treated persons as well. Naïve CD4+ cell proportions negatively correlated with plasma levels of soluble CD14 following therapy in DAA-treated persons. Naïve CD4+ cells from HCV infected persons exhibited greater direct ex vivo apoptosis and cell-cycling compared to cells from DAA-treated persons and controls, and this was localized to the CD4+CD31+ subset. On the other hand, no remarkable differences in expression of BCL-2 or IL-7 Receptor (CD127) at baseline or following in vitro media or IL7 containing culture were observed. In the longitudinal cohort, naïve CD4+CD31+/CD31- ratio tended to increase 24 weeks after DAA therapy initiation. Conclusions Activation and apoptosis of peripheral naïve CD4+CD31+ T cells appear to contribute to naïve CD4+ lymphopenia in chronic HCV infection, and this defect is partially reversible with HCV DAA therapy. Age and cirrhosis -associated naïve CD4+ lymphopenia is present both before and after HCV DAA therapy. These findings have implications for restoration of host immune function after DAA therapy.
Collapse
Affiliation(s)
- Ann W N Auma
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - Carey L Shive
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States.,GRECC, VA Northeast Ohio Healthcare System, Cleveland, OH, United States
| | - Alyssa Lange
- GRECC, VA Northeast Ohio Healthcare System, Cleveland, OH, United States
| | - Sofi Damjanovska
- GRECC, VA Northeast Ohio Healthcare System, Cleveland, OH, United States
| | - Corinne Kowal
- GRECC, VA Northeast Ohio Healthcare System, Cleveland, OH, United States
| | | | - Pushpa Pandiyan
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - Brigid Wilson
- GRECC, VA Northeast Ohio Healthcare System, Cleveland, OH, United States
| | - Robert C Kalayjian
- Department of Medicine, MetroHealth Medical Center, Case Western Reserve University, Cleveland, OH, United States
| | - David H Canaday
- GRECC, VA Northeast Ohio Healthcare System, Cleveland, OH, United States
| | - Donald D Anthony
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States.,GRECC, VA Northeast Ohio Healthcare System, Cleveland, OH, United States.,Department of Medicine, MetroHealth Medical Center, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
4
|
Lioulios G, Fylaktou A, Papagianni A, Stangou M. T cell markers recount the course of immunosenescence in healthy individuals and chronic kidney disease. Clin Immunol 2021; 225:108685. [PMID: 33549833 DOI: 10.1016/j.clim.2021.108685] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 01/18/2021] [Accepted: 02/02/2021] [Indexed: 12/12/2022]
Abstract
Aging results in substantial changes in almost all cellular subpopulations within the immune system, including functional and phenotypic alterations. T lymphocytes, as the main representative population of cellular immunity, have been extensively studied in terms of modifications and adjustments during aging. Phenotypic alterations are attributed to three main mechanisms; a reduction of naïve T cell population with a shift to more differentiated forms, a subsequent oligoclonal expansion of naïve T cells characterized by repertoire restriction, and replicative insufficiency after repetitive activation. These changes and the subsequent phenotypic disorders are comprised in the term "immunosenescence". Similar changes seem to occur in chronic kidney disease, with T cells of young patients resembling those of healthy older individuals. A broad range of surface markers can be utilized to identify immunosenescent T cells. In this review, we will discuss the most important senescence markers and their potential connection with impaired renal function.
Collapse
Affiliation(s)
- Georgios Lioulios
- Department of Nephrology, Aristotle University of Thessaloniki, Hippokration Hospital, Thessaloniki, Greece.
| | - Asimina Fylaktou
- Department of Immunology, National Peripheral Histocompatibility Center, Hippokration Hospital, Thessaloniki, Greece
| | - Aikaterini Papagianni
- Department of Nephrology, Aristotle University of Thessaloniki, Hippokration Hospital, Thessaloniki, Greece
| | - Maria Stangou
- Department of Nephrology, Aristotle University of Thessaloniki, Hippokration Hospital, Thessaloniki, Greece
| |
Collapse
|
5
|
Voigt EA, Ovsyannikova IG, Kennedy RB, Grill DE, Goergen KM, Schaid DJ, Poland GA. Sex Differences in Older Adults' Immune Responses to Seasonal Influenza Vaccination. Front Immunol 2019; 10:180. [PMID: 30873150 PMCID: PMC6400991 DOI: 10.3389/fimmu.2019.00180] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/21/2019] [Indexed: 02/06/2023] Open
Abstract
Background: Sex differences in immune responses to influenza vaccine may impact efficacy across populations. Methods: In a cohort of 138 older adults (50-74 years old), we measured influenza A/H1N1 antibody titers, B-cell ELISPOT response, PBMC transcriptomics, and PBMC cell compositions at 0, 3, and 28 days post-immunization with the 2010/11 seasonal inactivated influenza vaccine. Results: We identified higher B-cell ELISPOT responses in females than males. Potential mechanisms for sex effects were identified in four gene clusters related to T, NK, and B cells. Mediation analysis indicated that sex-dependent expression in T and NK cell genes can be partially attributed to higher CD4+ T cell and lower NK cell fractions in females. We identified strong sex effects in 135 B cell genes whose expression correlates with ELISPOT measures, and found that cell subset differences did not explain the effect of sex on these genes' expression. Post-vaccination expression of these genes, however, mediated 41% of the sex effect on ELISPOT responses. Conclusions: These results improve our understanding of sexual dimorphism in immunity and influenza vaccine response.
Collapse
Affiliation(s)
- Emily A. Voigt
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, United States
| | | | - Richard B. Kennedy
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, United States
| | - Diane E. Grill
- Division of Biostatistics, Mayo Clinic, Rochester, MN, United States
| | - Krista M. Goergen
- Division of Biostatistics, Mayo Clinic, Rochester, MN, United States
| | - Daniel J. Schaid
- Division of Biostatistics, Mayo Clinic, Rochester, MN, United States
| | - Gregory A. Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
6
|
Marelli-Berg FM, Clement M, Mauro C, Caligiuri G. An immunologist's guide to CD31 function in T-cells. J Cell Sci 2013; 126:2343-52. [PMID: 23761922 DOI: 10.1242/jcs.124099] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Although it is expressed by all leukocytes, including T-, B-lymphocytes and dendritic cells, the immunoglobulin-like receptor CD31 is generally regarded by immunologists as a marker of endothelial cell lineage that lacks an established functional role in adaptive immunity. This perception has recently been challenged by studies that reveal a key role for this molecule in the regulation of T-cell homeostasis, effector function and trafficking. The complexity of the biological functions of CD31 results from the integration of its adhesive and signaling functions in both the immune and vascular systems. Signaling by means of CD31 is induced by homophilic engagement during the interactions of immune cells and is mediated by phosphatase recruitment or activation through immunoreceptor tyrosine inhibitory motifs (ITIMs) that are located in its cytoplasmic tail. Loss of CD31 function is associated with excessive immunoreactivity and susceptibility to cytotoxic killing. Here, we discuss recent findings that have brought to light a non-redundant, complex role for this molecule in the regulation of T-cell-mediated immune responses, with large impact on our understanding of immunity in health and disease.
Collapse
Affiliation(s)
- Federica M Marelli-Berg
- William Harvey Research Institute, Barts' and The London School of Medicine, Queen Mary, University of London, Charterhouse Square, London EC1M 6BQ, UK.
| | | | | | | |
Collapse
|
7
|
Huang J, Li Z, Yao X, Li Y, Reng X, Li J, Wang W, Gao J, Wang C, Tankersley CG, Huang K. Altered Th1/Th2 commitment contributes to lung senescence in CXCR3-deficient mice. Exp Gerontol 2013; 48:717-26. [PMID: 23583952 DOI: 10.1016/j.exger.2013.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 03/28/2013] [Accepted: 04/03/2013] [Indexed: 01/08/2023]
Abstract
Aging is an inevitable process associated with immune imbalance, which is characterized by a progressive functional decline in major organs, including lung. However, effects of altered Th1/Th2 commitment on lung senescence are largely unknown. To examine effects of altered Th1/Th2 balance on lung aging, we measured proportions of Th1 and Th2 cells and expression of cytokines, chemokines, collagen deposition and other relevant physiological and pathological parameters in 2- and 20-months-old (mo) CXCR3-deficient (CXCR3(-/-)) C57BL/6J mice compared with wild-type (WT) mice. There was a significant weight-loss observed in 20-mo CXCR3(-/-) mice compared with the same aged WT group. Although lung function and structure changed with age in both groups, central airway resistance (Rn), tissue elastance (H) and damping (G) were significantly lower in 20-mo CXCR3(-/-) mice than those of WT mice. In contrast, the whole lung volume (V(L)), the mean linear intercept length of alveolar (L(m)), and the total lung collagen content were significantly elevated in 20-mo CXCR3(-/-) mice. With aging, the lungs of WT mice had typical Th1-type status (increased population of Th1 cells and concentrations of cytokine IFN-γ and CXCR3 ligands) while CXCR3(-/-) mice showed Th2-type polarization (decreased proportion of Th1 cells and concentrations of CXCR3 ligands but increased level of IL-4). Our data suggest that Immunosenescence is associated with lung aging, and that altered Th1/Th2 imbalance favors Th2 predominance in CXCR3(-/-) mice, which contributes to the process of accelerated lung aging in this model.
Collapse
Affiliation(s)
- Junmin Huang
- Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
|
9
|
Ross EA, Coughlan RE, Flores-Langarica A, Bobat S, Marshall JL, Hussain K, Charlesworth J, Abhyankar N, Hitchcock J, Gil C, López-Macías C, Henderson IR, Khan M, Watson SP, MacLennan ICM, Buckley CD, Cunningham AF. CD31 is required on CD4+ T cells to promote T cell survival during Salmonella infection. THE JOURNAL OF IMMUNOLOGY 2011; 187:1553-65. [PMID: 21734076 DOI: 10.4049/jimmunol.1000502] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Hematopoietic cells constitutively express CD31/PECAM1, a signaling adhesion receptor associated with controlling responses to inflammatory stimuli. Although expressed on CD4(+) T cells, its function on these cells is unclear. To address this, we have used a model of systemic Salmonella infection that induces high levels of T cell activation and depends on CD4(+) T cells for resolution. Infection of CD31-deficient (CD31KO) mice demonstrates that these mice fail to control infection effectively. During infection, CD31KO mice have diminished numbers of total CD4(+) T cells and IFN-γ-secreting Th1 cells. This is despite a higher proportion of CD31KO CD4(+) T cells exhibiting an activated phenotype and an undiminished capacity to prime normally and polarize to Th1. Reduced numbers of T cells reflected the increased propensity of naive and activated CD31KO T cells to undergo apoptosis postinfection compared with wild-type T cells. Using adoptive transfer experiments, we show that loss of CD31 on CD4(+) T cells alone is sufficient to account for the defective CD31KO T cell accumulation. These data are consistent with CD31 helping to control T cell activation, because in its absence, T cells have a greater propensity to become activated, resulting in increased susceptibility to become apoptotic. The impact of CD31 loss on T cell homeostasis becomes most pronounced during severe, inflammatory, and immunological stresses such as those caused by systemic Salmonella infection. This identifies a novel role for CD31 in regulating CD4 T cell homeostasis.
Collapse
Affiliation(s)
- Ewan A Ross
- Medical Research Council Centre for Immune Regulation, School of Immunity and Infection, Institute for Biomedical Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Crooks CV, Cross ML, Wall CR. Age-related differences in integrin expression in peripheral blood lymphocytes. IMMUNITY & AGEING 2010; 7:5. [PMID: 20420705 PMCID: PMC2873253 DOI: 10.1186/1742-4933-7-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 04/26/2010] [Indexed: 01/20/2023]
Abstract
Alpha integrins play an important role in cell to cell and cell to extra-cellular matrix interactions required for an effective T-lymphocyte-mediated immune response, however little is known about age related differences in expression of alpha integrins on T-cells in humans. We here measured alpha-4 (α4) integrin (CD49d) expression on T-lymphocytes via peripheral blood sampling, comparing parameters between cohorts of young and old adults. No age-related differences were found for the absolute numbers of T-cells, although the percentage of CD4+ T-cells in older adults was significantly greater and the percentage of CD8+ T-cells lower than in younger cohorts. Percentage and absolute numbers of CD3+ T-cells co-expressing CD49d were significantly lower in older adults compared to younger cohorts, and the percentage of gated CD4+ and CD8+ cells that co-labelled positively for CD49d was also reduced in this group. There were no age-related differences in circulating levels of cytokines (Type I interferons) that are known to regulate cell surface integrin expression. Reduced expression of alpha integrins on T-cells may be an early indicator of the loss of homeostatic control that occurs with ageing, contributing to diminished effector T-cell responses during senescence.
Collapse
Affiliation(s)
- Christine V Crooks
- Institute Food, Nutrition and Human Health, Massey University, Auckland, New Zealand.
| | | | | |
Collapse
|
11
|
Abstract
Early in life, thymic export establishes the size and the diversity of the human naive T-cell pool. Yet, on puberty thymic activity drastically decreases. Because the overall size of the naive T-cell pool decreases only marginally during ageing, peripheral postthymic expansion of naive T cells has been postulated to account partly for the maintenance of T-cell immunity in adults. So far, the analysis of these processes had been hampered by the inability to distinguish recent thymic emigrants from proliferated, peripheral, naive T cells. However, recently, CD31 has been introduced as a marker to distinguish 2 subsets of naive CD4(+) T cells with distinct T-cell receptor excision circle (TREC) content in the peripheral blood of healthy humans. Here, we review studies that have characterized TREC(hi) CD31(+ thymic)naive CD4(+) T cells and have accordingly used the assessment of this distinct subset of naive CD4(+) T cells as a correlate of thymic activity. We will discuss further potential clinical applications and how more research on CD31(+ thymic)naive and CD31(- central)naive CD4(+) T cells may foster our knowledge of the impact of thymic involution on immune competence.
Collapse
|
12
|
Kilpatrick RD, Rickabaugh T, Hultin LE, Hultin P, Hausner MA, Detels R, Phair J, Jamieson BD. Homeostasis of the naive CD4+ T cell compartment during aging. THE JOURNAL OF IMMUNOLOGY 2008; 180:1499-507. [PMID: 18209045 DOI: 10.4049/jimmunol.180.3.1499] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Despite thymic involution, the number of naive CD4(+) T cells diminishes slowly during aging, suggesting considerable peripheral homeostatic expansion of these cells. To investigate the mechanisms behind, and consequences of, naive CD4+ T cell homeostasis, we evaluated the age-dependent dynamics of the naive CD4+ T cell subsets CD45RA+CD31+ and CD45RA+CD31-. Using both a cross-sectional and longitudinal study design, we measured the relative proportion of both subsets in individuals ranging from 22 to 73 years of age and quantified TCR excision circle content within those subsets as an indicator of proliferative history. Our findings demonstrate that waning thymic output results in a decrease in CD45RA+CD31+ naive CD4+ T cells over time, although we noted considerable individual variability in the kinetics of this change. In contrast, there was no significant decline in the CD45RA+CD31- naive CD4+ T cell subset due to extensive peripheral proliferation. Our longitudinal data are the first to demonstrate that the CD45RA+CD31+CD4+ subset also undergoes some in vivo proliferation without immediate loss of CD31, resulting in an accumulation of CD45RA+CD31+ proliferative offspring. Aging was associated with telomere shortening within both subsets, raising the possibility that accumulation of proliferative offspring contributes to senescence of the naive CD4+ T cell compartment in the elderly. In contrast, we observed retention of clonal TCR diversity despite peripheral expansion, although this analysis did not include individuals over 65 years of age. Our results provide insight into naive CD4+ T cell homeostasis during aging that can be used to better understand the mechanisms that may contribute to immunosenescence within this compartment.
Collapse
Affiliation(s)
- Ryan D Kilpatrick
- University of California AIDS Institute and Department of Medicine, David Geffen School of Medicine, University of California-Los Angeles, 10833 Le Conte, CA 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Luciano AA, Lederman MM, Valentin-Torres A, Bazdar DA, Sieg SF. Impaired induction of CD27 and CD28 predicts naive CD4 T cell proliferation defects in HIV disease. THE JOURNAL OF IMMUNOLOGY 2007; 179:3543-9. [PMID: 17785788 DOI: 10.4049/jimmunol.179.6.3543] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Many immunological defects have been described in HIV disease, including a diminished capacity of naive CD4+ T cells to expand after TCR stimulation. The mechanisms underlying impaired naive CD4+ T cell expansion in HIV disease are not well described. Using a rigorous phenotypic definition of naive T cells, we found that cell cycle entry after TCR engagement was restricted to cells that increased surface expression of costimulatory molecules CD27 and CD28. Induction of these receptors, however, was not sufficient to result in cell cycle entry among the CD4+CD31- naive T cell subset. Analyses of cells from HIV-infected persons indicated that naive CD4+CD31+ T cells from these subjects were impaired in their ability to enter the cell cycle after stimulation and this impairment was predicted by the relatively poor induction of costimulatory molecules on these cells. Thus, failure to increase surface expression of costimulatory molecules may contribute to the naive T cell expansion failure that characterizes HIV infection.
Collapse
Affiliation(s)
- Angel A Luciano
- Case Western Reserve University and University Hospitals of Cleveland, Center for AIDS Research, Department of Medicine, Division of Infectious Diseases, Cleveland, Ohio 44106, USA
| | | | | | | | | |
Collapse
|
14
|
Haas J, Fritzsching B, Trübswetter P, Korporal M, Milkova L, Fritz B, Vobis D, Krammer PH, Suri-Payer E, Wildemann B. Prevalence of newly generated naive regulatory T cells (Treg) is critical for Treg suppressive function and determines Treg dysfunction in multiple sclerosis. THE JOURNAL OF IMMUNOLOGY 2007; 179:1322-30. [PMID: 17617625 DOI: 10.4049/jimmunol.179.2.1322] [Citation(s) in RCA: 190] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The suppressive function of regulatory T cells (T(reg)) is impaired in multiple sclerosis (MS) patients. The mechanism underlying the T(reg) functional defect is unknown. T(reg) mature in the thymus and the majority of cells circulating in the periphery rapidly adopt a memory phenotype. Because our own previous findings suggest that the thymic output of T cells is impaired in MS, we hypothesized that an altered T(reg) generation may contribute to the suppressive deficiency. We therefore determined the role of T(reg) that enter the circulation as recent thymic emigrants (RTE) and, unlike their CD45RO(+) memory counterparts, express CD31 as typical surface marker. We show that the numbers of CD31(+)-coexpressing CD4(+)CD25(+)CD45RA(+)CD45RO(-)FOXP3(+) T(reg) (RTE-T(reg)) within peripheral blood decline with age and are significantly reduced in MS patients. The reduced de novo generation of RTE-T(reg) is compensated by higher proportions of memory T(reg), resulting in a stable cell count of the total T(reg) population. Depletion of CD31(+) cells from T(reg) diminishes the suppressive capacity of donor but not patient T(reg) and neutralizes the difference in inhibitory potencies between the two groups. Overall, there was a clear correlation between T(reg)-mediated suppression and the prevalence of RTE-T(reg), indicating that CD31-expressing naive T(reg) contribute to the functional properties of the entire T(reg) population. Furthermore, patient-derived T(reg), but not healthy T(reg), exhibit a contracted TCR Vbeta repertoire. These observations suggest that a shift in the homeostatic composition of T(reg) subsets related to a reduced thymic-dependent de novo generation of RTE-T(reg) with a compensatory expansion of memory T(reg) may contribute to the T(reg) defect associated with MS.
Collapse
Affiliation(s)
- Jürgen Haas
- Division of Molecular Neuroimmunology, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Caligiuri G, Groyer E, Khallou-Laschet J, Al Haj Zen A, Sainz J, Urbain D, Gaston AT, Lemitre M, Nicoletti A, Lafont A. Reduced Immunoregulatory CD31+T Cells in the Blood of Atherosclerotic Mice With Plaque Thrombosis. Arterioscler Thromb Vasc Biol 2005; 25:1659-64. [PMID: 15933243 DOI: 10.1161/01.atv.0000172660.24580.b4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Lymphocyte activation is thought to play a major role in the pathogenesis of atherosclerotic complications such as plaque thrombosis. Circulating CD31+ T cells have been shown to regulate human T cell activation. Aim of this study was to evaluate whether the proportion of circulating immunoregulatory CD31+ T cells is correlated to the occurrence of plaque thrombosis in aged apolipoprotein (apo) E knockout (KO) mice. METHODS AND RESULTS CD31+ T cell depletion of spleen T cells enhanced proliferation (P<0.05) and interferon-gamma production (P<0.01) while reducing interleukin (IL)-4 (P<0.001) and IL-10 (P=0.001) secretion in response to minimally modified low-density lipoprotein. CD31+ T cells were counted in 65 apoE KO mice (46-week-old) by flow cytometry. Organizing thrombi could be documented in 28 of 195 (14%) lesions and in at least one of the aorta root lesions in 23 of 65 mice (35%). CD31+ T cell count was significantly reduced in mice showing plaque thrombosis (72.3+/-1.5% versus 84.1+/-1.2%; P<0.0001), but such reduction did not follow induced plaque rupture or experimentally controlled thrombosis. CONCLUSIONS Reduced CD31+ T cells in circulating blood is a hallmark of atherosclerotic plaque thrombosis. Our data suggest that CD31+ T cells may play an important regulatory role in the development of plaque thrombosis.
Collapse
|
16
|
Abstract
T-cell immunological memory consists largely of clones of proliferating lymphocytes maintained by antigenic stimulation and the survival and proliferative effects of cytokines. The duration of survival of memory clones in humans is determine by the Hayflick limit on the number of cell divisions, the rate of cycling of memory cells and factors that control erosion of telomeres, including mechanisms that control telomerase.
Collapse
Affiliation(s)
- Peter C L Beverley
- The Edward Jenner Institute for Vaccine Research, Compton, Berkshire RG207NN, UK.
| |
Collapse
|
17
|
Gomez I, Marx F, Gould EA, Grubeck-Loebenstein B. T cells from elderly persons respond to neoantigenic stimulation with an unimpaired IL-2 production and an enhanced differentiation into effector cells. Exp Gerontol 2004; 39:597-605. [PMID: 15050295 DOI: 10.1016/j.exger.2003.11.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2003] [Revised: 10/30/2003] [Accepted: 11/01/2003] [Indexed: 01/01/2023]
Abstract
We analysed the capacity of T cells from young and elderly persons to produce IL-2 and IFN-gamma after in vitro stimulation with two neoantigens, namely inactivated rabies virus and recombinant Etr protein of tick-borne encephalitis virus (TBEV). Soluble antigens should per definition primarly stimulate CD4(+) naïve T cells. Cytokine production was analysed by ELISPOT technology. T cells from elderly and young donors produced similar amounts of IL-2 after priming with both neoantigens. In contrast, IFN-gamma production was induced earlier and at lower antigenic concentrations in T cells from elderly persons than from young controls indicating an enhanced capacity of primed T cells to differentiate into effector cells. In both age groups the response pattern to neoantigenic stimulation was the same whether unfractionated blood mononuclear cells or purified CD4(+)CD45RA(+) T cells with autologous DC as APC were used. The magnitude of the response was, however slightly lower in isolated cells. Autologous DC still induced an MLR in purified CD4(+)CD45RA(+) cells, which was more pronounced in the young than in the elderly group. Our results demonstrate that the ability of CD4(+) T cells from elderly persons to respond to neoantigenic stimulation is intact and that their capacity to differentiate into effector cells is even enhanced. This is in good agreement with earlier reports on alterations in the homing receptor pattern of naïve T cells in old age. Rapid generation of effector cells from naïve cells may at least partly counterbalance the decreasing size of the naïve T cell pool in elderly persons.
Collapse
Affiliation(s)
- I Gomez
- Institute for Biomedical Ageing Research, Austrian Academy of Sciences, Rennweg 10, A-6020 Innsbruck, Austria
| | | | | | | |
Collapse
|