1
|
De Gerónimo E, Mosca A, Cabrerizo FM, Vargas R. Insights into chlorination-induced degradation of sulfonylurea herbicides: Unraveling kinetics and intermediates during water treatment. WATER RESEARCH 2025; 280:123513. [PMID: 40132468 DOI: 10.1016/j.watres.2025.123513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 03/13/2025] [Accepted: 03/17/2025] [Indexed: 03/27/2025]
Abstract
Chlorination is a common method for drinking water disinfection due to its efficiency and low cost. The strong oxidative properties of chlorine can lead to reactions with dissolved organic compounds, resulting in various transformation products. This study investigates the chlorination-induced degradation of the sulfonylurea herbicides metsulfuron-methyl and chlorimuron-ethyl, which are frequently found in surface and groundwater. The degradation of these herbicides follows a second-order kinetic model. The apparent second-order rate constants for metsulfuron-methyl range from 3.2 to 244 M⁻¹ s⁻¹, while those for chlorimuron-ethyl range from 2.2 to 287.7 M⁻¹ s⁻¹ within a pH range of 4 to 9. Reaction with HClO effectively reduced the concentration of pesticides. Under acidic conditions, the reaction was significantly enhanced, likely due to hydrolysis or changes in the speciation of the organic compounds. In fact, the rate constant under acidic conditions was approximately 35 and 27 times higher than the reaction rate at more neutral pH for chlorimuron-ethyl and metsulfuron-methyl, respectively. The reaction rate with ClO⁻ approached zero for both herbicides, suggesting a minor or negligible pathway involving the hypochlorite anion. Mass spectrometry identified six chlorination products for metsulfuron-methyl and five for chlorimuron-ethyl. Although the specific reaction mechanisms were not fully elucidated, these products provided valuable insights into the fate of sulfonylureas under chlorination. Under typical disinfection conditions (pH 7 and 4 mg L⁻¹ chlorine), the half-lives of 17.8 minutes for metsulfuron-methyl and 26.6 minutes for chlorimuron-ethyl demonstrate the potential for effective degradation in relatively short timeframes. This study underscores the potential for effective removal of these herbicides in drinking water treatment and highlights the importance of evaluating degradation products over time, as they remain detectable even after seven days.
Collapse
Affiliation(s)
| | - Agustín Mosca
- IPADS Balcarce (INTA-CONICET), RN 226 km 73.5, Balcarce, 7620, Argentina
| | - Franco M Cabrerizo
- Instituto Tecnológico de Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Argentina; Escuela de Bio y Nanotecnología (EByN), Universidad Nacional de San Martín (UNSAM), Chascomús, Argentina
| | - Ronald Vargas
- Instituto Tecnológico de Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Argentina; Escuela de Bio y Nanotecnología (EByN), Universidad Nacional de San Martín (UNSAM), Chascomús, Argentina
| |
Collapse
|
2
|
Ge C, Ye Z, Hu W, Tang J, Li H, Liu F, Liao X, Chen J, Zhang S, Cao Z. Effects of pyrazosulfuron-ethyl on caudal fin regeneration in zebrafish larvae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117552. [PMID: 39705973 DOI: 10.1016/j.ecoenv.2024.117552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/05/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024]
Abstract
With the widespread application of pesticides, water pollution problems are becoming more and more serious, which is very likely to cause harm to fish. Lower vertebrates, including fish, have the ability to repair damaged tissues. The spread of pesticides in the water may affect their regeneration process after injury, leading to their death, thereby affecting the survival rate of the population. Therefore, we used zebrafish as a model animal to evaluate the effect of the pesticide pyrazosulfuron-ethyl on caudal fin regeneration in zebrafish larvae. We exposed zebrafish larvae to 0, 5, 15, and 25 mg/L pyrazosulfuron-ethyl at 3 days after caudal fin amputation. It was found that exposure to pyrazosulfuron-ethyl significantly inhibited caudal fin regeneration and affected the behavior of zebrafish larvae. After exposure to pyrazosulfuron-ethyl, proliferating cells decreased and apoptotic cells increased in the caudal fin of zebrafish larvae. Pyrazosulfuron-ethyl exposure resulted in the decreased number of neutrophils and macrophages, and the downregulation of immune related gene expression levels during caudal fin. Using LPS to activate inflammation can effectively rescue the fin regeneration defects induced by pyrazosulfuron-ethyl. However, inhibiting the Notch signaling pathway and inhibiting reactive oxygen cannot rescue the fin regeneration defects induced by pyrazosulfuron-ethyl. Our results indicate that pyrazosulfuron-ethyl can inhibit zebrafish caudal fin regeneration by reducing the number of innate immune cells and affecting the normal process of inflammation, thereby inhibiting caudal fin regeneration. This study expands our understanding of the potential effects of the pesticide pyrazosulfuron-ethyl on injured fish, highlights the link between the immune system and the regeneration process, and demonstrates the potential application of fin regeneration in risk assessments of environmental toxicology to assess drug toxicity.
Collapse
Affiliation(s)
- Chenkai Ge
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs and Epigenetics, Key Laboratory of Jiangxi Province for Biological Invasion and Biosecurity, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an 343009, China; School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang 325003, China
| | - Zhijun Ye
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs and Epigenetics, Key Laboratory of Jiangxi Province for Biological Invasion and Biosecurity, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an 343009, China
| | - Weitao Hu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs and Epigenetics, Key Laboratory of Jiangxi Province for Biological Invasion and Biosecurity, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an 343009, China
| | - Jingrong Tang
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs and Epigenetics, Key Laboratory of Jiangxi Province for Biological Invasion and Biosecurity, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an 343009, China
| | - Huimin Li
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs and Epigenetics, Key Laboratory of Jiangxi Province for Biological Invasion and Biosecurity, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an 343009, China
| | - Fasheng Liu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs and Epigenetics, Key Laboratory of Jiangxi Province for Biological Invasion and Biosecurity, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an 343009, China
| | - Xinjun Liao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs and Epigenetics, Key Laboratory of Jiangxi Province for Biological Invasion and Biosecurity, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an 343009, China
| | - Jianjun Chen
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine,Translational Research Institute of Brain and Brain-Like Intelligence,Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China; Institute of Medical Genetics, Department of Big Data in Health Science School of Public Health, Tongji University School of Medicine, Tongji University, Shanghai 200331, China
| | - Shouhua Zhang
- Department of General Surgery, Jiangxi Provincial Children's Hospital, The Affiliated Children's Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Zigang Cao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs and Epigenetics, Key Laboratory of Jiangxi Province for Biological Invasion and Biosecurity, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an 343009, China.
| |
Collapse
|
3
|
Malbezin L, Mazzella N, Boutry S, Lavoie I, Morin S. Interspecific differences in the response of autotrophic microorganisms to atrazine and S-metolachlor exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117616. [PMID: 39799914 DOI: 10.1016/j.ecoenv.2024.117616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/15/2025]
Abstract
Atrazine and S-metolachlor are herbicides widely used on corn and soybean crops where they are sometimes found in concentrations of concern in nearby aquatic ecosystems, potentially affecting autotrophic organisms. The aim of this study was to investigate the response of the green algae Enallax costatus, the diatom Gomphonema parvulum and a culture of the cyanobacteria Phormidium sp. and Microcystis aeruginosa, to atrazine and S-metolachlor alone and in mixture (0, 10, 100 and 1000 µg.L-1, for 7 days). For each culture, chlorophyll fluorescence and effective quantum yield of photosynthesis were determined and compared with lipid and methyl-ester fatty acid profiles. In general, the green algae was most strongly affected by atrazine and S-metolachlor. In particular, atrazine led to a total inhibition of photosynthesis and a sharp decrease in triacylglycerols (TAGs), while S-metolachlor caused a partial decrease in photosynthesis in the green algae and a sharp increase in reserve lipids in the diatom when the herbicide was in mixture. The effect of the mixture of compounds depended on the descriptor considered. Indeed, atrazine seemed to explain the toxicity of the mixture for photosynthetic parameters, while certain lipid classes showed intermediate responses between compounds. The results suggest mechanisms of shade adaptation, algal population increase and lipid remodeling in response to compound exposure. The results reveal differences in sensitivity between species after 7 days exposure to the two compounds alone and in mixture. These results support the value of using the study of lipid and fatty acid profiles as complementary information to traditional descriptors for the assessment of pesticide exposure on photoautotrophic organisms.
Collapse
Affiliation(s)
- Laura Malbezin
- Institut national de la recherche scientifique, Centre Eau Terre Environnement, Québec, Canada.
| | - Nicolas Mazzella
- UR EABX, Inrae, Cestas, France; Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Villenave d'Ornon, France
| | | | - Isabelle Lavoie
- Institut national de la recherche scientifique, Centre Eau Terre Environnement, Québec, Canada
| | | |
Collapse
|
4
|
Cervantes-Díaz Á, Nieto-Carmona JC, Sevilla-Morán B, Alonso-Prados JL, Sandín-España P. Kinetic study, byproducts characterization and photodegradation pathway of profoxydim in a biochar water soil system. Sci Rep 2024; 14:27117. [PMID: 39511393 PMCID: PMC11543925 DOI: 10.1038/s41598-024-78621-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024] Open
Abstract
The study focused on the photodegradation of profoxydim, a low-toxicity cyclohexanedione herbicide commonly used in rice crops, under simulated sunlight conditions. Profoxydim's behavior in paddy field conditions is not well understood, and this research aimed to fill that gap, particularly examining the effect of commonly utilized organic amendments such as biochar (BC) on its degradation. Results indicated that profoxydim degrades rapidly, with a half-life of 2.4 ± 0.3 h in paddy water and 1.03 ± 0.1 h in paddy soil. However, when BC was introduced, the degradation slowed significantly, extending the half-lives to 3.1 ± 0.2 h in water and 3.07 ± 0.5 h in soil. The study identified five degradation products (DPs) using TOF mass accuracy measurements and MS/MS spectra fragmentation. Two of these DPs were found to be more stable than profoxydim itself. Additionally, the research proposed a novel photodegradation pathway, highlighting processes such as homolytic C-N bond cleavage, photoisomerization, and photoinduced oxidation. The study's findings contribute new insights into the environmental fate of profoxydim, offering a deeper understanding of its transformation in rice paddy fields and aiding in the assessment of potential risks associated with its residues in agricultural environments.
Collapse
Affiliation(s)
- Álvaro Cervantes-Díaz
- Plant Protection Products Unit/Plant Protection Department, National Institute for Agricultural and Food Research and Technology INIA-CSIC, Ctra. La Coruña, Km. 7.5, Madrid, 28040, Spain
- Department of Agricultural Chemistry and Food Science, UAM-Madrid, Madrid, Spain
| | - Juan Carlos Nieto-Carmona
- Plant Protection Products Unit/Plant Protection Department, National Institute for Agricultural and Food Research and Technology INIA-CSIC, Ctra. La Coruña, Km. 7.5, Madrid, 28040, Spain
| | - Beatriz Sevilla-Morán
- Plant Protection Products Unit/Plant Protection Department, National Institute for Agricultural and Food Research and Technology INIA-CSIC, Ctra. La Coruña, Km. 7.5, Madrid, 28040, Spain
| | - José Luis Alonso-Prados
- Plant Protection Products Unit/Plant Protection Department, National Institute for Agricultural and Food Research and Technology INIA-CSIC, Ctra. La Coruña, Km. 7.5, Madrid, 28040, Spain
| | - Pilar Sandín-España
- Plant Protection Products Unit/Plant Protection Department, National Institute for Agricultural and Food Research and Technology INIA-CSIC, Ctra. La Coruña, Km. 7.5, Madrid, 28040, Spain.
| |
Collapse
|
5
|
Pulgar A, Valentín M, Rauer C, Pla P, Alonso-Prados JL, Sandin-España P, Lamsabhi AM, Alcamí M. Theoretical Study of Structural and Electronic Trends of the Sulfonylurea Herbicides Family. J Phys Chem A 2024; 128:5941-5953. [PMID: 39013157 DOI: 10.1021/acs.jpca.4c03259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
The sulfonylurea herbicide family has been extensively studied using computational techniques. The most stable conformer structures of the 34 molecules analyzed in gaseous, aqueous, and octanol phases have been determined. The study employed CREST conformational search methods along with the CENSO script to explore all possible conformational structures. Additional evaluations conducted at the B3LYP-D3/6-311+G(d,p) level have enabled the identification of intramolecular stability patterns across the various compounds. It has been discovered that stability is primarily determined by two factors: intramolecular hydrogen bonding involving an NH group adjacent to the sulfonyl group with either N donors or the nearby carbonyl group and potential π-π interactions between the aromatic rings of the molecules. These have been characterized through QTAIM and NCI population analyses. Furthermore, with the goal of developing predictive models for the physicochemical properties of pesticides that include the sulfonylurea family, a statistical analysis among the different properties of the studied molecules has been conducted. Significant correlations have been found between various properties, predicting a promising future for the prediction of characteristics that could assist laboratories in selecting among different pesticides.
Collapse
Affiliation(s)
- Antonio Pulgar
- Departamento de Química, Facultad de Ciencias, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Mónica Valentín
- Departamento de Química, Facultad de Ciencias, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Clemens Rauer
- Departamento de Química, Facultad de Ciencias, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Paula Pla
- Departamento de Química, Facultad de Ciencias, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - José-Luis Alonso-Prados
- Plant Protection Products Unit/Plant Protection Department, National Institute for Agricultural and Food Research and Technology INIA-CSIC, Ctra. La Coruña, Km. 7.5, 28040 Madrid, Spain
| | - Pilar Sandin-España
- Plant Protection Products Unit/Plant Protection Department, National Institute for Agricultural and Food Research and Technology INIA-CSIC, Ctra. La Coruña, Km. 7.5, 28040 Madrid, Spain
| | - Al Mokhtar Lamsabhi
- Departamento de Química, Facultad de Ciencias, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Manuel Alcamí
- Departamento de Química, Facultad de Ciencias, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Instituto Madrileño de Estudios Avanzados en Nanociencias (IMDEA-Nanociencia), 28049 Madrid, Spain
| |
Collapse
|
6
|
Zhao S, Wang J. Biodegradation of atrazine and nicosulfuron by Streptomyces nigra LM01: Performance, degradative pathway, and possible genes involved. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134336. [PMID: 38640665 DOI: 10.1016/j.jhazmat.2024.134336] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Microbial herbicide degradation is an efficient bioremediation method. In this study, a strain of Streptomyces nigra, LM01, which efficiently degrades atrazine and nicosulfuron, was isolated from a corn field using a direct isolation method. The degradation effects of the identified strain on two herbicides were investigated and optimized using an artificial neural network. The maximum degradation rates of S. nigra LM01 were 58.09 % and 42.97 % for atrazine and nicosulfuron, respectively. The degradation rate of atrazine in the soil reached 67.94 % when the concentration was 108 CFU/g after 5 d and was less effective than that of nicosulfuron. Whole genome sequencing of strain LM01 helped elucidate the possible degradation pathways of atrazine and nicosulfuron. The protein sequences of strain LM01 were aligned with the sequences of the degraded proteins of the two herbicides by using the National Center for Biotechnology Information platform. The sequence (GE005358, GE001556, GE004212, GE005218, GE004846, GE002487) with the highest query cover was retained and docked with the small-molecule ligands of the herbicides. The results revealed a binding energy of - 6.23 kcal/mol between GE005358 and the atrazine ligand and - 6.66 kcal/mol between GE002487 and the nicosulfuron ligand.
Collapse
Affiliation(s)
- Shengchen Zhao
- College of Resource and Environmental Science, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Jihong Wang
- College of Resource and Environmental Science, Jilin Agricultural University, Changchun 130118, Jilin, China.
| |
Collapse
|
7
|
Curi LM, Barrios CE, Attademo AM, Caramello C, Peltzer PM, Lajmanovich RC, Sánchez S, Hernández DR. A realistic combined exposure scenario: effect of microplastics and atrazine on Piaractus mesopotamicus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:29794-29810. [PMID: 38592632 DOI: 10.1007/s11356-024-33177-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 03/28/2024] [Indexed: 04/10/2024]
Abstract
Microplastics, considered emerging environmental contaminants resulting from plastic degradation, are discovered in diverse aquatic ecosystems and can be unintentionally ingested by fish. Therefore, it is essential to characterize their interaction with other contaminants, such as agrochemicals, in aquatic environments. This study aimed to assess histological, enzymatic, and genotoxic biomarkers in juvenile pacú (Piaractus mesopotamicus) exposed to polyethylene (PE) microplastic particles and the herbicide atrazine, individually or combined, for 15 days. Four treatments were used: a negative control (CON), PE in the fish diet (0.1% w/w, FPE), atrazine through water (100 μg L-1, ATZ), and the mixture (ATZ+FPE). Results confirmed histological alterations in gills (edema and lamellar fusion) and liver (necrotic areas and congestion) of fish exposed to ATZ and ATZ+FPE. The number of goblet cells increased in the posterior intestine of fish under ATZ+FPE compared to CON and FPE. Enzyme activities (CAT, GST, AChE, and BChE) significantly increased in ATZ+FPE compared to CON. However, no genotoxic effect was demonstrated. These findings provide insights into the complex impacts of simultaneous exposure to atrazine and microplastics, emphasizing the need for continued research to guide effective environmental management strategies against these contaminants that represent a risk to aquatic organisms.
Collapse
Affiliation(s)
- Lucila Marilén Curi
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina.
- Instituto de Materiales de Misiones (IMAM). Facultad de Ciencias Exactas, Químicas y Naturales (FCEQyN), Universidad Nacional de Misiones (UNAM-CONICET), Félix de Azara, 1552, Posadas, Argentina.
| | - Carlos Eduardo Barrios
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
- Instituto de Ictiología del Nordeste (INICNE). Facultad de Ciencias Veterinarias (FCV), Universidad Nacional del Nordeste (UNNE), Sargento Cabral, 2139, Corrientes, Argentina
| | - Andrés Maximiliano Attademo
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (FBCB -UNL-CONICET), Ciudad Universitaria, Paraje "El Pozo", RNN 168, Km, 472, Santa Fe, Argentina
| | - Cynthia Caramello
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
- Instituto de Materiales de Misiones (IMAM). Facultad de Ciencias Exactas, Químicas y Naturales (FCEQyN), Universidad Nacional de Misiones (UNAM-CONICET), Félix de Azara, 1552, Posadas, Argentina
| | - Paola Mariela Peltzer
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (FBCB -UNL-CONICET), Ciudad Universitaria, Paraje "El Pozo", RNN 168, Km, 472, Santa Fe, Argentina
| | - Rafael Carlos Lajmanovich
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (FBCB -UNL-CONICET), Ciudad Universitaria, Paraje "El Pozo", RNN 168, Km, 472, Santa Fe, Argentina
| | - Sebastián Sánchez
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
- Instituto de Ictiología del Nordeste (INICNE). Facultad de Ciencias Veterinarias (FCV), Universidad Nacional del Nordeste (UNNE), Sargento Cabral, 2139, Corrientes, Argentina
| | - David Roque Hernández
- Instituto de Ictiología del Nordeste (INICNE). Facultad de Ciencias Veterinarias (FCV), Universidad Nacional del Nordeste (UNNE), Sargento Cabral, 2139, Corrientes, Argentina
| |
Collapse
|
8
|
Liu B, Tian W, Chu M, Lu Z, Zou M, Chen Z, Zhang R. Removal of sulfonylurea herbicides with g-C 3N 4-based photocatalysts: A review. CHEMOSPHERE 2024; 354:141742. [PMID: 38513951 DOI: 10.1016/j.chemosphere.2024.141742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/14/2024] [Accepted: 03/16/2024] [Indexed: 03/23/2024]
Abstract
The accumulation of agricultural chemicals in the environment has become a global concern, of which sulfonylurea herbicides (SUHs) constitute a significant category. Solar-driven photocatalysis is favored for removing organic pollutants due to its high efficiency and environmental friendliness. Graphite carbon nitride (g-C3N4)-based materials with superior catalytic activities and physicochemical stabilities are promising photocatalysts. This review describes the g-C3N4-based materials and their uses in the photocatalytic degradation of SUHs or other organic pollutants with similar structures. First, the fundamentals of g-C3N4-based materials and photocatalytic SUHs degradation are discussed to provide an in-depth understanding of the mechanism for the photocatalytic activity. The ability of different g-C3N4-based materials to photocatalytically degrade SUH-like structures is then discussed and summarized based on different modification strategies (morphology modulation, elemental doping, defect engineering, and heterojunction formations). Meanwhile, the effects of different environmental factors on the photocatalytic performance of g-C3N4-based materials are described. Finally, the major challenges and opportunities of g-C3N4-based materials for the photocatalytic degradation of SUHs are proposed. It is hoped that this review will show the feasibility of photocatalytic degradation of SUHs with g-C3N4-based materials.
Collapse
Affiliation(s)
- Bingkun Liu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, PR China
| | - Weijun Tian
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, PR China; Laoshan Laboratory, Qingdao, 266234, PR China.
| | - Meile Chu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, PR China
| | - Zhiyang Lu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, PR China
| | - Mengyuan Zou
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, PR China
| | - Zhuo Chen
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, PR China
| | - Ruijuan Zhang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, PR China
| |
Collapse
|
9
|
Martínez-Ruiz EB, Agha R, Spahr S, Wolinska J. Widely used herbicide metolachlor can promote harmful bloom formation by stimulating cyanobacterial growth and driving detrimental effects on their chytrid parasites. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123437. [PMID: 38272168 DOI: 10.1016/j.envpol.2024.123437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
Metolachlor (MET) is a widely used herbicide that can adversely affect phytoplanktonic non-target organisms, such as cyanobacteria. Chytrids are zoosporic fungi ubiquitous in aquatic environments that parasitize cyanobacteria and can keep their proliferation in check. However, the influence of organic pollutants on the interaction between species, including parasitism, and the associated ecological processes remain poorly understood. Using the host-parasite system consisting of the toxigenic cyanobacterium Planktothrix agardhii and its chytrid parasite Rhizophydium megarrhizum, we investigated the effects of environmentally relevant concentrations of MET on host-parasite interactions under i) continuous exposure of chytrids and cyanobacteria, and ii) pre-exposure of chytrids. During a continuous exposure, the infection prevalence and intensity were not affected, but chytrid reproductive structures were smaller at the highest tested MET concentration. In the parasite's absence, MET promoted cyanobacteria growth possibly due to a hormesis effect. In the pre-exposure assay, MET caused multi- and transgenerational detrimental effects on parasite fitness. Chytrids pre-exposed to MET showed reduced infectivity, intensity, and prevalence of the infection, and their sporangia size was reduced. Thus, pre-exposure of the parasite to MET resulted in a delayed decline of the cyanobacterial cultures upon infection. After several parasite generations without MET exposure, the parasite recovered its initial fitness, indicating that detrimental effects are transient. This study demonstrates that widely used herbicides, such as MET, could favor cyanobacterial bloom formation both directly, by promoting cyanobacteria growth, and indirectly, by inhibiting their chytrid parasites, which are known to play a key role as top-down regulators of cyanobacteria. In addition, we evidence the relevance of addressing multi-organism systems, such as host-parasite interactions, in toxicity assays. This approach offers a more comprehensive understanding of the effects of pollutants on aquatic ecosystems.
Collapse
Affiliation(s)
- Erika Berenice Martínez-Ruiz
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany.
| | - Ramsy Agha
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | - Stephanie Spahr
- Department of Ecohydrology and Biogeochemistry, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | - Justyna Wolinska
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany; Department of Biology, Chemistry, Pharmacy, Institute of Biology, Freie Universität Berlin, Germany
| |
Collapse
|
10
|
Malbezin L, Morin S, Lavoie I. Effects of atrazine and S-metolachlor on stream periphyton taxonomic and fatty acid compositions. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:190-204. [PMID: 38386230 DOI: 10.1007/s10646-024-02738-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/05/2024] [Indexed: 02/23/2024]
Abstract
Extensive pesticide use for agriculture can diffusely pollute aquatic ecosystems through leaching and runoff events and has the potential to negatively affect non-target organisms. Atrazine and S-metolachlor are two widely used herbicides often detected in high concentrations in rivers that drain nearby agricultural lands. Previous studies focused on concentration-response exposure of algal monospecific cultures, over a short exposure period, with classical descriptors such as cell density, mortality or photosynthetic efficiency as response variables. In this study, we exposed algal biofilms (periphyton) to a concentration gradient of atrazine and S-metolachlor for 14 days. We focused on fatty acid composition as the main concentration-response descriptor, and we also measured chlorophyll a fluorescence. Results showed that atrazine increased cyanobacteria and diatom chlorophyll a fluorescence. Both herbicides caused dissimilarities in fatty acid profiles between control and high exposure concentrations, but S-metolachlor had a stronger effect than atrazine on the observed increase or reduction in saturated fatty acids (SFAs) and very long-chain fatty acids (VLCFAs), respectively. Our study demonstrates that two commonly used herbicides, atrazine and S-metolachlor, can negatively affect the taxonomic composition and fatty acid profiles of stream periphyton, thereby altering the nutritional quality of this resource for primary consumers.
Collapse
Affiliation(s)
- Laura Malbezin
- Institut national de la recherche scientifique, centre Eau Terre Environnement, 490 rue de la Couronne, G1K 9A9, Quebec City, QC, Canada.
| | - Soizic Morin
- INRAE, EABX, 50 avenue de Verdun, 33612, Cestas Cedex, France
| | - Isabelle Lavoie
- Institut national de la recherche scientifique, centre Eau Terre Environnement, 490 rue de la Couronne, G1K 9A9, Quebec City, QC, Canada
| |
Collapse
|
11
|
Guo Z, Wang T, Chen G, Wang J, Fujii M, Yoshimura C. Apparent quantum yield for photo-production of singlet oxygen in reservoirs and its relation to the water matrix. WATER RESEARCH 2023; 244:120456. [PMID: 37579568 DOI: 10.1016/j.watres.2023.120456] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/21/2023] [Accepted: 08/06/2023] [Indexed: 08/16/2023]
Abstract
Man-made reservoirs are important for human daily lives and offer different functions, however they are contaminated due to anthropogenic activities. Dissolved organic matter (DOM) from each reservoir is unique in composition, which further determines its photo-reactivity. Thus, this study aimed to investigate the photo-reactivity of reservoir DOM in terms of the quantum yield for photo-production of singlet oxygen (Ф1O2). We sampled surface water of 50 reservoirs in Japan and determined their Ф1O2 using simulated sunlight together with bulk water analysis. Their Ф1O2 ranged from 1.46 × 10-2 to 6.21 × 10-2 (mean, 2.55 × 10-2), which was identical to those of lakes and rivers reported in the literature, but lower than those of wetland water and wastewater. High-energy triplet-state of DOM accounted for 59.4% of the 1O2 production in the reservoir water on average. Among the bulk water properties, the spectral slope of wavelength from 350 to 400 nm (S350-400) was statistically detected as the most important predictor for Ф1O2. Furthermore, the multiple linear regression model employed S350-400 and the biological index as predictors with no intercorrelations and reasonable accuracy (r2 = 0.86), while the random forest model showed a better accuracy (r2 = 0.90). Overall, these major findings are beneficial for understanding the photo-reactivity of reservoir waters.
Collapse
Affiliation(s)
- Zhongyu Guo
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-Ku, Tokyo, 152-8552, Japan
| | - Tingting Wang
- Graduate School of Science, Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya, 464-8602, Japan
| | - Guo Chen
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-Ku, Tokyo, 152-8552, Japan
| | - Jieqiong Wang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Manabu Fujii
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-Ku, Tokyo, 152-8552, Japan
| | - Chihiro Yoshimura
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-Ku, Tokyo, 152-8552, Japan.
| |
Collapse
|
12
|
Zhou R, Yu Y, Miao H, Zhao N, Bu Y, Zhang H. Contribution of differential alteration in oxidative stress and anti-oxidation related molecular signals to toxicity difference between atrazine and its main metabolites in nematodes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115340. [PMID: 37595346 DOI: 10.1016/j.ecoenv.2023.115340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/19/2023] [Accepted: 08/04/2023] [Indexed: 08/20/2023]
Abstract
As a widely used herbicide, atrazine and its two main metabolites of deethylatrazine (DEA) and deisopropylatrazine (DIA) pose an exposure risk for both human beings and animals in the environment. In this study, Caenorhabditis elegans was selected as an in vivo model to compare the toxicity between atrazine and its main metabolites. Upon exposure from the larval stage L1 to adult day 3, both DEA and DIA showed less toxicity on locomotion and reproduction compared with atrazine at concentration of 0.001, 0.01 0.1 and 1 mg/L for parental generation. In addition, exposure to DEA and DIA at concentration of 0.1 mg/L also induced less transgenerational toxicity on locomotion than exposure to atrazine for both parental generation and offspring of F1-F4. Accordingly, exposure to DEA and DIA caused less ROS production and alteration in the expression of some genes (mev-1, gas-1, and clk-1) governing oxidative stress compared to atrazine. Meanwhile, DEA and DIA lead to less increase in expression of superoxide dismutase genes (sod-2 and sod-3) and SOD-3::GFP than atrazine. Moreover, atrazine and its two main metabolites differentially activated the daf-16 encoding FOXO transcriptional factor in insulin signaling pathway during the control of downstream target of SOD-3. Overall, our results highlighted the important role of oxidative stress and anti-oxidation related molecular signals in mediating toxicity of atrazine, DEA and DIA, which provided a novel explanation for the different toxicity between atrazine and its main metabolites.
Collapse
Affiliation(s)
- Rong Zhou
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Yue Yu
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Huan Miao
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing 210042, China; College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Na Zhao
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing 210042, China; College of Oceanography, Hohai University, Nanjing 210024, China
| | - Yuanqing Bu
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing 210042, China; Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Houhu Zhang
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing 210042, China.
| |
Collapse
|
13
|
Jiao B, Wang K, Chang Y, Dong F, Pan X, Wu X, Xu J, Liu X, Zheng Y. Photodegradation of the Novel Herbicide Pyraquinate in Aqueous Solution: Kinetics, Photoproducts, Mechanisms, and Toxicity Assessment. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4249-4257. [PMID: 36877166 DOI: 10.1021/acs.jafc.2c07813] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Pyraquinate, a newly developed 4-hydroxyphenylpyruvate dioxygenase class herbicide, has shown excellent control of resistant weeds in paddy fields. However, its environmental degradation products and corresponding ecotoxicological risks after field application remain ambiguous. In this study, we systematically investigate the photolytic behaviors of pyraquinate in aqueous solutions and in response to xenon lamp irradiation. The degradation follows first-order kinetics, and its rate depends on pH and the amount of organic matter. No vulnerability to light radiation is indicated. Ultrahigh-performance liquid chromatography with quadrupole-time-of-flight mass spectrometry and UNIFI software analysis reveals six photoproducts generated by methyl oxidation, demethylation, oxidative dechlorination, and ester hydrolysis. Gaussian calculation suggests that activities due to hydroxyl radicals or aquatic oxygen atoms caused these reactions on the premise of obeying thermodynamic criteria. Practical toxicity test results show that the toxicity of pyraquinate to zebrafish embryos is low but increases when the compound is combined with its photoproducts.
Collapse
Affiliation(s)
- Bin Jiao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Kuan Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Yiming Chang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Xinglu Pan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Xiaohu Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Jun Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Xingang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Yongquan Zheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
14
|
Lacy B, Rivera M, Flores L, Rahman MS. Combined effects of high temperature and pesticide mixture exposure on free-swimming behaviors and hepatic cytochrome P450 1A expression in goldfish, Carassius auratus. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:144-165. [PMID: 36756740 DOI: 10.1080/15287394.2023.2174463] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The synergy between multiple compounds and other stressors, including heat, creates volatility and greater unpredictability than standard single-chemical toxicity testing, especially in the case of pesticides and metabolites which might contain several noxious ingredients resulting in adverse ecological effects. To address this, the aim of this study was to examine the dose- and time-dependent effects of low- and high-dose pesticide mixture (metalachlor, linuron, isoproturon, tebucanazole, aclonifen, atrazine, pendimethalin, azinphos-methyl) and heat stress co-exposure (22°C control/32°C treatment for 4-week) on free-swimming behaviors and cumulative actionless time (CAT) of goldfish. Behavioral analysis showed a dose- and time-dependent decrease in distance swam, as well as a subsequent increase in CAT. Vertical and horizontal spatial behavioral use were affected under heat and pesticides co-exposure conditions. In 3- and 4-week(s) exposure groups, horizontal spatial behavioral use demonstrated elevated time spent in the lower third of the aquarium. Similarly, during 3- and 4-week(s) exposure (32°C control and 32°C high doses) vertical spatial behavioral use was found to increase time spent in the outermost edges of the aquarium. In all treatment groups, the final condition factor (KM) showed significant attenuation when compared to the initial KM. However, there was an unclear relationship between heat/pesticide co-exposure and growth most notably in 32°C high-dose groups. In addition, the expression of hepatic cytochrome P450 1A mRNA was significantly higher in pesticide-exposed groups. Taken together, data demonstrated that co-exposure with low- or high-dose pesticide mixture and heat stress significantly impacted natural swimming patterns, which over time might result in the broader population and ecological effects.
Collapse
Affiliation(s)
- Brittney Lacy
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Michelle Rivera
- Department of Biology, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Leinady Flores
- Department of Biology, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Md Saydur Rahman
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
- Department of Biology, University of Texas Rio Grande Valley, Brownsville, TX, USA
| |
Collapse
|
15
|
Loken LC, Corsi SR, Alvarez DA, Ankley GT, Baldwin AK, Blackwell BR, De Cicco LA, Nott MA, Oliver SK, Villeneuve DL. Prioritizing Pesticides of Potential Concern and Identifying Potential Mixture Effects in Great Lakes Tributaries Using Passive Samplers. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:340-366. [PMID: 36165576 PMCID: PMC10107608 DOI: 10.1002/etc.5491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/06/2022] [Accepted: 09/22/2022] [Indexed: 05/24/2023]
Abstract
To help meet the objectives of the Great Lakes Restoration Initiative with regard to increasing knowledge about toxic substances, 223 pesticides and pesticide transformation products were monitored in 15 Great Lakes tributaries using polar organic chemical integrative samplers. A screening-level assessment of their potential for biological effects was conducted by computing toxicity quotients (TQs) for chemicals with available US Environmental Protection Agency (USEPA) Aquatic Life Benchmark values. In addition, exposure activity ratios (EAR) were calculated using information from the USEPA ToxCast database. Between 16 and 81 chemicals were detected per site, with 97 unique compounds detected overall, for which 64 could be assessed using TQs or EARs. Ten chemicals exceeded TQ or EAR levels of concern at two or more sites. Chemicals exceeding thresholds included seven herbicides (2,4-dichlorophenoxyacetic acid, diuron, metolachlor, acetochlor, atrazine, simazine, and sulfentrazone), a transformation product (deisopropylatrazine), and two insecticides (fipronil and imidacloprid). Watersheds draining agricultural and urban areas had more detections and higher concentrations of pesticides compared with other land uses. Chemical mixtures analysis for ToxCast assays associated with common modes of action defined by gene targets and adverse outcome pathways (AOP) indicated potential activity on biological pathways related to a range of cellular processes, including xenobiotic metabolism, extracellular signaling, endocrine function, and protection against oxidative stress. Use of gene ontology databases and the AOP knowledgebase within the R-package ToxMixtures highlighted the utility of ToxCast data for identifying and evaluating potential biological effects and adverse outcomes of chemicals and mixtures. Results have provided a list of high-priority chemicals for future monitoring and potential biological effects warranting further evaluation in laboratory and field environments. Environ Toxicol Chem 2023;42:340-366. Published 2022. This article is a U.S. Government work and is in the public domain in the USA. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Luke C. Loken
- US Geological SurveyUpper Midwest Water Science CenterMadisonWisconsinUSA
| | - Steven R. Corsi
- US Geological SurveyUpper Midwest Water Science CenterMadisonWisconsinUSA
| | - David A. Alvarez
- US Geological SurveyColumbia Environmental Research CenterColombiaMissouriUSA
| | - Gerald T. Ankley
- US Environmental Protection Agency, Center for Computational Toxicology and ExposureGreat Lakes Toxicology and Ecology DivisionDuluthMinnesotaUSA
| | | | - Brett R. Blackwell
- US Environmental Protection Agency, Center for Computational Toxicology and ExposureGreat Lakes Toxicology and Ecology DivisionDuluthMinnesotaUSA
| | - Laura A. De Cicco
- US Geological SurveyUpper Midwest Water Science CenterMadisonWisconsinUSA
| | - Michele A. Nott
- US Geological SurveyUpper Midwest Water Science CenterMadisonWisconsinUSA
| | - Samantha K. Oliver
- US Geological SurveyUpper Midwest Water Science CenterMadisonWisconsinUSA
| | - Daniel L. Villeneuve
- US Environmental Protection Agency, Center for Computational Toxicology and ExposureGreat Lakes Toxicology and Ecology DivisionDuluthMinnesotaUSA
| |
Collapse
|
16
|
Cheron M, Kato A, Ropert-Coudert Y, Meyer X, MacIntosh AJJ, Raoelison L, Brischoux F. Exposure, but not timing of exposure, to a sulfonylurea herbicide alters larval development and behaviour in an amphibian species. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 254:106355. [PMID: 36446167 DOI: 10.1016/j.aquatox.2022.106355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/10/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
Environmental contamination is one of the major causes of biodiversity loss. Wetlands are particularly susceptible to contamination and species inhabiting these habitats are subjected to pollutants during sensitive phases of their development. In this study, tadpoles of a widespread amphibian, the spined toad (Bufo spinosus), were exposed to environmental concentrations of nicosulfuron (0 μg/L; 0.15 ± 0.05 μg/L and 0.83 ± 0.04 μg/L), a sulfonylurea herbicide, during different phases of development. Tadpoles were exposed during embryonic (12.98 ± 0.90 days) or larval development (93.74± 0.85 days), or throughout both phases, and we quantified development duration, morphological traits and behavioural features as responses to exposure. Developing tadpoles exposed to nicosulfuron were larger, but with smaller body, and had shorter but wider tail muscles. They were also more active and swam faster than control tadpoles and showed diverging patterns of behavioural complexity. We showed that higher concentrations had greater effects on individuals than lower concentrations, but the timing of nicosulfuron exposure did not influence the metrics studied: Exposure to nicosulfuron triggered similar effects irrespective of the developmental stages at which exposure occurred. These results further indicate that transient exposure (e.g., during embryonic development) can induce long-lasting effects throughout larval development to metamorphosis. Our study confirms that contaminants at environmental concentrations can have strong consequences on non-target organisms. Our results emphasize the need for regulation agencies and policy makers to consider sublethal concentrations of sulfonulyrea herbicides, such as nicosulfuron, as a minimum threshold in their recommendations.
Collapse
Affiliation(s)
- Marion Cheron
- Centre d'Études Biologiques de Chizé, CEBC UMR 7372, CNRS-La Rochelle Université, Villiers-en-Bois 79360, France.
| | - Akiko Kato
- Centre d'Études Biologiques de Chizé, CEBC UMR 7372, CNRS-La Rochelle Université, Villiers-en-Bois 79360, France
| | - Yan Ropert-Coudert
- Centre d'Études Biologiques de Chizé, CEBC UMR 7372, CNRS-La Rochelle Université, Villiers-en-Bois 79360, France
| | - Xavier Meyer
- European Science Foundation, 1 quai Lezay-Marnesia, Strasbourg 67080, France
| | - Andrew J J MacIntosh
- Kyoto University Primate Research Institute, 41-2 Kanrin, Inuyama 484-8506, Japan
| | - Léa Raoelison
- Centre d'Études Biologiques de Chizé, CEBC UMR 7372, CNRS-La Rochelle Université, Villiers-en-Bois 79360, France
| | - François Brischoux
- Centre d'Études Biologiques de Chizé, CEBC UMR 7372, CNRS-La Rochelle Université, Villiers-en-Bois 79360, France
| |
Collapse
|
17
|
Yin J, Hong X, Wang J, Li W, Shi Y, Wang D, Liu R. DNA methylation 6 mA and histone methylation involved in multi-/trans-generational reproductive effects in Caenorhabditis elegans induced by Atrazine. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114348. [PMID: 36508798 DOI: 10.1016/j.ecoenv.2022.114348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Atrazine (ATR), a widely used triazine herbicide, is an environmental endocrine disruptor that can cause health problems. However, whether there are multi/trans-generational reproductive impacts of ATR have not been studied. Therefore, in this study, Caenorhabditis elegans was used as a preferable model organism to identify the multi/trans-generational reproductive toxicity of ATR. Only parental C.elegans (P0) were exposed to different concentrations (0.0004-40 mg/L) for 48 h and the subsequent offspring (F1-F5) were grown under ATR-free conditions and ATR conditions.The results showed that ATR exposure during P0 decreased fecundity, including a reduction in fertilized eggs, oocytes, and ovulation rate, delayed gonadal development, and decreased the relative area of gonad arm and germ cell number. Furthermore, continuous ATR exposure (P0-F5) causes a significant increase in reproductive toxicity in subsequent generations, although no significant toxicity occurred in the P0 generation after exposure to environmental-related concentrations, suggesting that ATR exposure might have cumulative effects. Likewise, parental exposure to ATR caused transgenerational toxicity impairments. Interestingly, only reproductive toxicity, not development toxicity, was transmitted to several generations (F1-F4), and the F2 generation showed the most notable changes. QRT-PCR results showed that genes expression related to DNA methylation 6 mA (damt-1, nmad-1) and histone H3 methylation (mes-4, met-2, set-25, set-2, and utx-1) can also be passed on to offspring. The function of H3K4 and H3K9 methylation were explored by using loss-of-function mutants for set-2, set-25, and met-2. Transmissible reproductive toxicity was absent in met-2(n4256), set-2(ok952), and set-25(n5021) mutants, which suggests that the histone methyltransferases H3K4 and H3K9 activity are indispensable for the transgenerational effect of ATR. Finally, the downstream genes of DNA methylation and histone H3 methylation were determined. ATR upregulated the expression of ZC317.7, hsp-6, and hsp-60. Mitochondrial stress in parental generation dependent transcription 6 mA modifiers may establish these epigenetic marks in progeny.
Collapse
Affiliation(s)
- Jiechen Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Xiang Hong
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Jia Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Weixi Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Yingchi Shi
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| |
Collapse
|
18
|
Horzmann KA, Lin LF, Taslakjian B, Yuan C, Freeman JL. Anxiety-related behavior and associated brain transcriptome and epigenome alterations in adult female zebrafish exposed to atrazine during embryogenesis. CHEMOSPHERE 2022; 308:136431. [PMID: 36126741 DOI: 10.1016/j.chemosphere.2022.136431] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/19/2022] [Accepted: 09/09/2022] [Indexed: 06/08/2023]
Abstract
Atrazine often contaminates drinking water sources, exceeding the maximum contaminant level established by the US Environmental Protection Agency at 3 parts per billion (ppb; μg/L). Atrazine is linked to endocrine disruption, neurotoxicity, and cancer, with delayed health effects observed after developmental exposure in line with the developmental origins of health and disease (DOHaD) hypothesis. To test the hypothesis that embryonic atrazine exposure induces delayed neurotoxicity in adult female zebrafish (Danio rerio), embryos were exposed to 0, 0.3, 3, or 30 ppb atrazine during embryogenesis (1-72 h post fertilization (hpf)) and raised to adults with no additional atrazine exposure. Behavioral outcomes were tested through a novel tank test, light-dark box, and open field test and indicated female zebrafish had more anxious phenotypes at 9 months post fertilization (mpf). Female brain transcriptomic analysis at 9 mpf found altered gene expression pathways related to organismal injury and cancer with beta-estradiol and estrogen receptor as top upstream regulators. These results were compared to 9 mpf male and 6 mpf female groups with the same atrazine embryonic exposures and showed differences in specific genes that were altered, but similarities in top molecular pathways. Molecular pathways associated with behavior were observed only in the 6 mpf transcriptomic profiles, suggesting prediction of observed behavioral outcomes at 9 mpf. The expression of genes associated with serotonin neurotransmission was also evaluated at 14 mpf to determine persistence; however, no significant changes were observed. Brain global methylation in 12 mpf zebrafish observed an increased percent 5 mC in females with embryonic 0.3 ppb atrazine exposure. Finally, the body length, body weight, and brain weight were determined at 14 mpf and were altered in all treatment groups. These results indicate that embryonic atrazine exposure does cause delayed neurotoxicity within the DOHaD framework, which is significant given atrazine's presence and persistence in the environment.
Collapse
Affiliation(s)
- Katharine A Horzmann
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, USA; Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn AL, 36849, USA.
| | - Li F Lin
- School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA.
| | - Boghos Taslakjian
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| | - Chongli Yuan
- School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA.
| | - Jennifer L Freeman
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
19
|
Elshafey R, Radi AE. Molecularly imprinted copolymer/reduced graphene oxide for the electrochemical detection of herbicide propachlor. J APPL ELECTROCHEM 2022. [DOI: 10.1007/s10800-022-01744-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractThe toxicity of propachlor (PROP) with its chloroacetanilide members is reported. Rapid and sensitive detection of PROP is critical for ecotoxicity evaluation and the removal process. A novel voltammetric sensor is developed based on imprinted poly (o-phenylene diamine-co-pyrrole) (o-PD-co-Py) and electrochemically reduced graphene oxide (ERGO) to detect PROP at a trace level. The use of ERGO provides a high density of imprinted cavities for better sensitivity. The imprinted layer of poly (o-PD-co-Py) improves the selectivity of the sensor. The electrode modification was characterized by scanning electron microscopy and electrochemical approaches. The working parameters of the sensor were investigated and optimized. The redox behavior of an external probe of [Fe(CN)6]3−/4− was recorded as the sensor signal for PROP selective binding. The proposed sensor presented wide linear responses to logarithmic PROP concentrations from 0.1 pM to 0.1 µM with a LOD of 0.08 pM. The sensor’s selectivity against some interference was demonstrated. This sensor was applied successfully to detect PROP in spiked water (lake and tap), red tea, and soil samples with good recoveries and reasonable RSD % values.
Graphical abstract
Collapse
|
20
|
Transcriptomic response of Pseudomonas nicosulfuronedens LAM1902 to the sulfonylurea herbicide nicosulfuron. Sci Rep 2022; 12:13656. [PMID: 35953636 PMCID: PMC9372043 DOI: 10.1038/s41598-022-17982-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/03/2022] [Indexed: 12/13/2022] Open
Abstract
The overuse of the herbicide nicosulfuron has become a global environmental concern. As a potential bioremediation technology, the microbial degradation of nicosulfuron shows much promise; however, the mechanism by which microorganisms respond to nicosulfuron exposure requires further study. An isolated soil-borne bacteria Pseudomonas nicosulfuronedens LAM1902 displaying nicosulfuron, chlorimuron-ethyl, and cinosulfuron degradabilities in the presence of glucose, was used to determine the transcriptional responses to nicosulfuron exposure. RNA-Seq results indicated that 1102 differentially expressed genes (DEGs) were up-regulated and 702 down-regulated under nicosulfuron stress. DEGs were significantly enriched in “ABC transporters”, “sulfur metabolism”, and “ribosome” pathways (p ≤ 0.05). Several pathways (glycolysis and pentose phosphate pathways, a two-component regulation system, as well as in bacterial chemotaxis metabolisms) were affected by nicosulfuron exposure. Surprisingly, nicosulfuron exposure showed positive effects on the production of oxalic acid that is synthesized by genes encoding glycolate oxidase through the glyoxylate cycle pathway. The results suggest that P. nicosulfuronedens LAM1902 adopt acid metabolites production strategies in response to nicosulfuron, with concomitant nicosulfuron degradation. Data indicates that glucose metabolism is required during the degradation and adaptation of strain LAM1902 to nicosulfuron stress. The present studies provide a glimpse at the molecular response of microorganisms to sulfonylurea pesticide toxicity and a potential framework for future mechanistic studies.
Collapse
|
21
|
Shao S, Wu J, Meng F, Liu J. Natural attenuation of sulfometuron-methyl in seawater: Kinetics, intermediates, toxicity change and ecological risk assessment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 313:114980. [PMID: 35398639 DOI: 10.1016/j.jenvman.2022.114980] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/20/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
This research aims to evaluate the environmental feasibility of sulfometuron-methyl (SM) as a growth inhibitor for restricting the growth of Spartina alterniflora. To achieve this purpose, the natural attenuation characteristics, ecological risk, degradation pathway, and comprehensive toxicity changes of SM in seawater were investigated under the simulated marine environmental conditions of Jiaozhou Bay, China. The natural attenuation of SM in seawater followed first-order reaction kinetics with a rate constant (K) of 0.0694 d-1 and a half-life of 9.99 days. When photolysis, hydrolysis, and biodegradation pathways act alone, the rate constants K of SM were 0.0167, 0.0143, and 0.0099 d-1 respectively, indicating that their contributions to the total removal of SM decreased in turn. The calculation results of risk quotient (RQ) showed that the seawater containing 10 mg/L of SM demonstrated a very high risk to marine diatom Skeletonema costatum before and after 21 days of attenuation with RQ values of 24.46 and 6.32, respectively, however, the risk to other marine organisms (fish, crustaceans, and bivalves) decreased from moderate (RQ < 1) to low (RQ < 0.01). Four attenuation products of SM were identified and two degradation pathways of SM in seawater were proposed. Based on the rate of inhibition of bioluminescence, SM in seawater was not harmful to Photobacterium phosphoreum T3, whereas the toxicity of seawater containing SM increased with the extension of attenuation time, suggesting the formation of intermediate products with high aquatic toxicity. According to the toxicity values predicted by ECOSAR, the toxicity of one identified attenuation product was higher than that of SM. To the best of our knowledge, this is the first report on the attenuation characteristics and toxicity changes of SM in seawater. The results indicated that the toxicity of both SM and its degradation products to non-target marine organisms should be considered in evaluating the feasibility of SM in controlling coastal Spartina alterniflora.
Collapse
Affiliation(s)
- Siyuan Shao
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong Province, PR China; College of Environmental Science and Engineering, Ocean University of China, Shandong Province, Qingdao, PR China
| | - Jiangyue Wu
- National Marine Hazard Mitigation Service, Ministry of Natural Resource of the People's Republic of China, Beijing, 100194, PR China
| | - Fanping Meng
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong Province, PR China; College of Environmental Science and Engineering, Ocean University of China, Shandong Province, Qingdao, PR China.
| | - Jiaqi Liu
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong Province, PR China; College of Environmental Science and Engineering, Ocean University of China, Shandong Province, Qingdao, PR China
| |
Collapse
|
22
|
Li X, Lu C, Dai Y, Yu Z, Gu W, Li T, Li X, Li X, Wang X, Su Z, Xu M, Zhang H. Characterizing the Microbial Consortium L1 Capable of Efficiently Degrading Chlorimuron-Ethyl via Metagenome Combining 16S rDNA Sequencing. Front Microbiol 2022; 13:912312. [PMID: 35814706 PMCID: PMC9260513 DOI: 10.3389/fmicb.2022.912312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Excessive application of the herbicide chlorimuron-ethyl (CE) severely harms subsequent crops and poses severe risks to environmental health. Therefore, methods for efficiently decreasing and eliminating CE residues are urgently needed. Microbial consortia show potential for bioremediation due to their strong metabolic complementarity and synthesis. In this study, a microbial consortium entitled L1 was enriched from soil contaminated with CE by a “top-down” synthetic biology strategy. The consortium could degrade 98.04% of 100 mg L−1 CE within 6 days. We characterized it from the samples at four time points during the degradation process and a sample without degradation activity via metagenome and 16S rDNA sequencing. The results revealed 39 genera in consortium L1, among which Methyloversatilis (34.31%), Starkeya (28.60%), and Pseudoxanthomonas (7.01%) showed relatively high abundances. Temporal succession and the loss of degradability did not alter the diversity and community composition of L1 but changed the community structure. Taxon-functional contribution analysis predicted that glutathione transferase [EC 2.5.1.18], urease [EC 3.5.1.5], and allophanate hydrolase [EC 3.5.1.54] are relevant for the degradation of CE and that Methyloversatilis, Pseudoxanthomonas, Methylopila, Hyphomicrobium, Stenotrophomonas, and Sphingomonas were the main degrading genera. The degradation pathway of CE by L1 may involve cleavage of the CE carbamide bridge to produce 2-amino-4-chloro-6-methoxypyrimidine and ethyl o-sulfonamide benzoate. The results of network analysis indicated close interactions, cross-feeding, and co-metabolic relationships between strains in the consortium, and most of the above six degrading genera were keystone taxa in the network. Additionally, the degradation of CE by L1 required not only “functional bacteria” with degradation capacity but also “auxiliary bacteria” without degradation capacity but that indirectly facilitate/inhibit the degradation process; however, the abundance of “auxiliary bacteria” should be controlled in an appropriate range. These findings improve the understanding of the synergistic effects of degrading bacterial consortia, which will provide insight for isolating degrading bacterial resources and constructing artificial efficient bacterial consortia. Furthermore, our results provide a new route for pollution control and biodegradation of sulfonylurea herbicides.
Collapse
Affiliation(s)
- Xiang Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Changming Lu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yumeng Dai
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhixiong Yu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wu Gu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tingting Li
- Shenyang Research Institute of Chemical Industry, Shenyang, China
| | - Xinyu Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Xu Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Xiujuan Wang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Zhencheng Su
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Mingkai Xu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- Mingkai Xu
| | - Huiwen Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- *Correspondence: Huiwen Zhang
| |
Collapse
|
23
|
Costa G, Fernandes A, Santos T, Brito L, Rodrigues L, Valadares M, Felzenszwalb I, Ferraz E, Morais Leme D, Oliveira G. In vitro and in vivo cytotoxicity assessment of glyphosate and imazethapyr-based herbicides and their association. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:481-493. [PMID: 35189772 DOI: 10.1080/15287394.2022.2036281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Resistance to glyphosate herbicide has initiated usage of combined application of herbicides as a weed control measure. Imazethapyr-based herbicides associated with glyphosate herbicide seem to be an alternative to suppress weed resistance. The aim of this study was to examine the adverse effects of Glyphosate Atanor 48® (ATN) and Imazethapyr Plus Nortox® (IMZT) formulations in both single forms and mixtures using HepG2 cells and zebrafish early-life stages models. Data demonstrated cytotoxicity due to exposure to ATN, IMZT for both models, as follows: (1) ATN (0.5 mg/L), IMZT (5 mg/L), and M3 (0.05 mg/L ATN + 5 mg/L IMZT) increased cytotoxicity by disturbing the mitochondrial activity of HepG2 cells 24 hr after exposure; (2) ATN and IMZT (5 mg/L), and M3 (0.05 mg/L ATN + 5 mg/L IMZT) also decreased the integrity of the membrane of HepG2 cells after 24 hr incubation; (3) only ATN and IMZT (5 mg/L) in their single forms diminished the mitochondrial potential of zebrafish; (4) ATN (single form) at 0.5 mg/L induced apoptosis in zebrafish larvae. In conclusion, these herbicides in their single forms appeared to produce greater cytotoxicity to HepG2 cells and zebrafish compared to the herbicide mixtures.
Collapse
Affiliation(s)
- Gessyca Costa
- Environmental Toxicology Research Laboratory (EnvTox), Faculty of Pharmacy, Federal University of Goiás (UFG), Goiânia, Brazil
| | - Andréia Fernandes
- Department of Biophysics and Biometry, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Thaís Santos
- Laboratory of Teaching and Research in Toxicology in Vitro (ToxIn), Faculty of Pharmacy, Federal University of Goiás (UFG), Goiânia, Brazil
| | - Lara Brito
- Environmental Toxicology Research Laboratory (EnvTox), Faculty of Pharmacy, Federal University of Goiás (UFG), Goiânia, Brazil
- Laboratory of Teaching and Research in Toxicology in Vitro (ToxIn), Faculty of Pharmacy, Federal University of Goiás (UFG), Goiânia, Brazil
| | - Laís Rodrigues
- Environmental Toxicology Research Laboratory (EnvTox), Faculty of Pharmacy, Federal University of Goiás (UFG), Goiânia, Brazil
| | - Marize Valadares
- Laboratory of Teaching and Research in Toxicology in Vitro (ToxIn), Faculty of Pharmacy, Federal University of Goiás (UFG), Goiânia, Brazil
| | - Israel Felzenszwalb
- Department of Biophysics and Biometry, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Elisa Ferraz
- Department of Pharmacy and Pharmaceutical Administration, Pharmacy College, Fluminense Federal University (UFF), Niterói, Brazil
- Institute of Chemistry, National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), UNESP, Araraquara, Brazil
| | - Daniela Morais Leme
- Institute of Chemistry, National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), UNESP, Araraquara, Brazil
- Departament of Genetics, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Gisele Oliveira
- Environmental Toxicology Research Laboratory (EnvTox), Faculty of Pharmacy, Federal University of Goiás (UFG), Goiânia, Brazil
- Institute of Chemistry, National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), UNESP, Araraquara, Brazil
| |
Collapse
|
24
|
Tresnakova N, Kubec J, Stara A, Zuskova E, Faggio C, Kouba A, Velisek J. Chronic Toxicity of Primary Metabolites of Chloroacetamide and Glyphosate to Early Life Stages of Marbled Crayfish Procambarus virginalis. BIOLOGY 2022; 11:biology11060927. [PMID: 35741448 PMCID: PMC9219952 DOI: 10.3390/biology11060927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 12/16/2022]
Abstract
Degradation products of herbicides, alone and in combination, may affect non-target aquatic organisms via leaching or runoff from the soil. The effects of 50-day exposure of primary metabolites of chloroacetamide herbicide, acetochlor ESA (AE; 4 µg/L), and glyphosate, aminomethylphosphonic acid (AMPA; 4 µg/L), and their combination (AMPA + AE; 4 + 4 µg/L) on mortality, growth, oxidative stress, antioxidant response, behaviour, and gill histology of early life stages of marbled crayfish (Procambarus virginalis) were investigated. While no treatment effects were observed on cumulative mortality or early ontogeny, growth was significantly lower in all exposed groups compared with the control group. Significant superoxide dismutase activity was observed in exposure groups, and significantly higher glutathione S-transferase activity only in the AMPA + AE group. The gill epithelium in AMPA + AE-exposed crayfish showed swelling as well as numerous unidentified fragments in interlamellar space. Velocity and distance moved in crayfish exposed to metabolites did not differ from controls, but increased activity was observed in the AMPA and AE groups. The study reveals the potential risks of glyphosate and acetochlor herbicide usage through their primary metabolites in the early life stages of marbled crayfish.
Collapse
Affiliation(s)
- Nikola Tresnakova
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Zatisi 728/II, 389 25 Vodnany, Czech Republic; (N.T.); (J.K.); (A.S.); (E.Z.); (A.K.); (J.V.)
| | - Jan Kubec
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Zatisi 728/II, 389 25 Vodnany, Czech Republic; (N.T.); (J.K.); (A.S.); (E.Z.); (A.K.); (J.V.)
| | - Alzbeta Stara
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Zatisi 728/II, 389 25 Vodnany, Czech Republic; (N.T.); (J.K.); (A.S.); (E.Z.); (A.K.); (J.V.)
| | - Eliska Zuskova
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Zatisi 728/II, 389 25 Vodnany, Czech Republic; (N.T.); (J.K.); (A.S.); (E.Z.); (A.K.); (J.V.)
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
- Correspondence: ; Tel.: +39-348-404-2634
| | - Antonin Kouba
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Zatisi 728/II, 389 25 Vodnany, Czech Republic; (N.T.); (J.K.); (A.S.); (E.Z.); (A.K.); (J.V.)
| | - Josef Velisek
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Zatisi 728/II, 389 25 Vodnany, Czech Republic; (N.T.); (J.K.); (A.S.); (E.Z.); (A.K.); (J.V.)
| |
Collapse
|
25
|
Cai T, Wen S, Yang X, Yu X, Chen J, Wu J, Zhang L, Zhan L, Luo K, Yi J, Zhu X, Nie Y. Subacute dermal toxicity study of bensulfuron-methyl in Sprague-Dawley rats. Cutan Ocul Toxicol 2022; 41:162-167. [DOI: 10.1080/15569527.2022.2077750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Tuo Cai
- Department of Occupational Disease, Hunan Prevention and Treatment Institute for Occupational Disease, Changsha, P. R. China
| | - Sihui Wen
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, P. R. China
| | - Xiuhong Yang
- Department of Occupational Disease, Hunan Prevention and Treatment Institute for Occupational Disease, Changsha, P. R. China
| | - Xiaowei Yu
- Department of Occupational Disease, Hunan Prevention and Treatment Institute for Occupational Disease, Changsha, P. R. China
| | - Jianfeng Chen
- Department of Occupational Disease, Hunan Prevention and Treatment Institute for Occupational Disease, Changsha, P. R. China
| | - Jun Wu
- Department of Occupational Disease, Hunan Prevention and Treatment Institute for Occupational Disease, Changsha, P. R. China
| | - Lina Zhang
- Department of Occupational Disease, Hunan Prevention and Treatment Institute for Occupational Disease, Changsha, P. R. China
| | - Lichao Zhan
- Department of Occupational Disease, Hunan Prevention and Treatment Institute for Occupational Disease, Changsha, P. R. China
| | - Kaiwen Luo
- Department of Occupational Disease, Hunan Prevention and Treatment Institute for Occupational Disease, Changsha, P. R. China
| | - Jiping Yi
- Department of Occupational Disease, Hunan Prevention and Treatment Institute for Occupational Disease, Changsha, P. R. China
| | - Xiaochuan Zhu
- Department of Occupational Disease, Hunan Prevention and Treatment Institute for Occupational Disease, Changsha, P. R. China
| | - Yunfeng Nie
- Department of Occupational Disease, Hunan Prevention and Treatment Institute for Occupational Disease, Changsha, P. R. China
| |
Collapse
|
26
|
Fassiano AV, March H, Santos M, Juárez ÁB, Ríos de Molina MDC. Toxicological effects of active and inert ingredients of imazethapyr formulation Verosil® against Scenedesmus vacuolatus (Chlorophyta). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:31384-31399. [PMID: 35001267 DOI: 10.1007/s11356-021-17962-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
Imazethapyr, a selective systemic herbicide, is widely used in agriculture and it is frequently detected in water bodies close to application areas. Like other agrochemicals, imazethapyr is commercialized in formulations containing a mixture of additives that increase the effectiveness of the active ingredient. These complex mixtures may cause adverse effects on non-target primary producers, such as microalgae, when they reach freshwater bodies. The aim of this study was to assess the effects, separately, of the formulation Verosil®, the formulation additives, and technical-grade imazethapyr, in the acidic form or as ammonium salt, on the microalga Scenedesmus vacuolatus (Chlorophyta). Verosil®, formulation additives, and acid imazethapyr significantly inhibited the growth of S. vacuolatus (Verosil® > formulation additives > acid imazethapyr) and caused morphological alterations from 2 mg L-1, 4 mg L-1, and 60 mg L-1 onwards, respectively. Verosil® and formulation additives caused the most adverse effect including membrane disorganization, cytoplasm contraction, cell wall thickening, thylakoidal membrane disaggregation, and starch granule accumulation. In addition, Verosil® and formulation additives increased the chl a/chl b ratio, indicating possible alterations in photosystems as a stress response. The carotene/chl a ratio was also increased in microalgae exposed to both Verosil® and formulation additives, suggesting an antioxidant response to these toxic compounds. All these results support the hypothesis that the formulation additives contribute significantly to the toxicity and alterations caused by the commercial formulation Verosil® on S. vacuolatus.
Collapse
Affiliation(s)
- Anabella Victoria Fassiano
- Departamento de Química Biológica, Facultad de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, Int. Guiraldes, 2160, C1428EHA, Buenos Aires, CABA, Argentina
- Instituto de Química Biológica de La Facultad de Ciencias Exactas Y Naturales (IQUIBICEN), CONICET- Universidad de Buenos Aires, Int. Guiraldes, 2160, C1428EHA, Buenos Aires, CABA, Argentina
| | - Hugo March
- Agrofina S. A. Joaquín V, González 4977, C1419AYK, Buenos Aires, CABA, Argentina
| | - Marina Santos
- Instituto Nacional de Tecnología Industrial (INTI), Av. General Paz 5445, B1650KNA, Buenos Aires, San Martín, Argentina
| | - Ángela Beatriz Juárez
- Departamento de Química Biológica, Facultad de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, Int. Guiraldes, 2160, C1428EHA, Buenos Aires, CABA, Argentina.
- Facultad de Ciencias Exactas Y Naturales, Departamento de Biodiversidad Y Biología Experimental, Universidad de Buenos Aires, CONICET-Universidad de Buenos Aires, Instituto de Biodiversidad Y Biología Experimental Y Aplicada (IBBEA), Int. Guiraldes 2160, C1428EHA, Buenos Aires, CABA, Argentina.
| | - María Del Carmen Ríos de Molina
- Departamento de Química Biológica, Facultad de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, Int. Guiraldes, 2160, C1428EHA, Buenos Aires, CABA, Argentina.
- Instituto de Química Biológica de La Facultad de Ciencias Exactas Y Naturales (IQUIBICEN), CONICET- Universidad de Buenos Aires, Int. Guiraldes, 2160, C1428EHA, Buenos Aires, CABA, Argentina.
| |
Collapse
|
27
|
Cheron M, Costantini D, Brischoux F. Nicosulfuron, a sulfonylurea herbicide, alters embryonic development and oxidative status of hatchlings at environmental concentrations in an amphibian species. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113277. [PMID: 35123186 DOI: 10.1016/j.ecoenv.2022.113277] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/27/2022] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
The widespread use of agrochemicals for controlling pests and diseases of crops is recognized as a main threat to biodiversity. Sulfonylurea herbicides are being increasingly used and display low levels of degradation in water which suggest that they might affect non-target organisms. In a common garden experiment, eggs of a widespread amphibian (Bufo spinosus) were exposed to sublethal environmentally relevant concentrations of a widely used sulfonylurea herbicide, nicosulfuron, during the whole embryonic development. We assessed development-related traits (i.e., development duration, hatching success, hatchling size and occurrence of malformation) as well as antioxidant markers in response to contamination (i.e., SOD, GPx, catalase, thiols and relevant ratios thereof). We found that sublethal concentrations of nicosulfuron increased embryonic development duration, increased hatchling size and tended to increase malformations. Embryos exposed to nicosulfuron displayed decreased thiols and increased catalase activity suggesting alteration of oxidative status. We did not find any effect of nicosulfuron on SOD and GPx levels. Interestingly, higher catalase activity was linked to higher proportion of malformed individuals, suggesting that exposure to nicosulfuron induced teratogenic effects. Our results suggest that alteration of antioxidant levels might be one physiological mechanism through which nicosulfuron might cause detrimental effects on amphibian embryos. Sublethal effects of pesticides at environmentally relevant concentrations have been overlooked and require further investigations, especially in non-target taxa occurring in agricultural landscapes.
Collapse
Affiliation(s)
- Marion Cheron
- Centre d'Études Biologiques de Chizé, CEBC-CNRS UMR 7372, 79360 Villiers en Bois, France.
| | - David Costantini
- Unité Physiologie Moléculaire et Adaptation (PhyMA), UMR 7221 Muséum National d'Histoire Naturelle, CNRS, CP32, 7 Rue Cuvier, Paris, France
| | - François Brischoux
- Centre d'Études Biologiques de Chizé, CEBC-CNRS UMR 7372, 79360 Villiers en Bois, France
| |
Collapse
|
28
|
Yavari S, Asadpour R, Kamyab H, Yavari S, Kutty SRM, Baloo L, Manan TSBA, Chelliapan S, Sidik ABC. Efficiency of carbon sorbents in mitigating polar herbicides leaching from tropical soil. CLEAN TECHNOLOGIES AND ENVIRONMENTAL POLICY 2022; 24:251-260. [DOI: 10.1007/s10098-021-02113-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/10/2021] [Indexed: 09/02/2023]
|
29
|
Mettler CA, Aguirre-Morales M, Harmeson J, Robinson WL, Carlson BE. Effects of the Herbicide Metolachlor and Fish Presence on Pond Mesocosm Communities. AMERICAN MIDLAND NATURALIST 2021. [DOI: 10.1674/0003-0031-186.2.199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
| | | | - Justin Harmeson
- Department of Biology, Wabash College, Crawfordsville Indiana 47933
| | | | | |
Collapse
|
30
|
Yang C, Lim W, Song G. Reproductive toxicity due to herbicide exposure in freshwater organisms. Comp Biochem Physiol C Toxicol Pharmacol 2021; 248:109103. [PMID: 34129918 DOI: 10.1016/j.cbpc.2021.109103] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/02/2021] [Accepted: 06/06/2021] [Indexed: 12/27/2022]
Abstract
Excessively used pesticides in agricultural areas are spilled into aquatic environments, wherein they are suspended or sedimented. Owing to climate change, herbicides are the fastest growing sector of the pesticide industry and are detected in surface water, groundwater, and sediments near agricultural areas. In freshwater, organisms, including mussels, snails, frogs, and fish, are exposed to various types and concentrations of herbicides. Invertebrates are sensitive to herbicide exposure because their defense systems are incomplete. At the top of the food chain in freshwater ecosystems, fish show high bioaccumulation of herbicides. Herbicide exposure causes reproductive toxicity and population declines in freshwater organisms and further contamination of fish used for consumption poses a risk to human health. In addition, it is important to understand how environmental factors are physiologically processed and assess their impacts on reproductive parameters, such as gonadosomatic index and steroid hormone levels. Zebrafish is a good model for examining the effects of herbicides such as atrazine and glyphosate on embryonic development in freshwater fish. This review describes the occurrence and role of herbicides in freshwater environments and their potential implications for the reproduction and embryonic development of freshwater organisms.
Collapse
Affiliation(s)
- Changwon Yang
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul 02707, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
31
|
Stachowiak W, Szumski R, Homa J, Woźniak-Karczewska M, Parus A, Strzemiecka B, Chrzanowski Ł, Niemczak M. Transformation of Iodosulfuron-Methyl into Ionic Liquids Enables Elimination of Additional Surfactants in Commercial Formulations of Sulfonylureas. Molecules 2021; 26:4396. [PMID: 34361550 PMCID: PMC8348827 DOI: 10.3390/molecules26154396] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/17/2021] [Accepted: 07/19/2021] [Indexed: 11/16/2022] Open
Abstract
Efficient use of herbicides for plant protection requires the application of auxiliary substances such as surfactants, stabilizers, wetting or anti-foaming agents, and absorption enhancers, which can be more problematic for environment than the herbicides themselves. We hypothesized that the combination of sulfonylurea (iodosulfuron-methyl) anion with inexpensive, commercially available quaternary tetraalkylammonium cations could lead to biologically active ionic liquids (ILs) that could become a convenient and environment-friendly alternative to adjuvants. A simple one-step synthesis allowed for synthesizing iodosulfuron-methyl based ILs with high yields ranging from 88 to 96% as confirmed by UV, FTIR, and NMR. The obtained ILs were found to possess several favorable properties compared to the currently used sodium salt iodosulfuron-methyl, such as adjustable hydrophobicity (octanol-water partition coefficient) and enhanced stability in aqueous solutions, which was supported by molecular calculations showing cation-anion interaction energies. In addition, soil mobility and volatility of ILs were more beneficial compared to the parental herbicide. Herbicidal activity tests toward oil-seed rape and cornflower revealed that ILs comprising at least one alkyl chain in the decyl to octadecyl range had similar or better efficacy compared to the commercial preparation without addition of any adjuvant. Furthermore, results of antimicrobial activity indicated that they were practically harmless or slightly toxic toward model soil microorganisms such as Pseudomonas putida and Bacillus cereus.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Łukasz Chrzanowski
- Department of Chemical Technology, Poznan University of Technology, 60-965 Poznan, Poland; (W.S.); (R.S.); (J.H.); (M.W.-K.); (A.P.); (B.S.); (M.N.)
| | | |
Collapse
|
32
|
Hu M, Liu L, Hou N, Li X, Zeng D, Tan H. Insight into the adsorption mechanisms of ionizable imidazolinone herbicides in sediments: Kinetics, adsorption model, and influencing factors. CHEMOSPHERE 2021; 274:129655. [PMID: 33545587 DOI: 10.1016/j.chemosphere.2021.129655] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/31/2020] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
To reveal the adsorption mechanisms of imazamox, imazapic, and imazethapyr on sediment and batch experiments were carried out in this study. The adsorption kinetics of three imidazolinone herbicides on sediment were accurately described by the pseudo-second-order kinetic model(R2 > 0.9004). The values of adsorption capacity (Qe.cal) were ranged from 0.0183 to 0.0859 mg kg-1 for three herbicides. Adsorption equilibrium was reached within 24 h for three herbicides on sediment, and well fitted by the Freundlich model(R2 > 0.9561). The KF of values for adsorption obtained sediment samples were ranged from 0.2501 to 1.322 L1/n mg1-1/n kg-1for three herbicides. These results indicated that intraparticle diffusion and external mass transport were the main rate controlling steps of the adsorption of herbicides on sediment and that the chemical adsorption was dominant during the adsorption processes. The calculated hysteresis coefficient H were 0.9422,0.7877 and 0.744 for imazmox, imazapic and imazethapyr in raw sediment, respectively, indicating that there is a hysteresis in desorption. The influences of solution pH and sediment organic carbon content on the imidazolinone herbicide adsorption behaviors were also examined. Which shown that the adsorption process for herbicides was highly pH-dependent and adsorption efficiency was closely related to the organic matter content of the sediment, suggesting that electrostatic interactions played crucial roles in the adsorption behavior between sediment and imidazolinone herbicides, and the herbicides were mostly absorbed by the amorphous materials of sediment. These research findings are important for assessing the fate and transport of imidazolinone herbicides in water-sediment systems.
Collapse
Affiliation(s)
- Mingfeng Hu
- Guangxi Key Laboratory of Agric-Environment and Agric-products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China.
| | - Li Liu
- Guangxi Key Laboratory of Agric-Environment and Agric-products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China.
| | - Ning Hou
- Guangxi Key Laboratory of Agric-Environment and Agric-products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China.
| | - Xuesheng Li
- Guangxi Key Laboratory of Agric-Environment and Agric-products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China.
| | - Dongqiang Zeng
- Guangxi Key Laboratory of Agric-Environment and Agric-products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China.
| | - Huihua Tan
- Guangxi Key Laboratory of Agric-Environment and Agric-products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China.
| |
Collapse
|
33
|
Zhou R, Liu R, Li W, Wang Y, Wan X, Song N, Yu Y, Xu J, Bu Y, Zhang A. The use of different sublethal endpoints to monitor atrazine toxicity in nematode Caenorhabditis elegans. CHEMOSPHERE 2021; 274:129845. [PMID: 33979940 DOI: 10.1016/j.chemosphere.2021.129845] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/28/2021] [Accepted: 01/31/2021] [Indexed: 06/12/2023]
Abstract
In this work, Caenorhabditis elegans was employed as an in vivo model to determine the toxic effects of atrazine at different concentrations. After the exposure period from the larval stage L1 to adulthood day 1, atrazine (10 mg/L) significantly decreased the body length and lifespan of nematodes. In addition, exposure to ≥0.01 mg/L atrazine remarkably increased the intestinal reactive oxygen species (ROS) levels and reduced locomotion behavior of nematodes, while exposure to ≥ 1 mg/L atrazine decreased the brood size of nematodes. Moreover, atrazine (0.001-0.1 mg/L) upregulated the expression levels of hsp-6::GFP and hsp-6/60 in nematodes, indicating the activation of mitochondrial unfolded protein response (mtUPR). On the contrary, atrazine (1-10 mg/L) downregulated the expression levels of hsp-6::GFP and hsp-6/60 in nematodes. Furthermore, mtUPR induction governed by the RNAi knockdown of atfs-1 could increase the vulnerability of nematodes against atrazine toxicity. Overall, our findings highlighted the dynamic responses of nematodes toward different concentrations of atrazine, which could be monitored using different sublethal endpoints as bioindicators.
Collapse
Affiliation(s)
- Rong Zhou
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Ru Liu
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Weixin Li
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Yixuan Wang
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Xiang Wan
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Ninghui Song
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Yue Yu
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Jiaming Xu
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, China; College of Forestry, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Yuanqing Bu
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment, Nanjing, 210042, China; Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Aiguo Zhang
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, China.
| |
Collapse
|
34
|
Developmental toxicity of dimethachlor during zebrafish embryogenesis mediated by apoptosis and oxidative stress. JOURNAL OF ANIMAL REPRODUCTION AND BIOTECHNOLOGY 2021. [DOI: 10.12750/jarb.36.1.2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
35
|
Opute PA, Oboh IP. Hepatotoxic Effects of Atrazine on Clarias gariepinus (Burchell, 1822): Biochemical and Histopathological Studies. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 80:414-425. [PMID: 33386433 DOI: 10.1007/s00244-020-00792-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
The hepatotoxic effects of sub-lethal concentrations of atrazine (2.5, 25, 250, and 500 μg L-1) on Clarias gariepinus juveniles were assessed for 28 days in a quality-controlled laboratory procedure. The study was designed to determine the effects of atrazine on selected liver function biomarkers: alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), albumin (ALB) and total protein (TP), and to analyze the liver tissues of the fish using a quantitative and qualitative histology-based health assessment protocol. The levels of ALB and TP in exposed specimens were observed to decrease with increasing concentrations of atrazine. However, the activities of ALT, AST, and ALP showed significant (p < 0.05) increase with increasing concentrations of atrazine. Hepatic assessment of the liver tissues revealed marked histopathological alterations, including structural changes (necrotic/apoptotic liver tissue, poor hepatic cord structure, and loss of normal architecture) in 52.2% of the liver tissues in the treatment groups; plasma alterations (vacuolation or fat inclusions, 22.9%) of hepatocytes; hypertrophied hepatocyte (55.2%); nuclear alterations (52.1%); focal necrosis (16.7%); complete degeneration of hepatocytes (60.45%); sinusoids congested with red blood cells or vascular congestion (70.8%); and karyolysis of the nucleus (18.8%). Findings from this study suggest that atrazine interferes with liver function markers and disrupts the normal architectural and structural components of the liver resulting in noninfectious liver injury. This condition resulted in repeated cycles, cell deaths, and inflammation, which could result in the eventual death of the exposed fish if exposure duration was prolonged.
Collapse
Affiliation(s)
- P A Opute
- Department of Animal and Environmental Biology, Faculty of Life Sciences, University of Benin, Benin City, Nigeria.
- Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.
| | - I P Oboh
- Department of Animal and Environmental Biology, Faculty of Life Sciences, University of Benin, Benin City, Nigeria
| |
Collapse
|
36
|
Yang L, Ivantsova E, Souders CL, Martyniuk CJ. The agrochemical S-metolachlor disrupts molecular mediators and morphology of the swim bladder: Implications for locomotor activity in zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111641. [PMID: 33396161 DOI: 10.1016/j.ecoenv.2020.111641] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 06/12/2023]
Abstract
Metolachlor herbicides are derived from the chloroacetamide chemical family of which there are the S- and R-metolachlor isomers. S-metolachlor is a selective herbicide that inhibits cell division and mitosis via enzyme interference. The herbicide is used globally in agriculture and studies report adverse effects in aquatic organisms; however, there are no studies investigating sub-lethal effects of S-metolachlor on swim bladder formation, mitochondrial ATP production, nor light-dark preference behaviors in fish. These endpoints are relevant for larval locomotor activity and metabolism. To address these knowledge gaps, we exposed zebrafish embryos/larvae to various concentrations of S-metolachlor (0.5-50 µM) over early development. S-metolachlor affected survival, hatching percentage, and increased developmental deformities at concentrations of 50 µM and above. Exposure levels as high as 200 µM for 24 and 48 h did not alter oxygen consumption rates in zebrafish, and there were no changes detected in endpoints related to mitochondrial oxidative phosphorylation. We observed impairment of swim bladder inflation at 50 µM in 6 dpf larvae. To elucidate mechanisms related to this, we measured relative transcript abundance for genes associated with the swim bladder (smooth muscle alpha (α)-2 actin, annexin A5, pre-B-cell leukemia homeobox 1a). Smooth muscle alpha (α)-2 actin mRNA levels were reduced in fish exposed to 50 µM while annexin A5 mRNA levels were increased in abundance, corresponding to reduced swim bladder size in larvae. A visual motor response test revealed that larval zebrafish exhibited some hyperactivity in the light with exposure to the herbicide and only the highest dose tested (50 µM) resulted in hypoactivity in the dark cycle. Regression analysis indicated that there was a positive relationship between surface area of the swim bladder and distance traveled, and the size of the swim bladder explained ~10-14% in the variation for total distance moved. Lastly, we tested larvae in a light dark preference test, and we did not detect any altered behavioral response to any concentration tested. Here we present new data on sublethal endpoints associated with exposure to the herbicide S-metolachlor and demonstrate that this chemical may disrupt transcripts associated with swim bladder formation and morphology, which could ultimately affect larval zebrafish activity. These data are expected to contribute to further risk assessment guidelines for S-metolachlor in aquatic ecosystems.
Collapse
Affiliation(s)
- Lihua Yang
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Emma Ivantsova
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Christopher L Souders
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, USA.
| |
Collapse
|
37
|
Machado MD, Soares EV. Exposure of the alga Pseudokirchneriella subcapitata to environmentally relevant concentrations of the herbicide metolachlor: Impact on the redox homeostasis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111264. [PMID: 32911184 DOI: 10.1016/j.ecoenv.2020.111264] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
This study investigated the effect of the herbicide metolachlor (MET) on the redox homeostasis of the freshwater green alga Pseudokirchneriella subcapitata. At low MET concentrations (≤40 μg L-1), no effects on algal cells were detected. The exposure of P. subcapitata to 45-235 μg L-1 MET induced a significant increase of reactive oxygen species (ROS). The intracellular levels of ROS were particularly increased at high (115 and 235 μg L-1) but environmentally relevant MET concentrations. The exposure of algal cells to 115 and 235 μg L-1 MET originated a decrease in the levels of antioxidants molecules (reduced glutathione and carotenoids) as well as a reduction of the activity of scavenging enzymes (superoxide dismutase and catalase). These results suggest that antioxidant (non-enzymatic and enzymatic) defenses were affected by the excess of MET. As consequence of this imbalance (ROS overproduction and decline of the antioxidant system), ROS inflicted oxidative injury with lipid peroxidation and damage of cell membrane integrity. The results provide further insights about the toxic modes of action of MET on a non-target organism and emphasize the relevance of toxicological studies in the assessment of the impact of herbicides in freshwater environments.
Collapse
Affiliation(s)
- Manuela D Machado
- Bioengineering Laboratory-CIET, ISEP-School of Engineering, Polytechnic Institute of Porto, Rua Dr António Bernardino de Almeida, 431, 4249-015, Porto, Portugal; CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| | - Eduardo V Soares
- Bioengineering Laboratory-CIET, ISEP-School of Engineering, Polytechnic Institute of Porto, Rua Dr António Bernardino de Almeida, 431, 4249-015, Porto, Portugal; CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| |
Collapse
|
38
|
Li K, Tang J, He Y, Guo J, Li L. Theoretical study on the adsorption and catalytic degradation mechanism of sulfacetamide on anatase TiO 2(001) and (101) surfaces. NEW J CHEM 2021. [DOI: 10.1039/d0nj05460g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper, the adsorption of sulfacetamide on anatase titanium dioxide (001) and (101) was studied. The mechanism of six degradation pathways of sulfacetamide was discussed.
Collapse
Affiliation(s)
- Kai Li
- College of Chemistry and Material Science, Sichuan Normal University
- Chengdu
- China
| | - Jing Tang
- College of Chemistry and Material Science, Sichuan Normal University
- Chengdu
- China
- College of Pharmacy
- Southwestern Medical University
| | - Yang He
- College of Chemistry and Material Science, Sichuan Normal University
- Chengdu
- China
- College of Pharmacy
- Southwestern Medical University
| | - Jianmin Guo
- College of Basic Medical, Southwestern Medical University
- Luzhou
- China
| | - Laicai Li
- College of Chemistry and Material Science, Sichuan Normal University
- Chengdu
- China
| |
Collapse
|
39
|
Yin J, Hong X, Ma L, Liu R, Bu Y. Non-targeted metabolomic profiling of atrazine in Caenorhabditis elegans using UHPLC-QE Orbitrap/MS. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 206:111170. [PMID: 32861007 DOI: 10.1016/j.ecoenv.2020.111170] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/06/2020] [Accepted: 08/08/2020] [Indexed: 06/11/2023]
Abstract
The widespread use of the herbicides Atrazine (ATR) has been raised attention due to its ubiquitous occurrence in the environment. As an endocrine disruptor, ATR causes reproductive, immune, nervous system toxicity in biota. In this study, we aimed to investigate metabolic profile characteristics and potential metabolic biomarker that reflects specific damage in toxic effect after ATR exposure. Hence, a metabolomics study was performed to determine the significantly affected metabolites and the reproduction and locomotion of C. elegans were investigated. Mediation analysis was used to evaluate the mediating effect of metabolites on association between ATR exposure and toxic effect. ATR (≥0.04 mg/L) caused the significant dose dependent reduction of brood size and locomotion behavior, however, the body length and width were significantly decreased only in 40 mg/L group. These results suggesting that brood size, head thrashes and body bends are more sensitive indictor to assessment ATR toxicity in C. elegans. Meanwhile, metabolomics analysis revealed that ATR exposure can induce metabolic profiles significant alterations in C. elegans. We found that 9 metabolites significantly increased and 18 metabolites significantly decreased, such as phosphatidylcholine, GMP, CDP-choline, neopterin etc. Those alteration of metabolites were mainly involved in the pathways: glycerophospholipid metabolism, glycolysis/gluconeogenesis, folate biosynthesis, glycine, serine and threoninemetabolism, pyrimidine and purine metabolism. Overall, these changes are signs of possible oxidative stress and ATP synthesis disruption modification. Mediation analysis showed a significant indirect effect of ATR exposure on brood size, via 7,8-dihydroneopterin 2',3'-cyclic-p, and phosphatidylcholine might mediate association between ATR exposure and body bends, suggesting that 7,8-dihydroneopterin 2',3'-cyclic-p and phosphatidylcholine might be potentially specificity marker for brood size and body bend respectively. This preliminary analysis investigates metabolic characteristics in C. elegans after ATR exposure, helping to understand the pathways involved in the response to ATR exposure and provide potential biomarkers for the safety evaluation of ATR.
Collapse
Affiliation(s)
- Jiechen Yin
- Nanjing Institute of Environmental Science, Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment, Nanjing, 210042, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Xiang Hong
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Lingyi Ma
- Nanjing Institute of Environmental Science, Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment, Nanjing, 210042, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| | - Yuanqing Bu
- Nanjing Institute of Environmental Science, Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment, Nanjing, 210042, China; Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| |
Collapse
|
40
|
Kaur P, Kaur P, Kaur N, Jain D, Singh K, Bhullar MS. Dissipation and phytotoxicity of imazethapyr and imazamox in soils amended with β-cyclodextrin-chitosan biocomposite. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 735:139566. [PMID: 32485456 DOI: 10.1016/j.scitotenv.2020.139566] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/12/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
Use of imazethapyr and imazamox has been an environmental concern due to their high persistence, water solubility, residue build up and potential to injure the succeeding crops. Hence, it is necessary to develop effective decontamination technology. In present study, effect of β-cyclodextrin-chitosan biocomposite (LCD) amendment in soil on dissipation of imazethapyr and imazamox and their phytotoxicity on succeeding crop was evaluated. The influence of different experimental variables viz. extractant solution and its concentration, liquid to soil ratio, amount of soil and soil type on dissipation of imazethapyr and imazamox was assessed through chemical assays. Irrespective of herbicide formulation and application rate, amendment of soils with LCD increased the dissipation rate of herbicide and the residues were below the detection limit (<0.005 μg g-1) within 5 to 15 days in aridisol, entisol, inceptisol A, inceptisol B, inceptisol C and 7 to 21 days in alfisol and vertisol. Amendment of soils with LCD significantly reduced the growth inhibition of Brassica juncea (L.) Czern and improved the soil biological activity as evident from increase in dehydrogenase activity and soil bacterial count. Amendment of soils with LCD could be a promising, economically feasible and environmentally benign soil decontamination strategy for imazethapyr and imazamox contaminated soils.
Collapse
Affiliation(s)
- Paawan Kaur
- Department of Chemistry, Punjab Agricultural University, Ludhiana 141007, Punjab, India
| | - Pervinder Kaur
- Department of Agronomy, Punjab Agricultural University, Ludhiana 141007, Punjab, India.
| | - Navjyot Kaur
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana 141007, Punjab, India
| | - Deepali Jain
- Department of Agronomy, Punjab Agricultural University, Ludhiana 141007, Punjab, India
| | - Kuldip Singh
- Department of Soil Science, Punjab Agricultural University, Ludhiana 141007, Punjab, India
| | - Makhan Singh Bhullar
- Department of Agronomy, Punjab Agricultural University, Ludhiana 141007, Punjab, India
| |
Collapse
|
41
|
Embryonic atrazine exposure and later in life behavioral and brain transcriptomic, epigenetic, and pathological alterations in adult male zebrafish. Cell Biol Toxicol 2020; 37:421-439. [PMID: 32737625 DOI: 10.1007/s10565-020-09548-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/21/2020] [Indexed: 12/20/2022]
Abstract
Atrazine (ATZ), a commonly used pesticide linked to endocrine disruption, cancer, and altered neurochemistry, frequently contaminates water sources at levels above the US Environmental Protection Agency's 3 parts per billion (ppb; μg/L) maximum contaminant level. Adult male zebrafish behavior, brain transcriptome, brain methylation status, and neuropathology were examined to test the hypothesis that embryonic ATZ exposure causes delayed neurotoxicity, according to the developmental origins of health and disease paradigm. Zebrafish (Danio rerio) embryos were exposed to 0 ppb, 0.3 ppb, 3 ppb, or 30 ppb ATZ during embryogenesis (1-72 h post fertilization (hpf)), then rinsed and raised to maturity. At 9 months post fertilization (mpf), males had decreased locomotor parameters during a battery of behavioral tests. Transcriptomic analysis identified altered gene expression in organismal development, cancer, and nervous and reproductive system development and function pathways and networks. The brain was evaluated histopathologically for morphometric differences, and decreased numbers of cells were identified in raphe populations. Global methylation levels were evaluated at 12 mpf, and the body length, body weight, and brain weight were measured at 14 mpf to evaluate effects of ATZ on mature brain size. No significant difference in genome methylation or brain size was observed. The results demonstrate that developmental exposure to ATZ does affect neurodevelopment and neural function in adult male zebrafish and raises concern for possible health effects in humans due to ATZ's environmental presence and persistence. Graphical abstract.
Collapse
|
42
|
Ricardo Teixeira Tarley C, Antonio Cajamarca Suquila F, Casarin J, Celso Gonçalves Junior A, Gava Segatelli M. Development of selective preconcentration/clean-up method for imidazolinone herbicides determination in natural water and rice samples by HPLC-PAD using an imazethapyr imprinted poly(vinylimidazole-TRIM). Food Chem 2020; 334:127345. [PMID: 32712485 DOI: 10.1016/j.foodchem.2020.127345] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 06/04/2020] [Accepted: 06/12/2020] [Indexed: 12/31/2022]
Abstract
The development of a novel molecularly imprinted solid-phase extraction (MISPE) method for simultaneous preconcentration of imazapyr (IMP), imazapic (IMZ) and imazethapyr (IMT) with determination by HPLC-PAD (High performance liquid chromatography - photodiode-array detector) is proposed. The polymer synthesis was performed using imazethapyr as template molecule and 1-vinylimidazole as functional monomer. The method is based on preconcentration of 100.0 mL of sample through 200.0 mg of molecularly imprinted poly(vinylimidazole-TRIM) (MIP-1VN) at pH 4.0, followed by elution with 2.0 mL of MeOH:CH2Cl2:HAc (34:62:4, v/v). The range of analytical curve (0.29-200.0, 0.21-200.0 and 0.15-200.0 µg L-1), limits of detection (0.09, 0.06 and 0.04 µg L-1) and preconcentration factors (92, 96 and 98) determined for the herbicides, IMP, IMZ and IMT, respectively, were greatly superior when compared with those ones obtained with commercial adsorbents. The analytical method was successfully applied to spiked surface water and rice samples with good results of recovery values (86-107%).
Collapse
Affiliation(s)
- César Ricardo Teixeira Tarley
- Departamento de Química, Universidade Estadual de Londrina (UEL), Londrina, PR 86051-990, Brazil; Instituto Nacional de Ciência e Tecnologia (INCT) de Bioanalítica, Departamento de Química Analítica, Instituto de Química, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-970, Brazil.
| | | | - Juliana Casarin
- Centro de Ciências Agrárias, Universidade Estadual do Oeste do Paraná, Marechal Cândido Rondon, PR 85960-000, Brazil
| | | | - Mariana Gava Segatelli
- Departamento de Química, Universidade Estadual de Londrina (UEL), Londrina, PR 86051-990, Brazil
| |
Collapse
|
43
|
Bourdineaud JP. Toxicity of the herbicides used on herbicide-tolerant crops, and societal consequences of their use in France. Drug Chem Toxicol 2020; 45:698-721. [PMID: 32543998 DOI: 10.1080/01480545.2020.1770781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In France, the implementation of mutant herbicide-tolerant crops and the use of the related herbicides - sulfonylureas and imidazolinones - have triggered a strong societal reaction illustrated by the intervening actions of environmentalist groups illegally mowing such crops. Trials are in progress, and therefore should be addressed the questions of the environmental risks and the toxicity of these herbicides for the animals and humans consuming the products derived from these plants. Regulatory authorities have allowed these mutant and herbicide-tolerant plants arguing that the herbicides against which they resist only target an enzyme found in 'weeds' (the acetolactate synthase, ALS), and that therefore all organisms lacking this enzyme would be endowed with immunity to these herbicides. The toxicological literature does not match with this argument: 1) Even in organisms displaying the enzyme ALS, these herbicides impact other molecular targets than ALS; 2) These herbicides are toxic for animals, organisms that do not possess the enzyme ALS, and especially invertebrates, amphibians and fish. In humans, epidemiological studies have shown that the use and handling of these toxins are associated with a significantly increased risk of colon and bladder cancers, and miscarriages. In agricultural soils, these herbicides have a persistence of up to several months, and water samples have concentrations of some of these herbicides above the limit value in drinking water.
Collapse
Affiliation(s)
- Jean-Paul Bourdineaud
- Laboratory of Fundamental Microbiology and Pathogenicity, European Institute of Chemistry and Biology, CNRS, University of Bordeaux, Pessac, France.,CRIIGEN, Paris, France
| |
Collapse
|
44
|
Machado MD, Soares EV. Reproductive cycle progression arrest and modification of cell morphology (shape and biovolume) in the alga Pseudokirchneriella subcapitata exposed to metolachlor. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 222:105449. [PMID: 32109756 DOI: 10.1016/j.aquatox.2020.105449] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/16/2020] [Accepted: 02/16/2020] [Indexed: 06/10/2023]
Abstract
Metolachlor (MET) is an herbicide widely used and frequently found (at μg L-1) in aquatic systems. This work aimed to study the modes of action of MET on the green microalga Pseudokirchneriella subcapitata. Algae exposed to 115 or 235 μg L-1 MET, for 48 or 72 h, presented a reduction of metabolic activity, chlorophyll a and b content and photosynthetic efficiency. The exposure to 115 or 235 μg L-1 MET also induced growth yield reduction, mean cell biovolume increase and alteration of the typical algae shape (cells lunate or helically twisted) to "French croissant"-type; at these MET concentrations, algal population was mainly composed by multinucleated cells (≥ 4 nuclei), which suggest that MET impairs the normal progression of the reproductive cycle but did not hinder nuclear division. The accumulation of multinucleated cells seems to be the consequence of the incapacity of the parent cell to release the autospores. In conclusion, MET disrupts the physiology of P. subcapitata cells; the disturbance of the progression of the reproductive cycle should be in the origin of growth slowdown (or even its arrest), increase of mean cell biovolume and modification of algal shape. This work contributed to elucidate, in a systematically and integrated way, the toxic mechanism of MET on the non-target organism, the alga P. subcapitata.
Collapse
Affiliation(s)
- Manuela D Machado
- Bioengineering Laboratory-CIETI, ISEP-School of Engineering, Polytechnic Institute of Porto, Rua Dr António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Eduardo V Soares
- Bioengineering Laboratory-CIETI, ISEP-School of Engineering, Polytechnic Institute of Porto, Rua Dr António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
45
|
Qi Y, Wan M, Abd El-Aty AM, Li H, Cao L, She Y, Shao Y, Jin F, Wang S, Wang J. A "half" core-shell magnetic nanohybrid composed of zeolitic imidazolate framework and graphitic carbon nitride for magnetic solid-phase extraction of sulfonylurea herbicides from water samples followed by LC-MS/MS detection. Mikrochim Acta 2020; 187:279. [PMID: 32314246 DOI: 10.1007/s00604-020-04243-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/30/2020] [Indexed: 12/12/2022]
Abstract
A "half" core-shell g-C3N4/Fe3O4@ZIF-8 nanohybrid, in which Fe3O4 and zeolite imidazolate framework-8 (ZIF-8) constructed the core-shell structure, was successfully fabricated via a versatile in situ growth strategy. This nanohybrid was employed for simultaneous magnetic solid-phase extraction (MSPE) of trace levels of fifteen target sulfonylurea herbicides (SUHs) in environmental water samples followed by LC-MS/MS detection. C3N4 nanosheets were first prepared by liquid exfoliation of bulk g-C3N4, after which Fe3O4 nanoparticles were uniformly deposited onto the surface of C3N4 nanosheets, and ZIF-8 nanoparticles were grown on the surface of g-C3N4/Fe3O4 by anchoring Zn2+ on g-C3N4/Fe3O4. Owing to the synergistic effect, the hybridization of C3N4 and ZIF-8 endowed the nanohybrid with higher multi-target adsorption ability for SUHs compared to pure C3N4 or ZIF-8. The separation as well as the enrichment processes were facilitated using Fe3O4 as a magnetic core. The influence of various parameters on MSPE efficiency, including adsorbent dosage, extraction time, solution pH, and desorption solvent and its volume, was investigated in detail. Under optimal conditions, the MSPE coupled with LC-MS/MS exhibited good linearity ranging from 0.5 to 100 μg L-1 with correlation coefficients (R2) ≥ 0.9919, high sensitivity with low limits of detection (LODs) of 0.005-0.141 μg L-1 and satisfactory recoveries of 67.4-105.5% with relative standard deviations (RSDs) < 9.8%. These results indicate that this method is reliable for the determination of SUHs in different matrices and the in situ growth strategy is a promising approach for constructing effective adsorbents. Graphical abstract Schematic representation of a "half" core-shell magnetic nanohybrid composed of zeolitic imidazolate framework (ZIF-8) and graphitic carbon nitride (g-C3N4) for magnetic solid-phase extraction (MSPE) of trace level determination of fifteen sulfonylurea herbicides (SUHs) in environmental water samples using LC-MS/MS detection.
Collapse
Affiliation(s)
- Yan Qi
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-product Quality and Safety, Ministry of Agriculture, Beijing, 100081, People's Republic of China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Mengfei Wan
- College of Grain, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, 25240, Erzurum, Turkey
| | - Hui Li
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-product Quality and Safety, Ministry of Agriculture, Beijing, 100081, People's Republic of China
| | - Liping Cao
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-product Quality and Safety, Ministry of Agriculture, Beijing, 100081, People's Republic of China
| | - Yongxin She
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-product Quality and Safety, Ministry of Agriculture, Beijing, 100081, People's Republic of China
| | - Yong Shao
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-product Quality and Safety, Ministry of Agriculture, Beijing, 100081, People's Republic of China
| | - Fen Jin
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-product Quality and Safety, Ministry of Agriculture, Beijing, 100081, People's Republic of China
| | - Shanshan Wang
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-product Quality and Safety, Ministry of Agriculture, Beijing, 100081, People's Republic of China.
| | - Jing Wang
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-product Quality and Safety, Ministry of Agriculture, Beijing, 100081, People's Republic of China.
| |
Collapse
|
46
|
Kumari U, Singh SB, Singh N. Sorption and leaching of flucetosulfuron in soil. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2020; 55:550-557. [PMID: 32122244 DOI: 10.1080/03601234.2020.1733363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The adsorption-desorption and leaching of flucetosulfuron, a sulfonylurea herbicide, was investigated in three Indian soils. Freundlich adsorption isotherm described the sorption mechanism of herbicide with adsorption coefficients (Kf) ranging from 17.13 to 27.99 and followed the order: Clayey loam > Loam > Sandy loam. The Kf showed positive correlation with organic carbon (OC) (r = 0.910) and clay content (r = 0.746); but, negative correlation with soil pH (r = -0.635). The adsorption isotherms were S-type suggesting that herbicide adsorption was concentration dependent and increased with increase in concentration. Desorption followed the sequence: sandy loam > clayey loam > loam . Hysteresis (H) was observed in all the three soils with H < 1. Leaching of flucetosulfuron correlated positively with the soil pH; but, negatively with the OC content. Sandy loam soil (OC- 0.40%, pH -7.25) registered lowest adsorption and highest leaching of flucetosulfuron while lowest leaching was found in the loam soil (pH - 7.89, OC - 0.65%). The leaching losses of herbicide increased with increase in the rainfall intensity. This study suggested that the soil OC content, pH and clay content played important roles in deciding the adsorption-desorption and leaching behavior of flucetosulfuron in soils.
Collapse
Affiliation(s)
- Usha Kumari
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Shashi B Singh
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Neera Singh
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
47
|
Ju C, Zhang H, Wu R, Dong S, Yao S, Wang F, Cao D, Xu S, Fang H, Yu Y. Upward translocation of acetochlor and atrazine in wheat plants depends on their distribution in roots. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:135636. [PMID: 31771841 DOI: 10.1016/j.scitotenv.2019.135636] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/16/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
Residual acetochlor and atrazine in soils, resulting from their extensive application to maize plants, may affect product safety of the ultimate wheat crop. To determine the potential uptake and accumulation of acetochlor and atrazine by wheat plants, the uptake mechanism, translocation, and subcellular distribution of these two herbicides were studied through hydroponic experiments (10 mg L-1). The results indicated that acetochlor can be taken up through the apoplastic pathway and can accumulate in wheat roots with little upward translocation. However, atrazine could be taken up by roots through the symplastic pathway and subsequently transported to the stems and leaves. Little upward translocation of acetochlor in wheat plants was due to its preferential distribution into root organelles with higher lipid contents. Conversely, the low bioconcentration of atrazine in root organelles and cell walls after uptake led to its easy upward translocation. Uptake of acetochlor and atrazine by wheat roots and the distribution of atrazine to the stems and leaves were predicted well by using the partition-limited model. The obtained results indicated that residual atrazine in soil may be taken up by wheat roots and acropetally translocated, thereby posing a threat to product safety of wheat.
Collapse
Affiliation(s)
- Chao Ju
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310029, China; The Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310029, China; The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China
| | - Hongchao Zhang
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310029, China; The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China
| | - Ruilin Wu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310029, China; The Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310029, China
| | - Suxia Dong
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310029, China; The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China
| | - Shijie Yao
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310029, China; The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China
| | - Feiyan Wang
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310029, China; The Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310029, China
| | - Duantao Cao
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310029, China; The Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310029, China
| | - Shiji Xu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310029, China; The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China
| | - Hua Fang
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310029, China; The Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310029, China; The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China
| | - Yunlong Yu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310029, China; The Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310029, China; The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China.
| |
Collapse
|
48
|
Li C, Zhang N, Chen J, Ji J, Liu X, Wang J, Zhu J, Ma Y. Temperature and pH sensitive composite for rapid and effective removal of sulfonylurea herbicides in aqueous solution. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113150. [PMID: 31541823 DOI: 10.1016/j.envpol.2019.113150] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 06/10/2023]
Abstract
Excessive pesticide residues in the environment have caused more and more serious social problems. In this article, the polymer materials and graphene oxide were smoothly grafted together through surface-initiated atom-transfer radical polymerization. A temperature and pH dual-sensitive adsorbent was successfully obtained, which was used for the removal of six sulfonylurea herbicides in the aquatic environment. Experiment results showed that the adsorbent could efficiently remove the tested pesticides in aqueous solution rapidly (only 1 min). The adsorption process was in consist with the pseudo-second-order kinetics equation and Freundlich model, and the thermodynamic parameters were also calculated. Furthermore, the mechanism for removal performance was judged as n-π, π-π, hydrogen bonding, hydrophobic and electrostatic interaction verdict. Exhilaratingly, the material showed no significant toxicity to Daphnia magna on risk assessment.
Collapse
Affiliation(s)
- Changsheng Li
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Nan Zhang
- The Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing, 100125, China
| | - Jixiao Chen
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Jiawen Ji
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Xue Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Jianli Wang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Jianhui Zhu
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Yongqiang Ma
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
49
|
Spaltro A, Simonetti S, Laurella S, Ruiz D, Compañy AD, Juan A, Allegretti P. Adsorption of bentazone and imazapyc from water by using functionalized silica: Experimental and computational analysis. JOURNAL OF CONTAMINANT HYDROLOGY 2019; 227:103542. [PMID: 31471099 DOI: 10.1016/j.jconhyd.2019.103542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/06/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
In this study, silica and functionalized silica materials (3-aminopropyl and 3-mercapto derivatives) were successfully used for the removal of the pesticides bentazone and imazapyc from aqueous solutions. Adsorbent materials were characterized by BET isotherms and FT-IR spectroscopy (confirming the functionalization), and their equilibrium adsorption capacity was evaluated at different ionic strengths. It is observed that the maximum adsorption capacities decrease in the order 3-aminopropyl-derivative > silica >3-mercaptopropyl derivative. An increase in ionic strength produces an enhancement in the removal of pesticides. All isotherms are Ib-type and follow the Langmuir model, suggesting a monolayer physical adsorption process.
Collapse
Affiliation(s)
- Agustín Spaltro
- CEDECOR (Centro de Estudio de Compuestos Orgánicos), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), Calle 115 y 47, (1900), La Plata, Argentina; CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Argentina
| | - Sandra Simonetti
- Instituto de Física del Sur (IFISUR), Departamento de Física, Universidad Nacional del Sur (UNS), CONICET, Av. L. N. Alem 1253, B8000CPB Bahía Blanca, Argentina; Universidad Tecnológica Nacional(UTN), 11 de Abril 461, B8000LMI Bahía Blanca, Argentina; CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Argentina.
| | - Sergio Laurella
- CEDECOR (Centro de Estudio de Compuestos Orgánicos), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), Calle 115 y 47, (1900), La Plata, Argentina; CIC-BA (Comisión de Investigaciones Científicas de la Provincia de Buenos Aires), Argentina
| | - Danila Ruiz
- CEDECOR (Centro de Estudio de Compuestos Orgánicos), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), Calle 115 y 47, (1900), La Plata, Argentina; CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Argentina
| | - Andres Diaz Compañy
- Instituto de Física del Sur (IFISUR), Departamento de Física, Universidad Nacional del Sur (UNS), CONICET, Av. L. N. Alem 1253, B8000CPB Bahía Blanca, Argentina; CIC-BA (Comisión de Investigaciones Científicas de la Provincia de Buenos Aires), Argentina
| | - Alfredo Juan
- Instituto de Física del Sur (IFISUR), Departamento de Física, Universidad Nacional del Sur (UNS), CONICET, Av. L. N. Alem 1253, B8000CPB Bahía Blanca, Argentina; CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Argentina
| | - Patricia Allegretti
- CEDECOR (Centro de Estudio de Compuestos Orgánicos), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), Calle 115 y 47, (1900), La Plata, Argentina
| |
Collapse
|
50
|
Bollani S, de Cabo L, Chagas C, Moretton J, Weigandt C, de Iorio AF, Magdaleno A. Genotoxicity of water samples from an area of the Pampean region (Argentina) impacted by agricultural and livestock activities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:27631-27639. [PMID: 30291609 DOI: 10.1007/s11356-018-3263-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 09/17/2018] [Indexed: 06/08/2023]
Abstract
The aim of this study was to assess the genotoxic potential of surface waters located in a rural area in the north east of Buenos Aires province (Argentina) using the Allium cepa test. Water samples were collected at four sites located in a drainage channel and two sites on the Burgos stream that receives water from the channel, taking into account the sowing and harvesting months and rainfall periods. Analytical determinations revealed high total concentrations of Cd, Cu, Pb, and Zn (maximum values: 0.030, 0.252, 0.176, and 0.960 mg L-1, respectively), and concentrations of glyphosate and its metabolite aminomethylphosphonic acid (AMPA), with maximum values of 13.6 and 9.75 μg L-1, respectively. Statistically positive correlations were observed between the total metal concentrations and precipitation. No cytotoxicity (mitotic index MI) was observed in A. cepa. However, several water samples showed significant increases in micronucleus (MN) frequencies with respect to the controls. No correlations were observed between MN and the abiotic variables or precipitation. These results showed a state of deterioration in the water quality at the rural area studied in Buenos Aires province, and heavy metal contamination may contribute to the genotoxic activity. A. cepa was shown to be a useful tool for the detection of genotoxicity in water samples from areas with agricultural and livestock activities.
Collapse
Affiliation(s)
- Sabrina Bollani
- Cátedra de Salud Pública e Higiene Ambiental, Universidad de Buenos Aires, Junin 956, 4° Piso, C1113AAC, Buenos Aires, Argentina
| | - Laura de Cabo
- Museo Argentino de Ciencias Naturales, "Bernardino Rivadavia" - Consejo Nacional de Investigasciones Científicas y Técnicas, Av. Ángel Gallardo 470, C1405DJR, Buenos Aires, Argentina
| | - Celio Chagas
- Cátedra de Manejo y Conservación de Suelos, Universidad de Buenos Aires, Avenida San Martín, 4453, Buenos Aires, Argentina
| | - Juan Moretton
- Cátedra de Salud Pública e Higiene Ambiental, Universidad de Buenos Aires, Junin 956, 4° Piso, C1113AAC, Buenos Aires, Argentina
| | - Cristian Weigandt
- Cátedra de Química Analítica, Universidad de Buenos Aires, Avenida San Martín, 4453, Buenos Aires, Argentina
| | - Alicia Fabrizio de Iorio
- Cátedra de Química Analítica, Universidad de Buenos Aires, Avenida San Martín, 4453, Buenos Aires, Argentina
| | - Anahí Magdaleno
- Cátedra de Salud Pública e Higiene Ambiental, Universidad de Buenos Aires, Junin 956, 4° Piso, C1113AAC, Buenos Aires, Argentina.
| |
Collapse
|