1
|
Behrendt T, Quisilima JI, Bielitzki R, Behrens M, Glazachev OS, Brigadski T, Leßmann V, Schega L. Brain-Derived neurotrophic factor and inflammatory biomarkers are unaffected by acute and chronic intermittent hypoxic-hyperoxic exposure in geriatric patients: a randomized controlled trial. Ann Med 2024; 56:2304650. [PMID: 38253008 PMCID: PMC10810628 DOI: 10.1080/07853890.2024.2304650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/24/2023] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Animal and human studies have shown that exposure to hypoxia can increase brain-derived neurotrophic factor (BDNF) protein transcription and reduce systematic inflammatory cytokine response. Therefore, the aim of this study was to investigate the acute and chronic effects of intermittent hypoxic-hyperoxic exposure (IHHE) prior to aerobic exercise on BDNF, interleukin-6 (IL-6), and C-reactive protein (CRP) blood levels in geriatric patients. PATIENTS AND METHODS Twenty-five geriatric patients (83.1 ± 5.0 yrs, 71.1 ± 10.0 kg, 1.8 ± 0.9 m) participated in a placebo-controlled, single-blinded trial and were randomly assigned to either an intervention (IG) or control group (CG) performing an aerobic cycling training (17 sessions, 20 min·session-1, 3 sessions·week-1). Prior to aerobic cycling exercise, the IG was additionally exposed to IHHE for 30 min, whereas the CG received continuous normoxic air. Blood samples were taken immediately before (pre-exercise) and 10 min (post-exercise) after the first session as well as 48 h (post-training) after the last session to determine serum (BDNFS) and plasma BDNF (BDNFP), IL-6, and CRP levels. Intervention effects were analyzed using a 2 x 2 analysis of covariance with repeated measures. Results were interpreted based on effect sizes with a medium effect considered as meaningful (ηp2 ≥ 0.06, d ≥ 0.5). RESULTS CRP was moderately higher (d = 0.51) in the CG compared to the IG at baseline. IHHE had no acute effect on BDNFS (ηp2 = 0.01), BDNFP (ηp2 < 0.01), BDNF serum/plasma-ratio (ηp2 < 0.01), IL-6 (ηp2 < 0.01), or CRP (ηp2 = 0.04). After the 6-week intervention, an interaction was found for BDNF serum/plasma-ratio (ηp2 = 0.06) but not for BDNFS (ηp2 = 0.04), BDNFP (ηp2 < 0.01), IL-6 (ηp2 < 0.01), or CRP (ηp2 < 0.01). BDNF serum/plasma-ratio increased from pre-exercise to post-training (d = 0.67) in the CG compared to the IG (d = 0.51). A main effect of time was found for BDNFP (ηp2 = 0.09) but not for BDNFS (ηp2 = 0.02). Within-group post-hoc analyses revealed a training-related reduction in BDNFP in the IG and CG by 46.1% (d = 0.73) and 24.7% (d = 0.57), respectively. CONCLUSION The addition of 30 min IHHE prior to 20 min aerobic cycling seems not to be effective to increase BDNFS and BDNFP or to reduce IL-6 and CRP levels in geriatric patients after a 6-week intervention.The study was retrospectively registered at drks.de (DRKS-ID: DRKS00025130).
Collapse
Affiliation(s)
- Tom Behrendt
- Department of Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Jessica Ibanez Quisilima
- Department of Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Robert Bielitzki
- Department of Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Martin Behrens
- University of Applied Sciences for Sport and Management Potsdam, Potsdam, Germany
| | - Oleg S. Glazachev
- Department of Human Physiology, Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Tanja Brigadski
- Department of Informatics and Microsystem Technology, University of Applied Sciences Kaiserslautern, Zweibrücken, Germany
| | - Volkmar Leßmann
- Institute of Physiology, Otto-von-Guericke University Magdeburg, Medical Faculty, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Lutz Schega
- Department of Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
2
|
Lee Y, Byeon E, Lee JS, Maszczyk P, Kim HS, Sayed AEDH, Yang Z, Lee JS, Kim DH. Differential susceptibility to hypoxia in hypoxia-inducible factor 1-alpha (HIF-1α)-targeted freshwater water flea Daphnia magna mutants. MARINE POLLUTION BULLETIN 2024; 209:117138. [PMID: 39486200 DOI: 10.1016/j.marpolbul.2024.117138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 11/04/2024]
Abstract
The water flea, Daphnia magna, serves as a key model organism for investigating the response of aquatic organisms to environmental stressors, including hypoxia. Hypoxia-inducible factor 1-alpha (HIF-1α) is a central regulatory protein involved in the cellular response to hypoxic conditions. In this study, we used CRISPR/Cas9 gene editing to create D. magna mutant lines with targeted alterations in the HIF-1α gene. Mutants demonstrated decreased survival and reproductive output and down-regulated genes for the HIF-1α-mediated pathway in low-oxygen conditions. These findings suggest that the HIF-1α pathway is a critical component of resistance to hypoxia in D. magna. This study provides novel insights into the molecular basis of hypoxia tolerance of HIF-1α in D. magna and expands our understanding of how aquatic organisms can adapt to or be challenged by changing oxygen levels in the face of global environmental changes.
Collapse
Affiliation(s)
- Yoseop Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Eunjin Byeon
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jin-Sol Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Piotr Maszczyk
- Department of Hydrobiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea
| | - Alaa El-Din H Sayed
- Department of Zoology, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Zhou Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Duck-Hyun Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
3
|
Acosta-Iborra B, Gil-Acero AI, Sanz-Gómez M, Berrouayel Y, Puente-Santamaría L, Alieva M, del Peso L, Jiménez B. Bhlhe40 Regulates Proliferation and Angiogenesis in Mouse Embryoid Bodies under Hypoxia. Int J Mol Sci 2024; 25:7669. [PMID: 39062912 PMCID: PMC11277088 DOI: 10.3390/ijms25147669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Knowledge of the molecular mechanisms that underlie the regulation of major adaptive responses to an unbalanced oxygen tension is central to understanding tissue homeostasis and disease. Hypoxia-inducible transcription factors (HIFs) coordinate changes in the transcriptome that control these adaptive responses. Here, we focused on the functional role of the transcriptional repressor basic-helix-loop-helix family member e40 (Bhlhe40), which we previously identified in a meta-analysis as one of the most consistently upregulated genes in response to hypoxia across various cell types. We investigated the role of Bhlhe40 in controlling proliferation and angiogenesis using a gene editing strategy in mouse embryonic stem cells (mESCs) that we differentiated in embryoid bodies (EBs). We observed that hypoxia-induced Bhlhe40 expression was compatible with the rapid proliferation of pluripotent mESCs under low oxygen tension. However, in EBs, hypoxia triggered a Bhlhe40-dependent cell cycle arrest in most progenitor cells and endothelial cells within vascular structures. Furthermore, Bhlhe40 knockout increased the basal vascularization of the EBs in normoxia and exacerbated the hypoxia-induced vascularization, supporting a novel role for Bhlhe40 as a negative regulator of blood vessel formation. Our findings implicate Bhlhe40 in mediating key functional adaptive responses to hypoxia, such as proliferation arrest and angiogenesis.
Collapse
Affiliation(s)
- Bárbara Acosta-Iborra
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Arturo Duperier, 4, 28029 Madrid, Spain
| | - Ana Isabel Gil-Acero
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Arturo Duperier, 4, 28029 Madrid, Spain
| | - Marta Sanz-Gómez
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Arturo Duperier, 4, 28029 Madrid, Spain
| | - Yosra Berrouayel
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Arturo Duperier, 4, 28029 Madrid, Spain
| | - Laura Puente-Santamaría
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Arturo Duperier, 4, 28029 Madrid, Spain
- Biocomputing Unit, Instituto Aragonés de Ciencias de la Salud, San Juan Bosco, 50009 Zaragoza, Spain
| | - Maria Alieva
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Arturo Duperier, 4, 28029 Madrid, Spain
| | - Luis del Peso
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Arturo Duperier, 4, 28029 Madrid, Spain
- IdiPaz, Instituto de Investigación Sanitaria del Hospital Universitario La Paz, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Unidad Asociada de Biomedicina CSIC-UCLM, 02006 Albacete, Spain
| | - Benilde Jiménez
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Arturo Duperier, 4, 28029 Madrid, Spain
- IdiPaz, Instituto de Investigación Sanitaria del Hospital Universitario La Paz, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Unidad Asociada de Biomedicina CSIC-UCLM, 02006 Albacete, Spain
| |
Collapse
|
4
|
Putri IL, Alyssa A, Aisyah IF, Permatasari AAIY, Pramanasari R, Wungu CDK. The efficacy of topical oxygen therapy for wound healing: A meta-analysis of randomized controlled trials and observational studies. Int Wound J 2024; 21:e14960. [PMID: 38984473 PMCID: PMC11234139 DOI: 10.1111/iwj.14960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 07/11/2024] Open
Abstract
In preclinical studies, topical oxygen treatment (TOT) was shown to enhance wound healing by applying supplemental oxygen topically to the surface of a moist wound at normobaric conditions. The objective of this systematic review and meta-analysis is to provide a thorough evaluation of published RCTs and observational studies that compare supplemental TOT with standard wound care. A total of 1077 studies were obtained from a variety of databases, including PubMed, ScienceDirect, Web of Science, ProQuest, Scopus, ClinicalTrials.gov, EU Clinical Trial Registers, and Preprints.org. The Jadad scale was employed to assess the reliability of RCT studies, while the Newcastle-Ottawa Scale (NOS) was employed to assess the quality of observational studies. Seven RCT studies (n = 692) and two controlled observational studies (n = 111) were analysed. The rate of healed wounds was 25.8% in the control group and 43.25% in the adjuvant TOT group, which shows the use of TOT significantly increased the number of healed wounds (RR = 1.77; 95% CI 1.18-2.64; p = 0.005). A significant decrease in the percentage of wound area was found in the TOT group in RCT studies (mean difference = 15.64; 95% CI 5.22-26.06; p = 0.003). In observational studies, the rate of healed wounds was 37.5% in the standard care group and 80.95% in the adjuvant TOT group, which shows a significant increase in the number of healed wounds in the adjuvant TOT group (RR = 2.15; 95% CI 1.46-3.15; p < 0.00001). Topical oxygen therapy is considered a great adjuvant therapy for chronic wound healing, particularly wounds with vascular compromise such as diabetic ulcers and pressure ulcers. Further studies on this topic are still needed as there are a lot of potential uses for this technology in various types of wounds.
Collapse
Affiliation(s)
- Indri Lakhsmi Putri
- Department of Plastic Reconstructive and Aesthetic Surgery, Faculty of Medicine, Airlangga University, Surabaya, Indonesia
- Plastic Reconstructive and Aesthetic Surgery Unit, Airlangga University Hospital, Surabaya, Indonesia
| | - Agnesia Alyssa
- Plastic Reconstructive and Aesthetic Surgery Unit, Airlangga University Hospital, Surabaya, Indonesia
| | - Imaniar Fitri Aisyah
- Department of Mechanical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
| | | | - Rachmaniar Pramanasari
- Plastic Reconstructive and Aesthetic Surgery Unit, Airlangga University Hospital, Surabaya, Indonesia
| | - Citrawati Dyah Kencono Wungu
- Department of Physiology and Medical Biochemistry, Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| |
Collapse
|
5
|
León F, Pizarro EJ, Noll D, Pertierra LR, Gonzalez BA, Johnson WE, Marín JC, Vianna JA. History of Diversification and Adaptation from North to South Revealed by Genomic Data: Guanacos from the Desert to Sub-Antarctica. Genome Biol Evol 2024; 16:evae085. [PMID: 38761112 PMCID: PMC11102080 DOI: 10.1093/gbe/evae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2024] [Indexed: 05/20/2024] Open
Abstract
The increased availability of quality genomic data has greatly improved the scope and resolution of our understanding of the recent evolutionary history of wild species adapted to extreme environments and their susceptibility to anthropogenic impacts. The guanaco (Lama guanicoe), the largest wild ungulate in South America, is a good example. The guanaco is well adapted to a wide range of habitats, including the Sechura Desert, the high Andes Mountains to the north, and the extreme temperatures and conditions of Navarino Island to the south. Guanacos also have a long history of overexploitation by humans. To assess the evolutionary impact of these challenging habitats on the genomic diversity, we analyzed 38 genomes (∼10 to 16×) throughout their extensive latitudinal distribution from the Sechura and Atacama Desert to southward into Tierra del Fuego Island. These included analyses of patterns of unique differentiation in the north and geographic region further south with admixture among L. g. cacsilensis and L. g. guanicoe. Our findings provide new insights on the divergence of the subspecies ∼800,000 yr BP and document two divergent demographic trajectories and to the initial expansion of guanaco into the more southern portions of the Atacama Desert. Patagonian guanacos have experienced contemporary reductions in effective population sizes, likely the consequence of anthropogenic impacts. The lowest levels of genetic diversity corresponded to their northern and western limits of distribution and some varying degrees of genetic differentiation. Adaptive genomic diversity was strongly linked with environmental variables and was linked with colonization toward the south followed by adaptation.
Collapse
Affiliation(s)
- Fabiola León
- Pontificia Universidad Católica de Chile, Facultad de Ciencias Biológicas, Instituto para el Desarrollo Sustentable, Santiago, Chile
- Millennium Institute Center for Genome Regulation (CRG), Santiago, Chile
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
- Millennium Nucleus of Patagonian Limit of Life (LiLi), Santiago, Chile
| | - Eduardo J Pizarro
- Pontificia Universidad Católica de Chile, Facultad de Ciencias Biológicas, Instituto para el Desarrollo Sustentable, Santiago, Chile
- Millennium Institute Center for Genome Regulation (CRG), Santiago, Chile
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
- Millennium Nucleus of Patagonian Limit of Life (LiLi), Santiago, Chile
| | - Daly Noll
- Pontificia Universidad Católica de Chile, Facultad de Ciencias Biológicas, Instituto para el Desarrollo Sustentable, Santiago, Chile
- Millennium Institute Center for Genome Regulation (CRG), Santiago, Chile
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
- Millennium Nucleus of Patagonian Limit of Life (LiLi), Santiago, Chile
| | - Luis R Pertierra
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
| | - Benito A Gonzalez
- Laboratorio de Ecología de Vida Silvestre, Facultad de Ciencias Forestales y de la Conservación de la Naturaleza, Universidad de Chile, Santigo, Chile
| | | | - Juan Carlos Marín
- Laboratorio de Genómica y Biodiversidad, Departamento de Ciencias Básicas, Universidad del Bio-Bío, Chillán, Chile
| | - Juliana A Vianna
- Pontificia Universidad Católica de Chile, Facultad de Ciencias Biológicas, Instituto para el Desarrollo Sustentable, Santiago, Chile
- Millennium Institute Center for Genome Regulation (CRG), Santiago, Chile
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
- Millennium Nucleus of Patagonian Limit of Life (LiLi), Santiago, Chile
| |
Collapse
|
6
|
Szukiewicz D. CX3CL1 (Fractalkine)-CX3CR1 Axis in Inflammation-Induced Angiogenesis and Tumorigenesis. Int J Mol Sci 2024; 25:4679. [PMID: 38731899 PMCID: PMC11083509 DOI: 10.3390/ijms25094679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
The chemotactic cytokine fractalkine (FKN, chemokine CX3CL1) has unique properties resulting from the combination of chemoattractants and adhesion molecules. The soluble form (sFKN) has chemotactic properties and strongly attracts T cells and monocytes. The membrane-bound form (mFKN) facilitates diapedesis and is responsible for cell-to-cell adhesion, especially by promoting the strong adhesion of leukocytes (monocytes) to activated endothelial cells with the subsequent formation of an extracellular matrix and angiogenesis. FKN signaling occurs via CX3CR1, which is the only known member of the CX3C chemokine receptor subfamily. Signaling within the FKN-CX3CR1 axis plays an important role in many processes related to inflammation and the immune response, which often occur simultaneously and overlap. FKN is strongly upregulated by hypoxia and/or inflammation-induced inflammatory cytokine release, and it may act locally as a key angiogenic factor in the highly hypoxic tumor microenvironment. The importance of the FKN/CX3CR1 signaling pathway in tumorigenesis and cancer metastasis results from its influence on cell adhesion, apoptosis, and cell migration. This review presents the role of the FKN signaling pathway in the context of angiogenesis in inflammation and cancer. The mechanisms determining the pro- or anti-tumor effects are presented, which are the cause of the seemingly contradictory results that create confusion regarding the therapeutic goals.
Collapse
Affiliation(s)
- Dariusz Szukiewicz
- Department of Biophysics, Physiology & Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, 02-004 Warsaw, Poland
| |
Collapse
|
7
|
Basaran MM, Ozgursoy SK, Arslan H, Kocaturk S. The effect of subperichondrial dissection on nasal vascularity in septorhinoplasty operations. Eur Arch Otorhinolaryngol 2024; 281:1827-1833. [PMID: 38052758 DOI: 10.1007/s00405-023-08356-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 11/13/2023] [Indexed: 12/07/2023]
Abstract
PURPOSE Nasal vascularization runs above the superficial musculoaponeurotic system (SMAS). Perichondrium covers the lower and upper lateral cartilages. In this study, nasal vascularization was compared between subperichondrial and supraperichondrial dissection in closed septorhinoplasty. METHODS 95 patients and 41 volunteers were included in this study. Supraperichondrial dissection was performed in 48 patients and subperichondrial dissection was performed in 47 patients. To measure blood stream, laser doppler flowmetry (LDF) was used and measurements were done preoperatively, on the postoperative first week; 3rd month and first year. RESULTS The nasal tip and dorsum measurements were similar between the preoperative and postoperative first year in both groups (p = 1.000). However, in the supraperichondrial dissection group, nasal tip measurements showed a significant increase between the preoperative and third postoperative months (p = 0.011). This increase was accompanied by an increase in the minimal blood stream (p = 0.014). CONCLUSION Both subperichondrial and supraperichondrial dissection techniques are physiological and result in fewer complications with minimal permanent vascular damage. We believe incision plays a critical role but keeping the perichondrium intact is important for short-term angiogenesis, where long-term results showed no difference in vascularization.
Collapse
Affiliation(s)
| | | | - Hande Arslan
- Department of Otorhinolaryngology, Samsun Research and Training Hospital, Samsun, Turkey
| | - Sinan Kocaturk
- Department of Otorhinolaryngology, Losante Hospital, Ankara, Turkey
| |
Collapse
|
8
|
Heo JI, Ryu J. Exosomal noncoding RNA: A potential therapy for retinal vascular diseases. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102128. [PMID: 38356865 PMCID: PMC10865410 DOI: 10.1016/j.omtn.2024.102128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Exosomes are extracellular vesicles that can contain DNA, RNA, proteins, and metabolites. They are secreted by cells and play a regulatory role in various biological responses by mediating cell-to-cell communication. Moreover, exosomes are of interest in developing therapies for retinal vascular disorders because they can deliver various substances to cellular targets. According to recent research, exosomes can be used as a strategy for managing retinal vascular diseases, and they are being investigated for therapeutic purposes in eye conditions, including glaucoma, dry eye syndrome, retinal ischemia, diabetic retinopathy, and age-related macular degeneration. However, the role of exosomal noncoding RNA in retinal vascular diseases is not fully understood. Here, we reviewed the latest research on the biological role of exosomal noncoding RNA in treating retinal vascular diseases. Research has shown that noncoding RNAs, including microRNAs, circular RNAs, and long noncoding RNAs play a significant role in the regulation of retinal vascular diseases. Furthermore, through exosome engineering, the expression of relevant noncoding RNAs in exosomes can be controlled to regulate retinal vascular diseases. Therefore, this review suggests that exosomal noncoding RNA could be considered as a biomarker for diagnosis and as a therapeutic target for treating retinal vascular disease.
Collapse
Affiliation(s)
- Jong-Ik Heo
- Vessel-Organ Interaction Research Center, College of Pharmacy, Kyungpook National University, Daegu, South Korea
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, South Korea
| | - Juhee Ryu
- Vessel-Organ Interaction Research Center, College of Pharmacy, Kyungpook National University, Daegu, South Korea
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
9
|
Wang T, Chen S, Wang Z, Li S, Fei X, Wang T, Zhang M. KIRREL promotes the proliferation of gastric cancer cells and angiogenesis through the PI3K/AKT/mTOR pathway. J Cell Mol Med 2024; 28:e18020. [PMID: 37909722 PMCID: PMC10805501 DOI: 10.1111/jcmm.18020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/14/2023] [Accepted: 10/19/2023] [Indexed: 11/03/2023] Open
Abstract
Anti-angiogenesis is a promising therapeutic strategy for delaying tumour progression that offers, new hope for gastric cancer targeted therapy. The purpose of this study was to investigate the precise mechanism by which Kin of IRRE-like protein 1 (KIRREL) contributes to the development of gastric cancer, particularly in terms of tumour angiogenesis. Differential expression of KIRREL in tissues and cells was detected using quantitative real-time polymerase chain reaction, western blotting and immunohistochemistry. A bioinformatics analysis was conducted to screen for the function and pathway enrichment of KIRREL in gastric cancer. Lentivirus-induced KIRREL silencing in SNU-5 cells and lentivirus-induced KIRREL overexpression in AGS cells were used to study the effect of KIRREL on the proliferation, cell cycle and angiogenesis of gastric cancer cells. Moreover, the expressions of PI3K, P-PI3K, AKT, P-AKT, mTOR, P-mTOR, HIF-1α and VEGF were also detected. Gastric cancer tissues and cells had high levels of KIRREL expression, which is associated with the proliferation, cell cycle and angiogenesis of gastric cancer cells. After silencing and overexpressing KIRREL in SNU-5 and AGS cells, respectively, the proliferation and angiogenesis of SNU-5 cells were inhibited, while the proliferation and angiogenesis of AGS cells were promoted. According to a bioinformatics analysis of the KIRREL gene, angiogenesis regulation and the PI3K/AKT pathway were highly connected. The PI3K/AKT/mTOR pathway was repressed and stimulated by KIRREL silencing and overexpression, respectively. IGF-1, an AKT agonist, and LY294002, an inhibitor, reversed the effects of KIRREL silencing and overexpression on the PI3K/AKT/mTOR pathway and on gastric cancer cell proliferation and angiogenesis. KIRREL may mediate the proliferation and angiogenesis of gastric cancer cells through the PI3K/AKT/mTOR signalling pathway. These findings could help in the further development of potential anti-angiogenesis targets.
Collapse
Affiliation(s)
- Tao Wang
- Department of OncologyThe Second Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Shuo Chen
- Department of OncologyThe Second Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Ziliang Wang
- Department of OncologyThe Second Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Siyu Li
- Department of OncologyThe Second Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Xichang Fei
- Department of OncologyThe Second Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Tong Wang
- Department of General PracticeThe Second Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Mingjun Zhang
- Department of OncologyThe Second Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| |
Collapse
|
10
|
Yang Z, Ren K, Chen Y, Quanji X, Cai C, Yin J. Oxygen-Generating Hydrogels as Oxygenation Therapy for Accelerated Chronic Wound Healing. Adv Healthc Mater 2024; 13:e2302391. [PMID: 37899694 DOI: 10.1002/adhm.202302391] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/26/2023] [Indexed: 10/31/2023]
Abstract
Hypoxia in chronic wounds impairs the activities of reparative cells, resulting in tissue necrosis, bacterial infections, decreased angiogenesis, and delayed wound healing. To achieve effective oxygenation therapy and restore oxygen homeostasis, oxygen-generating hydrogels based on different oxygen sources have been developed to release dissolved oxygen in the wound bed, which not only alleviate hypoxia, but also accelerate chronic wound healing. This review first discusses the vital role of oxygen and hypoxia in the wound healing process. The advancements in oxygen-generating hydrogels, which produce oxygen through the decomposition of hydrogen peroxide, metal peroxides, glucose-activated cascade reactions, and photosynthesis of algae microorganisms for chronic wound healing, are discussed and summarized. The therapeutic effects and challenges of using oxygen-generating hydrogels for the clinical treatment of chronic wounds are concluded and prospected.
Collapse
Affiliation(s)
- Zhixuan Yang
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Kaixuan Ren
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Yehao Chen
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Xinyan Quanji
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Chengfeng Cai
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Jingbo Yin
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
11
|
Panda D, Nayak S. Stem Cell-Based Tissue Engineering Approaches for Diabetic Foot Ulcer: a Review from Mechanism to Clinical Trial. Stem Cell Rev Rep 2024; 20:88-123. [PMID: 37867186 DOI: 10.1007/s12015-023-10640-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2023] [Indexed: 10/24/2023]
Abstract
Diabetic foot ulcer (DFU) is a complication from incomplete or prolonged wound healing, at times requires amputation, putting substantial health and socioeconomic burden. Wound healing is a dynamic overlapping process that can be regulated by arrays of molecular factors showing redundancy in function. However, dysregulation in the mechanism of angiogenesis, extra cellular matrix (ECM) formation and immune modulation are the major causes for impair wound healing in hyperglycaemic patients. Despite development of wound care research, there is a lack of well-accepted targeted therapy with multidisciplinary approach for DFU treatment. Stem cell therapy holds a promising outcome both in preclinical and clinical trials because of its ability to promote healing via regeneration and specialized tissue differentiation. Among different types of stem cells, regenerative potential of mesenchymal stem cell (MSC) is well demonstrated in both experimental and clinical trial. Still there is a huge knowledge gap among medical practitioners for deciding the best stem cell source, administration route, and safety. This review strengthens the fact that why stem cell therapy is a promising candidate to treat DFU and cited multiple tissue engineering and biomaterial-based approaches for delivering stem cells and their aftermath paracrine events. Based on the pre-clinical and clinical studies, the review tried to come up with optimum stem cell source and delivery route for the treatment of DFU. At last, the review glances on possible direction to enhance therapeutics strategy for the same, including different approaches like: phytocompounds, exosomes, scaffold geometry, cell preconditioning and licensing etc.
Collapse
Affiliation(s)
- Debarchan Panda
- Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Sunita Nayak
- Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
12
|
Shi Z, Yao C, Shui Y, Li S, Yan H. Research progress on the mechanism of angiogenesis in wound repair and regeneration. Front Physiol 2023; 14:1284981. [PMID: 38089479 PMCID: PMC10711283 DOI: 10.3389/fphys.2023.1284981] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/13/2023] [Indexed: 12/10/2024] Open
Abstract
Poor wound healing and pathological healing have been pressing issues in recent years, as they impact human quality of life and pose risks of long-term complications. The study of neovascularization has emerged as a prominent research focus to address these problems. During the process of repair and regeneration, the establishment of a new vascular system is an indispensable stage for complete healing. It provides favorable conditions for nutrient delivery, oxygen supply, and creates an inflammatory environment. Moreover, it is a key manifestation of the proliferative phase of wound healing, bridging the inflammatory and remodeling phases. These three stages are closely interconnected and inseparable. This paper comprehensively integrates the regulatory mechanisms of new blood vessel formation in wound healing, focusing on the proliferation and migration of endothelial cells and the release of angiogenesis-related factors under different healing outcomes. Additionally, the hidden link between the inflammatory environment and angiogenesis in wound healing is explored.
Collapse
Affiliation(s)
- Zhuojun Shi
- Department of Plastic and Burns Surgery, The Affiliated Hospital of Southwest Medical University, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, Luzhou, Sichuan, China
| | - Chong Yao
- Department of Plastic and Burns Surgery, The Affiliated Hospital of Southwest Medical University, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, Luzhou, Sichuan, China
| | - Yujie Shui
- Department of Plastic and Burns Surgery, The Affiliated Hospital of Southwest Medical University, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, Luzhou, Sichuan, China
| | - Site Li
- Department of Plastic and Burns Surgery, The Affiliated Hospital of Southwest Medical University, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, Luzhou, Sichuan, China
| | - Hong Yan
- Laboratory of Plastic Surgery, Department of Plastic Surgery and Reconstruction, Second Hospital of West China, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
13
|
Tumova S, Dolezel D, Jindra M. Conserved and Unique Roles of bHLH-PAS Transcription Factors in Insects - From Clock to Hormone Reception. J Mol Biol 2023; 436:168332. [PMID: 39491146 DOI: 10.1016/j.jmb.2023.168332] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/05/2024]
Abstract
A dozen bHLH-PAS transcription factors have evolved since the dawn of the animal kingdom; nine of them have mutual orthologs between arthropods and vertebrates. These proteins are master regulators in a range of developmental processes from organogenesis, nervous system formation and functioning, to cell fate decisions defining identity of limbs or photoreceptors for color vision. Among the functionally best conserved are bHLH-PAS proteins acting in the animal circadian clock. On the other side of the spectrum are fundamental physiological mechanisms such as those underlying xenobiotic detoxification, oxygen homeostasis, and metabolic adaptation to hypoxia, infection or tumor progression. Predictably, malfunctioning of bHLH-PAS regulators leads to pathologies. Performance of the individual bHLH-PAS proteins is modulated at multiple levels including dimerization and other protein-protein interactions, proteasomal degradation, and by binding low-molecular weight ligands. Despite the vast evolutionary gap dividing arthropods and vertebrates, and the differences in their anatomy, many functions of orthologous bHLH-PAS proteins are remarkably similar, including at the molecular level. Our phylogenetic analysis shows that one bHLH-PAS protein type has been lost during vertebrate evolution. This protein has a unique function as a receptor of the sesquiterpenoid juvenile hormones of insects and crustaceans. Although some other bHLH-PAS proteins are regulated by binding small molecules, the juvenile hormone receptor presents an unprecedented case, since all other non-peptide animal hormones activate members of the nuclear receptor family. The purpose of this review is to compare and highlight parallels and differences in functioning of bHLH-PAS proteins between insects and vertebrates.
Collapse
Affiliation(s)
- Sarka Tumova
- Institute of Entomology, Biology Center of the Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic
| | - David Dolezel
- Institute of Entomology, Biology Center of the Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic
| | - Marek Jindra
- Institute of Entomology, Biology Center of the Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic.
| |
Collapse
|
14
|
Tapia C, Principe G, González-Pardo V. 1α,25(OH) 2D 3 regulates pro-angiogenic factors in endothelial cells transformed by Kaposi's sarcoma-associated herpesvirus G protein coupled receptor. Biochimie 2023; 212:76-84. [PMID: 37062469 DOI: 10.1016/j.biochi.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 04/01/2023] [Accepted: 04/05/2023] [Indexed: 04/18/2023]
Abstract
When tumoral cell expansion exceeds the vascular supply, regions of hypoxia or low oxygen concentration are generated promoting the formation of new vessels through cell proliferation and migration. Viral G protein-coupled receptor (vGPCR) is associated to Kaposi's sarcoma pathology and induces a paracrine transformation when is stably expressed in murine endothelial cells activating hypoxia-induced transcription factors. Previously, we reported the antiproliferative actions of 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3) in endothelial cells transformed by the vGPCR (SVEC-vGPCR). Herein, we further investigated if pro-angiogenic factors as AP-1, HIF-1α and VEGF are modulated by 1α,25(OH)2D3. We found by qRT-PCR analysis that the mRNA level of JunB, a negative regulator of cell proliferation, was similarly increased at all-time points tested after 1α,25(OH)2D3 treatment in SVEC-vGPCR cells. Also, mRNA levels of the pro-angiogenic factor c-Fos, which induces tumor invasion, were only decreased during one short period treatment. In addition, Hif-1α mRNA and protein levels were significantly reduced after 1α,25(OH)2D3 treatment in a VDR dependent fashion. However, mRNA levels of the angiogenic activator Vegf, promoted in turn by Hif-1α expression, were surprisingly high depending on VDR expression as well. Moreover, Egr-1, which has been reported to induce VEGF expression independently of HIF-1α, diminished its expression with 1α,25(OH)2D3 treatment, fact that was related to the decline of p-ERK1/2. Altogether, these results suggest a negative modulation of some pro-angiogenic factors like AP-1 and HIF-1α, as part of the antiproliferative mechanism of 1α,25(OH)2D3 in SVEC-vGPCR endothelial cells.
Collapse
Affiliation(s)
- Cinthya Tapia
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia-Universidad Nacional del Sur (UNS), Argentina
| | - Gabriel Principe
- Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia-Universidad Nacional del Sur (UNS), Argentina
| | - Verónica González-Pardo
- Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia-Universidad Nacional del Sur (UNS), Argentina.
| |
Collapse
|
15
|
Zheng B, Lyu L, Wang X, Wen H, Li Y, Li J, Yao Y, Zuo C, Yan S, Xie S, Qi X. Comparative transcriptomic analysis and genome-wide characterization of the Semaphorin family reveal the potential mechanism of angiogenesis around embryo in ovoviviparous black rockfish (Sebastes schlegelii). Gen Comp Endocrinol 2023; 338:114275. [PMID: 36940835 DOI: 10.1016/j.ygcen.2023.114275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/23/2023]
Abstract
To guarantee the quality and survival rate of their offspring, ovoviviparous teleost evolved special characteristics of in vivo fertilization and embryo development. Maternal black rockfish, having over 50 thousand embryos developing within the ovary simultaneously, provided around 40% nutrition throughout oocyte development, while the capillaries around each embryo contributed the rest 60% during pregnancy. Since fertilization, capillaries started to proliferate and developed into a placenta-like structure that covered over half of each embryo. Aimed to characterize the potential mechanism behind, comparative transcriptome analysis of samples collected according to the process of pregnancy. Three important time point in the process, including mature oocyte stage, fertilization and sarcomere period, were chosen for the transcriptome sequencing. Our study identified key pathways and genes involved in the cell cycle as well as DNA replication and repair, cell migration and adhesion, immune, and metabolic functions. Notably, several of the semaphoring gene family members were differently expressed. To confirm the accuracy of these genes, total of 32 sema genes were identified from the whole genome and distinct expression pattern of sema genes was observed in different pregnant stages. Our results revealed a novel insight for further investigating the functions of sema genes in reproduction physiology and embryo processes in ovoviviparous teleost.
Collapse
Affiliation(s)
- Bingyan Zheng
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Likang Lyu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Xiaojie Wang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Haishen Wen
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yun Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Jianshuang Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yijia Yao
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Chenpeng Zuo
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Shaojing Yan
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Songyang Xie
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Xin Qi
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China.
| |
Collapse
|
16
|
A novel mechanistic approach for the anti-fibrotic potential of rupatadine in rat liver via amendment of PAF/NF-ĸB p65/TGF-β1 and hedgehog/HIF-1α/VEGF trajectories. Inflammopharmacology 2023; 31:845-858. [PMID: 36811777 PMCID: PMC10140091 DOI: 10.1007/s10787-023-01147-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 01/25/2023] [Indexed: 02/24/2023]
Abstract
Hepatic fibrosis is one of the major worldwide health concerns which requires tremendous research due to the limited outcomes of the current therapies. The present study was designed to assess, for the first time, the potential therapeutic effect of rupatadine (RUP) in diethylnitrosamine (DEN)-induced liver fibrosis and to explore its possible mechanistic actions. For the induction of hepatic fibrosis, rats were treated with DEN (100 mg/kg, i.p.) once weekly for 6 consecutive weeks, and on the 6th week, RUP (4 mg/kg/day, p.o.) was administered for 4 weeks. Treatment with RUP ameliorated changes in body weights, liver indices, liver function enzymes, and histopathological alterations induced by DEN. Besides, RUP amended oxidative stress, which led to the inhibition of PAF/NF-κB p65-induced inflammation, and, subsequently, prevention of TGF-β1 elevation and HSCs activation as indicated by reduced α-SMA expression and collagen deposition. Moreover, RUP exerted significant anti-fibrotic and anti-angiogenic effects by suppressing Hh and HIF-1α/VEGF signaling pathways. Our results highlight, for the first time, a promising anti-fibrotic potential of RUP in rat liver. The molecular mechanisms underlying this effect involve the attenuation of PAF/NF-κB p65/TGF-β1 and Hh pathways and, subsequently, the pathological angiogenesis (HIF-1α/VEGF).
Collapse
|
17
|
Extracellular Vesicles Isolated From Hypoxia-Preconditioned Adipose-Derived Stem Cells Promote Hypoxia-Inducible Factor 1α-Mediated Neovascularization of Random Skin Flap in Rats. Ann Plast Surg 2022; 89:225-229. [PMID: 35943229 DOI: 10.1097/sap.0000000000003266] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Random flaps are widely used for wound repair. However, flap necrosis is a serious complication leading to the failure of operation. Our previous study demonstrated a great proangiogenic potential of hypoxia-treated adipose-derived stem cells-extracellular vesicles (HT-ASC-EVs). Thus, we aim to evaluate the effect of HT-ASC-EVs in the survival and angiogenesis of random skin flap in rats. METHODS Adipose-derived stem cells-extracellular vesicles were respectively isolated from adipose-derived stem cell culture medium of 3 donors via ultracentrifugation. The expression of hypoxia-inducible factor 1α (HIF-1α) and proangiogenic potential of HT-ASC-EVs and ASC-EVs were compared by co-culturing with human umbilical vein endothelial cells. Forty male Sprague-Dawley rats were randomly divided into 3 group (n = 10/group). A 9 × 3-cm random skin flap was separated from the underlying fascia with both sacral arteries sectioned on each rat. The survival and angiogenesis of flaps treated by ASC-EVs or HT-ASC-EVs were also compared. Laser Doppler flowmetry and immunohistochemistry were used to evaluate skin perfusion and angiogenesis of skin flaps on postoperative day 7. RESULTS Hypoxia-treated adipose-derived stem cells-extracellular vesicles further improve the proliferation, migration, tube formation with upregulated HIF-1α, and VEGF expression of human umbilical vein endothelial cells in vitro, compared with ASC-EVs. In vivo, postoperatively injecting HT-ASC-EVs suppressed necrosis rate (29.1 ± 2.8% vs 59.2 ± 2.1%) and promoted the angiogenesis of skin flap including improved skin perfusion (803.2 ± 24.3 vs 556.3 ± 26.7 perfusion unit), increased number of CD31-positive cells, and upregulated expression of HIF-1α in vascular endothelium on postoperative day 7, compared with ASC-EVs. CONCLUSIONS Intradermal injecting HT-ASC-EVs improve the survival of random skin flap by promoting HIF-1α-mediated angiogenesis in rat model.
Collapse
|
18
|
Tran KA, Baldwin-Leclair A, DeOre BJ, Antisell M, Galie PA. Oxygen gradients dictate angiogenesis but not barriergenesis in a 3D brain microvascular model. J Cell Physiol 2022; 237:3872-3882. [PMID: 35901247 DOI: 10.1002/jcp.30840] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/01/2022] [Accepted: 07/12/2022] [Indexed: 11/10/2022]
Abstract
A variety of biophysical properties are known to regulate angiogenic sprouting, and in vitro systems can parse the individual effects of these factors in a controlled setting. Here, a three-dimensional brain microvascular model interrogates how variables including extracellular matrix composition, fluid shear stress, and radius of curvature affect angiogenic sprouting of cerebral endothelial cells. Tracking endothelial migration over several days reveals that application of fluid shear stress and enlarged vessel radius of curvature both attenuate sprouting. Computational modeling informed by oxygen consumption assays suggests that sprouting correlates to reduced oxygen concentration: both fluid shear stress and vessel geometry alter the local oxygen levels dictated by both ambient conditions and cellular respiration. Moreover, increasing cell density and consequently lowering the local oxygen levels yields significantly more sprouting. Further analysis reveals that the magnitude of oxygen concentration is not as important as its spatial concentration gradient: decreasing ambient oxygen concentration causes significantly less sprouting than applying an external oxygen gradient to the vessels. In contrast, barriergenesis is dictated by shear stress independent of local oxygen concentrations, suggesting that different mechanisms mediate angiogenesis and barrier formation and that angiogenic sprouting can occur without compromising the barrier. Overall, these results improve our understanding of how specific biophysical variables regulate the function and activation of cerebral vasculature, and identify spatial oxygen gradients as the driving factor of angiogenesis in the brain.
Collapse
Affiliation(s)
- Kiet A Tran
- Department of Biomedical Engineering, Rowan University, Glassboro, New Jersey, USA
| | | | - Brandon J DeOre
- Department of Biomedical Engineering, Rowan University, Glassboro, New Jersey, USA
| | - Morgan Antisell
- Department of Biomedical Engineering, Rowan University, Glassboro, New Jersey, USA
| | - Peter A Galie
- Department of Biomedical Engineering, Rowan University, Glassboro, New Jersey, USA
| |
Collapse
|
19
|
Marconi GD, Della Rocca Y, Fonticoli L, Melfi F, Rajan TS, Carradori S, Pizzicannella J, Trubiani O, Diomede F. C-Myc Expression in Oral Squamous Cell Carcinoma: Molecular Mechanisms in Cell Survival and Cancer Progression. Pharmaceuticals (Basel) 2022; 15:ph15070890. [PMID: 35890188 PMCID: PMC9316231 DOI: 10.3390/ph15070890] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 12/16/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) represents 90% of malignant epithelial cancer that occurs in the oral cavity. The c-Myc factor is expressed in multiple types of cancer, comprising head and neck squamous cell carcinoma (HNSCC), where it plays a fundamental role in tumor prognosis and in the self-renewal of tumor stem cells. However, the role of c-Myc in controlling OSCC cells is not well-known. The aim of the present study is the evaluation of the biological roles and regulatory mechanism of c-Myc in the pathogenesis of OSCC. Results indicated that c-Myc, c-Jun, Bcl-2, hypoxia inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF), matrix metalloproteinase-9 (MMP-9), ERK 1/2 and pERK1/2 were overexpressed in a cellular model of squamous cell carcinoma, Cal-27. Doxorubicin (Doxo), a common chemotherapeutic agent, inhibited cell invasion, hypoxia, angiogenesis and inflammation in a cellular model of Cal-27 cells as indicated by downregulation of MMP-9, VEGF, ERK 1/2 and pERK 1/2 as well as promoted apoptosis as evidenced by the downregulation of Bcl-2 protein. This work aimed at underlying the functional relevance of c-Myc in OSCC and the HIF-Myc collaboration by integrating the knowledge on this molecular link in an OSCC tumor microenvironment. The results obtained showed for the first time the vital role of c-Myc in Cal-27 in cell survival/proliferation and tumor growth as well as the negative regulatory effect of Doxo against c-Myc signaling pathway.
Collapse
Affiliation(s)
- Guya Diletta Marconi
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy;
| | - Ylenia Della Rocca
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy; (Y.D.R.); (L.F.); (O.T.); (F.D.)
| | - Luigia Fonticoli
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy; (Y.D.R.); (L.F.); (O.T.); (F.D.)
| | - Francesco Melfi
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (F.M.); (S.C.)
| | - Thangavelu Soundara Rajan
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore 641021, India;
- Karpagam Cancer Research Centre, Karpagam Academy of Higher Education, Coimbatore 641021, India
| | - Simone Carradori
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (F.M.); (S.C.)
| | - Jacopo Pizzicannella
- Ss. Annunziata Hospital, ASL 02 Lanciano-Vasto-Chieti, 66100 Chieti, Italy
- Correspondence:
| | - Oriana Trubiani
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy; (Y.D.R.); (L.F.); (O.T.); (F.D.)
| | - Francesca Diomede
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy; (Y.D.R.); (L.F.); (O.T.); (F.D.)
| |
Collapse
|
20
|
Qi S, Deng S, Lian Z, Yu K. Novel Drugs with High Efficacy against Tumor Angiogenesis. Int J Mol Sci 2022; 23:6934. [PMID: 35805939 PMCID: PMC9267017 DOI: 10.3390/ijms23136934] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 12/13/2022] Open
Abstract
Angiogenesis is involved in physiological and pathological processes in the body. Tumor angiogenesis is a key factor associated with tumor growth, progression, and metastasis. Therefore, there is great interest in developing antiangiogenic strategies. Hypoxia is the basic initiating factor of tumor angiogenesis, which leads to the increase of vascular endothelial growth factor (VEGF), angiopoietin (Ang), hypoxia-inducible factor (HIF-1), etc. in hypoxic cells. The pathways of VEGF and Ang are considered to be critical steps in tumor angiogenesis. A number of antiangiogenic drugs targeting VEGF/VEGFR (VEGF receptor) or ANG/Tie2, or both, are currently being used for cancer treatment, or are still in various stages of clinical development or preclinical evaluation. This article aims to review the mechanisms of angiogenesis and tumor angiogenesis and to focus on new drugs and strategies for the treatment of antiangiogenesis. However, antitumor angiogenic drugs alone may not be sufficient to eradicate tumors. The molecular chaperone heat shock protein 90 (HSP90) is considered a promising molecular target. The VEGFR system and its downstream signaling molecules depend on the function of HSP90. This article also briefly introduces the role of HSP90 in angiogenesis and some HSP90 inhibitors.
Collapse
Affiliation(s)
- Shiyu Qi
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Shoulong Deng
- National Health Commission (NHC) of China Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China;
| | - Zhengxing Lian
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Kun Yu
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| |
Collapse
|
21
|
Shen W, Zhou Q, Peng C, Li J, Yuan Q, Zhu H, Zhao M, Jiang X, Liu W, Ren C. FBXW7 and the Hallmarks of Cancer: Underlying Mechanisms and Prospective Strategies. Front Oncol 2022; 12:880077. [PMID: 35515121 PMCID: PMC9063462 DOI: 10.3389/fonc.2022.880077] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/15/2022] [Indexed: 12/13/2022] Open
Abstract
FBXW7, a member of the F-box protein family within the ubiquitin–proteasome system, performs an indispensable role in orchestrating cellular processes through ubiquitination and degradation of its substrates, such as c-MYC, mTOR, MCL-1, Notch, and cyclin E. Mainly functioning as a tumor suppressor, inactivation of FBXW7 induces the aberrations of its downstream pathway, resulting in the occurrence of diseases especially tumorigenesis. Here, we decipher the relationship between FBXW7 and the hallmarks of cancer and discuss the underlying mechanisms. Considering the interplay of cancer hallmarks, we propose several prospective strategies for circumventing the deficits of therapeutic resistance and complete cure of cancer patients.
Collapse
Affiliation(s)
- Wenyue Shen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Quanwei Zhou
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chenxi Peng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jiaheng Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qizhi Yuan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hecheng Zhu
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China.,Changsha Kexin Cancer Hospital, Changsha, China
| | - Ming Zhao
- Changsha Kexin Cancer Hospital, Changsha, China
| | - Xingjun Jiang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Weidong Liu
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, School of Basic Medicine, Central South University, Changsha, China
| | - Caiping Ren
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, School of Basic Medicine, Central South University, Changsha, China
| |
Collapse
|
22
|
Cuesta AM, Gallardo-Vara E, Casado-Vela J, Recio-Poveda L, Botella LM, Albiñana V. The Role of Propranolol as a Repurposed Drug in Rare Vascular Diseases. Int J Mol Sci 2022; 23:ijms23084217. [PMID: 35457036 PMCID: PMC9025921 DOI: 10.3390/ijms23084217] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 01/27/2023] Open
Abstract
Rare Diseases (RD) are defined by their prevalence in less than 5 in 10,000 of the general population. Considered individually, each RD may seem insignificant, but together they add up to more than 7000 different diseases. Research in RD is not attractive for pharmaceutical companies since it is unlikely to recover development costs for medicines aimed to small numbers of patients. Since most of these diseases are life threatening, this fact underscores the urgent need for treatments. Drug repurposing consists of identifying new uses for approved drugs outside the scope of the original medical indication. It is an alternative option in drug development and represents a viable and risk-managed strategy to develop for RDs. In 2008, the “off label” therapeutic benefits of propranolol were described in the benign tumor Infantile Hemangioma. Propranolol, initially prescribed for high blood pressure, irregular heart rate, essential tremor, and anxiety, has, in the last decade, shown increasing evidence of its antiangiogenic, pro-apoptotic, vasoconstrictor and anti-inflammatory properties in different RDs, including vascular or oncological pathologies. This review highlights the finished and ongoing trials in which propranolol has arisen as a good repurposing drug for improving the health condition in RDs.
Collapse
Affiliation(s)
- Angel M. Cuesta
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain;
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Unidad 707, 28029 Madrid, Spain;
| | - Eunate Gallardo-Vara
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, New Haven, CT 06511, USA;
| | - Juan Casado-Vela
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo, 28223 Madrid, Spain;
- Departamento de Bioingeniería, Escuela Politécnica Superior, Universidad Carlos III de Madrid, Av. de la Universidad, 30, 28911 Madrid, Spain
| | - Lucía Recio-Poveda
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Unidad 707, 28029 Madrid, Spain;
- Centro de Investigaciones Biológicas Margaritas Salas, 28040 Madrid, Spain
| | - Luisa-María Botella
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Unidad 707, 28029 Madrid, Spain;
- Centro de Investigaciones Biológicas Margaritas Salas, 28040 Madrid, Spain
- Correspondence: (L.-M.B.); (V.A.)
| | - Virginia Albiñana
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Unidad 707, 28029 Madrid, Spain;
- Centro de Investigaciones Biológicas Margaritas Salas, 28040 Madrid, Spain
- Correspondence: (L.-M.B.); (V.A.)
| |
Collapse
|
23
|
Hypoxia-Inducible Factors and Burn-Associated Acute Kidney Injury-A New Paradigm? Int J Mol Sci 2022; 23:ijms23052470. [PMID: 35269613 PMCID: PMC8910144 DOI: 10.3390/ijms23052470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 12/10/2022] Open
Abstract
O2 deprivation induces stress in living cells linked to free-radical accumulation and oxidative stress (OS) development. Hypoxia is established when the overall oxygen pressure is less than 40 mmHg in cells or tissues. However, tissues and cells have different degrees of hypoxia. Hypoxia or low O2 tension may be present in both physiological (during embryonic development) and pathological circumstances (ischemia, wound healing, and cancer). Meanwhile, the kidneys are major energy-consuming organs, being second only to the heart, with an increased mitochondrial content and O2 consumption. Furthermore, hypoxia-inducible factors (HIFs) are the key players that orchestrate the mammalian response to hypoxia. HIFs adapt cells to low oxygen concentrations by regulating transcriptional programs involved in erythropoiesis, angiogenesis, and metabolism. On the other hand, one of the life-threatening complications of severe burns is acute kidney injury (AKI). The dreaded functional consequence of AKI is an acute decline in renal function. Taking all these aspects into consideration, the aim of this review is to describe the role and underline the importance of HIFs in the development of AKI in patients with severe burns, because kidney hypoxia is constant in the presence of severe burns, and HIFs are major players in the adaptative response of all tissues to hypoxia.
Collapse
|
24
|
Stepanov YV, Golovynska I, Golovynskyi S, Garmanchuk LV, Gorbach O, Stepanova LI, Khranovska N, Ostapchenko LI, Ohulchanskyy TY, Qu J. Red and near infrared light-stimulated angiogenesis mediated via Ca 2+ influx, VEGF production and NO synthesis in endothelial cells in macrophage or malignant environments. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 227:112388. [PMID: 35074677 DOI: 10.1016/j.jphotobiol.2022.112388] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 01/02/2022] [Accepted: 01/08/2022] [Indexed: 12/19/2022]
Abstract
Irradiation with red or near-infrared (NIR) light in low level light therapy (LLLT) is found to stimulate cellular processes and bioenergetics, resulting in enhanced wound healing, pain control, neurodegenerative diseases treatment, etc. During light irradiation of tissues and organs, different cells are affected, though the connection between photostimulation of cells and their environmental conditions remains poorly understood. In this report, red/NIR light-stimulated angiogenesis is investigated using endothelial cells in vitro, with a focus on the capillary-like structure (CLS) formation and the respective biochemical processes in cells under conditions proximate to a healthy or malignant environment, which strongly defines angiogenesis. To model environmental conditions for endotheliocytes in vitro, the cell culture environment was supplemented by an augmented conditioned medium from macrophages or cancer cells. The biochemical processes in endothelial cell cultures were investigated with and without irradiation by red (650 nm) and near-infrared (808 nm) laser diodes and under normoxia or hypoxia conditions. A light-stimulated angiogenesis has been found, with a more efficient stimulation by 650 nm light compared to 808 nm light. It was shown that the irradiation with light promoted extracellular Ca2+ influx, fostered cell cycle progression, proliferation and NO generation in endothelial cells, and caused an increase in vascular endothelial growth factor (VEGF) production by endothelial cells and M2 macrophages under hypoxia conditions. The activation of VEGF production by macrophages was found to be associated with an increase in the number of M2 macrophages after light irradiation under hypoxia conditions. Thus, a new pathway of an activation of the endothelial cell metabolism, which is related with the extracellular Ca2+ influx after light irradiation, has been revealed. STATEMENT OF SIGNIFICANCE: Red/NIR light-stimulated angiogenesis has been studied using endothelial cells in vitro, with focus on CLS formation and the respective biochemical processes in cell models proximate to a healthy or malignant environment. A light-stimulated angiogenesis has been found, stimulated via extracellular Ca2+ influx, cell cycle progression, proliferation and NO generation, VEGF production increase by endothelial cells under hypoxia conditions.
Collapse
Affiliation(s)
- Yurii V Stepanov
- Center for Biomedical Optics and Photonics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Iuliia Golovynska
- Center for Biomedical Optics and Photonics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Sergii Golovynskyi
- Center for Biomedical Optics and Photonics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Liudmyla V Garmanchuk
- Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, Kyiv 01601, Ukraine
| | - Oleksandr Gorbach
- Laboratory of Experimental Oncology, National Cancer Institute of Ukraine, Kyiv 03022, Ukraine
| | - Liudmyla I Stepanova
- Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, Kyiv 01601, Ukraine
| | - Natalia Khranovska
- Laboratory of Experimental Oncology, National Cancer Institute of Ukraine, Kyiv 03022, Ukraine
| | - Liudmyla I Ostapchenko
- Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, Kyiv 01601, Ukraine
| | - Tymish Y Ohulchanskyy
- Center for Biomedical Optics and Photonics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China.
| | - Junle Qu
- Center for Biomedical Optics and Photonics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China.
| |
Collapse
|
25
|
Kumari R, Dutta R, Ranjan P, Suleiman ZG, Goswami SK, Li J, Pal HC, Verma SK. ALKBH5 Regulates SPHK1-Dependent Endothelial Cell Angiogenesis Following Ischemic Stress. Front Cardiovasc Med 2022; 8:817304. [PMID: 35127873 PMCID: PMC8811170 DOI: 10.3389/fcvm.2021.817304] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/20/2021] [Indexed: 12/29/2022] Open
Abstract
Background Endothelial cells dysfunction has been reported in many heart diseases including acute myocardial infarction, and atherosclerosis. The molecular mechanism for endothelial dysfunction in the heart is still not clearly understood. We aimed to study the role of m6A RNA demethylase alkB homolog 5 (ALKBH5) in ECs angiogenesis during ischemic injury. Methods and Results ECs were treated with ischemic insults (lipopolysaccharide and 1% hypoxia) to determine the role of ALKBH5 in ECs angiogenesis. siRNA mediated ALKBH5 gene silencing was used for examining the loss of function. In this study, we report that ALKBH5 levels are upregulated following ischemia and are associated with maintaining ischemia-induced ECs angiogenesis. To decipher the mechanism of action, we found that ALKBH5 is required to maintain eNOS phosphorylation and SPHK1 protein levels. ALKBH5 silencing alone or with ischemic stress significantly increased SPHK1 m6A mRNA methylation. In contrast, METTL3 (RNA methyltransferase) overexpression resulted in the reduced expression of SPHK1. Conclusion We reported that ALKBH5 helps in the maintenance of angiogenesis in endothelial cells following acute ischemic stress via reduced SPHK1 m6A methylation and downstream eNOS-AKT signaling.
Collapse
Affiliation(s)
- Rajesh Kumari
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Roshan Dutta
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Prabhat Ranjan
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Zainab Gbongbo Suleiman
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Sumanta Kumar Goswami
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jing Li
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Harish Chandra Pal
- Department of Pathology, Molecular and Cellular Pathology, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Suresh Kumar Verma
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
- *Correspondence: Suresh Kumar Verma
| |
Collapse
|
26
|
Hwang CK, Chew EY, Cukras CA, Keenan TDL, Wong WT, Linehan WM, Chittiboina P, Pacak K, Wiley HE. Intravitreous treatment of severe ocular von Hippel-Lindau disease using a combination of the VEGF inhibitor, ranibizumab and PDGF inhibitor, E10030: Results from a phase 1/2 clinical trial. Clin Exp Ophthalmol 2021; 49:1048-1059. [PMID: 34549489 PMCID: PMC10193820 DOI: 10.1111/ceo.14001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 09/13/2021] [Accepted: 09/18/2021] [Indexed: 01/05/2023]
Abstract
BACKGROUND Treatment options for severe ocular von Hippel-Lindau (VHL) disease are limited. This trial evaluated preliminary safety and potential efficacy of combination intravitreous injection with ranibizumab, a vascular endothelial growth factor (VEGF) inhibitor, and E10030, a PDGF inhibitor, for eyes with VHL disease-associated retinal hemangioblastoma (RH) not amenable or responsive to thermal laser photocoagulation. METHODS This was a prospective, single-arm, open-label phase 1/2 study, comprised of three adults with VHL-associated RH and vision loss. Intravitreous injections of ranibizumab (0.5 mg) and E10030 (1.5 mg) were given unilaterally every 4 weeks in the study eye through 16 weeks, then every 8 weeks through 48 weeks. Supplementary standard care therapies were allowed without restriction after 40 weeks. The primary outcome was the ocular and systemic adverse effect profile at 52 weeks. Secondary outcomes included changes in best-corrected visual acuity (BCVA), RH size, exudation, epiretinal proliferation and retinal traction, and need for ablative treatment of RH or ocular surgery at week 52. RESULTS Three participants each received nine injections prior to week 52 and were followed for 104 weeks. One participant manifested mild episodic ocular hypertension in the study eye. Change in BCVA in the study eye at week 52 for the three participants was -5, -12 and +2 letters. No reduction in RH size was measured at 52 weeks. Variable mild improvements in exudation in two participants at week 16 were not sustained through week 52. CONCLUSIONS Combination intravitreous injection with ranibizumab and E10030 demonstrated a reasonable preliminary safety profile, but limited treatment effect.
Collapse
Affiliation(s)
- Christopher K. Hwang
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Emily Y. Chew
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Catherine A. Cukras
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Tiarnan D. L. Keenan
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Wai T. Wong
- Section on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - W. Marston Linehan
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Prashant Chittiboina
- Neurosurgery Unit for Pituitary and Inheritable Diseases, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Henry E. Wiley
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
27
|
Xu XL, Deng SL, Lian ZX, Yu K. Resveratrol Targets a Variety of Oncogenic and Oncosuppressive Signaling for Ovarian Cancer Prevention and Treatment. Antioxidants (Basel) 2021; 10:antiox10111718. [PMID: 34829589 PMCID: PMC8614917 DOI: 10.3390/antiox10111718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022] Open
Abstract
Ovarian cancer is a heterogeneous disease and is also the major cause of death among women from gynecologic malignancies. A combination of surgery and chemotherapy is the major therapy for ovarian cancer. Unfortunately, despite good response rates to initial surgery and chemotherapy, most patients relapse and have a generally poor survival rate. The present research sheds light on the therapeutic effects of multiple natural products in patients with ovarian cancer. Notably, these natural ingredients do not have adverse effects on healthy cells and tissues, indicating that natural products can serve as a safe alternative therapy for ovarian cancer. Trans-3,4,5′-Trihydroxystibene (resveratrol) is a natural product that is commonly found in the human diet and that has been shown to have anticancer effects on various human cancer cells. This review summarizes current knowledge regarding the progress of resveratrol against tumor cell proliferation, metastasis, apoptosis induction, autophagy, sensitization, and antioxidation as well as anti-inflammation. It also provides information regarding the role of resveratrol analogues in ovarian cancer. A better understanding of the role of resveratrol in ovarian cancer may provide a new array for the prevention and therapy of ovarian cancer.
Collapse
Affiliation(s)
- Xue-Ling Xu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Shou-Long Deng
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China; or
| | - Zheng-Xing Lian
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
- Correspondence: (Z.-X.L.); (K.Y.)
| | - Kun Yu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
- Correspondence: (Z.-X.L.); (K.Y.)
| |
Collapse
|
28
|
Kowalska M, Dębek W, Matuszczak E. Infantile Hemangiomas: An Update on Pathogenesis and Treatment. J Clin Med 2021; 10:4631. [PMID: 34682753 PMCID: PMC8539430 DOI: 10.3390/jcm10204631] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/25/2021] [Accepted: 10/05/2021] [Indexed: 12/13/2022] Open
Abstract
Infantile hemangiomas are the most common benign vascular tumors in infancy. This review includes an update on the current knowledge on pathogenesis, a discussion on indications for treatment, and a review of the mechanisms underlying the different treatment methods. Although most infantile hemangiomas require only active observation because of their natural course, which results in involution, about 10% present with complications that require immediate treatment. The basic treatment includes systemic and topical options. In cases of insufficient response or rebound growth, other forms of treatment should be considered. In some cases, combined therapy might be initiated.
Collapse
Affiliation(s)
- Małgorzata Kowalska
- Department of Pediatric Surgery and Pediatric Urology, Medical University of Bialystok, Waszyngtona 17, 15-274 Bialystok, Poland; (W.D.); (E.M.)
| | | | | |
Collapse
|
29
|
Subbaraj GK, Kumar YS, Kulanthaivel L. Antiangiogenic role of natural flavonoids and their molecular mechanism: an update. THE EGYPTIAN JOURNAL OF INTERNAL MEDICINE 2021. [DOI: 10.1186/s43162-021-00056-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Abstract
Background
Angiogenesis is the development of new blood vessels from the existing vasculature, which is important in normal developmental processes. Angiogenesis is a key step in tumor growth, invasion, and metastasis. Angiogenesis is necessary for the proper nourishment and removal of metabolic wastes from tumor sites. Therefore, modulation of angiogenesis is considered a therapeutic strategy of great importance for human health.
Main body
Numerous bioactive plant compounds are recently tested for their antiangiogenic potential. Among the most frequently studied are flavonoids which are abundantly present in fruits and vegetables. Flavonoids inhibit angiogenesis and metastasis through the regulation of multiple signaling pathways. Flavonoids regulate the expression of VEGF, matrix metalloproteinases (MMPs), EGFR, and inhibit NFB, PI3-K/Akt, and ERK1/2 signaling pathways, thereby causing strong antiangiogenic effects. This present review aimed to provide up-to-date information on the molecular mechanisms of antiangiogenic properties of natural flavonoids.
Conclusion
Presently developed antiangiogenic drugs in malignant growth treatment do not meet assumptions about adequacy and safety. So further investigations are needed in this field in the future. More recently, flavonoids are the most effective antiangiogenic agent, by inhibition of signaling pathways.
Collapse
|
30
|
Manuelli V, Pecorari C, Filomeni G, Zito E. Regulation of redox signaling in HIF-1-dependent tumor angiogenesis. FEBS J 2021; 289:5413-5425. [PMID: 34228878 DOI: 10.1111/febs.16110] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/24/2021] [Accepted: 07/05/2021] [Indexed: 12/11/2022]
Abstract
Angiogenesis is the process of blood vessel growth. The angiogenic switch consists of new blood vessel formation that, in carcinogenesis, can lead to the transition from a harmless cluster of dormant cells to a large tumorigenic mass with metastatic potential. Hypoxia, that is, the scarcity of oxygen, is a hallmark of solid tumors to which they adapt by activating hypoxia-inducible factor-1 (HIF-1), a transcription factor triggering de novo angiogenesis. HIF-1 and the angiogenic molecules that are expressed upon its activation are modulated by redox status. Modulations of the redox environment can influence the angiogenesis signaling at different levels, thereby impinging on the angiogenic switch. This review provides a molecular overview of the redox-sensitive steps in angiogenic signaling, the main molecular players involved, and their crosstalk with the unfolded protein response. New classes of inhibitors of these modulators which might act as antiangiogenic drugs in cancer are also discussed.
Collapse
Affiliation(s)
- Valeria Manuelli
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Chiara Pecorari
- Redox Biology Group, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Giuseppe Filomeni
- Redox Biology Group, Danish Cancer Society Research Center, Copenhagen, Denmark.,Center for Healthy Aging, Copenhagen University, Denmark.,Department of Biology, Tor Vergata University, Rome, Italy
| | - Ester Zito
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.,Department of Biomolecular Sciences, University of Urbino Carlo Bo, Italy
| |
Collapse
|
31
|
Abstract
Tumors experience temporal and spatial fluctuations in oxygenation. Hypoxia inducible transcription factors (HIF-α) respond to low levels of oxygen and induce re-supply oxygen. HIF-α stabilization is typically facultative, induced by hypoxia and reduced by normoxia. In some cancers, HIF-α stabilization becomes constitutive under normoxia. We develop a mathematical model that predicts how fluctuating oxygenation affects HIF-α stabilization and impacts net cell proliferation by balancing the base growth rate, the proliferative cost of HIF-α expression, and the mortality from not expressing HIF-α during hypoxia. We compare optimal net cell proliferation rate between facultative and constitutive HIF-α regulation in environments with different oxygen profiles. We find that that facultative HIF-α regulation promotes greater net cell proliferation than constitutive regulation with stochastic or slow periodicity in oxygenation. However, cell fitness is nearly identical for both HIF-α regulation strategies under rapid periodic oxygenation fluctuations. The model thus indicates that cells constitutively expressing HIF-α may be at a selective advantage when the cost of expression is low. In cancer, this condition is known as pseudohypoxia or the “Warburg Effect”. We conclude that rapid and regular cycling of oxygenation levels selects for pseudohypoxia, and that this is consistent with the ecological theory of optimal defense.
Collapse
|
32
|
Wu Y, Meng D, You Y, Sun R, Fu M, Yan Q, Zhang S, Fang Z, Bao J, Li Y. Hypoxia Inducible Factor-1alpha (HIF-1A) plays different roles in Gallbladder Cancer and Normal Gallbladder Tissues. J Cancer 2021; 12:827-839. [PMID: 33403040 PMCID: PMC7778542 DOI: 10.7150/jca.46749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 10/24/2020] [Indexed: 12/30/2022] Open
Abstract
Purpose: Hypoxia-inducible factor-1alpha (HIF-1A) is a transcription factor that plays an “angiogenic switch” role especially under hypoxia microenvironment in solid tumor. However, the functions and clinical significance of HIF-1A in gallbladder cancer (GBC) are still controversial, and it has not been studied in normal gallbladder tissues. In this study, we sought to clarify the role of sub-cellular localization of HIF-1A expression in GBC and normal gallbladder tissues. Methods: The expressions of HIF-1A and CD34 in 127 GBC and 47 normal gallbladder tissues were evaluated by immunohistochemistry. Cox's proportional hazards model analysis and Kaplan-Meier method analysis were used to assess the correlations between these factors and clinicopathological features and prognosis. Results: HIF-1A was expressed in both cytoplasm and nucleus of GBC and normal control tissues, and was significantly correlated with microvessel density (MVD). GBC tissues with positive nuclear HIF-1A expression had higher MVD compared to that with positive cytoplasmic HIF-1A expression; however, in normal gallbladder tissues, samples with positive cytoplasmic HIF-1A had higher MVD compared to that with positive nuclear HIF-1A expression. Moreover, GBC with nuclear HIF-1A expression tended to be more poorly differentiated and had larger tumor size compared to that with cytoplasm HIF-1A expression. Furthermore, GBC patients with nuclear HIF-1A positive were significantly correlated with worse overall survival (OS) compared with cytoplasmic HIF-1A positive. Multivariate Cox regression analysis identified lymph node metastasis and nuclear HIF-1A expression to be independent prognostic parameter in GBC. Conclusions: Our findings provide evidence for the first time that HIF-1A is expressed in normal gallbladder tissues. Nuclear HIF-1A and cytoplasm HIF-1A plays different roles in GBC and normal gallbladder tissues.
Collapse
Affiliation(s)
- Youliang Wu
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, People's Republic of China
| | - Delong Meng
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Yexiang You
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, People's Republic of China
| | - Ruochuan Sun
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, People's Republic of China
| | - Min Fu
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, People's Republic of China
| | - Qiang Yan
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, People's Republic of China
| | - Shangxin Zhang
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, People's Republic of China
| | - Zheng Fang
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, People's Republic of China
| | - Junjun Bao
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, People's Republic of China
| | - Yongxiang Li
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, People's Republic of China
| |
Collapse
|
33
|
Ma T, Guo R, Wang X, Shen WT, Zhu M, Jin YN, Xu HP. Lentiviral vector with a radiation-inducible promoter, carrying the ING4 gene, mediates radiosensitization controlled by radiotherapy in cervical cancer cells. Oncol Lett 2020; 21:67. [PMID: 33365078 PMCID: PMC7716713 DOI: 10.3892/ol.2020.12328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 10/19/2020] [Indexed: 12/24/2022] Open
Abstract
The presence of hypoxia in solid tumors is considered one of the major factors that contribute to radiation resistance. The aim of the present study was to establish a therapeutic system, which can be controlled by radiation itself, to enhance radiosensitivity. For this purpose, a lentiviral gene therapy vector containing the human inhibitor of growth 4 (ING4) and its upstream promoter, human early growth response factor-1 (EGR1), which possesses the radiation-inducible characteristics to activate the transcription of its downstream genes, was constructed. Downstream fluorescence proteins were investigated to ensure that the EGR1 promoter was induced by irradiation. Furthermore, ING4 open reading frame (ORF) expression was detected by western blotting. The cell cycle was analyzed by fluorescence-activated cell sorting analysis 48 h after the cells were exposed to X-rays ranging between 0 and 8 Gy. In cells stably and transiently transfected with reporter plasmids, the EGR1-driver gene was sensitive to ionizing irradiation. Furthermore, irradiation-induced ING4 gene expression was observed. The enhanced ING4 expression increased the number of cells in the G2/M phase and decreased the proportion of cells in the G1/S phase. Therefore, ING4 expression inhibited cell proliferation and was associated with less colonies being formed. Furthermore, ING4 suppressed hypoxia-inducible factor 1α expression under hypoxic conditions and promoted cell apoptosis. Overall, these results revealed that combining the EGR1 promoter and ING4 ORF using a lentivirus system may be a promising therapeutic strategy with which to enhance radiosensitivity controlled by radiation. However, further studies using in vivo models are required to confirm these findings.
Collapse
Affiliation(s)
- Tao Ma
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Rui Guo
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Xi Wang
- Department of Neurology, Hackensack Meridian Health JFK Medical Center, Edison, NJ 08820, USA
| | - Wen-Tong Shen
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Min Zhu
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Ye-Ning Jin
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Hao-Ping Xu
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| |
Collapse
|
34
|
Li Y, Sun XX, Qian DZ, Dai MS. Molecular Crosstalk Between MYC and HIF in Cancer. Front Cell Dev Biol 2020; 8:590576. [PMID: 33251216 PMCID: PMC7676913 DOI: 10.3389/fcell.2020.590576] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 10/21/2020] [Indexed: 12/26/2022] Open
Abstract
The transcription factor c-MYC (MYC thereafter) is a global regulator of gene expression. It is overexpressed or deregulated in human cancers of diverse origins and plays a key role in the development of cancers. Hypoxia-inducible factors (HIFs), a central regulator for cells to adapt to low cellular oxygen levels, is also often overexpressed and activated in many human cancers. HIF mediates the primary transcriptional response of a wide range of genes in response to hypoxia. Earlier studies focused on the inhibition of MYC by HIF during hypoxia, when MYC is expressed at physiological level, to help cells survive under low oxygen conditions. Emerging evidence suggests that MYC and HIF also cooperate to promote cancer cell growth and progression. This review will summarize the current understanding of the complex molecular interplay between MYC and HIF.
Collapse
Affiliation(s)
- Yanping Li
- Department of Molecular and Medical Genetics, School of Medicine, Portland, OR, United States
| | - Xiao-Xin Sun
- Department of Molecular and Medical Genetics, School of Medicine, Portland, OR, United States
| | - David Z Qian
- The OHSU Knight Cancer Institute, Oregon Health and Science University, Portland, OR, United States
| | - Mu-Shui Dai
- Department of Molecular and Medical Genetics, School of Medicine, Portland, OR, United States.,The OHSU Knight Cancer Institute, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
35
|
Down syndrome iPSC model: endothelial perspective on tumor development. Oncotarget 2020; 11:3387-3404. [PMID: 32934781 PMCID: PMC7486695 DOI: 10.18632/oncotarget.27712] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 08/01/2020] [Indexed: 12/12/2022] Open
Abstract
Trisomy 21 (T21), known as Down syndrome (DS), is a widely studied chromosomal abnormality. Previous studies have shown that DS individuals have a unique cancer profile. While exhibiting low solid tumor prevalence, DS patients are at risk for hematologic cancers, such as acute megakaryocytic leukemia and acute lymphoblastic leukemia. We speculated that endothelial cells are active players in this clinical background. To this end, we hypothesized that impaired DS endothelial development and functionality, impacted by genome-wide T21 alterations, potentially results in a suboptimal endothelial microenvironment with the capability to prevent solid tumor growth. To test this hypothesis, we assessed molecular and phenotypic differences of endothelial cells differentiated from Down syndrome and euploid iPS cells. Microarray, RNA-Seq, and bioinformatic analyses revealed that most significantly expressed genes belong to angiogenic, cytoskeletal rearrangement, extracellular matrix remodeling, and inflammatory pathways. Interestingly, the majority of these genes are not located on Chromosome 21. To substantiate these findings, we carried out functional assays. The obtained phenotypic results correlated with the molecular data and showed that Down syndrome endothelial cells exhibit decreased proliferation, reduced migration, and a weak TNF-α inflammatory response. Based on this data, we provide a set of genes potentially associated with Down syndrome’s elevated leukemic incidence and its unfavorable solid tumor microenvironment—highlighting the potential use of these genes as therapeutic targets in translational cancer research.
Collapse
|
36
|
Galat Y, Perepitchka M, Elcheva I, Iannaccone S, Iannaccone PM, Galat V. iPSC-derived progenitor stromal cells provide new insights into aberrant musculoskeletal development and resistance to cancer in down syndrome. Sci Rep 2020; 10:13252. [PMID: 32764607 PMCID: PMC7414019 DOI: 10.1038/s41598-020-69418-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 07/06/2020] [Indexed: 12/13/2022] Open
Abstract
Down syndrome (DS) is a congenital disorder caused by trisomy 21 (T21). It is associated with cognitive impairment, muscle hypotonia, heart defects, and other clinical anomalies. At the same time, individuals with Down syndrome have lower prevalence of solid tumor formation. To gain new insights into aberrant DS development during early stages of mesoderm formation and its possible connection to lower solid tumor prevalence, we developed the first model of two types of DS iPSC-derived stromal cells. Utilizing bioinformatic and functional analyses, we identified over 100 genes with coordinated expression among mesodermal and endothelial cell types. The most significantly down-regulated processes in DS mesodermal progenitors were associated with decreased stromal progenitor performance related to connective tissue organization as well as muscle development and functionality. The differentially expressed genes included cytoskeleton-related genes (actin and myosin), ECM genes (Collagens, Galectin-1, Fibronectin, Heparan Sulfate, LOX, FAK1), cell cycle genes (USP16, S1P complexes), and DNA damage repair genes. For DS endothelial cells, our analysis revealed most down-regulated genes associated with cellular response to external stimuli, cell migration, and immune response (inflammation-based). Together with functional assays, these results suggest an impairment in mesodermal development capacity during early stages, which likely translates into connective tissue impairment in DS patients. We further determined that, despite differences in functional processes and characteristics, a significant number of differentially regulated genes involved in tumorigenesis were expressed in a highly coordinated manner across endothelial and mesodermal cells. These findings strongly suggest that microRNAs (miR-24-4, miR-21), cytoskeleton remodeling, response to stimuli, and inflammation can impact resistance to tumorigenesis in DS patients. Furthermore, we also show that endothelial cell functionality is impaired, and when combined with angiogenic inhibition, it can provide another mechanism for decreased solid tumor development. We propose that the same processes, which specify the basis of connective tissue impairment observed in DS patients, potentially impart a resistance to cancer by hindering tumor progression and metastasis. We further establish that cancer-related genes on Chromosome 21 are up-regulated, while genome-wide cancer-related genes are down-regulated. These results suggest that trisomy 21 induces a modified regulation and compensation of many biochemical pathways across the genome. Such downstream interactions may contribute toward promoting tumor resistant mechanisms.
Collapse
Affiliation(s)
- Yekaterina Galat
- Developmental Biology Program, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital, Chicago, IL, USA.
- Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Mariana Perepitchka
- Developmental Biology Program, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital, Chicago, IL, USA.
| | - Irina Elcheva
- Developmental Biology Program, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital, Chicago, IL, USA
- Pediatrics, Division of Hematology and Oncology, Penn State Hershey College of Medicine, Hershey, PA, USA
| | - Stephen Iannaccone
- Developmental Biology Program, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital, Chicago, IL, USA
| | - Philip M Iannaccone
- Developmental Biology Program, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital, Chicago, IL, USA
- Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Vasiliy Galat
- Developmental Biology Program, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital, Chicago, IL, USA.
- Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- ARTEC Biotech Inc, Chicago, IL, USA.
| |
Collapse
|
37
|
Comparative Evaluation of the Angiogenic Potential of Hypoxia Preconditioned Blood-Derived Secretomes and Platelet-Rich Plasma: An In Vitro Analysis. Biomedicines 2020; 8:biomedicines8010016. [PMID: 31963131 PMCID: PMC7168246 DOI: 10.3390/biomedicines8010016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 12/24/2022] Open
Abstract
Blood-derived factor preparations are being clinically employed as tools for promoting tissue repair and regeneration. Here we set out to characterize the in vitro angiogenic potential of two types of frequently used autologous blood-derived secretomes: platelet-rich plasma (PRP) and hypoxia preconditioned plasma (HPP)/serum (HPS). The concentration of key pro-angiogenic (VEGF) and anti-angiogenic (TSP-1, PF-4) protein factors in these secretomes was analyzed via ELISA, while their ability to induce microvessel formation and sprouting was examined in endothelial cell and aortic ring cultures, respectively. We found higher concentrations of VEGF in PRP and HPP/HPS compared to normal plasma and serum. This correlated with improved induction of microvessel formation by PRP and HPP/HPS. HPP had a significantly lower TSP-1 and PF-4 concentration than PRP and HPS. PRP and HPP/HPS appeared to induce similar levels of microvessel sprouting; however, the length of these sprouts was greater in HPP/HPS than in PRP cultures. A bell-shaped angiogenic response profile was observed with increasing HPP/HPS dilutions, with peak values significantly exceeding the PRP response. Our findings demonstrate that optimization of peripheral blood cell-derived angiogenic factor signalling through hypoxic preconditioning offers an improved alternative to simple platelet concentration and release of growth factors pre-stored in platelets.
Collapse
|
38
|
Schneller D, Hofer-Warbinek R, Sturtzel C, Lipnik K, Gencelli B, Seltenhammer M, Wen M, Testori J, Bilban M, Borowski A, Windwarder M, Kapel SS, Besemfelder E, Cejka P, Habertheuer A, Schlechta B, Majdic O, Altmann F, Kocher A, Augustin HG, Luttmann W, Hofer E. Cytokine-Like 1 Is a Novel Proangiogenic Factor Secreted by and Mediating Functions of Endothelial Progenitor Cells. Circ Res 2019; 124:243-255. [PMID: 30582450 DOI: 10.1161/circresaha.118.313645] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
RATIONALE Endothelial colony forming cells (ECFCs) or late blood outgrowth endothelial cells can be isolated from human cord or peripheral blood, display properties of endothelial progenitors, home into ischemic tissues and support neovascularization in ischemic disease models. OBJECTIVE To assess the functions of CYTL1 (cytokine-like 1), a factor we found preferentially produced by ECFCs, in regard of vessel formation. METHODS AND RESULTS We show by transcriptomic analysis that ECFCs are distinguished from endothelial cells of the vessel wall by production of high amounts of CYTL1. Modulation of expression demonstrates that the factor confers increased angiogenic sprouting capabilities to ECFCs and can also trigger sprouting of mature endothelial cells. The data further display that CYTL1 can be induced by hypoxia and that it functions largely independent of VEGF-A (vascular endothelial growth factor-A). By recombinant production of CYTL1 we confirm that the peptide is indeed a strong proangiogenic factor and induces sprouting in cellular assays and functional vessel formation in animal models comparable to VEGF-A. Mass spectroscopy corroborates that CYTL1 is specifically O-glycosylated on 2 neighboring threonines in the C-terminal part and this modification is important for its proangiogenic bioactivity. Further analyses show that the factor does not upregulate proinflammatory genes and strongly induces several metallothionein genes encoding anti-inflammatory and antiapoptotic proteins. CONCLUSIONS We conclude that CYTL1 can mediate proangiogenic functions ascribed to endothelial progenitors such as ECFCs in vivo and may be a candidate to support vessel formation and tissue regeneration in ischemic pathologies.
Collapse
Affiliation(s)
- Doris Schneller
- From the Department of Vascular Biology and Thrombosis Research (D.S., C.S., K.L., B.G., M.S., M. Wen, J.T., E.H.), Medical University of Vienna, Austria.,Division Signal Transduction and Growth Control, German Cancer Research Center (DKFZ), Heidelberg (D.S.)
| | - Renate Hofer-Warbinek
- Clinical Department for Heart Surgery (R.H.-W., A.H., A.K.), Medical University of Vienna, Austria
| | - Caterina Sturtzel
- From the Department of Vascular Biology and Thrombosis Research (D.S., C.S., K.L., B.G., M.S., M. Wen, J.T., E.H.), Medical University of Vienna, Austria
| | - Karoline Lipnik
- From the Department of Vascular Biology and Thrombosis Research (D.S., C.S., K.L., B.G., M.S., M. Wen, J.T., E.H.), Medical University of Vienna, Austria
| | - Burcu Gencelli
- From the Department of Vascular Biology and Thrombosis Research (D.S., C.S., K.L., B.G., M.S., M. Wen, J.T., E.H.), Medical University of Vienna, Austria
| | - Monika Seltenhammer
- From the Department of Vascular Biology and Thrombosis Research (D.S., C.S., K.L., B.G., M.S., M. Wen, J.T., E.H.), Medical University of Vienna, Austria
| | - Mingjie Wen
- From the Department of Vascular Biology and Thrombosis Research (D.S., C.S., K.L., B.G., M.S., M. Wen, J.T., E.H.), Medical University of Vienna, Austria
| | - Julia Testori
- From the Department of Vascular Biology and Thrombosis Research (D.S., C.S., K.L., B.G., M.S., M. Wen, J.T., E.H.), Medical University of Vienna, Austria
| | - Martin Bilban
- Department of Laboratory Medicine (M.B.), Medical University of Vienna, Austria
| | | | - Markus Windwarder
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria (M. Windwarder, F.A.)
| | - Stephanie S Kapel
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany (S.S.K., E.B., H.G.A.).,Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Germany (S.S.K., H.G.A.)
| | - Eva Besemfelder
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany (S.S.K., E.B., H.G.A.)
| | - Petra Cejka
- Department of Immunology (P.C., O.M.), Medical University of Vienna, Austria
| | - Andreas Habertheuer
- Clinical Department for Heart Surgery (R.H.-W., A.H., A.K.), Medical University of Vienna, Austria
| | - Bernhard Schlechta
- Department of Gynecology and Obstetrics (B.S.), Medical University of Vienna, Austria
| | - Otto Majdic
- Department of Immunology (P.C., O.M.), Medical University of Vienna, Austria
| | - Friedrich Altmann
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria (M. Windwarder, F.A.)
| | - Alfred Kocher
- Clinical Department for Heart Surgery (R.H.-W., A.H., A.K.), Medical University of Vienna, Austria
| | - Hellmut G Augustin
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany (S.S.K., E.B., H.G.A.).,Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Germany (S.S.K., H.G.A.)
| | | | - Erhard Hofer
- From the Department of Vascular Biology and Thrombosis Research (D.S., C.S., K.L., B.G., M.S., M. Wen, J.T., E.H.), Medical University of Vienna, Austria
| |
Collapse
|
39
|
Feng J, Wang C, Liu T, Li J, Wu L, Yu Q, Li S, Zhou Y, Zhang J, Chen J, Ji J, Chen K, Mao Y, Wang F, Dai W, Fan X, Wu J, Guo C. Procyanidin B2 inhibits the activation of hepatic stellate cells and angiogenesis via the Hedgehog pathway during liver fibrosis. J Cell Mol Med 2019; 23:6479-6493. [PMID: 31328391 PMCID: PMC6714206 DOI: 10.1111/jcmm.14543] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/08/2019] [Accepted: 06/28/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Liver fibrosis is a wound-healing process of liver featured by the over-deposition of extracellular matrix (ECM) and angiogenesis. However, the effective treatment is lacking. Procyanidin B2 (PB2) is a flavonoid extract abundant in grape seeds with anti-oxidant, anti-inflammatory and anti-cancer properties. The present study aimed to determine effects of PB2 on liver fibrosis. METHOD The CCl4-induced mouse liver fibrosis model and a human hepatic stellate cell (HSC) line (LX2 cells) were used to study the activation, ECM production and angiogenesis of HSCs through Western blotting analysis, immunohistochemistry, immunofluorescence staining, flow cytometry and tubulogenesis assay. A Hedgehog (Hh) pathway inhibitor (cyclopamine) and Smoothened agonist (SAG) were used to investigate the role of PB2 on Hh pathway. RESULTS The results showed that PB2 could inhibit the proliferation and induce apoptosis of HSCs. PB2 could also down-regulate the expressions of VEGF-A, HIF-1α, α-SMA, Col-1 and TGF-β1 of HSCs in vivo and in vitro. The application of SAG and cyclopamine proved that PB2 targets on Hh pathway. CONCLUSIONS PB2 inhibited the Hh pathway to suppress the activation, ECM production and angiogenesis of HSCs, therefore reverses the progression of liver fibrosis in vivo and in vitro.
Collapse
Affiliation(s)
- Jiao Feng
- Department of Gastroenterology, Putuo People's HospitalTongji University School of MedicineShanghaiChina
- Department of Gastroenterology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Chengfen Wang
- Department of Gastroenterology, Putuo People's HospitalTongji University School of MedicineShanghaiChina
| | - Tong Liu
- Department of Gastroenterology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Jingjing Li
- Department of Gastroenterology, Putuo People's HospitalTongji University School of MedicineShanghaiChina
| | - Liwei Wu
- Department of Gastroenterology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Qiang Yu
- Department of Gastroenterology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
- Shanghai Tenth HospitalSchool of Clinical Medicine of Nanjing Medical UniversityShanghaiChina
| | - Sainan Li
- Department of Gastroenterology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Yuting Zhou
- Department of Gastroenterology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
- Shanghai Tenth HospitalSchool of Clinical Medicine of Nanjing Medical UniversityShanghaiChina
| | - Jie Zhang
- Department of Gastroenterology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
- Shanghai Tenth HospitalSchool of Clinical Medicine of Nanjing Medical UniversityShanghaiChina
| | - Jiaojiao Chen
- Department of Gastroenterology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
- Shanghai Tenth HospitalSchool of Clinical Medicine of Nanjing Medical UniversityShanghaiChina
| | - Jie Ji
- Department of Gastroenterology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Kan Chen
- Department of Gastroenterology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Yuqing Mao
- Department of Gerontology, Shanghai General HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Fan Wang
- Department of Oncology, Shanghai General HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Weiqi Dai
- Department of Gastroenterology, Putuo People's HospitalTongji University School of MedicineShanghaiChina
- Department of Gastroenterology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
- Department of GastroenterologyZhongshan Hospital of Fudan UniversityShanghaiChina
- Shanghai Institute of Liver DiseasesZhongshan Hospital of Fudan UniversityShanghaiChina
| | - Xiaoming Fan
- Department of GastroenterologyJinshan Hospital of Fudan UniversityJinshan, ShanghaiChina
| | - Jianye Wu
- Department of Gastroenterology, Putuo People's HospitalTongji University School of MedicineShanghaiChina
| | - Chuanyong Guo
- Department of Gastroenterology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| |
Collapse
|
40
|
Whitman NA, Lin ZW, Kenney RM, Albertini L, Lockett MR. Hypoxia differentially regulates estrogen receptor alpha in 2D and 3D culture formats. Arch Biochem Biophys 2019; 671:8-17. [PMID: 31163125 PMCID: PMC6688900 DOI: 10.1016/j.abb.2019.05.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/24/2019] [Accepted: 05/30/2019] [Indexed: 02/07/2023]
Abstract
Hypoxia is a common feature in solid tumors. Clinical samples show a positive correlation between the expression of the hypoxia-inducible factor HIF-1α and estrogen receptor alpha (ERα) and a negative correlation between HIF-1α and hormone sensitivity. Results from monolayer cultures are in contention with clinical observations, showing that ER (+) cell lines no longer express ERα under hypoxic conditions (1% O2). Here, we compared the impact of hypoxia on the ERα signaling pathway for T47D cells in a 2D and 3D culture format. In the 2D format, the cells were cultured as monolayers. In the 3D format, paper-based scaffolds supported cells suspended in a collagen matrix. Using ELISA, Western blot, and immunofluorescence measurements, we show that hypoxia differentially regulates ERα protein levels in a culture environment-dependent manner. In the 2D format, the protein levels are significantly decreased in hypoxia. In the 3D format, the protein levels are maintained in hypoxia. Hypoxia reduced ERα transcriptional activation in both culture formats. These results highlight the importance of considering tissue dimensionality for in vitro studies. They also show that ERα protein levels in hypoxia are not an accurate indicator of ERα transcriptional activity, and confirm that a positive stain for ERα in a clinical sample may not necessarily indicate hormone sensitivity.
Collapse
Affiliation(s)
- Nathan A Whitman
- Department of Chemistry, University of North Carolina at Chapel Hill, Kenan and Caudill Laboratories, Chapel Hill, NC, 27599-3290, USA
| | - Zhi-Wei Lin
- Department of Chemistry, University of North Carolina at Chapel Hill, Kenan and Caudill Laboratories, Chapel Hill, NC, 27599-3290, USA
| | - Rachael M Kenney
- Department of Chemistry, University of North Carolina at Chapel Hill, Kenan and Caudill Laboratories, Chapel Hill, NC, 27599-3290, USA
| | - Leonardo Albertini
- Department of Chemistry, University of North Carolina at Chapel Hill, Kenan and Caudill Laboratories, Chapel Hill, NC, 27599-3290, USA
| | - Matthew R Lockett
- Department of Chemistry, University of North Carolina at Chapel Hill, Kenan and Caudill Laboratories, Chapel Hill, NC, 27599-3290, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 450 West Drive, Chapel Hill, NC, 27599-7295, USA.
| |
Collapse
|
41
|
In Vitro Characterization of Hypoxia Preconditioned Serum (HPS)-Fibrin Hydrogels: Basis for an Injectable Biomimetic Tissue Regeneration Therapy. J Funct Biomater 2019; 10:jfb10020022. [PMID: 31086048 PMCID: PMC6616457 DOI: 10.3390/jfb10020022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/26/2019] [Accepted: 05/05/2019] [Indexed: 01/03/2023] Open
Abstract
Blood-derived growth factor preparations have long been employed to improve perfusion and aid tissue repair. Among these, platelet-rich plasma (PRP)-based therapies have seen the widest application, albeit with mixed clinical results to date. Hypoxia-preconditioned blood products present an alternative to PRP, by comprising the complete wound healing factor-cascade, i.e., hypoxia-induced peripheral blood cell signaling, in addition to platelet-derived factors. This study set out to characterize the preparation of hypoxia preconditioned serum (HPS), and assess the utility of HPS–fibrin hydrogels as vehicles for controlled factor delivery. Our findings demonstrate the positive influence of hypoxic incubation on HPS angiogenic potential, and the individual variability of HPS angiogenic factor concentration. HPS–fibrin hydrogels can rapidly retain HPS factor proteins and gradually release them over time, while both functions appear to depend on the fibrin matrix mass. This offers a means of controlling factor retention/release, through adjustment of HPS fibrinogen concentration, thus allowing modulation of cellular angiogenic responses in a growth factor dose-dependent manner. This study provides the first evidence that HPS–fibrin hydrogels could constitute a new generation of autologous/bioactive injectable compositions that provide biochemical and biomaterial signals analogous to those mediating physiological wound healing. This therefore establishes a rational foundation for their application towards biomimetic tissue regeneration.
Collapse
|
42
|
Wu CH, Ko JL, Pan HH, Chiu LY, Kang YT, Hsiao YP. Ni-induced TGF-β signaling promotes VEGF-a secretion via integrin β3 upregulation. J Cell Physiol 2019; 234:22093-22102. [PMID: 31066035 DOI: 10.1002/jcp.28772] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 04/11/2019] [Accepted: 04/17/2019] [Indexed: 12/20/2022]
Abstract
Nickel compounds are associated with lung and skin cancer incidence increase and accumulation of nickel in the body contributes to carcinogenesis. Upregulation of certain integrins in the primary tumor is associated with cancer metastasis and poor prognosis. However, the molecular mechanisms of nickel-induced cancer metastasis are still unclear. The purpose of the present study was to investigate the effects of nickel chloride (NiCl2 ) on the progression of cancer during metastasis. The results of showed that NiCl2 induces the expression of integrin β3 mRNA and protein in a dose- and time-dependent manner. Inhibition of integrin αvβ3 activation by ITGB3 ligand mimetics and GR144053, as well as downregulation of ITGB3 by lentiviral shRNA gene silencing, diminished NiCl2 -induced secretion of vascular endothelial growth factor-a (VEGF-a). Furthermore, pretreatment with type I TGF-β receptor inhibitor, SB525334, suppressed the expression of ITGB3 at cell surface and secretion of VEGF-a in NiCl2 -treated cells. In conclusion, NiCl2 induces the expression of ITGB3 through TGF-β signaling activation, followed by increasing VEGF-a secretion, revealing a novel role for ITGB3 in nickel compound-induced cancer metastasis and tumor angiogenesis.
Collapse
Affiliation(s)
- Chih-Hsien Wu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Jiunn-Liang Ko
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Dermatology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Hui-Hsien Pan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Pediatrics, Institute of Allergy, Immunology, and Rheumatology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Ling-Yen Chiu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Ting Kang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Ping Hsiao
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Dermatology, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
43
|
Mechanism of the natural product moracin-O derived MO-460 and its targeting protein hnRNPA2B1 on HIF-1α inhibition. Exp Mol Med 2019; 51:1-14. [PMID: 30755586 PMCID: PMC6372683 DOI: 10.1038/s12276-018-0200-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 10/12/2018] [Accepted: 10/16/2018] [Indexed: 02/06/2023] Open
Abstract
Hypoxia-inducible factor-1α (HIF-1α) mediates tumor cell adaptation to hypoxic conditions and is a potentially important anticancer therapeutic target. We previously developed a method for synthesizing a benzofuran-based natural product, (R)-(-)-moracin-O, and obtained a novel potent analog, MO-460 that suppresses the accumulation of HIF-1α in Hep3B cells. However, the molecular target and underlying mechanism of action of MO-460 remained unclear. In the current study, we identified heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1) as a molecular target of MO-460. MO-460 inhibits the initiation of HIF-1α translation by binding to the C-terminal glycine-rich domain of hnRNPA2B1 and inhibiting its subsequent binding to the 3’-untranslated region of HIF-1α mRNA. Moreover, MO-460 suppresses HIF-1α protein synthesis under hypoxic conditions and induces the accumulation of stress granules. The data provided here suggest that hnRNPA2B1 serves as a crucial molecular target in hypoxia-induced tumor survival and thus offer an avenue for the development of novel anticancer therapies. A synthetic analog of a chemical found in fruit suppresses tumor growth by targeting an RNA-binding protein (hnRNPA2B1) and preventing the production of a pro-cancer regulatory factor. Nak-Kyun Soung from the Korea Research Institute of Bioscience and Biotechnology, Cheongju, South Korea, and coworkers built on their previous discovery that a compound derived from a medicinal plant metabolite can suppress the activity of hypoxia-inducible factor-1α (HIF-1α). This protein, which is involved in many aspects of cancer biology, is activated in the low-oxygen microenvironments found inside tumors. The researchers show that the compound binds to a protein that helps with the conversion of HIF-1α–encoding RNA transcripts into HIF-1α proteins. Liver cancer cells treated with the compound grew slowly and produced less HIF-1α under both normal and low-oxygen culture conditions, highlighting the potential of this anti-cancer strategy.
Collapse
|
44
|
Szewczyk G, Maciejewski TM, Szukiewicz D. Current progress in the inflammatory background of angiogenesis in gynecological cancers. Inflamm Res 2019; 68:247-260. [PMID: 30680411 PMCID: PMC6420455 DOI: 10.1007/s00011-019-01215-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 01/10/2019] [Accepted: 01/14/2019] [Indexed: 12/17/2022] Open
Abstract
A tumor growth depends on the potency of the tumor to support itself with nutrients and oxygen. The development of a vascular network within the tumor is key to its survival. The permanent contest between the tumor and its host involves tumor cells on one side and an immunological system and tissue stroma on the other. The angiogenesis is not only a specialty of the tumor, but it also depends on this complex multidirectional interaction. The most common gynecological cancers, cervical, endometrial and ovarian carcinoma are good examples for studying this problem. In this review, we aim to show that an inflammatory response against a tumor can be reverted into an undesirable process leading to the development of a vascular network within the tumor and, subsequently, further growth of the tumor and progression of a disease. Therefore, a key for tumor management should be searched within the immunological system, rather than focused on cell cycle and anti-angiogenic treatment only.
Collapse
Affiliation(s)
- Grzegorz Szewczyk
- Chair and Department of General and Experimental Pathology, Medical University of Warsaw, ul. Pawinskiego 3C, 02-106, Warsaw, Poland.
| | - Tomasz M Maciejewski
- Department of Gynecology and Obstetrics, Institute of Mother and Child, ul. Kasprzaka 17A, 01-211, Warsaw, Poland
| | - Dariusz Szukiewicz
- Chair and Department of General and Experimental Pathology, Medical University of Warsaw, ul. Pawinskiego 3C, 02-106, Warsaw, Poland
| |
Collapse
|
45
|
Kagawa Y, Umaru BA, Ariful I, Shil SK, Miyazaki H, Yamamoto Y, Ogata M, Owada Y. Role of FABP7 in tumor cell signaling. Adv Biol Regul 2019; 71:206-218. [PMID: 30245263 DOI: 10.1016/j.jbior.2018.09.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 09/13/2018] [Accepted: 09/13/2018] [Indexed: 06/08/2023]
Abstract
Lipids are major molecules for the function of organisms and are involved in the pathophysiology of various diseases. Fatty acids (FAs) signaling and their metabolism are some of the most important pathways in tumor development, as lipids serve as energetic sources during carcinogenesis. Fatty acid binding proteins (FABPs) facilitate FAs transport to different cell organelles, modulating their metabolism along with mediating other physiological activities. FABP7, brain-typed FABP, is thought to be an important molecule for cell proliferation in healthy as well as diseased organisms. Several studies on human tumors and tumor-derived cell lines put FABP7 in the center of tumorigenesis, and its high expression level has been reported to correlate with poor prognosis in different tumor types. Several types of FABP7-expressing tumors have shown an up-regulation of cell signaling activity, but molecular mechanisms of FABP7 involvement in tumorigenesis still remain elusive. In this review, we focus on the expression and function of FABP7 in different tumors, and possible mechanisms of FABP7 in tumor proliferation and migration.
Collapse
Affiliation(s)
- Yoshiteru Kagawa
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Banlanjo A Umaru
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Islam Ariful
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Pharmacy, University of Rajshahi, Rajshahi, Bangladesh
| | - Subrata Kumar Shil
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hirofumi Miyazaki
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yui Yamamoto
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Anatomy, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Masaki Ogata
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Anatomy, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Yuji Owada
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
46
|
Smani T, Gómez LJ, Regodon S, Woodard GE, Siegfried G, Khatib AM, Rosado JA. TRP Channels in Angiogenesis and Other Endothelial Functions. Front Physiol 2018; 9:1731. [PMID: 30559679 PMCID: PMC6287032 DOI: 10.3389/fphys.2018.01731] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 11/16/2018] [Indexed: 12/19/2022] Open
Abstract
Angiogenesis is the growth of blood vessels mediated by proliferation, migration, and spatial organization of endothelial cells. This mechanism is regulated by a balance between stimulatory and inhibitory factors. Proangiogenic factors include a variety of VEGF family members, while thrombospondin and endostatin, among others, have been reported as suppressors of angiogenesis. Transient receptor potential (TRP) channels belong to a superfamily of cation-permeable channels that play a relevant role in a number of cellular functions mostly derived from their influence in intracellular Ca2+ homeostasis. Endothelial cells express a variety of TRP channels, including members of the TRPC, TRPV, TRPP, TRPA, and TRPM families, which play a relevant role in a number of functions, including endothelium-induced vasodilation, vascular permeability as well as sensing hemodynamic and chemical changes. Furthermore, TRP channels have been reported to play an important role in angiogenesis. This review summarizes the current knowledge and limitations concerning the involvement of particular TRP channels in growth factor-induced angiogenesis.
Collapse
Affiliation(s)
- Tarik Smani
- Department of Medical Physiology and Biophysic, Institute of Biomedicine of Seville, University of Seville, Sevilla, Spain.,CIBERCV, Madrid, Spain
| | - Luis J Gómez
- Department of Animal Medicine, University of Extremadura, Cáceres, Spain
| | - Sergio Regodon
- Department of Animal Medicine, University of Extremadura, Cáceres, Spain
| | - Geoffrey E Woodard
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | | | | | - Juan A Rosado
- Cell Physiology Research Group, Department of Physiology, University of Extremadura, Cáceres, Spain
| |
Collapse
|
47
|
Bousseau S, Vergori L, Soleti R, Lenaers G, Martinez MC, Andriantsitohaina R. Glycosylation as new pharmacological strategies for diseases associated with excessive angiogenesis. Pharmacol Ther 2018; 191:92-122. [DOI: 10.1016/j.pharmthera.2018.06.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 06/01/2018] [Indexed: 02/07/2023]
|
48
|
Marbaniang C, Kma L. Dysregulation of Glucose Metabolism by Oncogenes and Tumor Suppressors in Cancer Cells. Asian Pac J Cancer Prev 2018; 19:2377-2390. [PMID: 30255690 PMCID: PMC6249467 DOI: 10.22034/apjcp.2018.19.9.2377] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 08/20/2018] [Indexed: 02/07/2023] Open
Abstract
Cancers are complex diseases having several unique features, commonly described as ‘hallmarks of cancer’. Among them, altered signaling pathways are the common characteristic features that drive cancer progression; this is achieved due to mutations that lead to the activation of growth promoting(s) oncogenes and inactivation of tumor suppressors. As a result of which, cancer cells increase their glycolytic rate by consuming a large amount of glucose, and convert a majority of glucose to lactate even in the presence of oxygen known as the “Warburg effect”. Tumor cells like other cells are strictly dependent on energy for growth and survival; therefore, understanding energy metabolism will give us an idea to develop new effective anti-cancer therapies that target cancer energy production pathways. This review summarizes the roles of tumor suppressors and oncogenes and their products that provide metabolic advantages to cancer cells which in turn leads to the establishment of the “Warburg effect” and ultimately leads to cancer progression. Understanding cancer cell’s vulnerability will provide potential targets for its control.
Collapse
Affiliation(s)
- Casterland Marbaniang
- Department of Biochemistry, Cancer and Radiation Countermeasures Unit,North-Eastern Hill University, Shillong, Meghalaya, India.
| | | |
Collapse
|
49
|
Colica C, Milanović M, Milić N, Aiello V, De Lorenzo A, Abenavoli L. A Systematic Review on Natural Antioxidant Properties of Resveratrol. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801300923] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Polyphenols, including anthocyanins, flavonoids and stilbenes, which constitute one of the most abundant and ubiquitous groups of plant metabolites, are an integral part of the human diet. Resveratrol (3,5,4'-trihydroxystilbene), a naturally occurring polyphenol produced by some plants as a self-defence agent, has an antifungal activity. Resveratrol has been found in some plants (such as grapevine, pine and peanuts) and is considered to have beneficial effects also on human health. The number of studies on resveratrol greatly increased in PubMed database since 1997, after the anticancer effect of this molecule was first reported. The interest in resveratrol in grape was originally sparked by epidemiological studies indicating an inverse relationship between long-standing moderate consumption of red wine and the risk of coronary heart disease; this effect has been ascribed to resveratrol, which possesses diverse biochemical and physiological properties, including antiplatelet and anti-inflammatory proprieties, and provides a wide range of health benefits ranging from chemoprevention to cardioprotection. Recently, resveratrol has been described as an anti-aging compound. The consumption of resveratrol (red wine) together with a Mediterranean diet or a fast-food meal (“McDonald'sMeal”) had a positive impact on oxidized (ox-) LDL and on the expression of oxidative and inflammatory genes. Therefore, this review summarized the most important scientific data about healing and preventive potential of resveratrol, acting as cardioprotective, neuroprotective, chemopreventive and antioxidant agent.
Collapse
Affiliation(s)
- Carmela Colica
- CNR, IBFM UOS of Germaneto, University “Magna Graecia” of Catanzaro, Italy
| | - Maja Milanović
- University of Novi Sad, Faculty of Medicine, Novi Sad, Serbia
| | - Nataša Milić
- University of Novi Sad, Faculty of Medicine, Novi Sad, Serbia
| | - Vincenzo Aiello
- Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, Italy
| | - Antonino De Lorenzo
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
| | - Ludovico Abenavoli
- Department of Health Sciences, University “Magna Graecia”, Catanzaro, Italy
| |
Collapse
|
50
|
Huang S, Wang M, Rehman MU, Zhang L, Tong X, Shen Y, Li J. Role of Angiopoietin-like 4 on Bone Vascularization in Chickens Exposed to High-altitude Hypoxia. J Comp Pathol 2018; 161:25-33. [PMID: 30173855 DOI: 10.1016/j.jcpa.2018.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/24/2018] [Accepted: 04/30/2018] [Indexed: 12/20/2022]
Abstract
The aim of this study was to investigate the role and expression of a novel angiogenic factor (angiopoietin-like 4, ANGPTL4) in tibial growth plates of broiler chickens exposed to high-altitude hypoxia. One-day-old healthy broiler chickens (n = 120) were transported from lowland to a high-altitude hypoxic region (nearly 3,000 m above sea level) and were reared under hypoxic- (natural lower oxygen content) and normoxic conditions (nearly 21% oxygen content) for 14 days. The effect of hypoxia on angiogenesis in the tibial growth plates and hypoxia-inducible factor (HIF)-1α and ANGPTL4 expressions were determined by histological examination, quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), western blot and enzyme-linked immunosorbent assay (ELISA) techniques. The increase in vascular distribution to the hypertrophic chondrocyte zone of tibial growth plates contributed to promoting growth and development of the tibia under hypoxic conditions, which was highly correlated with the upregulation of ANGPTL4 at both the mRNA and protein levels together with activation of HIF-1α under hypoxic conditions. These findings demonstrate that angiogenic factor ANGPTL4 upregulation is involved in tibial growth plate angiogenesis to promote the development of the tibia in broiler chickens under hypoxic conditions. They also suggest that ANGPTL4 may serve as a new molecular therapeutic target for ameliorating tibial dyschondroplasia chicken bone vascularization.
Collapse
Affiliation(s)
- S Huang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - M Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - M U Rehman
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - L Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - X Tong
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Y Shen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China.
| | - J Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China; Laboratory of Detection and Monitoring of Highland Animal Disease, Tibet Agriculture and Animal Husbandry College, Linzhi, Tibet, People's Republic of China.
| |
Collapse
|