1
|
Singh MK, Han S, Ju S, Ranbhise JS, Ha J, Yeo SG, Kim SS, Kang I. Hsp70: A Multifunctional Chaperone in Maintaining Proteostasis and Its Implications in Human Disease. Cells 2025; 14:509. [PMID: 40214463 PMCID: PMC11989206 DOI: 10.3390/cells14070509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/15/2025] [Accepted: 03/28/2025] [Indexed: 04/14/2025] Open
Abstract
Hsp70, a 70 kDa molecular chaperone, plays a crucial role in maintaining protein homeostasis. It interacts with the DnaJ family of co-chaperones to modulate the functions of client proteins involved in various cellular processes, including transmembrane transport, extracellular vesicle trafficking, complex formation, and proteasomal degradation. Its presence in multiple cellular organelles enables it to mediate stress responses, apoptosis, and inflammation, highlighting its significance in disease progression. Initially recognized for its essential roles in protein folding, disaggregation, and degradation, later studies have demonstrated its involvement in several human diseases. Notably, Hsp70 is upregulated in multiple cancers, where it promotes tumor proliferation and serves as a tumor immunogen. Additionally, epichaperome networks stabilize protein-protein interactions in large and long-lived assemblies, contributing to both cancer progression and neurodegeneration. However, extracellular Hsp70 (eHsp70) in the tumor microenvironment can activate immune cells, such as natural killer (NK) cells, suggesting its potential in immunotherapeutic interventions, including CAR T-cell therapy. Given its multifaceted roles in cellular physiology and pathology, Hsp70 holds immense potential as both a biomarker and a therapeutic target across multiple human diseases. This review highlights the structural and functional importance of Hsp70, explores its role in disease pathogenesis, and discusses its potential in diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Manish Kumar Singh
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (S.H.); (S.J.); (J.S.R.); (J.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sunhee Han
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (S.H.); (S.J.); (J.S.R.); (J.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Songhyun Ju
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (S.H.); (S.J.); (J.S.R.); (J.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jyotsna S. Ranbhise
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (S.H.); (S.J.); (J.S.R.); (J.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Joohun Ha
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (S.H.); (S.J.); (J.S.R.); (J.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seung Geun Yeo
- Department of Otorhinolaryngology—Head and Neck Surgery, College of Medicine, Kyung Hee University Medical Center, Kyung Hee University, Seoul 02453, Republic of Korea;
| | - Sung Soo Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (S.H.); (S.J.); (J.S.R.); (J.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (S.H.); (S.J.); (J.S.R.); (J.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
2
|
Prodromou C, Aran-Guiu X, Oberoi J, Perna L, Chapple JP, van der Spuy J. HSP70-HSP90 Chaperone Networking in Protein-Misfolding Disease. Subcell Biochem 2023; 101:389-425. [PMID: 36520314 DOI: 10.1007/978-3-031-14740-1_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Molecular chaperones and their associated co-chaperones are essential in health and disease as they are key facilitators of protein-folding, quality control and function. In particular, the heat-shock protein (HSP) 70 and HSP90 molecular chaperone networks have been associated with neurodegenerative diseases caused by aberrant protein-folding. The pathogenesis of these disorders usually includes the formation of deposits of misfolded, aggregated protein. HSP70 and HSP90, plus their co-chaperones, have been recognised as potent modulators of misfolded protein toxicity, inclusion formation and cell survival in cellular and animal models of neurodegenerative disease. Moreover, these chaperone machines function not only in folding but also in proteasome-mediated degradation of neurodegenerative disease proteins. This chapter gives an overview of the HSP70 and HSP90 chaperones, and their respective regulatory co-chaperones, and explores how the HSP70 and HSP90 chaperone systems form a larger functional network and its relevance to counteracting neurodegenerative disease associated with misfolded proteins and disruption of proteostasis.
Collapse
Affiliation(s)
| | - Xavi Aran-Guiu
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Jasmeen Oberoi
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Laura Perna
- Centre for Endocrinology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - J Paul Chapple
- Centre for Endocrinology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | | |
Collapse
|
3
|
Alleviation of Tris(2-chloroethyl) Phosphate Toxicity on the Marine Rotifer Brachionus plicatilis by Polystyrene Microplastics: Features and Molecular Evidence. Int J Mol Sci 2022; 23:ijms23094934. [PMID: 35563328 PMCID: PMC9102492 DOI: 10.3390/ijms23094934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 12/04/2022] Open
Abstract
As emerging pollutants, microplastics (MPs) and organophosphorus esters (OPEs) coexist in the aquatic environment, posing a potential threat to organisms. Although toxicological studies have been conducted individually, the effects of combined exposure are unknown since MPs can interact with OPEs acting as carriers. In this study, we assessed the response of marine rotifer, Brachionus plicatilis, to co-exposure to polystyrene MPs and tris(2-chloroethyl) phosphate (TCEP) at different concentrations, including population growth, oxidative status, and transcriptomics. Results indicated that 0.1 μm and 1 μm MPs were accumulated in the digestive system, and, even at up to 2000 μg/L, they did not exert obvious damage to the stomach morphology, survival, and reproduction of B. plicatilis. The presence of 1 μm MPs reversed the low population growth rate and high oxidative stress induced by TCEP to the normal level. Some genes involved in metabolic detoxification and stress response were upregulated, such as ABC and Hsp. Subsequent validation showed that P-glycoprotein efflux ability was activated by combined exposure, indicating its important role in the reversal of population growth inhibition. Such results challenge the common perception that MPs aggravate the toxicity of coexisting pollutants and elucidate the molecular mechanism of the limited toxic effects induced by MPs and TCEP.
Collapse
|
4
|
Rehman A, Atif RM, Qayyum A, Du X, Hinze L, Azhar MT. Genome-wide identification and characterization of HSP70 gene family in four species of cotton. Genomics 2020; 112:4442-4453. [DOI: 10.1016/j.ygeno.2020.07.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/17/2020] [Accepted: 07/24/2020] [Indexed: 12/26/2022]
|
5
|
Siddiqui SH, Subramaniyan SA, Kang D, Park J, Khan M, Choi HW, Shim K. Direct exposure to mild heat stress stimulates cell viability and heat shock protein expression in primary cultured broiler fibroblasts. Cell Stress Chaperones 2020; 25:1033-1043. [PMID: 32696180 PMCID: PMC7591668 DOI: 10.1007/s12192-020-01140-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 12/30/2022] Open
Abstract
Fibroblasts produce collagen which is mainly essential for repairing tissue damage and maintaining the structural integrity of tissues. However, studies have given scientific evidence about harmful effect of thermal manipulation in fibroblast. Therefore, the aim of this study was to determine the mild heat stress temperature which increased broiler fibroblast viability. The experiment was divided into two groups (37 °C and 41 °C), and each group was divided into five subgroups based on different incubation times (6 h, 12 h, 24 h, 48 h, and 72 h) with three replications. In experimental group (41 °C), fibroblast viability increased significantly in 12 h but decreased in 72 h compared with control (37 °C). At 41 °C, live cell increased significantly in 24 h and then declined in 48 h as well as 72 h than control. Moreover, the S phase lengthened in shorter incubation time of experimental group compared with control. Protein and mRNA (HSP70, HSP60, and HSP47) expressions were significantly higher at 41 °C compared with 37 °C, but at the end of the experiment, HSP expression level was higher in both groups. Finally, this study recommended 41 °C as a mild heat stress temperature for increasing broiler fibroblast viability.
Collapse
Affiliation(s)
- Sharif Hasan Siddiqui
- Department of Animal Biotechnology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Sivakumar Allur Subramaniyan
- Department of Animal Biotechnology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Darae Kang
- Department of Animal Biotechnology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Jinryong Park
- Department of Animal Biotechnology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Mousumee Khan
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University, Jeonju, 54907, Republic of Korea
| | - Hyun Woo Choi
- Department of Animal Science, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| | - Kwanseob Shim
- Department of Animal Biotechnology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
6
|
Park JC, Kim DH, Lee Y, Lee MC, Kim TK, Yim JH, Lee JS. Genome-wide identification and structural analysis of heat shock protein gene families in the marine rotifer Brachionus spp.: Potential application in molecular ecotoxicology. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 36:100749. [PMID: 33065474 DOI: 10.1016/j.cbd.2020.100749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/26/2020] [Accepted: 09/26/2020] [Indexed: 01/07/2023]
Abstract
Heat shock proteins (Hsp) are class of conserved and ubiquitous stress proteins present in all living organisms from primitive to higher level. Various studies have demonstrated multiple cellular functions of Hsp in living organisms as an important biomarker in response to abiotic and biotic stressors including temperature, salinity, pH, hypoxia, environmental pollutants, and pathogens. However, full understanding on the mechanism and pathway involved in the induction of Hsp still remains challenging, especially in aquatic invertebrates. In this study, the entire Hsp family and subfamily members in the marine rotifers Brachionus spp., one of the cosmopolitan ecotoxicological model organisms, have been genome-widely identified. In Brachionus spp. Hsp family was comprised of Hsp10, small hsp (sHsp), Hsp40, Hsp60, Hsp70/105, and Hsp90, with highest number of genes found within Hsp40 DnaJ homolog subfamily C members. Also, the differences in the orientation of the conserved motifs within Hsp family may have induced differences in transcriptional gene modulation in response to thermal stress in Brachionus koreanus. Overall, Hsp family-specific domains were highly conserved in all three Brachionus spp., relative to Homo sapiens and across other animal taxa and these findings will be helpful for future ecotoxicological studies focusing on Hsps.
Collapse
Affiliation(s)
- Jun Chul Park
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Duck-Hyun Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Yoseop Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Min-Chul Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Tai Kyoung Kim
- Division of Polar Life Science, Korea Polar Research Institute, Incheon 21990, South Korea
| | - Joung Han Yim
- Division of Polar Life Science, Korea Polar Research Institute, Incheon 21990, South Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
7
|
Marschall MT, Simnacher U, Walther P, Essig A, Hagemann JB. The Putative Type III Secreted Chlamydia abortus Virulence-Associated Protein CAB063 Targets Lamin and Induces Apoptosis. Front Microbiol 2020; 11:1059. [PMID: 32523581 PMCID: PMC7261910 DOI: 10.3389/fmicb.2020.01059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/29/2020] [Indexed: 01/15/2023] Open
Abstract
Since intracellular survival of all chlamydiae depends on the manipulation of the host cell through type III secreted effector proteins, their characterization is crucial for the understanding of chlamydial pathogenesis. We functionally characterized the putative type III secreted Chlamydia abortus protein CAB063, describe its intracellular localization and identified pro- and eukaryotic binding partners. Based on an experimental infection model and plasmid transfections, we investigated the subcellular localization of CAB063 by immunofluorescence microscopy, immunoelectron microscopy, and Western blot analysis. Pro- and eukaryotic targets were identified by co-immunofluorescence, co-immunoprecipitation, and mass spectrometry. Transmission electron microscopy and flow cytometry were used for morphological and functional investigations on host cell apoptosis. CAB063 localized in the nuclear membrane of the host cell nucleus and we identified the chaperone HSP70 and lamin A/C as pro- and eukaryotic targets, respectively. CAB063-dependent morphological alterations of the host cell nucleus correlated with increased apoptosis rates of infected and CAB063-transfected cells. We provide evidence that CAB063 is a chaperone-folded type III secreted C. abortus virulence factor that targets lamin thereby altering the host cell nuclear membrane structure. This process may be responsible for an increased apoptosis rate at the end of the chlamydial developmental cycle, at which CAB063 is physiologically expressed.
Collapse
Affiliation(s)
| | - Ulrike Simnacher
- Institute of Medical Microbiology and Hygiene, Ulm University Hospital, Ulm, Germany
| | - Paul Walther
- Central Facility for Electron Microscopy, Ulm University, Ulm, Germany
| | - Andreas Essig
- Institute of Medical Microbiology and Hygiene, Ulm University Hospital, Ulm, Germany
| | | |
Collapse
|
8
|
Hayat B, Kapuganti RS, Padhy B, Mohanty PP, Alone DP. Epigenetic silencing of heat shock protein 70 through DNA hypermethylation in pseudoexfoliation syndrome and glaucoma. J Hum Genet 2020; 65:517-529. [PMID: 32127624 DOI: 10.1038/s10038-020-0736-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/30/2020] [Accepted: 02/18/2020] [Indexed: 11/09/2022]
Abstract
This study is intended to investigate the epigenetic regulation of the most conserved molecular chaperone, HSP70 and its potential role in the pathophysiology of pseudoexfoliation syndrome (PEXS) and glaucoma (PEXG), a protein aggregopathy, contributing significantly to world blindness. Expression levels of HSP70 were significantly decreased in the lens capsule (LC) of PEXS but not in PEXG compared with that in control. Bisulfite sequencing of the LC of the study subjects revealed that the CpG islands (CGIs) located in the exonic region but not in the promoter region of HSP70 displayed hypermethylation only in PEXS individuals. There was a corresponding increase in DNA methyltransferase 3A (DNMT3A) expression in only PEXS individuals suggesting de novo methylation in this stage of the disease condition. On the other hand, peripheral blood of both PEXS and PEXG cases showed hypermethylation in the exonic region when compared with non-PEX controls displaying tissue-specific effects. Further, functional analyses of CGI spanning the exon revealed a decreased gene expression in the presence of methylated in comparison with unmethylated reporter gene vectors. Treatment of human lens epithelial B-3 (HLE B-3) cells with DNMT inhibitor restored the expression of HSP70 following depletion in methylation level at exonic CpG sites. In conclusion, a decreased HSP70 expression correlates with hypermethylation of a CGI of HSP70 in PEXS individuals. The present findings enhance our current understanding of the mechanism underlying HSP70 repression, contributing to the pathogenesis of PEX.
Collapse
Affiliation(s)
- Bushra Hayat
- School of Biological Sciences, National Institute of Science Education and Research (NISER), HBNI, P.O. Bhimpur-Padanpur, Jatni, Khurda, Bhubaneswar, Odisha, 752050, India
| | - Ramani Shyam Kapuganti
- School of Biological Sciences, National Institute of Science Education and Research (NISER), HBNI, P.O. Bhimpur-Padanpur, Jatni, Khurda, Bhubaneswar, Odisha, 752050, India
| | - Biswajit Padhy
- School of Biological Sciences, National Institute of Science Education and Research (NISER), HBNI, P.O. Bhimpur-Padanpur, Jatni, Khurda, Bhubaneswar, Odisha, 752050, India
| | | | - Debasmita Pankaj Alone
- School of Biological Sciences, National Institute of Science Education and Research (NISER), HBNI, P.O. Bhimpur-Padanpur, Jatni, Khurda, Bhubaneswar, Odisha, 752050, India.
| |
Collapse
|
9
|
de Melo MS, Nazari EM, Müller YMR, Gismondi E. Modulation of antioxidant gene expressions by Roundup® exposure in the decapod Macrobrachium potiuna. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 190:110086. [PMID: 31864119 DOI: 10.1016/j.ecoenv.2019.110086] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/09/2019] [Accepted: 12/11/2019] [Indexed: 06/10/2023]
Abstract
Glyphosate-based herbicides (GBH), including Roundup®, are the most used herbicides in agricultural and non-agricultural areas, which can reach aquatic environments through drift during application or surface runoff. Some studies, mostly in fish, demonstrated that GBH caused oxidative stress in non-target animals. However, only few information is available on the GBH effects in the antioxidant and stress proteins of many other organisms, such as freshwater crustaceans. Thus, we aimed to investigate the effects of environmentally relevant GBH concentrations on the relative transcript expression (RTE) of the superoxide dismutase (sod1), catalase (cat), selenium-dependent glutathione peroxidase (gpx), glutathione-S-transferase (gst), thioredoxin (txn), heat shock protein (hsp70 and hsp90) in the hepatopancreas of the ecologically important freshwater prawn Macrobrachium potiuna. Moreover, this study aimed to assess the gender-differences responses to GBH exposure. Male and female prawns were exposed to three Roundup WG® concentrations (0.0065, 0.065 and 0.28 mg of glyphosate/L) and a control group (0.0 mg/L) for 7 and 14 days. In general, males had an under-expression of the studied genes, indicating an oxidative stress and possible accumulation of ROS in the hepatopancreas. In the opposite, females had an overexpression of the same genes, indicating a more robust antioxidant system, in order to cope with the possible ROS increase after Roundup WG® exposure. Therefore, results confirmed that gender could be a confounding factor in ecotoxicological assessment of GBH effects. Additionally, this work highlights that sod1, cat, gpx, gst, txn, hsp70 and hsp90 gene expressions seem to be useful biomarkers to investigate the oxidative stress caused by Roundup WG® in Macrobrachium sp.
Collapse
Affiliation(s)
- Madson Silveira de Melo
- Laboratório de Reprodução e Desenvolvimento Animal, Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Evelise Maria Nazari
- Laboratório de Reprodução e Desenvolvimento Animal, Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Yara Maria Rauh Müller
- Laboratório de Reprodução e Desenvolvimento Animal, Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Eric Gismondi
- Laboratory of Animal Ecology and Ecotoxicology (LEAE), Freshwater and Oceanic Sciences Unit of ReSearch (FOCUS), University of Liège B6c, 11 allée du 6 Août, 4000, Liège, Belgium.
| |
Collapse
|
10
|
Jiang S, Mohammed AA, Jacobs JA, Cramer TA, Cheng HW. Effect of synbiotics on thyroid hormones, intestinal histomorphology, and heat shock protein 70 expression in broiler chickens reared under cyclic heat stress. Poult Sci 2020; 99:142-150. [PMID: 32416795 PMCID: PMC7587863 DOI: 10.3382/ps/pez571] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 09/15/2019] [Indexed: 01/11/2023] Open
Abstract
This study examined effect of a dietary synbiotic supplement on the concentrations of plasma thyroid hormones, expressions of heat shock protein 70 (HSP70), and intestinal histomorphology in broiler chickens exposed to cyclic heat stress (HS). Three hundred and sixty day old male Ross 708 broiler chicks were randomly distributed among 3 dietary treatments containing a synbiotic (PoultryStar meUS) at 0 (control), 0.5 (0.5×), and 1.0 (1.0×) g/kg. Each treatment contained 8 replicates of 15 birds each housed in floor pens in a temperature and lighting controlled room. Heat stimulation was established from days 15 to 42 at 32°C for 9 h daily. The results indicated that under the HS condition, both synbiotic fed groups had lower liver and hypothalamus HSP70 levels (P < 0.001) compared to control group; however, HSP70 mRNA expression was not different among treatments (P > 0.05). There were no treatment effects on the levels of triiodothyronine (T3) and thyroxine (T4) as well as T3/T4 ratio (P > 0.05). Compared to controls, 1.0× HS broilers had greater villus height in the duodenum (P < 0.01), and greater villus height and villus height:crypt depth ratios in the ileum (P < 0.01). There were no differences among treatments on the measured intestinal parameters in the jejunum (P > 0.05). The results suggest that the synbiotic may ameliorate the negative effects of HS on chicken health as indicated by the changes in the intestinal architecture and the levels of HSP70. Dietary synbiotic supplement could be a feasible nutritive strategy for the poultry industry to improve the health and welfare of chickens when exposed to hot environmental temperature.
Collapse
Affiliation(s)
- S Jiang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - A A Mohammed
- Department of Animal Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907, USA; Department of Animal Hygiene, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
| | - J A Jacobs
- USDA Agricultural Research Service, 125 South Russell Street, West Lafayette, IN 47907, USA
| | - T A Cramer
- Department of Animal and Food Science, Texas Tech University, Lubbock, TX 79409, USA
| | - H W Cheng
- Department of Animal Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907, USA.
| |
Collapse
|
11
|
|
12
|
Barranger A, Langan LM, Sharma V, Rance GA, Aminot Y, Weston NJ, Akcha F, Moore MN, Arlt VM, Khlobystov AN, Readman JW, Jha AN. Antagonistic Interactions between Benzo[a]pyrene and Fullerene (C 60) in Toxicological Response of Marine Mussels. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E987. [PMID: 31288459 PMCID: PMC6669530 DOI: 10.3390/nano9070987] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/25/2019] [Accepted: 06/28/2019] [Indexed: 12/12/2022]
Abstract
This study aimed to assess the ecotoxicological effects of the interaction of fullerene (C60) and benzo[a]pyrene (B[a]P) on the marine mussel, Mytilus galloprovincialis. The uptake of nC60, B[a]P and mixtures of nC60 and B[a]P into tissues was confirmed by Gas Chromatography-Mass Spectrometry (GC-MS), Liquid Chromatography-High Resolution Mass Spectrometry (LC-HRMS) and Inductively Coupled Plasma Mass Spectrometer (ICP-MS). Biomarkers of DNA damage as well as proteomics analysis were applied to unravel the interactive effect of B[a]P and C60. Antagonistic responses were observed at the genotoxic and proteomic level. Differentially expressed proteins (DEPs) were only identified in the B[a]P single exposure and the B[a]P mixture exposure groups containing 1 mg/L of C60, the majority of which were downregulated (~52%). No DEPs were identified at any of the concentrations of nC60 (p < 0.05, 1% FDR). Using DEPs identified at a threshold of (p < 0.05; B[a]P and B[a]P mixture with nC60), gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis indicated that these proteins were enriched with a broad spectrum of biological processes and pathways, including those broadly associated with protein processing, cellular processes and environmental information processing. Among those significantly enriched pathways, the ribosome was consistently the top enriched term irrespective of treatment or concentration and plays an important role as the site of biological protein synthesis and translation. Our results demonstrate the complex multi-modal response to environmental stressors in M. galloprovincialis.
Collapse
Affiliation(s)
- Audrey Barranger
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Laura M Langan
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Vikram Sharma
- School of Biomedical Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Graham A Rance
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
- Nanoscale and Microscale Research Centre, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Yann Aminot
- Centre for Chemical Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Nicola J Weston
- Nanoscale and Microscale Research Centre, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Farida Akcha
- Ifremer, Laboratory of Ecotoxicology, F-44311, CEDEX 03 Nantes, France
| | - Michael N Moore
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3HD, UK
- European Centre for Environment & Human Health (ECEHH), University of Exeter Medical School, Knowledge Spa, Royal Cornwall Hospital, Cornwall TR1 3LJ, UK
| | - Volker M Arlt
- Department of Analytical, Environmental and Forensic Sciences, King's College London, MRC-PHE Centre for Environmental & Health, London SE1 9NH, UK
- NIHR Health Protection Research Unit in Health Impact of Environmental Hazards at King's College London in partnership with Public Health England and Imperial College London, London SE1 9NH, UK
| | - Andrei N Khlobystov
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
- Nanoscale and Microscale Research Centre, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - James W Readman
- Centre for Chemical Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Awadhesh N Jha
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK.
| |
Collapse
|
13
|
Xu L, Gong W, Zhang H, Perrett S, Jones GW. The same but different: the role of Hsp70 in heat shock response and prion propagation. Prion 2018; 12:170-174. [PMID: 30074427 DOI: 10.1080/19336896.2018.1507579] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
The Hsp70 chaperone machinery is a key component of the heat-shock response and a modulator of prion propagation in yeast. A major factor in optimizing Hsp70 function is the highly coordinated activities of the nucleotide-binding and substrate-binding domains of the protein. Hsp70 inter-domain communication occurs through a bidirectional allosteric interaction network between the two domains. Recent findings identified the β6/β7 region of the substrate-binding domain as playing a critical role in optimizing Hsp70 function in both the stress response and prion propagation and highlighted the allosteric interaction interface between the domains. Importantly, while functional changes in Hsp70 can result in phenotypic consequences for both the stress response and prion propagation, there can be significant differences in the levels of phenotypic impact that such changes illicit.
Collapse
Affiliation(s)
- Linan Xu
- a Department of Biology , Maynooth University , Maynooth, Co. Kildare , Ireland
| | - Weibin Gong
- b National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules , Institute of Biophysics, Chinese Academy of Sciences , Beijing , China
| | - Hong Zhang
- b National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules , Institute of Biophysics, Chinese Academy of Sciences , Beijing , China.,c University of the Chinese Academy of Sciences , Beijing , China
| | - Sarah Perrett
- b National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules , Institute of Biophysics, Chinese Academy of Sciences , Beijing , China.,c University of the Chinese Academy of Sciences , Beijing , China
| | - Gary W Jones
- d Centre for Biomedical Science Research, School of Clinical and Applied Sciences , Leeds Beckett University , Leeds , UK
| |
Collapse
|
14
|
Zhang X, Zhang M, Su Y, Wang Z, Zhao Q, Zhu H, Qian Z, Xu J, Tang S, Wu D, Lin Y, Kemper N, Hartung J, Bao E. Inhibition of heat stress-related apoptosis of chicken myocardial cells through inducing Hsp90 expression by aspirin administration in vivo. Br Poult Sci 2018; 59:308-317. [PMID: 29557194 DOI: 10.1080/00071668.2018.1454585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
1. This experiment investigated the anti-apoptosis effects and the mechanism of aspirin action in the heat shock response of chicken myocardial cells in vivo, via changes in the heat stress (HS) protein Hsp90 and the rate of apoptosis. Broiler chickens were administered aspirin (1 mg/kg body weight) 2 h before exposure to HS, and then exposed to 40 ± 1°C for 0, 1, 2, 3, 5, 7, 10, 15 and 24 h. 2. The induction and consumption of the HS factor heat shock factor (HSF)-1, and reductions of HSF-2 and HSF-3 induced by HS led to a delay in Hsp90 expression. HSF-1, 2 and 3 regulation of hsp90 expression in turn inhibited the synthesis and activation of protein kinase β (Akt), which resulted in a significant increase in caspase-3 at 2 and 10 h, caspase-9 from 1 to 7 h (except at 5 h), and the heat-stressed apoptosis of the myocardial cells. 3. Administration of aspirin changed the expression patterns of HSF-1, 2 and 3 such that the expression of Hsp90 protein was significantly upregulated (by 2.3-4.1 times compared with that of the non-treated cells). The resultant increase in Akt expression and activation, compared with the HS group, inhibited caspase-3 and caspase-9 activities and reduced the myocardial cells apoptosis rate (by 2.14-2.56 times). 4. Aspirin administration could inhibit heat-stressed apoptosis of myocardial cells in vivo and may be closely associated with its promotion of HS response of chicken hearts, especially Hsp90 expression.
Collapse
Affiliation(s)
- X Zhang
- a College of Veterinary Medicine, Nanjing Agricultural University , Nanjing , China
| | - M Zhang
- b College of Animal Science and Technology , Jinling Institute of Technology , Nanjing , China
| | - Y Su
- a College of Veterinary Medicine, Nanjing Agricultural University , Nanjing , China
| | - Z Wang
- a College of Veterinary Medicine, Nanjing Agricultural University , Nanjing , China
| | - Q Zhao
- a College of Veterinary Medicine, Nanjing Agricultural University , Nanjing , China
| | - H Zhu
- a College of Veterinary Medicine, Nanjing Agricultural University , Nanjing , China
| | - Z Qian
- a College of Veterinary Medicine, Nanjing Agricultural University , Nanjing , China
| | - J Xu
- a College of Veterinary Medicine, Nanjing Agricultural University , Nanjing , China
| | - S Tang
- a College of Veterinary Medicine, Nanjing Agricultural University , Nanjing , China
| | - D Wu
- a College of Veterinary Medicine, Nanjing Agricultural University , Nanjing , China
| | - Y Lin
- a College of Veterinary Medicine, Nanjing Agricultural University , Nanjing , China
| | - N Kemper
- c Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviour , University of Veterinary Medicine Hannover , Hannover , Germany
| | - J Hartung
- c Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviour , University of Veterinary Medicine Hannover , Hannover , Germany
| | - E Bao
- a College of Veterinary Medicine, Nanjing Agricultural University , Nanjing , China
| |
Collapse
|
15
|
Genome-Wide Characterization of Heat-Shock Protein 70s from Chenopodium quinoa and Expression Analyses of Cqhsp70s in Response to Drought Stress. Genes (Basel) 2018; 9:genes9020035. [PMID: 29360757 PMCID: PMC5852552 DOI: 10.3390/genes9020035] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 01/17/2018] [Accepted: 01/19/2018] [Indexed: 12/31/2022] Open
Abstract
Heat-shock proteins (HSPs) are ubiquitous proteins with important roles in response to biotic and abiotic stress. The 70-kDa heat-shock genes (Hsp70s) encode a group of conserved chaperone proteins that play central roles in cellular networks of molecular chaperones and folding catalysts across all the studied organisms including bacteria, plants and animals. Several Hsp70s involved in drought tolerance have been well characterized in various plants, whereas no research on Chenopodium quinoa HSPs has been completed. Here, we analyzed the genome of C. quinoa and identified sixteen Hsp70 members in quinoa genome. Phylogenetic analysis revealed the independent origination of those Hsp70 members, with eight paralogous pairs comprising the Hsp70 family in quinoa. While the gene structure and motif analysis showed high conservation of those paralogous pairs, the synteny analysis of those paralogous pairs provided evidence for expansion coming from the polyploidy event. With several subcellular localization signals detected in CqHSP70 protein paralogous pairs, some of the paralogous proteins lost the localization information, indicating the diversity of both subcellular localizations and potential functionalities of those HSP70s. Further gene expression analyses revealed by quantitative polymerase chain reaction (qPCR) analysis illustrated the significant variations of Cqhsp70s in response to drought stress. In conclusion, the sixteen Cqhsp70s undergo lineage-specific expansions and might play important and varied roles in response to drought stress.
Collapse
|
16
|
Liu Z, Wang Z, Huang M, Yan L, Ma Z, Yin Y. The FgSsb-FgZuo-FgSsz complex regulates multiple stress responses and mycotoxin production via folding the soluble SNARE Vam7 and β2-tubulin in Fusarium graminearum. Environ Microbiol 2017; 19:5040-5059. [PMID: 29076607 DOI: 10.1111/1462-2920.13968] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 10/16/2017] [Accepted: 10/19/2017] [Indexed: 11/28/2022]
Abstract
Hsp70 proteins play important roles in protein folding in the budding yeast, but their functions in pathogenic fungi are largely unknown. Here, we found that Fusarium graminearum Hsp70 proteins FgSsb, FgSsz and their cochaperone FgZuo formed a complex. This complex was required for microtubule morphology, vacuole fusion and endocytosis. More importantly, the β2-tubulin FgTub2 and SNARE protein FgVam7 were identified as targeting proteins of this complex. We further found that the complex FgSsb-FgZuo-FgSsz controlled sensitivity of F. graminearum to the antimicrotubule drug carbendazim and cold stress via regulating the folding of FgTub2. Moreover, this complex assisted the folding of FgVam7, subsequently modulated vacuole fusion and responses to heavy metal, osmotic and oxidative stresses. In addition, the deletion of this complex led to dramatically decreased deoxynivalenol biosynthesis. This study uncovers a novel regulating mechanism of Hsp70 in multiple stress responses in a filamentous fungus.
Collapse
Affiliation(s)
- Zunyong Liu
- Institute of Biotechnology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Zhihui Wang
- Institute of Biotechnology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Mengmeng Huang
- Institute of Biotechnology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Leiyan Yan
- Ningbo Academy of Agricultural Sciences, Ningbo, 315040, China
| | - Zhonghua Ma
- Institute of Biotechnology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.,State Key Laboratory of Rice Biology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Yanni Yin
- Institute of Biotechnology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| |
Collapse
|
17
|
Study on association of HSP70_hom gene polymorphism with rheumatoid arthritis using capillary electrophoresis-laser induced fluorescence. Microchem J 2017. [DOI: 10.1016/j.microc.2017.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
18
|
Pasban-Aliabadi H, Esmaeili-Mahani S, Abbasnejad M. Orexin-A Protects Human Neuroblastoma SH-SY5Y Cells Against 6-Hydroxydopamine-Induced Neurotoxicity: Involvement of PKC and PI3K Signaling Pathways. Rejuvenation Res 2017; 20:125-133. [PMID: 27814668 DOI: 10.1089/rej.2016.1836] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder that is characterized by progressive and selective death of dopaminergic neurons. Multifunctional neuropeptide orexin-A is involved in many biological events of the body. It has been shown that orexin-A has protective effects in neurodegenerative disease such as PD. However, its cellular mechanisms have not yet been fully clarified. Here, we investigated the intracellular signaling pathway of orexin-A neuroprotection in 6-hydroxydopamine (6-OHDA)-induced SH-SY5H cells damage as an in vitro model of PD. The cells were incubated with 150 μM 6-OHDA, and the viability was examined by 3-[4,5-dimethyl-2-thiazolyl]-2,5-diphenyl-2-tetrazolium bromide (MTT) assay. Mitochondrial membrane potential and intracellular calcium were measured by fluorescent probes. Western blotting was also used to determine cyclooxygenase type 2 (COX-2), nuclear factor erythroid 2 related factor 2 (Nrf2), and HSP70 protein levels. The data showed that 6-OHDA has decreasing effects on cell viability, Nrf2, and HSP70 protein expression and increases the level of mitochondrial membrane potential, intracellular calcium, and COX-2 protein. Orexin-A (500 pM) significantly attenuated the 6-OHDA-induced cell damage. Furthermore, Orexin-A significantly prevented the mentioned effects of 6-OHDA on SH-SY5Y cells. Orexin 1 receptor antagonist (SB3344867), PKC, and PI3-kinase (PI3K) inhibitors (chelerythrin and LY294002, respectively) could suppress the orexin-A neuroprotective effect. In contrast, blockage of PKA by a selective inhibitor (KT5720) had no effects on the orexin protection. The results suggest that orexin-A protective effects against 6-OHDA-induced neurotoxicity are performed via its receptors, PKC and PI3K signaling pathways.
Collapse
Affiliation(s)
- Hamzeh Pasban-Aliabadi
- 1 Department of Biology, Faculty of Sciences, ShahidBahonar University of Kerman , Kerman, Iran
| | - Saeed Esmaeili-Mahani
- 1 Department of Biology, Faculty of Sciences, ShahidBahonar University of Kerman , Kerman, Iran .,2 Laboratory of Molecular Neuroscience, Kerman Neuroscience Research Center (KNRC), Kerman University of Medical Sciences , Kerman, Iran
| | - Mehdi Abbasnejad
- 1 Department of Biology, Faculty of Sciences, ShahidBahonar University of Kerman , Kerman, Iran
| |
Collapse
|
19
|
Marada A, Karri S, Singh S, Allu PK, Boggula Y, Krishnamoorthy T, Guruprasad L, V Sepuri NB. A Single Point Mutation in Mitochondrial Hsp70 Cochaperone Mge1 Gains Thermal Stability and Resistance. Biochemistry 2016; 55:7065-7072. [DOI: 10.1021/acs.biochem.6b00232] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Adinarayana Marada
- Department
of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, T.S., India
| | - Srinivasu Karri
- Department
of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, T.S., India
| | - Swati Singh
- School
of Chemistry, University of Hyderabad, Hyderabad 500046, T.S., India
| | - Praveen Kumar Allu
- Department
of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, T.S., India
| | - Yerranna Boggula
- Department
of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, T.S., India
| | - Thanuja Krishnamoorthy
- Department
of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, T.S., India
| | - Lalitha Guruprasad
- School
of Chemistry, University of Hyderabad, Hyderabad 500046, T.S., India
| | - Naresh Babu V Sepuri
- Department
of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, T.S., India
| |
Collapse
|
20
|
Carloni S, Favrais G, Saliba E, Albertini MC, Chalon S, Longini M, Gressens P, Buonocore G, Balduini W. Melatonin modulates neonatal brain inflammation through endoplasmic reticulum stress, autophagy, and miR-34a/silent information regulator 1 pathway. J Pineal Res 2016; 61:370-80. [PMID: 27441728 DOI: 10.1111/jpi.12354] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 07/18/2016] [Indexed: 02/06/2023]
Abstract
Maternal infection/inflammation represents one of the most important factors involved in the etiology of brain injury in newborns. We investigated the modulating effect of prenatal melatonin on the neonatal brain inflammation process resulting from maternal intraperitoneal (i.p.) lipopolysaccharide (LPS) injections. LPS (300 μg/kg) was administered to pregnant rats at gestational days 19 and 20. Melatonin (5 mg/kg) was administered i.p. at the same time as LPS. Melatonin counteracted the LPS sensitization to a second ibotenate-induced excitotoxic insult performed on postnatal day (PND) 4. As melatonin succeeded in reducing microglial activation in neonatal brain at PND1, pathways previously implicated in brain inflammation regulation, such as endoplasmic reticulum (ER) stress, autophagy and silent information regulator 1 (SIRT1), a melatonin target, were assessed at the same time-point in our experimental groups. Results showed that maternal LPS administrations resulted in an increase in CHOP and Hsp70 protein expression and eIF2α phosphorylation, indicative of activation of the unfolded protein response consequent to ER stress, and a slighter decrease in the autophagy process, determined by reduced lipidated LC3 and increased p62 expression. LPS-induced inflammation also reduced brain SIRT1 expression and affected the expression of miR-34a, miR146a, and miR-126. All these effects were blocked by melatonin. Cleaved-caspase-3 apoptosis pathway did not seem to be implicated in the noxious effect of LPS on the PND1 brain. We conclude that melatonin is effective in reducing maternal LPS-induced neonatal inflammation and related brain injury. Its role as a prophylactic/therapeutic drug deserves to be investigated by clinical studies.
Collapse
Affiliation(s)
- Silvia Carloni
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Géraldine Favrais
- Department of Neonatal and Pediatric Intensive Care, CHRU de Tours, Tours, France
- INSERM U930, Université François Rabelais de Tours, Tours, France
| | - Elie Saliba
- Department of Neonatal and Pediatric Intensive Care, CHRU de Tours, Tours, France
- INSERM U930, Université François Rabelais de Tours, Tours, France
| | | | - Sylvie Chalon
- INSERM U930, Université François Rabelais de Tours, Tours, France
| | - Mariangela Longini
- Department of Molecular and Developmental Medicine, Policlinico Le Scotte, University of Siena, Siena, Italy
| | - Pierre Gressens
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Giuseppe Buonocore
- Department of Molecular and Developmental Medicine, Policlinico Le Scotte, University of Siena, Siena, Italy
| | - Walter Balduini
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy.
| |
Collapse
|
21
|
Cheng Y, Sun J, Chen H, Adam A, Tang S, Kemper N, Hartung J, Bao E. Expression and location of HSP60 and HSP10 in the heart tissue of heat-stressed rats. Exp Ther Med 2016; 12:2759-2765. [PMID: 27698781 DOI: 10.3892/etm.2016.3650] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 01/11/2016] [Indexed: 12/16/2022] Open
Abstract
The present study aimed to analyze the expression levels and localizations of heat shock protein (HSP) 60 and HSP10 in the heart tissue of rats subjected to heat stress (42°C) for 0, 20, 80 and 100 min. Histopathological injuries and increased serum activities of serum lactate dehydrogenase and creatine kinase isoenzyme MB were detected in the heated rat myocardial cells. These results suggested that heat stress-induced acute degeneration may be sufficient to cause sudden death in animals by disrupting the function and permeability of the myocardial cell membrane. In addition, the expression levels of HSP60 were significantly increased following 20 min heat stress, whereas the expression levels of its cofactor HSP10 were not. Furthermore, the location of HSP60, but not of HSP10, was significantly altered during periods of heat stress. These results suggested that HSP60 in myocardial tissue may be more susceptive to the effects of heat stress as compared with HSP10, and that HSP10 is constitutively expressed in the heart of rats. The expression levels and localizations of HSP60 and HSP10 at the different time points of heat stress were not similar, which suggested that HSP60 and HSP10 may not form a complex in the heart tissue of heat-stressed rats.
Collapse
Affiliation(s)
- Yanfen Cheng
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Jiarui Sun
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Hongbo Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Abdelnasir Adam
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Shu Tang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Nicole Kemper
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviour, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Jörg Hartung
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviour, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Endong Bao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| |
Collapse
|
22
|
Mattoo RUH, Goloubinoff P. Molecular chaperones are nanomachines that catalytically unfold misfolded and alternatively folded proteins. Cell Mol Life Sci 2014; 71:3311-25. [PMID: 24760129 PMCID: PMC4131146 DOI: 10.1007/s00018-014-1627-y] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 04/04/2014] [Accepted: 04/07/2014] [Indexed: 01/01/2023]
Abstract
By virtue of their general ability to bind (hold) translocating or unfolding polypeptides otherwise doomed to aggregate, molecular chaperones are commonly dubbed “holdases”. Yet, chaperones also carry physiological functions that do not necessitate prevention of aggregation, such as altering the native states of proteins, as in the disassembly of SNARE complexes and clathrin coats. To carry such physiological functions, major members of the Hsp70, Hsp110, Hsp100, and Hsp60/CCT chaperone families act as catalytic unfolding enzymes or unfoldases that drive iterative cycles of protein binding, unfolding/pulling, and release. One unfoldase chaperone may thus successively convert many misfolded or alternatively folded polypeptide substrates into transiently unfolded intermediates, which, once released, can spontaneously refold into low-affinity native products. Whereas during stress, a large excess of non-catalytic chaperones in holding mode may optimally prevent protein aggregation, after the stress, catalytic disaggregases and unfoldases may act as nanomachines that use the energy of ATP hydrolysis to repair proteins with compromised conformations. Thus, holding and catalytic unfolding chaperones can act as primary cellular defenses against the formation of early misfolded and aggregated proteotoxic conformers in order to avert or retard the onset of degenerative protein conformational diseases.
Collapse
Affiliation(s)
- Rayees U H Mattoo
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| | | |
Collapse
|
23
|
Ito M, Yamamoto Y, Kim CS, Ohnishi K, Hikichi Y, Kiba A. Heat shock protein 70 is required for tabtoxinine-β-lactam-induced cell death in Nicotiana benthamiana. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:173-8. [PMID: 24331433 DOI: 10.1016/j.jplph.2013.10.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 10/15/2013] [Accepted: 10/22/2013] [Indexed: 05/08/2023]
Abstract
Tabtoxinine-β-lactam (TβL), a non-specific bacterial toxin, is produced by Pseudomonas syringae pv. tabaci, the causal agent of tobacco wildfire disease. TβL causes death of plant cells through the inhibition of glutamine synthetase, which leads to an abnormal accumulation of ammonium ions and the characteristic necrotic wildfire lesions. To better understand the mechanisms involved in TβL-induced cell death, we studied its regulation in Nicotiana benthamiana. TβL-induced lesions, similar to those in controls, could be observed in SGT1-, RAR1- and Hsp90-silenced plants. In contrast, Hsp70-silenced plants showed suppression of lesion formation. Expression of hin1, a marker gene for the hypersensitive response (HR), which is a characteristic of programmed cell death in plants, was strongly induced in controls by TβL treatment but only slightly in Hsp70-silenced plants. However, in these TβL-treated Hsp70-silenced plants, the amount of ammonium ions was considerably increased. Furthermore, the silencing of Hsp70 also suppressed l-methionine sulfoximine-induced cell death and hin1 expression and caused the over-accumulation of ammonium ions. When inoculated directly with P. syringae pv. tabaci, Hsp70-silenced plants showed only reduced symptoms. Our results suggest that the TβL-induced pathway to cell death in N. benthamiana is at least partially similar to HR response, and that Hsp70 might play an essential role in these events.
Collapse
Affiliation(s)
- Makoto Ito
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture, Kochi University, Nankoku 783-8502, Japan
| | - Yu Yamamoto
- Laboratory of Bioactive Substance Chemistry, Faculty of Agriculture, Kochi University, Nankoku 783-8502, Japan
| | - Chul-Sa Kim
- Laboratory of Bioactive Substance Chemistry, Faculty of Agriculture, Kochi University, Nankoku 783-8502, Japan
| | - Kouhei Ohnishi
- Research Institute of Molecular Genetics, Kochi University, Nankoku 783-8502, Japan
| | - Yasufumi Hikichi
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture, Kochi University, Nankoku 783-8502, Japan
| | - Akinori Kiba
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture, Kochi University, Nankoku 783-8502, Japan.
| |
Collapse
|
24
|
Introduction of a unique tryptophan residue into various positions of Bacillus licheniformis DnaK. Int J Biol Macromol 2012; 52:231-43. [PMID: 23085489 DOI: 10.1016/j.ijbiomac.2012.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 10/08/2012] [Accepted: 10/10/2012] [Indexed: 11/22/2022]
Abstract
Site-directed mutagenesis together with biochemical and biophysical techniques were used to probe effects of single-tryptophan-incorporated mutations on a bacterial molecular chaperone, Bacillus licheniformis DnaK (BlDnaK). Specifically, five phenylalanine residues (Phe(120), Phe(174), Phe(186), Phe(378) and Phe(396)) of BlDnaK were individually replaced by single tryptophans, thus creating site-specific probes for the fluorescence analysis of the protein. The steady-state ATPase activity for BlDnaK, F120W, F174W, F186W, F378W, and F396W was determined to be 76.01, 52.82, 25.32, 53.31, 58.84, and 47.53 nmol Pi/min/mg, respectively. Complementation test revealed that the single mutation at codons 120, 186, and 378 of the dnaK gene still allowed an Escherichia coli dnaK756-Ts strain to grow at a stringent temperature of 44°C. Simultaneous addition of co-chaperones and NR-peptide did not synergistically stimulate the ATPase activity of F174W and F396W, and these two proteins were unable to assist the refolding of GdnHCl-denatured luciferase. The heat-induced denaturation of all variants could be fitted adequately to a three-state model, in agreement with the observation for the wild-type protein. By CD spectral analysis, GdnHCl-induced unfolding transition for BlDnaK was 1.51 M corresponding to ΔG(N-U) of 1.69 kcal/mol; however, the transitions for mutant proteins were 1.07-1.55 M equivalent to ΔG(N-U) of 0.94-2.93 kcal/mol. The emission maximum of single-tryptophan-incorporated variants was in the range of 333.2-335.8 nm. Acrylamide quenching analysis showed that the mutant proteins had a dynamic quenching constant of 3.0-4.2 M(-1). Taken together, these results suggest that the molecular properties of BlDnaK have been significantly changed upon the individual replacement of selected phenylalanine residues by tryptophan.
Collapse
|
25
|
Sabirzhanov B, Stoica BA, Hanscom M, Piao CS, Faden AI. Over-expression of HSP70 attenuates caspase-dependent and caspase-independent pathways and inhibits neuronal apoptosis. J Neurochem 2012; 123:542-54. [PMID: 22909049 DOI: 10.1111/j.1471-4159.2012.07927.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 08/13/2012] [Accepted: 08/14/2012] [Indexed: 01/22/2023]
Abstract
HSP70 is a member of the family of heat-shock proteins that are known to be up-regulated in neurons following injury and/or stress. HSP70 over-expression has been linked to neuroprotection in multiple models, including neurodegenerative disorders. In contrast, less is known about the neuroprotective effects of HSP70 in neuronal apoptosis and with regard to modulation of programmed cell death (PCD) mechanisms in neurons. We examined the effects of HSP70 over-expression by transfection with HSP70-expression plasmids in primary cortical neurons and the SH-SY5Y neuronal cell line using four independent models of apoptosis: etoposide, staurosporine, C2-ceramide, and β-Amyloid. In these apoptotic models, neurons transfected with the HSP70 construct showed significantly reduced induction of nuclear apoptotic markers and/or cell death. Furthermore, we demonstrated that HSP70 binds and potentially inactivates Apoptotic protease-activating factor 1, as well as apoptosis-inducing factor, key molecules involved in development of caspase-dependent and caspase-independent PCD, respectively. Markers of caspase-dependent PCD, including active caspase-3, caspase-9, and cleaved PARP were attenuated in neurons over-expressing HSP70. These data indicate that HSP70 protects against neuronal apoptosis and suggest that these effects reflect, at least in part, to inhibition of both caspase-dependent and caspase-independent PCD pathways.
Collapse
Affiliation(s)
- Boris Sabirzhanov
- Department of Anesthesiology, Shock Trauma & Anesthesiology Research (STAR) Organized Research Center, University of Maryland School of Medicine, Baltimore, MD, USA.
| | | | | | | | | |
Collapse
|
26
|
Rath E, Haller D. Mitochondria at the interface between danger signaling and metabolism: role of unfolded protein responses in chronic inflammation. Inflamm Bowel Dis 2012; 18:1364-77. [PMID: 22183876 DOI: 10.1002/ibd.21944] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 10/19/2011] [Indexed: 12/16/2022]
Abstract
Inflammatory bowel diseases (IBDs), like many other chronic diseases, feature multiple cellular stress responses including endoplasmic reticulum (ER) unfolded protein response (UPR). Maintaining protein homeostasis is indispensable for cell survival and, consequently, distinct signaling pathways have evolved to transmit organelle stress. While the ER UPR, aiming to restore ER homeostasis after challenges to ER function, has been extensively studied in the context of chronic diseases, only recently the related mitochondrial UPR (mtUPR), induced by disturbances of mitochondrial proteostasis, has drawn some attention. ER and mitochondria are in close contact and interact physically and functionally. Accumulating data have placed mitochondria at the center of diverse cellular functions and suggest mitochondria as integrators of signaling pathways such as autophagy and inflammation. Consequently, it is likely that mitochondrial stress and ER stress cannot be regarded separately and that mitochondrial stress, as well as ER stress, participates in the pathology of IBD. Protein homeostasis is particularly sensitive toward infections, oxidative stress, and energy deficiency. Thus, environmental disturbances impacting organelle function lead to the concerted activation of distinct UPRs. The metabolic status might therefore serve as an innate mechanism to sense the epithelial environment, including luminal-derived and host-derived factors. This review highlights mtUPR and its interrelation with ER UPR, focuses on recent studies identifying mitochondria as integrators of cellular danger signaling, and, furthermore, illustrates the importance ER UPR and mitochondrial dysfunction in IBD.
Collapse
Affiliation(s)
- Eva Rath
- Technische Universität München, Chair for Biofunctionality, ZIEL, Research Center for Nutrition and Food Science, CDD, Center for Diet and Disease, Freising-Weihenstephan, Germany
| | | |
Collapse
|
27
|
Moos PJ, Olszewski K, Honeggar M, Cassidy P, Leachman S, Woessner D, Cutler NS, Veranth JM. Responses of human cells to ZnO nanoparticles: a gene transcription study. Metallomics 2011; 3:1199-211. [PMID: 21769377 DOI: 10.1039/c1mt00061f] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The gene transcript profile responses to metal oxide nanoparticles was studied using human cell lines derived from the colon and skin tumors. Much of the research on nanoparticle toxicology has focused on models of inhalation and intact skin exposure, and effects of ingestion exposure and application to diseased skin are relatively unknown. Powders of nominally nanosized SiO2, TiO2, ZnO and Fe2O3 were chosen because these substances are widely used in consumer products. The four oxides were evaluated using colon-derived cell lines, RKO and CaCo-2, and ZnO and TiO2 were evaluated further using skin-derived cell lines HaCaT and SK Mel-28. ZnO induced the most notable gene transcription changes, even though this material was applied at the lowest concentration. Nano-sized and conventional ZnO induced similar responses suggesting common mechanisms of action. The results showed neither a non-specific response pattern common to all substances nor synergy of the particles with TNF-α cotreatment. The response to ZnO was not consistent with a pronounced proinflammatory signature, but involved changes in metal metabolism, chaperonin proteins, and protein folding genes. This response was observed in all cell lines when ZnO was in contact with the human cells. When the cells were exposed to soluble Zn, the genes involved in metal metabolism were induced but the genes involved in protein refoldling were unaffected. This provides some of the first data on the effects of commercial metal oxide nanoparticles on human colon-derived and skin-derived cells.
Collapse
Affiliation(s)
- Philip J Moos
- Department of Pharmacology and Toxicology, University of Utah, 30 S. 2000 East, Salt Lake City, Utah 84112, USA.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Hsp70 and its molecular role in nervous system diseases. Biochem Res Int 2011; 2011:618127. [PMID: 21403864 PMCID: PMC3049350 DOI: 10.1155/2011/618127] [Citation(s) in RCA: 161] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 10/19/2010] [Accepted: 01/05/2011] [Indexed: 02/07/2023] Open
Abstract
Heat shock proteins (HSPs) are induced in response to many injuries including stroke, neurodegenerative disease, epilepsy, and trauma. The overexpression of one HSP in particular, Hsp70, serves a protective role in several different models of nervous system injury, but has also been linked to a deleterious role in some diseases. Hsp70 functions as a chaperone and protects neurons from protein aggregation and toxicity (Parkinson disease, Alzheimer disease, polyglutamine diseases, and amyotrophic lateral sclerosis), protects cells from apoptosis (Parkinson disease), is a stress marker (temporal lobe epilepsy), protects cells from inflammation (cerebral ischemic injury), has an adjuvant role in antigen presentation and is involved in the immune response in autoimmune disease (multiple sclerosis). The worldwide incidence of neurodegenerative diseases is high. As neurodegenerative diseases disproportionately affect older individuals, disease-related morbidity has increased along with the general increase in longevity. An understanding of the underlying mechanisms that lead to neurodegeneration is key to identifying methods of prevention and treatment. Investigators have observed protective effects of HSPs induced by preconditioning, overexpression, or drugs in a variety of models of brain disease. Experimental data suggest that manipulation of the cellular stress response may offer strategies to protect the brain during progression of neurodegenerative disease.
Collapse
|
29
|
Popp SL, Reinstein J. Functional characterization of the DnaK chaperone system from the archaeon Methanothermobacter thermautotrophicus DeltaH. FEBS Lett 2009; 583:573-8. [PMID: 19162025 DOI: 10.1016/j.febslet.2008.12.062] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 12/19/2008] [Accepted: 12/30/2008] [Indexed: 11/15/2022]
Abstract
We characterized the biochemical and functional properties of the DnaK system from the archaeon Methanothermobacter thermautotrophicus DeltaH. In contrast to the eubacterial chaperone components the archaeal Hsp70 system shows thermal transitions only slightly above the optimal environmental temperature (65 degrees C). Nevertheless, it prevents aggregation of luciferase in the physiological temperature range of the organism, but is also fully functional at 30 degrees C in luciferase refolding. Additionally, GrpE(M.th.) and DnaJ(M.th.) substitute their eubacterial counterparts whereas DnaK(M.th.) is only functional with its native cochaperones which could be attributed to a functional specialization of the eubacterial chaperones during evolution.
Collapse
Affiliation(s)
- Simone L Popp
- Max-Planck-Institute for Medical Research, Department of Biomolecular Mechanisms, Heidelberg, Germany
| | | |
Collapse
|
30
|
Needham PG, Masison DC. Prion-impairing mutations in Hsp70 chaperone Ssa1: effects on ATPase and chaperone activities. Arch Biochem Biophys 2008; 478:167-74. [PMID: 18706386 PMCID: PMC2577198 DOI: 10.1016/j.abb.2008.07.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 07/28/2008] [Accepted: 07/30/2008] [Indexed: 01/22/2023]
Abstract
We previously described many Hsp70 Ssa1p mutants that impair [PSI(+)] prion propagation in yeast without affecting cell growth. To determine how the mutations alter Hsp70 we analyzed biochemically the substrate-binding domain (SBD) mutant L483W and the nucleotide-binding domain (NBD) mutants A17V and R34K. Ssa1(L483W) ATPase activity was elevated 10-fold and was least stimulated by substrates or Hsp40 co-chaperones. Ssa1(A17V) and Ssa1(R34K) ATPase activities were nearly wild type but both showed increased stimulation by substrates. Peptide binding and reactivation of denatured luciferase were enhanced in Ssa1(A17V) and Ssa1(R34K) but compromised in Ssa1(L483W). The nucleotide exchange factor Fes1 influenced ATPase of wild type Ssa1 and each mutant differently. Partial protease digestion uncovered similar and distinct conformational changes of the substrate-binding domain among the three mutants. Our data suggest that prion-impairing mutations of Ssa1 can increase or decrease substrate interactions, alter the Hsp70 reaction cycle at different points and impair normal NBD-SBD cooperation.
Collapse
Affiliation(s)
- Patrick G Needham
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Building 8, Room 407, LBG/NIDDK, Bethesda, MD 20892-0851, USA
| | | |
Collapse
|
31
|
Guan J, Yuan L. A heat-shock protein 40, DNAJB13, is an axoneme-associated component in mouse spermatozoa. Mol Reprod Dev 2008; 75:1379-86. [DOI: 10.1002/mrd.20874] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
32
|
Yu J, Bao E, Yan J, Lei L. Expression and localization of Hsps in the heart and blood vessel of heat-stressed broilers. Cell Stress Chaperones 2008; 13:327-35. [PMID: 18350374 PMCID: PMC2673943 DOI: 10.1007/s12192-008-0031-7] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2008] [Revised: 02/08/2008] [Accepted: 02/08/2008] [Indexed: 11/25/2022] Open
Abstract
The objective of this study was to investigate the kinetics of Hsp60, Hsp70, Hsp90 protein, and messenger RNA (mRNA) expression levels and to correlate these heat shock protein (Hsp) levels with tissue damage resulting from exposure to high temperatures for varying amounts of time. One hundred broilers were heat-stressed for 0, 2, 3, 5, and 10 h, respectively, by rapidly increasing the ambient temperature from 22 +/- 1 degrees C to 37 +/- 1 degrees C. Obvious elevations of plasma creatine kinase indicate damage to myocardial cells after heat stress. Hsp70 and Hsp90, and their corresponding mRNAs in the heart tissue of heat-stressed broilers, elevated significantly after 2 h of heat exposure and decreased quickly with continued heat stress. However, the levels of hsp60 mRNA in the heart of heat-stressed broilers increased sharply (P < 0.01) at 2 h of heat stress but then decreased quickly after 3 h, while the level of Hsp60 protein in the heart increased (P < 0.01) at 2 h of heat stress and maintained a high level throughout heat exposure. The results indicate that the elevation of the three Hsps, especially Hsp60 in heart, may be important markers at the beginning of heat stress and act as protective proteins in adverse environments. The reduction of Hsp signals in the cytoplasm of myocardial cells implies that myocardial cell lesions may have an adverse impact on the function of Hsps during heat stress. Meanwhile, the localization of Hsp70 in blood vessels of broiler hearts suggests another possible mechanism for protection of the heart after heat exposure.
Collapse
Affiliation(s)
- Jimian Yu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China
| | - Endong Bao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jianyan Yan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China
| | - Lei Lei
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
33
|
Abstract
Mitochondria cannot be made de novo but replicate by a mechanism of recruitment of new proteins, which are added to preexisting subcompartments. Although mitochondria have their own DNA, more than 98% of the total protein complement of the organelle is encoded by the nuclear genome. Mitochondrial biogenesis requires a coordination of expression of two genomes and therefore cross talk between the nucleus and mitochondria. In mammals, regulation of mitochondrial biogenesis and proliferation is influenced by external factors, such as nutrients, hormones, temperature, exercise, hypoxia, and aging. This complexity points to the existence of a coordinated and tightly regulated network connecting different pathways. Communications are also required for eliciting mitochondrial responses to specific stress pathways. This review covers the mechanisms of mitochondrial biogenesis and the way cells respond to external signals to maintain mitochondrial function and cellular homeostasis.
Collapse
Affiliation(s)
- Michael T Ryan
- Department of Biochemistry, La Trobe University, Melbourne 3086, Australia.
| | | |
Collapse
|
34
|
Dunning CJR, McKenzie M, Sugiana C, Lazarou M, Silke J, Connelly A, Fletcher JM, Kirby DM, Thorburn DR, Ryan MT. Human CIA30 is involved in the early assembly of mitochondrial complex I and mutations in its gene cause disease. EMBO J 2007; 26:3227-37. [PMID: 17557076 PMCID: PMC1914096 DOI: 10.1038/sj.emboj.7601748] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Accepted: 05/15/2007] [Indexed: 11/09/2022] Open
Abstract
In humans, complex I of the respiratory chain is composed of seven mitochondrial DNA (mtDNA)-encoded and 38 nuclear-encoded subunits that assemble together in a process that is poorly defined. To date, only two complex I assembly factors have been identified and how each functions is not clear. Here, we show that the human complex I assembly factor CIA30 (complex I intermediate associated protein) associates with newly translated mtDNA-encoded complex I subunits at early stages in their assembly before dissociating at a later stage. Using antibodies we identified a CIA30-deficient patient who presented with cardioencephalomyopathy and reduced levels and activity of complex I. Genetic analysis revealed the patient had mutations in both alleles of the NDUFAF1 gene that encodes CIA30. Complex I assembly in patient cells was defective at early stages with subunits being degraded. Complementing the deficiency in patient fibroblasts with normal CIA30 using a novel lentiviral system restored steady-state complex I levels. Our results indicate that CIA30 is a crucial component in the early assembly of complex I and mutations in its gene can cause mitochondrial disease.
Collapse
Affiliation(s)
- C J R Dunning
- Department of Biochemistry, La Trobe University, Melbourne, Australia
| | - M McKenzie
- Department of Biochemistry, La Trobe University, Melbourne, Australia
| | - C Sugiana
- Murdoch Childrens Research Institute and Genetic Health Services Victoria, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - M Lazarou
- Department of Biochemistry, La Trobe University, Melbourne, Australia
| | - J Silke
- Department of Biochemistry, La Trobe University, Melbourne, Australia
| | - A Connelly
- Department of Biochemistry, La Trobe University, Melbourne, Australia
| | - J M Fletcher
- Department of Genetic Medicine, Women's and Children's Hospital and University of Adelaide, Adelaide, Australia
| | - D M Kirby
- Murdoch Childrens Research Institute and Genetic Health Services Victoria, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - D R Thorburn
- Murdoch Childrens Research Institute and Genetic Health Services Victoria, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - M T Ryan
- Department of Biochemistry, La Trobe University, Melbourne, Australia
- Department of Biochemistry, La Trobe University, Plenty Road, Melbourne, Victoria 3086, Australia. Tel.: +61 3 9479 2156; Fax: +61 3 9479 2467; E-mail:
| |
Collapse
|
35
|
Vogel M, Mayer MP, Bukau B. Allosteric Regulation of Hsp70 Chaperones Involves a Conserved Interdomain Linker. J Biol Chem 2006; 281:38705-11. [PMID: 17052976 DOI: 10.1074/jbc.m609020200] [Citation(s) in RCA: 165] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The 70-kDa heat shock proteins (Hsp70) are essential members of the cellular chaperone machinery that assists protein-folding processes. To perform their functions Hsp70 chaperones toggle between two nucleotide-controlled conformational states. ATP binding to the ATPase domain triggers the transition to the low affinity state of the substrate-binding domain, while substrate binding to the substrate-binding domain in synergism with the action of a J-domain-containing cochaperone stimulates ATP hydrolysis and thereby transition to the high affinity state. Thus, ATPase and substrate-binding domains mutually affect each other through an allosteric control mechanism, the basis of which is largely unknown. In this study we identified two positively charged, surface-exposed residues in the ATPase domain and a negatively charged residue in the linker connecting both domains that are important for interdomain communication. Furthermore, we demonstrate that the linker alone is sufficient to stimulate the ATPase activity, an ability that is lost upon amino acid replacement. The linker therefore is most likely the lever that is wielded by the substrate-binding domain and the cochaperone onto the ATPase domain to induce a conformation favorable for ATP hydrolysis. Based on our results we propose a mechanism of interdomain communication.
Collapse
Affiliation(s)
- Markus Vogel
- Zentrum für Molekulare Biologie der Universität Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
36
|
Fisher MT. Molecular roles of chaperones in assisted folding and assembly of proteins. GENETIC ENGINEERING 2006; 27:191-229. [PMID: 16382878 DOI: 10.1007/0-387-25856-6_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Affiliation(s)
- Mark T Fisher
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| |
Collapse
|
37
|
Gong WJ, Golic KG. Loss of Hsp70 in Drosophila is pleiotropic, with effects on thermotolerance, recovery from heat shock and neurodegeneration. Genetics 2005; 172:275-86. [PMID: 16204210 PMCID: PMC1456155 DOI: 10.1534/genetics.105.048793] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The heat-shock response is a programmed change in gene expression carried out by cells in response to environmental stress, such as heat. This response is universal and is characterized by the synthesis of a small group of conserved protein chaperones. In Drosophila melanogaster the Hsp70 chaperone dominates the profile of protein synthesis during the heat-shock response. We recently generated precise deletion alleles of the Hsp70 genes of D. melanogaster and have used those alleles to characterize the phenotypes of Hsp70-deficient flies. Flies with Hsp70 deletions have reduced thermotolerance. We find that Hsp70 is essential to survive a severe heat shock, but is not required to survive a milder heat shock, indicating that a significant degree of thermotolerance remains in the absence of Hsp70. However, flies without Hsp70 have a lengthened heat-shock response and an extended developmental delay after a non-lethal heat shock, indicating Hsp70 has an important role in recovery from stress, even at lower temperatures. Lack of Hsp70 also confers enhanced sensitivity to a temperature-sensitive lethal mutation and to the neurodegenerative effects produced by expression of a human polyglutamine disease protein.
Collapse
Affiliation(s)
- Wei J Gong
- Department of Biology, University of Utah, Salt Lake City, Utah 84112, USA
| | | |
Collapse
|
38
|
Abstract
Hsp70 proteins are central components of the cellular network of molecular chaperones and folding catalysts. They assist a large variety of protein folding processes in the cell by transient association of their substrate binding domain with short hydrophobic peptide segments within their substrate proteins. The substrate binding and release cycle is driven by the switching of Hsp70 between the low-affinity ATP bound state and the high-affinity ADP bound state. Thus, ATP binding and hydrolysis are essential in vitro and in vivo for the chaperone activity of Hsp70 proteins. This ATPase cycle is controlled by co-chaperones of the family of J-domain proteins, which target Hsp70s to their substrates, and by nucleotide exchange factors, which determine the lifetime of the Hsp70-substrate complex. Additional co-chaperones fine-tune this chaperone cycle. For specific tasks the Hsp70 cycle is coupled to the action of other chaperones, such as Hsp90 and Hsp100.
Collapse
Affiliation(s)
- M. P. Mayer
- Zentrum für Molekulare Biologie (ZMBH), Universität Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - B. Bukau
- Zentrum für Molekulare Biologie (ZMBH), Universität Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| |
Collapse
|
39
|
Humphries AD, Streimann IC, Stojanovski D, Johnston AJ, Yano M, Hoogenraad NJ, Ryan MT. Dissection of the mitochondrial import and assembly pathway for human Tom40. J Biol Chem 2005; 280:11535-43. [PMID: 15644312 DOI: 10.1074/jbc.m413816200] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Tom40 is the channel-forming subunit of the translocase of the mitochondrial outer membrane (TOM complex), essential for protein import into mitochondria. Tom40 is synthesized in the cytosol and contains information for its mitochondrial targeting and assembly. A number of stable import intermediates have been identified for Tom40 precursors in fungi, the first being an association with the sorting and assembly machinery (SAM) of the outer membrane. By examining the import pathway of human Tom40, we have been able to elucidate additional features in its import. We identify that Hsp90 is involved in delivery of the Tom40 precursor to mitochondria in an ATP-dependent manner. The precursor then forms its first stable intermediate with the outer face of the TOM complex before its membrane integration and assembly. Deletion of an evolutionary conserved region within Tom40 disrupts the TOM complex intermediate and causes it to stall at a new complex in the intermembrane space that we identify to be the mammalian SAM. Unlike its fungal counterparts, the human Tom40 precursor is not found stably arrested at a SAM intermediate. Nevertheless, we show that Tom40 assembly is reduced in mitochondria depleted of human Sam50. These findings are discussed in context with current models from fungal studies.
Collapse
Affiliation(s)
- Adam D Humphries
- Department of Biochemistry, La Trobe University, Melbourne 3086, Australia
| | | | | | | | | | | | | |
Collapse
|
40
|
Mayer MP. Recruitment of Hsp70 chaperones: a crucial part of viral survival strategies. Rev Physiol Biochem Pharmacol 2004; 153:1-46. [PMID: 15243813 DOI: 10.1007/s10254-004-0025-5] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Virus proliferation depends on the successful recruitment of host cellular components for their own replication, protein synthesis, and virion assembly. In the course of virus particle production a large number of proteins are synthesized in a relatively short time, whereby protein folding can become a limiting step. Most viruses therefore need cellular chaperones during their life cycle. In addition to their own protein folding problems viruses need to interfere with cellular processes such as signal transduction, cell cycle regulation and induction of apoptosis in order to create a favorable environment for their proliferation and to avoid premature cell death. Chaperones are involved in the control of these cellular processes and some viruses reprogram their host cell by interacting with them. Hsp70 chaperones, as central components of the cellular chaperone network, are frequently recruited by viruses. This review focuses on the function of Hsp70 chaperones at the different stages of the viral life cycle emphasizing mechanistic aspects.
Collapse
Affiliation(s)
- M P Mayer
- Zentrum für Molekulare Biologie, Universität Heidelberg, Im Neuenheimer Feld 282, 69120, Heidelberg, Germany.
| |
Collapse
|
41
|
|
42
|
Mokranjac D, Paschen SA, Kozany C, Prokisch H, Hoppins SC, Nargang FE, Neupert W, Hell K. Tim50, a novel component of the TIM23 preprotein translocase of mitochondria. EMBO J 2003; 22:816-25. [PMID: 12574118 PMCID: PMC145450 DOI: 10.1093/emboj/cdg090] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The preprotein translocase of the inner membrane of mitochondria (TIM23 complex) is the main entry gate for proteins of the matrix and the inner membrane. We isolated the TIM23 complex of Neurospora crassa. Besides Tim23 and Tim17, it contained a novel component, referred to as Tim50. Tim50 spans the inner membrane with a single transmembrane segment and exposes a large hydrophilic domain in the intermembrane space. Tim50 is essential for viability of yeast. Mitochondria from cells depleted of Tim50 displayed strongly reduced import kinetics of preproteins using the TIM23 complex. Tim50 could be cross-linked to preproteins that were halted at the level of the translocase of the outer membrane (TOM complex) or spanning both TOM and TIM23 complexes. We suggest that Tim50 plays a crucial role in the transfer of preproteins from the TOM complex to the TIM23 complex through the intermembrane space.
Collapse
Affiliation(s)
| | | | | | | | - Suzanne C. Hoppins
- Adolf-Butenandt-Institut, Lehrstuhl für Physiologische Chemie, Ludwig-Maximilians-Universität München, Butenandtstrasse 5, D-81377 München, Germany and
Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada Corresponding author e-mail:
| | - Frank E. Nargang
- Adolf-Butenandt-Institut, Lehrstuhl für Physiologische Chemie, Ludwig-Maximilians-Universität München, Butenandtstrasse 5, D-81377 München, Germany and
Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada Corresponding author e-mail:
| | - Walter Neupert
- Adolf-Butenandt-Institut, Lehrstuhl für Physiologische Chemie, Ludwig-Maximilians-Universität München, Butenandtstrasse 5, D-81377 München, Germany and
Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada Corresponding author e-mail:
| | | |
Collapse
|
43
|
Johnston AJ, Hoogenraad J, Dougan DA, Truscott KN, Yano M, Mori M, Hoogenraad NJ, Ryan MT. Insertion and assembly of human tom7 into the preprotein translocase complex of the outer mitochondrial membrane. J Biol Chem 2002; 277:42197-204. [PMID: 12198123 DOI: 10.1074/jbc.m205613200] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tom7 is a component of the translocase of the outer mitochondrial membrane (TOM) and assembles into a general import pore complex that translocates preproteins into mitochondria. We have identified the human Tom7 homolog and characterized its import and assembly into the mammalian TOM complex. Tom7 is imported into mitochondria in a nucleotide-independent manner and is anchored to the outer membrane with its C terminus facing the intermembrane space. Unlike studies in fungi, we found that human Tom7 assembles into an approximately 120-kDa import intermediate in HeLa cell mitochondria. To detect subunits within this complex, we employed a novel supershift analysis whereby mitochondria containing newly imported Tom7 were incubated with antibodies specific for individual TOM components prior to separation by blue native electrophoresis. We found that the 120-kDa complex contains Tom40 and lacks receptor components. This intermediate can be chased to the stable approximately 380-kDa mammalian TOM complex that additionally contains Tom22. Overexpression of Tom22 in HeLa cells results in the rapid assembly of Tom7 into the 380-kDa complex indicating that Tom22 is rate-limiting for TOM complex formation. These results indicate that the levels of Tom22 within mitochondria dictate the assembly of TOM complexes and hence may regulate its biogenesis.
Collapse
Affiliation(s)
- Amelia J Johnston
- Department of Biochemistry, La Trobe University, 3086 Melbourne, Australia
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Proteins that are destined for the matrix of mitochondria are transported into this organelle by two translocases: the TOM complex, which transports proteins across the outer mitochondrial membrane; and the TIM23 complex, which gets them through the inner mitochondrial membrane. Two models have been proposed to explain how this protein-import machinery works -- a targeted Brownian ratchet, in which random motion is translated into vectorial motion, or a 'power stroke', which is exerted by a component of the import machinery. Here, we review the data for and against each model.
Collapse
Affiliation(s)
- Walter Neupert
- Institut für Physiologische Chemie, Universität München, Butenandtstrabetae 5, Gebäude B, D-81377 Munich, Germany.
| | | |
Collapse
|
45
|
Feder ME, Bedford TBC, Albright DR, Michalak P. Evolvability of Hsp70 expression under artificial election for inducible thermotolerance in independent populations of Drosophila melanogaster. Physiol Biochem Zool 2002; 75:325-34. [PMID: 12324888 DOI: 10.1086/342350] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
To test whether expression of the inducible heat-shock protein Hsp70 increases under selection for inducible thermotolerance in Drosophila melanogaster, we performed artificial selection on replicate sets of Drosophila lines founded from two independent populations. Selection entailed pretreatment at 36 degrees C to induce thermotolerance and Hsp70 expression, followed by a more severe heat shock, whose temperature varied between sexes and among generations to achieve 50% mortality. Inducible thermotolerance increased slowly and continuously in selected lines and was 37%-50% greater than in controls after 10-11 generations. Lines founded from the two populations differed in their coevolution of Hsp70 expression. In lines founded from Evolution Canyon, Israel, Hsp70 level initially increased and thereafter was unchanged; replicate lines exhibited two temporal patterns of response to selection. In lines founded from Australia, Hsp70 levels increased throughout selection. In both cases, however, the increase in Hsp70 level averaged only 15%, suggesting that pleiotropy in Hsp70 function constrains evolutionary increase in its expression.
Collapse
Affiliation(s)
- Martin E Feder
- Department of Organismal Biology and Anatomy, University of Chicago, 1027 East 57th Street, IL 60637, USA.
| | | | | | | |
Collapse
|