1
|
Li Y, Li Y, Chen H. The effect of ultrasound-assisted thrombolysis studied in blood-on-a-chip. Artif Organs 2024; 48:734-742. [PMID: 38380722 DOI: 10.1111/aor.14731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/24/2024] [Accepted: 02/07/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND Thromboembolism, which leads to pulmonary embolism and ischemic stroke, remains one of the main causes of death. Ultrasound-assisted thrombolysis (UAT) is an effective thrombolytic method. However, further studies are required to elucidate the mechanism of ultrasound on arterial and venous thrombi. METHODS We employed the blood-on-a-chip technology to simulate thrombus formation in coronary stenosis and deep vein valves. Subsequently, UAT was conducted on the chip to assess the impact of ultrasound on thrombolysis under varying flow conditions. Real-time fluorescence was used to assess thrombolysis and drug penetration. Finally, scanning electron microscopy and immunofluorescence were used to determine the effect of ultrasound on fibrinolysis. RESULTS The study revealed that UAT enhanced the thrombolytic rate by 40% in the coronary stenosis chip and by 10% in the deep venous valves chip. This enhancement is attributed to the disruption of crosslinked fibrin fibers by ultrasound, leading to increased urokinase diffusion within the thrombus and accumulation of plasminogen on the fibrinogen α chain. Moreover, the acceleration of the dissolution rate of thrombi in the venous valve chip by ultrasound was not as significant as that in the coronary stenosis chip. CONCLUSION These findings highlight the differential impact of ultrasound on thrombolysis under various flow conditions and emphasize the valuable role of the blood-on-a-chip technology in exploring thrombolysis mechanisms.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, China
| | - Yongjian Li
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, China
| | - Haosheng Chen
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, China
| |
Collapse
|
2
|
Arumugham S, Narayan SK, Aghoram R. Effect of continuous 2 MHz transcranial ultrasound as an adjunct to tenecteplase thrombolysis in acute anterior circulation ischemic stroke patients: an open labeled non-randomized clinical trial. J Thromb Thrombolysis 2024; 57:788-796. [PMID: 38393673 DOI: 10.1007/s11239-023-02922-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/05/2023] [Indexed: 02/25/2024]
Abstract
The treatment of acute ischemic stroke has improved in last few decades. While meta-analyses of several trials have established the safety and efficacy of Intravenous (IV) Tenecteplase thrombolysis, concomitant continuous transcranial doppler (TCD) ultrasound administration has not been assessed in any clinical trial. The aim of this study was to determine the effects of continuous 2 MHz TCD ultrasound during IV Tenecteplase thrombolysis for Middle cerebral artery (MCA) stroke. A total of 19 patients were included, 13 received TCD ultrasound and 6 sham TCD with IV Tenecteplase. TCD spectrum and difference in Pre and post TCD parameters were measured. Asymptomatic hemorrhagic transformation of infarct was seen in two patients. There was no mortality or clinical worsening in the sonothrombolysis group as against sham sonothrombolysis group. Median of peak systolic velocity was increased in both the sonothrombolysis (P = 0.0002) and sham sonothrombolysis group (P-value = 0.001). The difference in change in mean flow velocity between two groups, sonothrombolysis (11 cm/sec) and sham sonothrombolysis (3.5 cm/sec) were also significantly different (P = 0.014). This pilot work has established safety of continuous 30 min TCD application along with IV Tenecteplase thrombolysis and it concludes that concomitant 2 MHz TCD ultrasound administration significantly increased the MCA blood flow compared to chemothrombolysis alone.CTRI Registered Number: CTRI/2021/02/031418.
Collapse
Affiliation(s)
- Semparuthi Arumugham
- Department of Neurology, Jawaharlal Institute of Postgraduate Medical Education and Research, Dhanvanthari Nagar, Puducherry, 605006, India
| | - Sunil K Narayan
- Department of Neurology, Jawaharlal Institute of Postgraduate Medical Education and Research, Dhanvanthari Nagar, Puducherry, 605006, India.
| | - Rajeswari Aghoram
- Department of Neurology, Jawaharlal Institute of Postgraduate Medical Education and Research, Dhanvanthari Nagar, Puducherry, 605006, India
| |
Collapse
|
3
|
Kleven RT, Huang S, Ford SM, Sakthivel K, Thomas SR, Zuccarello M, Herr AB, Holland CK. Effect of Recombinant Tissue Plasminogen Activator and 120-kHz Ultrasound on Porcine Intracranial Thrombus Density. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:539-548. [PMID: 36336551 DOI: 10.1016/j.ultrasmedbio.2022.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Surgical intervention for the treatment of intracerebral hemorrhage (ICH) has been limited by inadequate lysis of the target thrombus. Adjuvant transcranial ultrasound exposure is hypothesized to improve thrombolysis, expedite hematoma evacuation and improve clinical outcomes. A juvenile porcine intracerebral hemorrhage model was established by direct infusion of autologous blood into the porcine white matter. Thrombi were either not treated (sham) or treated with recombinant tissue plasminogen activator alone (rt-PA only) or in combination with pulsed transcranial 120-kHz ultrasound (sonothrombolysis). After treatment, pigs were euthanized, the heads frozen and sectioned and the thrombi extracted. D-Dimer and thrombus density assays were used to assess degree of lysis. Both porcine and human D-dimer assays tested did not have sufficient sensitivity to detect porcine D-dimer. Thrombi treated with rt-PA with or without 120-kHz ultrasound had a significantly lower density compared with sham-treated thrombi. No enhancement of rt-PA-mediated thrombolysis was noted with the addition of 120-kHz ultrasound (sonothrombolysis). The thrombus density assay revealed thrombolytic efficacy caused by rt-PA in an in vivo juvenile porcine model of intracerebral hemorrhage. Transcranial sonothrombolysis did not enhance rt-PA-induced thrombolysis, likely because of the lack of exogenous cavitation nuclei.
Collapse
Affiliation(s)
- Robert T Kleven
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Shenwen Huang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Samantha M Ford
- Neuroscience Program, College of Arts and Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Karthikeyan Sakthivel
- Medical Sciences Program, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Seth R Thomas
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, Ohio, USA
| | - Mario Zuccarello
- Department of Neurosurgery, University of Cincinnati, Cincinnati, Ohio, USA
| | - Andrew B Herr
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Christy K Holland
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, Ohio, USA; Department of Biomedical Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, Ohio, USA.
| |
Collapse
|
4
|
Morihara R, Yamashita T, Osakada Y, Feng T, Hu X, Fukui Y, Tadokoro K, Takemoto M, Abe K. Efficacy and safety of spot heating and ultrasound irradiation on in vitro and in vivo thrombolysis models. J Cereb Blood Flow Metab 2022; 42:1322-1334. [PMID: 35130767 PMCID: PMC9207486 DOI: 10.1177/0271678x221079127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The feasibility of transcranial sonothrombolysis has been demonstrated, although little is known about the relationships between thermal or mechanical mechanisms and thrombolytic outcomes. Therefore, the present study aims to reveal the effect and safety of temperature and ultrasound through in vitro and in vivo thrombolysis models. Artificial clots in microtubes were heated in a water bath or sonicated by ultrasound irradiation, and then clots weight decrease with rising temperature and sonication time was confirmed. In the in vitro thrombotic occlusion model, based on spot heating, clot volume was reduced and clots moved to the distal side, followed by recanalization of the occlusion. In the in vivo study, the common carotid artery of rats was exposed to a spot heater or to sonication. No brain infarct or brain blood barrier disruption was shown, but endothelial junctional dysintegrity and an inflammatory response in the carotid artery were detected. The present spot heating and ultrasound irradiation models seem to be effective for disintegrating clots in vitro, but the safety of the in vivo model was not fully supported by the data. However, the data indicates that a shorter time exposure could be less invasive than a longer exposure.
Collapse
Affiliation(s)
- Ryuta Morihara
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Toru Yamashita
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yosuke Osakada
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tian Feng
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Xinran Hu
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yusuke Fukui
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Koh Tadokoro
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Mami Takemoto
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Koji Abe
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
5
|
Shin Low S, Nong Lim C, Yew M, Siong Chai W, Low LE, Manickam S, Ti Tey B, Show PL. Recent ultrasound advancements for the manipulation of nanobiomaterials and nanoformulations for drug delivery. ULTRASONICS SONOCHEMISTRY 2021; 80:105805. [PMID: 34706321 PMCID: PMC8555278 DOI: 10.1016/j.ultsonch.2021.105805] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/08/2021] [Accepted: 10/20/2021] [Indexed: 05/04/2023]
Abstract
Recent advances in ultrasound (US) have shown its great potential in biomedical applications as diagnostic and therapeutic tools. The coupling of US-assisted drug delivery systems with nanobiomaterials possessing tailor-made functions has been shown to remove the limitations of conventional drug delivery systems. The low-frequency US has significantly enhanced the targeted drug delivery effect and efficacy, reducing limitations posed by conventional treatments such as a limited therapeutic window. The acoustic cavitation effect induced by the US-mediated microbubbles (MBs) has been reported to replace drugs in certain acute diseases such as ischemic stroke. This review briefly discusses the US principles, with particular attention to the recent advancements in drug delivery applications. Furthermore, US-assisted drug delivery coupled with nanobiomaterials to treat different diseases (cancer, neurodegenerative disease, diabetes, thrombosis, and COVID-19) are discussed in detail. Finally, this review covers the future perspectives and challenges on the applications of US-mediated nanobiomaterials.
Collapse
Affiliation(s)
- Sze Shin Low
- Continental-NTU Corporate Lab, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore; Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia
| | - Chang Nong Lim
- School of Engineering and Physical Sciences, Heriot-Watt University Malaysia, No. 1, Jalan Venna P5/2, Precinct 5, Putrajaya 62200, Malaysia
| | - Maxine Yew
- Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo 315100, Zhejiang, China
| | - Wai Siong Chai
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, Guangdong, China
| | - Liang Ee Low
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia; Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia; Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang, China.
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Jalan Tungku Link Gadong, Bandar Seri Begawan, BE1410, Brunei Darussalam.
| | - Beng Ti Tey
- Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia; Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
6
|
Goel L, Wu H, Zhang B, Kim J, Dayton PA, Xu Z, Jiang X. Safety Evaluation of a Forward-Viewing Intravascular Transducer for Sonothrombolysis: An in Vitro and ex Vivo Study. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:3231-3239. [PMID: 34446331 PMCID: PMC8487993 DOI: 10.1016/j.ultrasmedbio.2021.07.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/14/2021] [Accepted: 07/23/2021] [Indexed: 05/03/2023]
Abstract
Recent in vitro work has revealed that a forward-viewing intravascular (FVI) transducer has sonothrombolysis applications. However, the safety of this device has yet to be evaluated. In this study, we evaluated the safety of this device in terms of tissue heating, vessel damage and particle debris size during sonothrombolysis using microbubbles or nanodroplets with tissue plasminogen activator, in both retracted and unretracted blood clots. The in vitro and ex vivo sonothrombolysis tests using FVI transducers revealed a temperature rise of less than 1°C, no vessel damage as assessed by histology and no downstream clot particles >500 µm. These in vitro and ex vivo results indicate that the FVI transducer poses minimal risk for sonothrombolysis applications and should be further evaluated in animal models.
Collapse
Affiliation(s)
- Leela Goel
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina, USA; Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina, USA
| | - Huaiyu Wu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Bohua Zhang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Jinwook Kim
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina, USA
| | - Paul A Dayton
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina, USA
| | - Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Xiaoning Jiang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina, USA.
| |
Collapse
|
7
|
Hendley SA, Paul JD, Maxwell AD, Haworth KJ, Holland CK, Bader KB. Clot Degradation Under the Action of Histotripsy Bubble Activity and a Lytic Drug. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:2942-2952. [PMID: 33460375 PMCID: PMC8445066 DOI: 10.1109/tuffc.2021.3052393] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Deep vein thrombosis is a major source of morbidity worldwide. For critical obstructions, catheter-directed thrombolytics are the frontline therapy to achieve vessel recanalization. Techniques that aid lytic therapy are under development to improve treatment efficacy and reduce procedure-related complications. Histotripsy is one such adjuvant under development that relies on focused ultrasound for in situ nucleation of bubble clouds. Prior studies have demonstrated synergistic effects for clot dissolution when histotripsy is combined with lytic therapy. The success of this combination approach is hypothesized to promote thrombolytic efficacy via two mechanisms: erythrocyte fractionation (hemolysis) and increased lytic activity (fibrinolysis). In this study, the contributions of hemolysis and fibrinolysis to clot degradation under histotripsy and a lytic were quantified with measurements of hemoglobin and D-dimer, respectively. A linear regression analysis was used to determine the relationship between hemoglobin, D-dimer, and the overall treatment efficacy (clot mass loss). A similar analysis was conducted to gauge the role of bubble activity, which was assessed with passive cavitation imaging, on hemolysis and fibrinolysis. Tabulation of these data demonstrated hemolysis and fibrinolysis contributed equally to clot mass loss. Furthermore, bubble cloud activity promoted the generation of hemoglobin and D-dimer in equal proportion. These studies indicate a multifactorial process for clot degradation under the action of histotripsy and a lytic therapy.
Collapse
|
8
|
Jangjou A, Meisami AH, Jamali K, Niakan MH, Abbasi M, Shafiee M, Salehi M, Hosseinzadeh A, Amani AM, Vaez A. The promising shadow of microbubble over medical sciences: from fighting wide scope of prevalence disease to cancer eradication. J Biomed Sci 2021; 28:49. [PMID: 34154581 PMCID: PMC8215828 DOI: 10.1186/s12929-021-00744-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/10/2021] [Indexed: 12/29/2022] Open
Abstract
Microbubbles are typically 0.5-10 μm in size. Their size tends to make it easier for medication delivery mechanisms to navigate the body by allowing them to be swallowed more easily. The gas included in the microbubble is surrounded by a membrane that may consist of biocompatible biopolymers, polymers, surfactants, proteins, lipids, or a combination thereof. One of the most effective implementation techniques for tiny bubbles is to apply them as a drug carrier that has the potential to activate ultrasound (US); this allows the drug to be released by US. Microbubbles are often designed to preserve and secure medicines or substances before they have reached a certain area of concern and, finally, US is used to disintegrate microbubbles, triggering site-specific leakage/release of biologically active drugs. They have excellent therapeutic potential in a wide range of common diseases. In this article, we discussed microbubbles and their advantageous medicinal uses in the treatment of certain prevalent disorders, including Parkinson's disease, Alzheimer's disease, cardiovascular disease, diabetic condition, renal defects, and finally, their use in the treatment of various forms of cancer as well as their incorporation with nanoparticles. Using microbubble technology as a novel carrier, the ability to prevent and eradicate prevalent diseases has strengthened the promise of effective care to improve patient well-being and life expectancy.
Collapse
Affiliation(s)
- Ali Jangjou
- Department of Emergency Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Hossein Meisami
- Department of Emergency Medicine, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kazem Jamali
- Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hadi Niakan
- Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Milad Abbasi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mostafa Shafiee
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Ahmad Hosseinzadeh
- Thoracic and Vascular Surgery Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Vaez
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
9
|
Refaat A, del Rosal B, Palasubramaniam J, Pietersz G, Wang X, Peter K, Moulton SE. Smart Delivery of Plasminogen Activators for Efficient Thrombolysis; Recent Trends and Future Perspectives. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ahmed Refaat
- Department of Telecommunications, Electrical, Robotics and Biomedical Engineering, Faculty of Science, Engineering and Technology Swinburne University of Technology John St Melbourne VIC 3122 Australia
- Atherothrombosis and Vascular Biology Laboratory Baker Heart and Diabetes Institute 75 Commercial Road Melbourne VIC 3004 Australia
- Molecular Imaging and Theranostics Laboratory Baker Heart and Diabetes Institute 75 Commercial Road Melbourne VIC 3004 Australia
- Pharmaceutics Department Faculty of Pharmacy ‐ Alexandria University 1 El‐Khartoum Square Azarita Alexandria 21521 Egypt
| | - Blanca del Rosal
- ARC Centre of Excellence for Nanoscale BioPhotonics School of Science RMIT University 124 La Trobe St Melbourne VIC 3000 Australia
| | - Jathushan Palasubramaniam
- Atherothrombosis and Vascular Biology Laboratory Baker Heart and Diabetes Institute 75 Commercial Road Melbourne VIC 3004 Australia
- Molecular Imaging and Theranostics Laboratory Baker Heart and Diabetes Institute 75 Commercial Road Melbourne VIC 3004 Australia
- Department of Medicine Monash University 27 Rainforest Walk Melbourne VIC 3800 Australia
- Department of Cardiology Alfred Hospital 55 Commercial Rd Melbourne VIC 3004 Australia
| | - Geoffrey Pietersz
- Atherothrombosis and Vascular Biology Laboratory Baker Heart and Diabetes Institute 75 Commercial Road Melbourne VIC 3004 Australia
- Burnet Institute 85 Commercial Road Melbourne VIC 3004 Australia
| | - Xiaowei Wang
- Atherothrombosis and Vascular Biology Laboratory Baker Heart and Diabetes Institute 75 Commercial Road Melbourne VIC 3004 Australia
- Molecular Imaging and Theranostics Laboratory Baker Heart and Diabetes Institute 75 Commercial Road Melbourne VIC 3004 Australia
- Department of Medicine Monash University 27 Rainforest Walk Melbourne VIC 3800 Australia
- Department of Cardiometabolic Health University of Melbourne Melbourne VIC 3010 Australia
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology Laboratory Baker Heart and Diabetes Institute 75 Commercial Road Melbourne VIC 3004 Australia
- Department of Medicine Monash University 27 Rainforest Walk Melbourne VIC 3800 Australia
- Department of Cardiology Alfred Hospital 55 Commercial Rd Melbourne VIC 3004 Australia
- Department of Cardiometabolic Health University of Melbourne Melbourne VIC 3010 Australia
| | - Simon E. Moulton
- Department of Telecommunications, Electrical, Robotics and Biomedical Engineering, Faculty of Science, Engineering and Technology Swinburne University of Technology John St Melbourne VIC 3122 Australia
- ARC Centre of Excellence for Electromaterials Science Swinburne University of Technology John St Melbourne VIC 3122 Australia
- Aikenhead Centre for Medical Discovery (ACMD) St Vincent's Hospital Melbourne VIC 3065 Australia
- Iverson Health Innovation Research Institute Swinburne University of Technology John St Melbourne VIC 3122 Australia
- Australian Institute for Innovative Materials, Intelligent Polymer Research Institute University of Wollongong Wollongong NSW 2500 Australia
| |
Collapse
|
10
|
Ma H, Jiang Z, Xu J, Liu J, Guo ZN. Targeted nano-delivery strategies for facilitating thrombolysis treatment in ischemic stroke. Drug Deliv 2021; 28:357-371. [PMID: 33517820 PMCID: PMC8725844 DOI: 10.1080/10717544.2021.1879315] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Ischemic stroke is one of the major causes of severe disability and death worldwide. It is mainly caused by a sudden reduction in cerebral blood flow due to obstruction of the supplying vessel by thrombi and subsequent initiation of a complex cascade of pathophysiological changes, which ultimately lead to brain ischemia and even irreversible infarction. Thus, timely and effective thrombolysis therapy remains a mainstay for acute ischemic stroke treatment. Tissue plasminogen activator (tPA), the only thrombolytic agent approved globally, provides substantial benefits by exerting a fibrinolysis effect, recovering the blood supply in occluded vessels and, thereby, salvaging the ischemic tissue. However, the clinical application of tPA was limited because of a few unsolved issues, such as a narrow therapeutic window, hemorrhagic complications, and limited thrombolytic efficacy, especially, for large thrombi. With the prosperous development of nanotechnology, a series of targeted delivery strategies and nanocomposites have been extensively investigated for delivering thrombolytic agents to facilitate thrombolysis treatment. Excitingly, numerous novel attempts have been reported to be effective in extending the half-life, targeting the thrombus site, and improving the thrombolytic efficacy in preclinical models. This article begins with a brief introduction to ischemic stroke, then describes the current state of thrombolysis treatment and, finally, introduces the application of various nanotechnology-based strategies for targeted delivery of thrombolytic agents. Representative studies are reviewed according to diverse strategies and nano-formulations, with the aim of providing integrated and up-to-date information and to improve the development of thrombolysis treatment for stroke patients.
Collapse
Affiliation(s)
- Hongyin Ma
- Department of Neurology, The First Hospital of Jilin University, ChangChun, China
| | - Zhenmin Jiang
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, ChangChun, China
| | - Jiayun Xu
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China.,College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China
| | - Junqiu Liu
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China.,College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China
| | - Zhen-Ni Guo
- Department of Neurology, The First Hospital of Jilin University, ChangChun, China
| |
Collapse
|
11
|
Goel L, Jiang X. Advances in Sonothrombolysis Techniques Using Piezoelectric Transducers. SENSORS 2020; 20:s20051288. [PMID: 32120902 PMCID: PMC7085655 DOI: 10.3390/s20051288] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 12/11/2022]
Abstract
One of the great advancements in the applications of piezoelectric materials is the application for therapeutic medical ultrasound for sonothrombolysis. Sonothrombolysis is a promising ultrasound based technique to treat blood clots compared to conventional thrombolytic treatments or mechanical thrombectomy. Recent clinical trials using transcranial Doppler ultrasound, microbubble mediated sonothrombolysis, and catheter directed sonothrombolysis have shown promise. However, these conventional sonothrombolysis techniques still pose clinical safety limitations, preventing their application for standard of care. Recent advances in sonothrombolysis techniques including targeted and drug loaded microbubbles, phase change nanodroplets, high intensity focused ultrasound, histotripsy, and improved intravascular transducers, address some of the limitations of conventional sonothrombolysis treatments. Here, we review the strengths and limitations of these latest pre-clincial advancements for sonothrombolysis and their potential to improve clinical blood clot treatments.
Collapse
Affiliation(s)
- Leela Goel
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695-7910, USA;
- Joint Department of Biomedical Engineering, North Carolina State University and The University of North Carolina at Chapel Hill, Raleigh, NC 27695-7910, USA
| | - Xiaoning Jiang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695-7910, USA;
- Correspondence: ; Tel.: +1-919-515-5240
| |
Collapse
|
12
|
Disharoon D, Marr DW, Neeves KB. Engineered microparticles and nanoparticles for fibrinolysis. J Thromb Haemost 2019; 17:2004-2015. [PMID: 31529593 PMCID: PMC6893081 DOI: 10.1111/jth.14637] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/09/2019] [Accepted: 09/12/2019] [Indexed: 12/28/2022]
Abstract
Fibrinolytic agents including plasmin and plasminogen activators improve outcomes in acute ischemic stroke and thrombosis by recanalizing occluded vessels. In the decades since their introduction into clinical practice, several limitations of have been identified in terms of both efficacy and bleeding risk associated with these agents. Engineered nanoparticles and microparticles address some of these limitations by improving circulation time, reducing inhibition and degradation in circulation, accelerating recanalization, improving targeting to thrombotic occlusions, and reducing off-target effects; however, many particle-based approaches have only been used in preclinical studies to date. This review covers four advances in coupling fibrinolytic agents with engineered particles: (a) modifications of plasminogen activators with macromolecules, (b) encapsulation of plasminogen activators and plasmin in polymer and liposomal particles, (c) triggered release of encapsulated fibrinolytic agents and mechanical disruption of clots with ultrasound, and (d) enhancing targeting with magnetic particles and magnetic fields. Technical challenges for the translation of these approaches to the clinic are discussed.
Collapse
Affiliation(s)
- Dante Disharoon
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO
| | - David W.M. Marr
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO
| | - Keith B. Neeves
- Departments of Bioengineering and Pediatrics, Hemophilia and Thrombosis Center, University of Colorado Denver | Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
13
|
Huang T, Li N, Gao J. Recent strategies on targeted delivery of thrombolytics. Asian J Pharm Sci 2019; 14:233-247. [PMID: 32104455 PMCID: PMC7032080 DOI: 10.1016/j.ajps.2018.12.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/12/2018] [Accepted: 12/26/2018] [Indexed: 12/18/2022] Open
Abstract
Thrombus formed in blood vessel is a progressive process, which would lead to life-threatening thrombotic diseases such as ischemic stroke. Unlike other diseases, the recognition of thrombus is usually in the late stage where blood vessels are largely blocked. So acute thrombotic diseases have a narrow therapeutic window, and remain leading causes of morbidity and mortality, whereas current thrombolysis therapy has limited therapeutic effects and bleeding complications. Thrombolytic agents in unwanted sites would cause hemorrhage due to the activation of plasminogen. Moreover, untargeted thrombolysis therapy require large amounts of thrombolytic agents, which in return would enhance hemorrhage risk. To improve the efficiency while minimizing the adverse effects of traditional thrombolysis therapy, novel drug delivery systems have been investigated. Various targeting strategies including ultrasound and magnetic field directed targeting, and specific binding, have been designed to deliver thrombolytic drugs to the thrombotic sites. These strategies demonstrate promising results in reducing bleeding risk as well as allowing less dosage of thrombolytic drugs with lowered clot lysis time. In this review, we discuss recent progress on targeted delivery of thrombolytics, and summarize treatment advantages and shortcomings, potentially helping to further promote the development of targeted thrombolysis.
Collapse
Affiliation(s)
- Ting Huang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ni Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Department of Cardiothoracic Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo 315041, China
| | - Jianqing Gao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
14
|
A systematic review of ultrasound-accelerated catheter-directed thrombolysis in the treatment of deep vein thrombosis. J Thromb Thrombolysis 2018; 45:440-451. [DOI: 10.1007/s11239-018-1629-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Khanevski AN, Naess H, Thomassen L, Waje-Andreassen U, Nacu A, Kvistad CE. Elevated body temperature in ischemic stroke associated with neurological improvement. Acta Neurol Scand 2017; 136:414-418. [PMID: 28251609 DOI: 10.1111/ane.12743] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2017] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Some studies suggest that high body temperature within the first few hours of ischemic stroke onset is associated with improved outcome. We hypothesized an association between high body temperature on admission and detectable improvement within 6-9 hours of stroke onset. MATERIALS AND METHODS Consecutive ischemic stroke patients with NIHSS scores obtained within 3 hours and in the interval 6-9 hours after stroke onset were included. Body temperature was measured on admission. RESULTS A total of 315 patients with ischemic stroke were included. Median NIHSS score on admission was 6. Linear regression showed that NIHSS score 6-9 hours after stroke onset was inversely associated with body temperature on admission after adjusting for confounders including NIHSS score <3 hours after stroke onset (P<.001). The same result was found in patients with proximal middle cerebral occlusion on admission. CONCLUSIONS We found an inverse association between admission body temperature and neurological improvement within few hours after admission. This finding may be limited to patients with documented proximal middle cerebral artery occlusion on admission and suggests a beneficial effect of higher body temperature on clot lysis within the first three hours.
Collapse
Affiliation(s)
- A. N. Khanevski
- Department of Neurology; Haukeland University Hospital; Bergen Norway
| | - H. Naess
- Department of Neurology; Haukeland University Hospital; Bergen Norway
- Centre of Age-Related Medicine; Stavanger University Hospital; Stavanger Norway
- Department of Clinical Medicine; University of Bergen; Bergen Norway
| | - L. Thomassen
- Department of Neurology; Haukeland University Hospital; Bergen Norway
- Department of Clinical Medicine; University of Bergen; Bergen Norway
| | | | - A. Nacu
- Department of Neurology; Haukeland University Hospital; Bergen Norway
- Department of Clinical Medicine; University of Bergen; Bergen Norway
| | - C. E. Kvistad
- Department of Neurology; Haukeland University Hospital; Bergen Norway
- Department of Clinical Medicine; University of Bergen; Bergen Norway
| |
Collapse
|
16
|
Slikkerveer J, Juffermans LJ, van Royen N, Appelman Y, Porter TR, Kamp O. Therapeutic application of contrast ultrasound in ST elevation myocardial infarction: Role in coronary thrombosis and microvascular obstruction. EUROPEAN HEART JOURNAL-ACUTE CARDIOVASCULAR CARE 2017; 8:45-53. [PMID: 28868906 PMCID: PMC6376593 DOI: 10.1177/2048872617728559] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In the past few decades, cardiac ultrasound has become a widely available, easy-to-use diagnostic tool in many scenarios in acute cardiac care. The introduction of microbubbles extended its diagnostic value. Not long thereafter, several investigators explored the therapeutic potential of contrast ultrasound on thrombus dissolution. Despite large improvements in therapeutic options, acute ST elevation myocardial infarction remains one of the main causes of mortality and morbidity in the western world. The therapeutic effect of contrast ultrasound on thrombus dissolution might prove to be a new, effective treatment strategy in this group of patients. With the recent publication of human studies scrutinising the therapeutic options of ultrasound and microbubbles in ST elevation myocardial infarction, we have entered a new stage in this area of research. This therapeutic effect is based on biochemical effects both at macrovascular and microvascular levels, of which the exact working mechanisms remain to be elucidated in full. This review will give an up-to-date summary of our current knowledge of the therapeutic effects of contrast ultrasound and its potential application in the field of ST elevation myocardial infarction, along with its future developments.
Collapse
Affiliation(s)
- Jeroen Slikkerveer
- 1 Department of Cardiology, VU University Medical Center, Amsterdam, The Netherlands.,2 Institute of Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Lynda Jm Juffermans
- 1 Department of Cardiology, VU University Medical Center, Amsterdam, The Netherlands.,2 Institute of Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands.,3 Department of Physiology, VU University Medical Center, Amsterdam, The Netherlands
| | - Niels van Royen
- 1 Department of Cardiology, VU University Medical Center, Amsterdam, The Netherlands.,2 Institute of Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Yolande Appelman
- 1 Department of Cardiology, VU University Medical Center, Amsterdam, The Netherlands.,2 Institute of Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Thomas R Porter
- 4 University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Otto Kamp
- 1 Department of Cardiology, VU University Medical Center, Amsterdam, The Netherlands.,2 Institute of Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Ben Haj Slama R, Gilles B, Ben Chiekh M, Béra JC. PIV for the characterization of focused field induced acoustic streaming: seeding particle choice evaluation. ULTRASONICS 2017; 76:217-226. [PMID: 28135577 DOI: 10.1016/j.ultras.2017.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 01/12/2017] [Accepted: 01/12/2017] [Indexed: 06/06/2023]
Abstract
This research evaluates the use of Particle Image Velocimetry (PIV) technique for characterizing acoustic streaming flow generated by High Intensity Focused Ultrasound (HIFU). PIV qualification tests, focusing on the seeding particle size (diameter of 5, 20 and 50μm) were carried out in degassed water subjected to a focused field of 550kHz-frequency with an acoustic pressure amplitude of 5.2, 10.5 and 15.7bar at the focus. This study shows that the ultrasonic field, especially the radiation force, can strongly affect seeding particle behavior. Large particles (50μm-diameter) are repelled from the focal zone and gathered at radiation pressure convergence lines on either side of the focus. The calculation of the acoustic radiation pressure applied on these particles explains the observed phenomenon. PIV measurements do not, therefore, properly characterize the streaming flow in this case. On the contrary, small particles (5μm-diameter) velocity measurements were in good agreement with the Computational Fluid Dynamics (CFD) simulations of the water velocity field. A simple criterion approximating the diameter threshold below which seeding particles are qualified for PIV in presence of focused ultrasound is then proposed.
Collapse
Affiliation(s)
- Rafika Ben Haj Slama
- Laboratory of Thermal and Energy Systems Studies, ENIM, University of Monastir, Monastir, Tunisia; Inserm, U1032, LabTau, Lyon F-69003, France; Université de Lyon 1, Université de Lyon, Lyon F-69003, France.
| | - Bruno Gilles
- Inserm, U1032, LabTau, Lyon F-69003, France; Université de Lyon 1, Université de Lyon, Lyon F-69003, France
| | - Maher Ben Chiekh
- Laboratory of Thermal and Energy Systems Studies, ENIM, University of Monastir, Monastir, Tunisia
| | - Jean-Christophe Béra
- Inserm, U1032, LabTau, Lyon F-69003, France; Université de Lyon 1, Université de Lyon, Lyon F-69003, France
| |
Collapse
|
18
|
Papadopoulos N, Yiallouras C, Damianou C. The Enhancing Effect of Focused Ultrasound on TNK-Tissue Plasminogen Activator-Induced Thrombolysis Using an In Vitro Circulating Flow Model. J Stroke Cerebrovasc Dis 2016; 25:2891-2899. [PMID: 27599905 DOI: 10.1016/j.jstrokecerebrovasdis.2016.07.052] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 07/30/2016] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND The limited efficacy of thrombolytic therapy in patients with ischemic stroke has created the need to use focused ultrasound (FUS) energy as a way to enhance thrombolysis efficacy (sonothrombolysis). Using an in vitro circulating flow model, we evaluated the role of physical parameters on tenecteplase (TNK-tPA)-mediated thrombolysis. MATERIALS AND METHODS Fully retracted porcine blood clots were used for the proposed experimental study. To provide a more realistic clinical environment of stroke, the study was conducted under realistic flow conditions and TNK-tPA concentrations. Two spherically FUS transducers (4-cm diameter), focusing at 10 cm and operating at .6 and 1.05 MHz, respectively, were used. Pulsed ultrasound protocols that maintained a localized temperature elevation at the focus of 1°C were applied. Thrombolysis efficacy was measured in milligram of mass clot removed. RESULTS The effect of physical parameters such as temperature, FUS frequency, acoustic power (AP), FUS energy, and microbubble (MB) administration on thrombolysis efficacy was examined. CONCLUSIONS Study findings established that higher FUS frequencies (1 MHz) are associated with enhanced thrombolysis compared to lower FUS frequencies (.6 MHz). Furthermore, an increase in the linear relationship between AP and thrombolysis efficacy was exhibited. Also, the outcome of the study showed that the combination of 1-MHz FUS pulses with MBs strongly enhanced the enzymatic thrombolytic efficacy of TNK-tPA, because with 30 minutes of treatment, 1050 mg of clot was removed through nonthermal mechanisms. Taking into consideration that stroke is time dependent, this thrombolytic rate should be sufficient for timely recanalization of the occluded cerebral artery.
Collapse
Affiliation(s)
| | | | - Christakis Damianou
- Electrical Engineering Department, Cyprus University of Technology, Limassol, Cyprus.
| |
Collapse
|
19
|
Abstract
Thrombo-occlusive disease is a leading cause of morbidity and mortality. In this chapter, the use of ultrasound to accelerate clot breakdown alone or in combination with thrombolytic drugs will be reported. Primary thrombus formation during cardiovascular disease and standard treatment methods will be discussed. Mechanisms for ultrasound enhancement of thrombolysis, including thermal heating, radiation force, and cavitation, will be reviewed. Finally, in-vitro, in-vivo and clinical evidence of enhanced thrombolytic efficacy with ultrasound will be presented and discussed.
Collapse
Affiliation(s)
- Kenneth B Bader
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Guillaume Bouchoux
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Christy K Holland
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
20
|
Chernysh IN, Everbach EC, Purohit PK, Weisel JW. Molecular mechanisms of the effect of ultrasound on the fibrinolysis of clots. J Thromb Haemost 2015; 13:601-9. [PMID: 25619618 PMCID: PMC5157128 DOI: 10.1111/jth.12857] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Indexed: 11/28/2022]
Abstract
BACKGROUND Ultrasound accelerates tissue-type plasminogen activator (t-PA)-induced fibrinolysis of clots in vitro and in vivo. OBJECTIVE To identify mechanisms for the enhancement of t-PA-induced fibrinolysis of clots. METHODS Turbidity is an accurate and convenient method, not previously used, to follow the effects of ultrasound. Deconvolution microscopy was used to determine changes in structure, while fluorescence recovery after photobleaching was used to characterize the kinetics of binding/unbinding and transport. RESULTS The ultrasound pulse repetition frequency affected clot lysis times, but there were no thermal effects. Ultrasound in the absence of t-PA produced a slight but consistent decrease in turbidity, suggesting a decrease in fibrin diameter due solely to the action of the ultrasound, likely caused by an increase in protofibril tension because of vibration from ultrasound. Changes in fibrin network structure during lysis with ultrasound were visualized in real time by deconvolution microscopy, revealing that the network becomes unstable when 30-40% of the protein in the network was digested, whereas without ultrasound, the fibrin network was digested gradually and retained structural integrity. Fluorescence recovery after photobleaching during lysis revealed that the off-rate of oligomers from digesting fibers was little affected, but the number of binding/unbinding sites was increased. CONCLUSIONS Ultrasound causes a decrease in the diameter of the fibers due to tension as a result of vibration, leading to increased binding sites for plasmin(ogen)/t-PA. The positive feedback of this structural change together with increased mixing/transport of t-PA/plasmin(ogen) is likely to account for the observed enhancement of fibrinolysis by ultrasound.
Collapse
Affiliation(s)
- Irina N. Chernysh
- Department Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6058, USA
| | - E. Carr Everbach
- Engineering Department, Swarthmore College, Swarthmore, PA 19081-1397 USA
| | - Prashant K. Purohit
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104-6315 USA
| | - John W. Weisel
- Department Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6058, USA
| |
Collapse
|
21
|
Di J, Price J, Gu X, Jiang X, Jing Y, Gu Z. Ultrasound-triggered regulation of blood glucose levels using injectable nano-network. Adv Healthc Mater 2014; 3:811-6. [PMID: 24255016 PMCID: PMC4026341 DOI: 10.1002/adhm.201300490] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 09/16/2013] [Indexed: 11/10/2022]
Abstract
The integration of an injectable insulin-encapsulated nano-network with a focused ultrasound system (FUS) can remotely regulate insulin release both in vitro and in vivo. A single subcutaneous injection of the nano-network with intermittent FUS administration facilitates reduction of the blood glucose levels in type 1 diabetic mice for up to 10 d.
Collapse
Affiliation(s)
- Jin Di
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, NC 27695, USA; Eshelman School of Pharmacy, Molecular Pharmaceutics Division, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jennifer Price
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, NC 27695, USA; Eshelman School of Pharmacy, Molecular Pharmaceutics Division, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xiao Gu
- Department of Urology, Clinical Medical College at Yangzhou University, Yangzhou, Jiangsu 225001, P. R. China
| | - Xiaoning Jiang
- Department of Mechanical Engineering, North Carolina State University, NC 27695, USA
| | - Yun Jing
- Department of Mechanical Engineering, North Carolina State University, NC 27695, USA
| | - Zhen Gu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, NC 27695, USA; Eshelman School of Pharmacy, Molecular Pharmaceutics Division, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
22
|
Markovski JS, Đokić V, Milosavljević M, Mitrić M, Perić-Grujić AA, Onjia AE, Marinković AD. Ultrasonic assisted arsenate adsorption on solvothermally synthesized calcite modified by goethite, α-MnO2 and goethite/α-MnO2. ULTRASONICS SONOCHEMISTRY 2014; 21:790-801. [PMID: 24210695 DOI: 10.1016/j.ultsonch.2013.10.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 09/27/2013] [Accepted: 10/08/2013] [Indexed: 06/02/2023]
Abstract
A highly porous calcium carbonate (calcite; sorbent 1) was used as a support for modification with α-FeOOH (calcite/goethite; sorbent 2), α-MnO2 (calcite/α-MnO2; sorbent 3) and α-FeOOH/α-MnO2 (calcite/goethite/α-MnO2; sorbent 4) in order to obtain a cheap hybrid materials for simple and effective arsenate removal from aqueous solutions. The adsorption ability of synthesized adsorbents was studied as a function of functionalization methods, pH, contact time, temperature and ultrasonic treatment. Comparison of the adsorptive effectiveness of synthesized adsorbents for arsenate removal, under ultrasound treatment and classical stirring method, has shown better performance of the former one reaching maximum adsorption capacities of 1.73, 21.00, 10.36 and 41.94 mg g(-1), for sorbents 1-4, respectively. Visual MINTEQ equilibrium speciation modeling was used for prediction of pH and interfering ion influences on arsenate adsorption.
Collapse
Affiliation(s)
- Jasmina S Markovski
- Vinča Institute of Nuclear Sciences, University of Belgrade, PO Box 522, 11001 Belgrade, Serbia.
| | | | | | | | | | | | | |
Collapse
|
23
|
Zhou Y, Murugappan SK, Sharma VK. Effect of clot aging and cholesterol content on ultrasound-assisted thrombolysis. Transl Stroke Res 2014; 5:627-34. [PMID: 24488442 DOI: 10.1007/s12975-014-0332-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 01/12/2014] [Accepted: 01/15/2014] [Indexed: 11/26/2022]
Abstract
Exposure to 2-MHz transcranial diagnostic ultrasound enhances the thrombolytic activity of intravenously administered tissue plasminogen activator (IV-tPA) in acute ischemic stroke (sonothrombolysis). However, rates of arterial recanalization vary widely, depending upon the clot burden, its location, and stroke subtype. We evaluated the influence of age and cholesterol level of the blood clots on sonothrombolysis in an in vitro model. To "age" the clots, serum was replaced by fresh blood periodically. We increased the cholesterol content of the clots by adding cholesterin to the blood. The clots were lysed by tPA and/or transcranial Doppler ultrasound sonication for 1 h. The extent of thrombolysis induced by various treatment protocols (controls, sonication, tPA, and sonothrombolysis) was evaluated with relative changes in the clot weights and in the clot structure by scanning electron microscopy (SEM) at end of the experiment. Sonothrombolysis induced significantly higher weight reduction in fresh clots (37.3 % in 2-h old clots versus 24.8 % in 10-h ones, p < 0.005) as well as the clots with higher cholesterol levels (41.7 versus 30.6 % in normal cholesterol clots, p < 0.005). SEM demonstrated patterns of clot dissolution among various treatment modalities. Sonothrombolysis induced better clot lysis in fresh thrombi with high cholesterol levels.
Collapse
Affiliation(s)
- Yufeng Zhou
- Division of Engineering Mechanics, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Ave, Singapore, Singapore, 639798,
| | | | | |
Collapse
|
24
|
de Saint Victor M, Crake C, Coussios CC, Stride E. Properties, characteristics and applications of microbubbles for sonothrombolysis. Expert Opin Drug Deliv 2014; 11:187-209. [DOI: 10.1517/17425247.2014.868434] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
25
|
Cardoso VF, Knoll T, Velten T, Rebouta L, Mendes PM, Lanceros-Méndez S, Minas G. Polymer-based acoustic streaming for improving mixing and reaction times in microfluidic applications. RSC Adv 2014. [DOI: 10.1039/c3ra46420b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
26
|
Barlinn K, Tsivgoulis G, Molina CA, Alexandrov DA, Schafer ME, Alleman J, Alexandrov AV. Exploratory analysis of estimated acoustic peak rarefaction pressure, recanalization, and outcome in the transcranial ultrasound in clinical sonothrombolysis trial. JOURNAL OF CLINICAL ULTRASOUND : JCU 2013; 41:354-360. [PMID: 22927038 DOI: 10.1002/jcu.21978] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 08/02/2012] [Indexed: 06/01/2023]
Abstract
PURPOSE Acoustic peak rarefaction pressure (APRP) is the main factor that influences ultrasound-enhanced thrombolysis. We sought to determine whether recanalization rate and functional outcomes in the Transcranial Ultrasound in Clinical SONothrombolysis (TUCSON) trial could be predicted by estimated in vivo APRP. METHODS We developed an acoustic attenuation model to estimate the in vivo APRP at the arterial occlusion site in each subject of the TUCSON trial with CT scans eligible for measurements. Variables included temporal bone thickness, depth of arterial occlusion site, and average attenuation of skin and brain tissues. Recanalization was defined as partial or complete using the Thrombolysis in Brain Infarction flow grades. Functional independence was assessed at 3 months using the modified Rankin Scale score (mRS, 0-1). RESULTS APRP was calculated in 20 acute ischemic stroke patients treated with sonothrombolysis (mean age, 64 ± 15 years, 65% men; median NIHSS score, 13; IQR, 6-17). The mean APRP was 30.2 ± 15.5 kPa (range, 8-68 kPa). Patients with persisting occlusion had nonsignificantly lower APRP than patients with partial or complete recanalization (25.2 ± 8.0 versus 32.3 ± 17.7 kPa; p = 0.228). Patients who were functionally independent at 3 months had nonsignificantly higher APRP than patients with worse outcome (35.1 ± 19.5 versus 25.9 ± 11.2 kPa; p = 0.217). CONCLUSIONS Our exploratory analysis suggests a potentially important role of successful energy delivery to augment thrombolysis with 2-MHz ultrasound in acute ischemic stroke patients.
Collapse
Affiliation(s)
- Kristian Barlinn
- Comprehensive Stroke Center, University of Alabama Hospital, Birmingham, AL, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Monteith SJ, Kassell NF, Goren O, Harnof S. Transcranial MR-guided focused ultrasound sonothrombolysis in the treatment of intracerebral hemorrhage. Neurosurg Focus 2013; 34:E14. [DOI: 10.3171/2013.2.focus1313] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Intracerebral hemorrhage remains a significant cause of morbidity and mortality. Current surgical therapies aim to use a minimally invasive approach to remove as much of the clot as possible without causing undue disruption to surrounding neural structures. Transcranial MR-guided focused ultrasound (MRgFUS) surgery is an emerging technology that permits a highly concentrated focal point of ultrasound energy to be deposited to a target deep within the brain without an incision or craniotomy. With appropriate ultrasound parameters it has been shown that MRgFUS can effectively liquefy large-volume blood clots through the human calvaria. In this review the authors discuss the rationale for using MRgFUS to noninvasively liquefy intracerebral hemorrhage (ICH), thereby permitting minimally invasive aspiration of the liquefied clot via a small drainage tube. The mechanism of action of MRgFUS sonothrombolysis; current investigational work with in vitro, in vivo, and cadaveric models of ICH; and the potential clinical application of this disruptive technology for the treatment of ICH are discussed.
Collapse
Affiliation(s)
- Stephen J. Monteith
- 1Department of Neurosurgery, University of Virginia Health System, Charlottesville, Virginia; and
| | - Neal F. Kassell
- 1Department of Neurosurgery, University of Virginia Health System, Charlottesville, Virginia; and
| | - Oded Goren
- 2Department of Neurosurgery, Sheba Medical Center, Tel Hashomer, Israel
| | - Sagi Harnof
- 2Department of Neurosurgery, Sheba Medical Center, Tel Hashomer, Israel
| |
Collapse
|
28
|
Abstract
OPINION STATEMENT Acute ischemic stroke remains one of the most devastating diseases when it comes to morbidity and mortality, not to mention the personal and economic burden that occurs in long-term. Intravenous thrombolysis with tissue plasminogen activator (tPA) is the only effective acute stroke therapy that improves outcome if given up to 4.5 hours from symptom onset. However, recanalization rates are meager and the majority of treated patients still have residual disability after stroke, emphasizing the need for further treatment options that may facilitate or even rival the only approved therapy. Sonothrombolysis, the adjuvant continuous ultrasound sonication of an intra-arterial occlusive thrombus during thrombolysis, enhances the clot-dissolving capabilities of intravenous tPA presumably by delivering acoustic pressure to the target brain vessel. Higher recanalization rates produce a trend towards better functional outcomes that could be safely achieved with the combination of high-frequency ultrasound and intravenous tPA. However, data on ultrasound targeting of intracranial proximal occlusive lesions other than those in the middle cerebral arteries are sparse. Moreover, recent sonothrombolysis trials were exclusively conducted with operator-dependent hand-held technology hindering its further testing in clinical sonothrombolysis trials. An operator-independent 2-MHz transcranial Doppler device has been developed allowing health care professionals not formally trained in ultrasound apparatus to provide therapeutic ultrasound as needed. Currently, this operator-independent device covering 12 proximal intracranial segments that most commonly contain thrombo-embolic occlusions enters testing in a pivotal multicenter sonothrombolysis efficacy trial. If this trial demonstrates safety and efficacy, adjuvants, such as gaseous microbubbles that further potentiate the thrombolytic effect of intravenous tPA, could be tested along with this device.
Collapse
|
29
|
Soltani A. Application of cavitation promoting surfaces in management of acute ischemic stroke. ULTRASONICS 2013; 53:580-587. [PMID: 23141666 PMCID: PMC3510343 DOI: 10.1016/j.ultras.2012.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 08/27/2012] [Accepted: 10/04/2012] [Indexed: 06/01/2023]
Abstract
High frequency, low intensity ultrasound has the potential to accelerate the clearance of thrombotic occlusion in the absence of cavitation. At high frequency ultrasound, high acoustic pressures, >5.2MPa, are required to generate cavitation in thrombus. The focus of this study was to reduce the cavitation threshold by applying materials with appropriate nucleation sites at the transducer-thrombus boundary to further augment sonothrombolysis. Heterogeneous and homogenous nucleation sites were generated on the outer surface of a polyimide tube (PI) using microfringed (MPI) and laser induced (LPI) microcavities. The cavitation threshold of these materials was determined using a passive cavitation detection system. Furthermore, the biological impact of both materials was investigated in vitro. The results revealed that both MPI and LPI have the potential to induce cavitation at acoustic pressure levels as low as 2.3MPa. In the presence of cavitation, thrombolysis rate could be enhanced by up to two times without any evidence of hemolysis that is generally associated with cavitation activities in blood. A prototype ultrasonic catheter operating at 1.7MHz frequency and acoustic pressure of 2.3MPa with either of MPI or LPI could be considered as a viable option for treatment of acute ischemic stroke.
Collapse
Affiliation(s)
- Azita Soltani
- R&D Department, EKOS Corporation, 11911 N Creek Parkway S, Bothell, WA 98011, USA.
| |
Collapse
|
30
|
Monteith SJ, Harnof S, Medel R, Popp B, Wintermark M, Lopes MBS, Kassell NF, Elias WJ, Snell J, Eames M, Zadicario E, Moldovan K, Sheehan J. Minimally invasive treatment of intracerebral hemorrhage with magnetic resonance-guided focused ultrasound. J Neurosurg 2013; 118:1035-45. [PMID: 23330996 DOI: 10.3171/2012.12.jns121095] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Intracerebral hemorrhage (ICH) is a major cause of death and disability throughout the world. Surgical techniques are limited by their invasive nature and the associated disability caused during clot removal. Preliminary data have shown promise for the feasibility of transcranial MR-guided focused ultrasound (MRgFUS) sonothrombolysis in liquefying the clotted blood in ICH and thereby facilitating minimally invasive evacuation of the clot via a twist-drill craniostomy and aspiration tube. METHODS AND RESULTS In an in vitro model, the following optimum transcranial sonothrombolysis parameters were determined: transducer center frequency 230 kHz, power 3950 W, pulse repetition rate 1 kHz, duty cycle 10%, and sonication duration 30 seconds. Safety studies were performed in swine (n = 20). In a swine model of ICH, MRgFUS sonothrombolysis of 4 ml ICH was performed. Magnetic resonance imaging and histological examination demonstrated complete lysis of the ICH without additional brain injury, blood-brain barrier breakdown, or thermal necrosis due to sonothrombolysis. A novel cadaveric model of ICH was developed with 40-ml clots implanted into fresh cadaveric brains (n = 10). Intracerebral hemorrhages were successfully liquefied (> 95%) with transcranial MRgFUS in a highly accurate fashion, permitting minimally invasive aspiration of the lysate under MRI guidance. CONCLUSIONS The feasibility of transcranial MRgFUS sonothrombolysis was demonstrated in in vitro and cadaveric models of ICH. Initial in vivo safety data in a swine model of ICH suggest the process to be safe. Minimally invasive treatment of ICH with MRgFUS warrants evaluation in the setting of a clinical trial.
Collapse
Affiliation(s)
- Stephen J Monteith
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia 22908, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Xu Z, Yasuda K, Koda S. Numerical simulation of liquid velocity distribution in a sonochemical reactor. ULTRASONICS SONOCHEMISTRY 2013; 20:452-459. [PMID: 22634380 DOI: 10.1016/j.ultsonch.2012.04.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 04/20/2012] [Accepted: 04/24/2012] [Indexed: 06/01/2023]
Abstract
Ultrasonically induced flow is an important phenomenon observed in a sonochemical reactor. It controls the mass transport of sonochemical reaction and enhances the reaction performance. In the present paper, the liquid velocity distribution of ultrasonically induced flow in the sonochemical reactor with a transducer at frequency of 490 kHz has been numerically simulated. From the comparison of simulation results and experimental data, the ultrasonic absorption coefficient in the sonochemical reactor has been evaluated. To simulate the liquid velocity near the liquid surface above the transducer, which is the main sonochemical reaction area, it is necessary to include the acoustic fountain shape into the computational domain. The simulation results indicate that the liquid velocity increases with acoustic power. The variation of liquid height also influences the behavior of liquid velocity distribution and the mean velocity above the transducer centre becomes a maximum when the liquid height is 0.4m. The liquid velocity decreases with increasing the transducer plate radius at the same ultrasonic power.
Collapse
Affiliation(s)
- Zheng Xu
- Department of Chemical Engineering, Nagoya University, Furocho, Chikusaku, Nagoya 464-8603, Japan
| | | | | |
Collapse
|
32
|
Chuang YH, Cheng PW, Li PC. Combining radiation force with cavitation for enhanced sonothrombolysis. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2013; 60:97-104. [PMID: 23287916 DOI: 10.1109/tuffc.2013.2541] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The use of acoustic radiation force has been suggested for enhancing the delivery of therapeutic substances, whereas sonothrombolysis has been developed for years as treatment by itself, or in combination with thrombolytic agents or ultrasound contrast agents. We have examined the efficacy of using acoustic radiation force to enhance the targeting of microbubbles in cavitation-induced sonothrombolysis in a flow phantom system. A clot was targeted by microbubbles using avidin-biotin binding, and the process was observed using a confocal microscope. We found that the experimental group in which radiation force was combined with cavitation showed an additional 3% to 9% weight reduction of the thrombus relative to the cavitation group. We also found that the fluorescence intensity of the clot increased with the microbubble concentration at each acoustic setting. Microbubbles traveled 10 to 20 μm further than the control group after being exposed to radiation force, cavitation, or both. These observations confirm that radiation force helps microbubbles to distribute into a clot (as does cavitation). Therefore, combining radiation force with cavitation would provide additional thrombolysis effects (based on clot weight measurements) relative to cavitation alone. A local delivery method based on acoustic radiation force has the potential to improve the safety and efficacy of sonothrombolysis.
Collapse
Affiliation(s)
- Yueh-Hsun Chuang
- Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
| | | | | |
Collapse
|
33
|
Baac HW, Ok JG, Maxwell A, Lee KT, Chen YC, Hart AJ, Xu Z, Yoon E, Guo LJ. Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy. Sci Rep 2012; 2:989. [PMID: 23251775 PMCID: PMC3524551 DOI: 10.1038/srep00989] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 11/06/2012] [Indexed: 01/20/2023] Open
Abstract
We demonstrate a new optical approach to generate high-frequency (>15 MHz) and high-amplitude focused ultrasound, which can be used for non-invasive ultrasound therapy. A nano-composite film of carbon nanotubes (CNTs) and elastomeric polymer is formed on concave lenses, and used as an efficient optoacoustic source due to the high optical absorption of the CNTs and rapid heat transfer to the polymer upon excitation by pulsed laser irradiation. The CNT-coated lenses can generate unprecedented optoacoustic pressures of >50 MPa in peak positive on a tight focal spot of 75 μm in lateral and 400 μm in axial widths. This pressure amplitude is remarkably high in this frequency regime, producing pronounced shock effects and non-thermal pulsed cavitation at the focal zone. We demonstrate that the optoacoustic lens can be used for micro-scale ultrasonic fragmentation of solid materials and a single-cell surgery in terms of removing the cells from substrates and neighboring cells.
Collapse
Affiliation(s)
- Hyoung Won Baac
- Department of Electrical Engineering and Computer Science, The University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Influences of microbubble diameter and ultrasonic parameters on in vitro sonothrombolysis efficacy. J Vasc Interv Radiol 2012; 23:1677-1684.e1. [PMID: 23106936 DOI: 10.1016/j.jvir.2012.08.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 08/07/2012] [Accepted: 08/13/2012] [Indexed: 12/20/2022] Open
Abstract
PURPOSE To quantify the effects of microbubble (MB) size, elasticity, and pulsed ultrasonic parameters on in vitro sonothrombolysis (ultrasound [US]-mediated thrombolysis) efficacy. MATERIALS AND METHODS Monodispersive MBs with diameters of 1 μm or 3 μm were exposed to pulsed US (1 MHz or 3 MHz) to lyse rabbit blood clots. Sonothrombolysis efficacy (clot mass loss) was measured as functions of MB size and concentration, ultrasonic frequency and intensity, pulse duration (PD), pulse repeat frequency (PRF), and duty factor. RESULTS Sonothrombolysis at 1 MHz was more effective using 3-μm MBs and at 3 MHz using 1-μm MBs. Sonothrombolysis was more effective at 1 MHz when≥75% of MBs remained intact, especially for 3-μm MBs; improving sonothrombolysis by increasing PRF from 100 Hz to 400 Hz at 3 MHz was associated with increasing 3-μm MB survival. However, 60% of 1-μm MBs were destroyed during maximal sonothrombolysis at 3 MHz, indicating that considerable MB collapse may be required for sonothrombolysis under these conditions. CONCLUSIONS The ability to control MB size and elasticity permits using a wide range of US parameters (eg, frequency, intensity) to produce desired levels of sonothrombolysis. Comparable, maximal sonothrombolysis efficacy was achieved at 20-fold lower intensity with 3-μm MBs (0.1W/cm(2)) than with 1-μm MBs (2.0W/cm(2)), a potential safety issue for in vivo sonothrombolysis. US parameters that maximized MB survival yielded maximal sonothrombolysis efficacy except with 1-μm MBs at 3MHz where most MBs were destroyed.
Collapse
|
35
|
Alexandrov AV, Barlinn K. Taboos and opportunities in sonothrombolysis for stroke. Int J Hyperthermia 2012; 28:397-404. [PMID: 22621740 DOI: 10.3109/02656736.2012.674621] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Systemic thrombolysis with tissue plasminogen activator (tPA) is the only approved treatment for acute ischaemic stroke that improves functional outcome if given up to 4.5 h from symptom onset. At least half of treated patients have unfavourable outcomes long-term though, emphasising the need to amplify the only approved acute stroke therapy. Ultrasound targeting of an intra-arterial occlusive clot and delivering mechanical pressure to its surrounding fluids (referred to as sonothrombolysis) accelerates the thrombolytic effect of tPA. Higher recanalisation rates produce a trend towards better functional outcomes that could be safely achieved with the combination of 2 MHz frequency ultrasound and systemic tPA. To further accelerate the clot-dissolving effect of ultrasound, a variety of frequencies and intensities as well as other adjuvant treatment elements are being studied. However, literature reports argue efficacy and safety of these novel approaches doubting promptly translation into the clinical practice. This review will summarise our current knowledge about potentially harmful (taboos) directions and what we think are promising avenues for these future stroke therapies. We also give a prospect for novel technologies such as operator-independent devices that aim to further spread the use of sonothrombolysis for stroke.
Collapse
Affiliation(s)
- Andrei V Alexandrov
- Comprehensive Stroke Center, University of Alabama Hospital, Birmingham, Alabama, USA.
| | | |
Collapse
|
36
|
Removing vascular obstructions: a challenge, yet an opportunity for interventional microdevices. Biomed Microdevices 2012; 14:511-32. [PMID: 22331446 DOI: 10.1007/s10544-011-9627-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cardiovascular diseases are the leading cause of death worldwide; they are mainly due to vascular obstructions which, in turn, are mainly caused by thrombi and atherosclerotic plaques. Although a variety of removal strategies has been developed for the considered obstructions, none of them is free from limitations and conclusive. The present paper analyzes the physical mechanisms underlying state-of-art removal strategies and classifies them into chemical, mechanical, laser and hybrid (namely chemo-mechanical and mechano-chemical) approaches, while also reviewing corresponding commercial/research tools/devices and procedures. Furthermore, challenges and opportunities for interventional micro/nanodevices are highlighted. In this spirit, the present review should support engineers, researchers active in the micro/nanotechnology field, as well as medical doctors in the development of innovative biomedical solutions for treating vascular obstructions. Data were collected by using the ISI Web of Knowledge portal, buyer's guides and FDA databases; devices not reported on scientific publications, as well as commercial devices no more for sale were discarded. Nearly 70% of the references were published since 2006, 55% since 2008; these percentages respectively raise to 85% and 65% as regards the section specifically reviewing state-of-art removal tools/devices and procedures.
Collapse
|
37
|
Petit B, Gaud E, Colevret D, Arditi M, Yan F, Tranquart F, Allémann E. In vitro sonothrombolysis of human blood clots with BR38 microbubbles. ULTRASOUND IN MEDICINE & BIOLOGY 2012; 38:1222-1233. [PMID: 22542261 DOI: 10.1016/j.ultrasmedbio.2012.02.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 02/22/2012] [Accepted: 02/23/2012] [Indexed: 05/31/2023]
Abstract
Microbubble-mediated sonothrombolysis is a promising approach for ischemic stroke treatment. The aim of this in vitro study was to evaluate a new microbubble (MB) formulation (BR38) for sonothrombolysis and to investigate the involved mechanisms. Human whole-blood clots were exposed to different combinations of recombinant tissue plasminogen activator (rtPA), ultrasound (US) and MB. Ultrasound at 1.6 MHz was used at 150, 300, 600 and 1000 kPa (peak-negative pressure). Thrombolysis efficacy was assessed by measuring clot diameter changes during 60-min US exposure. The rate of clot diameter loss (RDL) in μm/min was determined and clot lysis profiles were analyzed. The most efficient clot lysis (5.9 μm/min) was obtained at acoustic pressures of 600 and 1000 kPa in combination with MB and a low concentration of rtPA (0.3 μg/mL). This is comparable with the rate obtained with rtPA at 3 μg/mL alone (6.6 μm/min, p > 0.05). Clot lysis profiles were shown to be related to US beam profiles and microbubble cavitation.
Collapse
Affiliation(s)
- Bénédicte Petit
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
38
|
Slikkerveer J, Kleijn SA, Appelman Y, Porter TR, Veen G, van Rossum AC, Kamp O. Ultrasound enhanced prehospital thrombolysis using microbubbles infusion in patients with acute ST elevation myocardial infarction: pilot of the Sonolysis study. ULTRASOUND IN MEDICINE & BIOLOGY 2012; 38:247-52. [PMID: 22178160 DOI: 10.1016/j.ultrasmedbio.2011.11.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 10/27/2011] [Accepted: 11/05/2011] [Indexed: 05/07/2023]
Abstract
In animal studies, transthoracic ultrasound and microbubbles have shown to dissolve thrombi in ST elevation myocardial infarction (STEMI). To examine this effect in patients, we have initiated the Sonolysis trial. In this pilot study of 10 patients with a first acute STEMI, we investigated the safety and feasibility of this trial. After pretreatment in the ambulance, five patients were randomized to receive microbubbles with three-dimensional (3-D) guided high mechanical index impulses (1.18) for 15 min, whereas the control group received placebo without ultrasound. Subsequently, primary percutaneous coronary intervention (PPCI) was performed, if indicated. All patients successfully underwent study treatment and PPCI. No significant difference between treatment and control group in safety (minor adverse events 2/5 vs. 2/5, p = NS) and outcome (TIMI III flow 3/5 vs. 1/5 respectively, p = 0.23) was recorded. These results demonstrate that the study protocol is feasible in the acute cardiac care setting and safe during treatment and follow-up.
Collapse
Affiliation(s)
- Jeroen Slikkerveer
- Department of Cardiology, VU University Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
39
|
Zhao S, Baik OD. Application of ultrasound as pretreatment for extraction of podophyllotoxin from rhizomes of Podophyllum peltatum. ULTRASONICS SONOCHEMISTRY 2012; 19:22-31. [PMID: 21664168 DOI: 10.1016/j.ultsonch.2011.05.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 03/19/2011] [Accepted: 05/14/2011] [Indexed: 05/30/2023]
Abstract
The effect of high-power ultrasound pretreatment on the extraction of podophyllotoxin from Podophyllum peltatum was investigated. Direct sonication by an ultrasound probe horn was applied at 24 kHz and a number of factors were investigated: particle size (0.18-0.6 mm), type of solvent (0-100% aqueous ethanol), ultrasonic treatment time (2-40 min), and power of ultrasound (0-100% power intensity, maximum power: 78 W). The optimal condition of ultrasound was achieved with 0.425-0.6 mm particle size, 10 min sonication time, 35 W ultrasound power, and water as the medium. There was no obvious degradation of podophyllotoxin with ultrasound under the applied conditions, and an improvement in extractability was observed. The SEM microscopic structure change of treated samples disclosed the effect of ultrasound on the tissue cells. The increased pore volume and surface area after ultrasonic treatment also confirmed the positive effect of ultrasound pretreatment on the extraction yield of podophyllotoxin from the plant cells.
Collapse
Affiliation(s)
- Shuna Zhao
- Department of Chemical and Biological Engineering, College of Engineering, University of Saskatchewan, 57 Campus Dr., Saskatoon, SK, Canada S7N 5A9
| | | |
Collapse
|
40
|
Petit B, Yan F, Tranquart F, Allémann E. Microbubbles and ultrasound-mediated thrombolysis: a review of recent in vitro studies. J Drug Deliv Sci Technol 2012. [DOI: 10.1016/s1773-2247(12)50065-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
Wright CC, Hynynen K, Goertz DE. Pulsed focused ultrasound-induced displacements in confined in vitro blood clots. IEEE Trans Biomed Eng 2011; 59:842-51. [PMID: 22194235 DOI: 10.1109/tbme.2011.2180904] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Ultrasound has been shown to potentiate the effects of tissue plasminogen activator to improve clot lysis in a range of in vitro and in vivo studies as well as in clinical trials. One possible mechanism of action is acoustic radiation force-induced clot displacements. In this study, we investigate the temporal and spatial dynamics of clot displacements and strain initiated by focused ultrasound pulses. Displacements were produced by a 1.51 MHz f-number 1 transducer over a range of acoustic powers (1-85 W) in clots constrained within an agar vessel phantom channel. Displacements were tracked during and after a 5.45 ms therapy pulse using a 20 MHz high-frequency ultrasound imaging probe. Peak thrombus displacements were found to be linear as a function of acoustic power up to 60 W before leveling off near 128 μm for the highest transmit powers. The time to peak displacement and recovery time of blood clots was largely independent of acoustic powers with measured values near 2 ms. A linear relationship between peak axial strain and transmit power was observed, reaching a peak value of 11% at 35 W. The peak strain occurred ~0.75 mm from the focal zone for all powers investigated in both lateral and axial directions. These results indicate that substantial displacements can be induced by focused ultrasound in confined blood clots, and that the spatial and temporal displacement patterns are complex and highly dependent on exposure conditions, which has implications for future work investigating their link to clot lysis and for developing approaches to exploit these effects.
Collapse
Affiliation(s)
- Cameron C Wright
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| | | | | |
Collapse
|
42
|
Cherniavsky EA, Strakha IS, Adzerikho IE, Shkumatov VM. Effects of low frequency ultrasound on some properties of fibrinogen and its plasminolysis. BMC BIOCHEMISTRY 2011; 12:60. [PMID: 22112213 PMCID: PMC3235072 DOI: 10.1186/1471-2091-12-60] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 11/23/2011] [Indexed: 11/10/2022]
Abstract
Background Pharmacological thrombolysis with streptokinase, urokinase or tissue activator of plasminogen (t-PA), and mechanical interventions are frequently used in the treatment of both arterial and venous thrombotic diseases. It has been previously reported that application of ultrasound as an adjunct to thrombolytic therapy offers unique potential to improve effectiveness. However, little is known about effects of the ultrasound on proteins of blood coagulation and fibrinolysis. Here, we investigated the effects of the ultrasound on fibrinogen on processes of coagulation and fibrinogenolysis in an in vitro system. Results Our study demonstrated that low frequency high intensity pulse ultrasound (25.1 kHz, 48.4 W/cm2, duty 50%) induced denaturation of plasminogen and t-PA and fibrinogen aggregates formation in vitro. The aggregates were characterized by the loss of clotting ability and a greater rate of plasminolysis than native fibrinogen. We investigated the effect of the ultrasound on individual proteins. In case of plasminogen and t-PA, ultrasound led to a decrease of the fibrinogenolysis rate, while it increased the fibrinogenolysis rate in case of fibrinogen. It has been shown that upon ultrasound treatment of mixture fibrinogen or fibrin with plasminogen, t-PA, or both, the rate of proteolytic digestion of fibrin(ogen) increases too. It has been shown that summary effect on the fibrin(ogen) proteolytic degradation under the conditions for combined ultrasound treatment is determined exclusively by effect on fibrin(ogen). Conclusions The data presented here suggest that among proteins of fibrinolytic systems, the fibrinogen is one of the most sensitive proteins to the action of ultrasound. It has been shown in vitro that ultrasound induced fibrinogen aggregates formation, characterized by the loss of clotting ability and a greater rate of plasminolysis than native fibrinogen in different model systems and under different mode of ultrasound treatment. Under ultrasound treatment of plasminogen and/or t-PA in the presence of fibrin(ogen) the stabilizing effect fibrin(ogen) on given proteins was shown. On the other hand, an increase in the rate of fibrin(ogen) lysis was observed due to both the change in the substrate structure and promoting of the protein-protein complexes formation.
Collapse
Affiliation(s)
- Eugene A Cherniavsky
- Research Institute of Physical Chemical Problems, Belarusian State University, Leningradskaya Str., 220030, Minsk, Belarus
| | | | | | | |
Collapse
|
43
|
Amaral-Silva A, Piñeiro S, Molina CA. Sonothrombolysis for the treatment of acute stroke: current concepts and future directions. Expert Rev Neurother 2011; 11:265-73. [PMID: 21306213 DOI: 10.1586/ern.11.3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Achieving rapid reperfusion transcranial color-coded duplex is the critical issue in acute stroke treatment. Ultrasound (US) generates negative pressure waves that are associated with an increase in either intrinsic or intravenous tissue plasminogen activator (tPA)-induced fibrinolytic activity. Higher rates of tPA-induced arterial recanalization, associated with a trend towards better functional outcome, have been safely achieved by using high-frequency US. By contrast, the use of low-frequency US and transcranial color-coded duplex has been linked to significant hemorrhagic complications. US-accelerated thrombolysis has been safely enhanced by lowering the amount of energy needed for acoustic cavitation with the administration of microbubbles. Other applications of US are being studied, including its intra-arterial use. Operator-independent devices, which will spread the use of these US techniques further, are also being developed. This article reviews the present status of sonothrombolysis in acute stroke treatment, highlighting both experimental and clinical studies addressing this issue, and discusses its future regarding both efficacy and safety.
Collapse
Affiliation(s)
- Alexandre Amaral-Silva
- Cerebrovascular Unit, Hospital de São José, Centro Hospitalar de Lisboa Central, Lisbon, Portugal
| | | | | |
Collapse
|
44
|
Soltani A, Singhal R, Obtera M, Roy RA, Clark WM, Hansmann DR. Potentiating intra-arterial sonothrombolysis for acute ischemic stroke by the addition of the ultrasound contrast agents (Optison™ & SonoVue(®)). J Thromb Thrombolysis 2011; 31:71-84. [PMID: 20473551 DOI: 10.1007/s11239-010-0483-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Transcranial ultrasound in combination with intravenously administered ultrasound contrast agents (UCA) in the presence or absence of recombinant tissue plasminogen activator (rt-PA) has been widely evaluated as a new modality for treatment of ischemic stroke. Despite the successful demonstration of accelerated clot lysis there are inherent limitations associated with this modality such as inconsistency in temporal window thickness and/or potential serious cardiopulmonary reactions to intravenous administration of UCA that prevent broad application to ischemic stroke populations. As a complementary modality, we evaluated potential lysis enhancement by intra-arterial ultrasound with concurrent intra-clot delivery of UCA and rt-PA. To this end, clots were formed with average pore diameter similar to clinically retracted clots by adjusting the thrombin concentration. Physical characteristic and retention of UCA after delivery through the catheter as a function of clinically relevant flow rates of 6, 12, 18 ml/h were determined using a microscopic method. The ability of the UCA employed in this study, Optison and SonoVue, to penetrate into the clot was verified using ultrasound B-mode imaging. Clot lysis as a function of rt-PA concentration, 0.009 through 0.5 mg/ml, in the presence and absence of UCA diluted to 1:10, 1:100, and 1:200 v/v at two Peak rarefaction acoustic pressures of 1.3 and 2.1 MPa were evaluated using a weighing method. The study results suggest the addition of only 0.02 ml of 1:100 diluted UCA to rt-PA of 0.009, 0.05, 0.3, and 0.5 mg/ml can enhance the lysis rate by 3.9, 2.6, 1.9 and 1.8 fold in the presence of peak rarefaction acoustic pressure of 1.3 MPa and by 5.1, 3.4, 2.6, 3.1 in the presence of peak rarefaction acoustic pressure of 2.1 MPa, respectively. In addition, Optison and SonoVue demonstrated comparable effectiveness in enhancing the clot lysis rate. Addition of UCA to intra-arterial sonothrombolysis could be considered as a viable treatment option for ischemic stroke patients.
Collapse
Affiliation(s)
- Azita Soltani
- Research and Development Department, EKOS Corporation, 11911 North Creek Parkway South, Bothell, WA 98011, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Chuang YH, Cheng PW, Chen SC, Ruan JL, Li PC. Effects of ultrasound-induced inertial cavitation on enzymatic thrombolysis. ULTRASONIC IMAGING 2010; 32:81-90. [PMID: 20687276 DOI: 10.1177/016173461003200202] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Cavitation induced by ultrasound enhances enzymatic fibrinolysis by increasing the transport of reactants. However, the effects of cavitation need to be fully understood before sonothrombolysis can be applied clinically. In order to understand the underlying mechanisms, we examined the effects of combining ultrasound, microbubbles and thrombolytic enzymes on thrombolysis. First, we evaluated the relations between inertial cavitation and the reduction in the weight of a blood clot. Inertial cavitation was varied by changing the amplitude and duration of the transmitted acoustic wave as well as the concentration of microbubbles used to induce cavitation. Second, we studied the combined effects of streptokinase and inertial cavitation on thrombolysis. The results show that inertial cavitation increases the weight reduction of a blood clot by up to 33.9%. With linear regression fitting, the measured differential inertial cavitation dose and the weight reduction had a correlation coefficient of 0.66. Microscopically, enzymatic thrombolysis effects manifest as multiple large cavities within the clot that are uniformly distributed on the side exposed to ultrasound. This suggests that inertial cavitation plays an important role in producing cavities, while microjetting of the microbubbles induces pits on the clot surface. These observations preliminarily demonstrate the clinical potential of sonothrombolysis. The use of the differential inertial cavitation dose as an indicator of blood clot weight loss for controlled sonothrombolysis is also possible and will be further explored.
Collapse
Affiliation(s)
- Yueh-Hsun Chuang
- Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
46
|
Medel R, Crowley RW, McKisic MS, Dumont AS, Kassell NF. Sonothrombolysis: an emerging modality for the management of stroke. Neurosurgery 2009; 65:979-93; discussion 993. [PMID: 19834413 DOI: 10.1227/01.neu.0000350226.30382.98] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Ischemic stroke and intracranial hemorrhage remain a persistent scourge in Western civilization. Therefore, novel therapeutic modalities are desperately needed to expand the current limitations of treatment. Sonothrombolysis possesses the potential to fill this void because it has experienced a dramatic evolution from the time of early conceptualization in the 1960s. This process began in the realm of peripheral and cardiovascular disease and has since progressed to encompass intracranial pathologies. Our purpose is to provide a comprehensive review of the historical progression and existing state of knowledge, including underlying mechanisms as well as evidence for clinical application of ultrasound thrombolysis. METHODS Using MEDLINE, in addition to cross-referencing existing publications, a meticulous appraisal of the literature was conducted. Additionally, personal communications were used as appropriate. RESULTS This appraisal revealed several different technologies close to broad clinical use. However, fundamental questions remain, especially in regard to transcranial high-intensity focused ultrasound. Currently, the evidence supporting low intensity ultrasound's potential in isolation, without tissue plasminogen, remains uncertain; however, possibilities exist in the form of microbubbles to allow for focal augmentation with minimal systemic consequences. Alternatively, the literature clearly demonstrates, the efficacy of high-intensity focused ultrasound for independent thrombolysis. CONCLUSION Sonothrombolysis exists as a promising modality for the noninvasive or minimally invasive management of stroke, both ischemic and hemorrhagic. Further research facilitating clinical application is warranted.
Collapse
Affiliation(s)
- Ricky Medel
- Department of Neurological Surgery, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | | | | | | | | |
Collapse
|
47
|
Farny CH, Holt RG, Roy RA. Temporal and spatial detection of HIFU-induced inertial and hot-vapor cavitation with a diagnostic ultrasound system. ULTRASOUND IN MEDICINE & BIOLOGY 2009; 35:603-15. [PMID: 19110368 DOI: 10.1016/j.ultrasmedbio.2008.09.025] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 09/15/2008] [Accepted: 09/30/2008] [Indexed: 05/08/2023]
Abstract
The onset and presence of inertial cavitation and near-boiling temperatures in high-intensity focused ultrasound (HIFU) therapy have been identified as important indicators of energy deposition for therapy guidance. Passive cavitation detection is commonly used to detect bubble emissions, where a fixed-focus single-element acoustic transducer is typically used as a passive cavitation detector (PCD). This technique is suboptimal for clinical applications, because most PCD transducers are tightly focused and afford limited spatial coverage of the HIFU focal region. A Terason 2000 Ultrasound System was used as a PCD array to expand the spatial detection region for cavitation by operating in passive mode, obtaining the radiofrequency signals corresponding to each scan line and filtering the contribution from scattering of the HIFU signal harmonics. This approach allows for spatially resolved detection of both inertial and stable cavitation throughout the focal region. Measurements with the PCD array during sonication with a 1.1-MHz HIFU source in tissue phantoms were compared with single-element PCD and thermocouple sensing. Stable cavitation signals at the harmonics and superharmonics increased in a threshold fashion for temperatures >90 degrees C, an effect attributed to high vapor pressure in the cavities. Incorporation of these detection techniques in a diagnostic ultrasound platform could result in a powerful tool for improving HIFU guidance and treatment.
Collapse
Affiliation(s)
- Caleb H Farny
- Department of Radiology, Harvard Medical School, Brigham and Women's Hospital, 221 Longwood Ave., Boston, MA 02115, USA.
| | | | | |
Collapse
|
48
|
Shaw GJ, Meunier JM, Huang SL, Lindsell CJ, McPherson DD, Holland CK. Ultrasound-enhanced thrombolysis with tPA-loaded echogenic liposomes. Thromb Res 2009; 124:306-10. [PMID: 19217651 DOI: 10.1016/j.thromres.2009.01.008] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Revised: 11/21/2008] [Accepted: 01/10/2009] [Indexed: 10/21/2022]
Abstract
BACKGROUND AND PURPOSE Currently, the only FDA-approved therapy for acute ischemic stroke is the administration of recombinant tissue plasminogen activator (tPA). Echogenic liposomes (ELIP), phospholipid vesicles filled with gas and fluid, can be manufactured to incorporate tPA. Also, transcranial ultrasound-enhanced thrombolysis can increase the recanalization rate in stroke patients. However, there is little data on lytic efficacy of combining ultrasound, echogenic liposomes, and tPA treatment. In this study, we measure the effects of pulsed 120-kHz ultrasound on the lytic efficacy of tPA and tPA-incorporating ELIP (t-ELIP) in an in-vitro human clot model. It is hypothesized that t-ELIP exhibits similar lytic efficacy to that of rt-PA. METHODS Blood was drawn from 22 subjects after IRB approval. Clots were made in 20-microL pipettes, and placed in a water tank for microscopic visualization during ultrasound and drug treatment. Clots were exposed to combinations of [tPA]=3.15 microg/ml, [t-ELIP]=3.15 microg/ml, and 120-kHz ultrasound for 30 minutes at 37 degrees C in human plasma. At least 12 clots were used for each treatment. Clot lysis over time was imaged and clot diameter was measured over time, using previously developed imaging analysis algorithms. The fractional clot loss (FCL), which is the decrease in mean clot width at the end of lytic treatment, was used as a measure of lytic efficacy for the various treatment regimens. RESULTS The fractional clot loss FCL was 31% (95% CI: 26-37%) and 71% (56-86%) for clots exposed to tPA alone or tPA with 120 kHz ultrasound. Similarly, FCL was 48% (31-64%) and 89% (76-100%) for clots exposed to t-ELIP without or with ultrasound. CONCLUSIONS The lytic efficacy of tPA containing echogenic liposomes is comparable to that of tPA alone. The addition of 120 kHz ultrasound significantly enhanced lytic treatment efficacy for both tPA and t-ELIP. Liposomes loaded with tPA may be a useful adjunct in lytic treatment with tPA.
Collapse
Affiliation(s)
- George J Shaw
- Department of Emergency Medicine, Greater Cincinnati/Northern Kentucky Stroke Team University of Cincinnati, Cincinnati, OH 45267-0769, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Soltani A, Volz KR, Hansmann DR. Effect of modulated ultrasound parameters on ultrasound-induced thrombolysis. Phys Med Biol 2008; 53:6837-47. [PMID: 19001697 DOI: 10.1088/0031-9155/53/23/012] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The potential of ultrasound to enhance enzyme-mediated thrombolysis by application of constant operating parameters (COP) has been widely demonstrated. In this study, the effect of ultrasound with modulated operating parameters (MOP) on enzyme-mediated thrombolysis was investigated. The MOP protocol was applied to an in vitro model of thrombolysis. The results were compared to a COP with the equivalent soft tissue thermal index (TIS) over the duration of ultrasound exposure of 30 min (p < 0.14). To explore potential differences in the mechanism responsible for ultrasound-induced thrombolysis, a perfusion model was used to measure changes in average fibrin pore size of clot before, after and during exposure to MOP and COP protocols and cavitational activity was monitored in real time for both protocols using a passive cavitation detection system. The relative lysis enhancement by each COP and MOP protocol compared to alteplase alone yielded values of 33.69 +/- 12.09% and 63.89 +/- 15.02% in a thrombolysis model, respectively (p < 0.007). Both COP and MOP protocols caused an equivalent significant increase in average clot pore size of 2.09 x 10(-2) +/- 0.01 microm and 1.99 x 10(-2) +/- 0.004 microm, respectively (p < 0.74). No signatures of inertial or stable cavitation were observed for either acoustic protocol. In conclusion, due to mechanisms other than cavitation, application of ultrasound with modulated operating parameters has the potential to significantly enhance the relative lysis enhancement compared to application of ultrasound with constant operating parameters.
Collapse
Affiliation(s)
- Azita Soltani
- Research and Development Department, EKOS Corporation, 11911 N Creek Parkway S, Bothell, WA 98011, USA.
| | | | | |
Collapse
|
50
|
Shaw GJ, Meunier JM, Lindsell CJ, Holland CK. Tissue plasminogen activator concentration dependence of 120 kHz ultrasound-enhanced thrombolysis. ULTRASOUND IN MEDICINE & BIOLOGY 2008; 34:1783-92. [PMID: 18468773 PMCID: PMC2614894 DOI: 10.1016/j.ultrasmedbio.2008.03.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Revised: 03/03/2008] [Accepted: 03/12/2008] [Indexed: 05/11/2023]
Abstract
It has been known for some time that the application of ultrasound can enhance the efficacy of thrombolytic medications such as recombinant tissue plasminogen activator (rt-PA). Potential clinical applications of this ultrasound-enhanced thrombolysis (UET) include the treatment of myocardial infarction, acute ischemic stroke, deep venous thrombosis and other thrombotic disorders. It may be possible to reduce the dose of rt-PA while maintaining lytic efficacy; however there is little data on the rt-PA concentration dependence of UET. In this work, the rt-PA concentration dependence of clot lysis resulting from 120 kHz UET exposure was measured in an in vitro human clot model. Clots were exposed to rt-PA for 30 min, with (UET treated) or without 120 kHz ultrasound (rt-PA treated) at 37 degrees C, and the clot width measured as a function of time. The rt-PA concentration ranged from 0-10 microg/mL. The initial lytic rate for the UET-treated group was greater than that of the rt-PA group at almost all rt-PA concentrations, and exhibited a maximum over concentration values of 1-3 microg/mL.
Collapse
Affiliation(s)
- George J Shaw
- Department of Emergency Medicine, University of Cincinnati College ofMedicine, Cincinnati, OH 45267-0769, USA.
| | | | | | | |
Collapse
|