1
|
Jesus JG, Máguas C, Dias R, Nunes M, Pascoal P, Pereira M, Trindade H. What If Root Nodules Are a Guesthouse for a Microbiome? The Case Study of Acacia longifolia. BIOLOGY 2023; 12:1168. [PMID: 37759568 PMCID: PMC10525506 DOI: 10.3390/biology12091168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023]
Abstract
Acacia longifolia is one of the most aggressive invaders worldwide whose invasion is potentiated after a fire, a common perturbation in Mediterranean climates. As a legume, this species establishes symbioses with nitrogen-fixing bacteria inside root nodules; however, the overall microbial diversity is still unclear. In this study, we addressed root nodules' structure and biodiversity through histology and Next-Generation Sequencing, targeting 16S and 25S-28S rDNA genes for bacteria and fungi, respectively. We wanted to evaluate the effect of fire in root nodules from 1-year-old saplings, by comparing unburnt and burnt sites. We found that although having the same general structure, after a fire event, nodules had a higher number of infected cells and greater starch accumulation. Starch accumulated in uninfected cells can be a possible carbon source for the microbiota. Regarding diversity, Bradyrhizobium was dominant in both sites (ca. 77%), suggesting it is the preferential partner, followed by Tardiphaga (ca. 9%), a non-rhizobial Alphaproteobacteria, and Synechococcus, a cyanobacteria (ca. 5%). However, at the burnt site, additional N-fixing bacteria were included in the top 10 genera, highlighting the importance of this process. Major differences were found in the mycobiome, which was diverse in both sites and included genera mostly described as plant endophytes. Coniochaeta was dominant in nodules from the burnt site (69%), suggesting its role as a facilitator of symbiotic associations. We highlight the presence of a large bacterial and fungal community in nodules, suggesting nodulation is not restricted to nitrogen fixation. Thus, this microbiome can be involved in facilitating A. longifolia invasive success.
Collapse
Affiliation(s)
- Joana G. Jesus
- Centre for Ecology, Evolution and Environmental Change (cE3c), Faculty of Sciences, University of Lisbon (FCUL), Global Change and Sustainability Institute (CHANGE), 1749-016 Lisboa, Portugal; (J.G.J.); (C.M.); (R.D.)
| | - Cristina Máguas
- Centre for Ecology, Evolution and Environmental Change (cE3c), Faculty of Sciences, University of Lisbon (FCUL), Global Change and Sustainability Institute (CHANGE), 1749-016 Lisboa, Portugal; (J.G.J.); (C.M.); (R.D.)
| | - Ricardo Dias
- Centre for Ecology, Evolution and Environmental Change (cE3c), Faculty of Sciences, University of Lisbon (FCUL), Global Change and Sustainability Institute (CHANGE), 1749-016 Lisboa, Portugal; (J.G.J.); (C.M.); (R.D.)
- Biosystems and Integrative Sciences Institute (BioISI), 1749-016 Lisboa, Portugal
| | - Mónica Nunes
- Centro de Testes de Ciências, Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal; (M.N.); (P.P.); (M.P.)
| | - Pedro Pascoal
- Centro de Testes de Ciências, Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal; (M.N.); (P.P.); (M.P.)
| | - Marcelo Pereira
- Centro de Testes de Ciências, Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal; (M.N.); (P.P.); (M.P.)
| | - Helena Trindade
- Centre for Ecology, Evolution and Environmental Change (cE3c), Faculty of Sciences, University of Lisbon (FCUL), Global Change and Sustainability Institute (CHANGE), 1749-016 Lisboa, Portugal; (J.G.J.); (C.M.); (R.D.)
| |
Collapse
|
2
|
Rapid Changes to Endomembrane System of Infected Root Nodule Cells to Adapt to Unusual Lifestyle. Int J Mol Sci 2023; 24:ijms24054647. [PMID: 36902077 PMCID: PMC10002930 DOI: 10.3390/ijms24054647] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
Symbiosis between leguminous plants and soil bacteria rhizobia is a refined type of plant-microbial interaction that has a great importance to the global balance of nitrogen. The reduction of atmospheric nitrogen takes place in infected cells of a root nodule that serves as a temporary shelter for thousands of living bacteria, which, per se, is an unusual state of a eukaryotic cell. One of the most striking features of an infected cell is the drastic changes in the endomembrane system that occur after the entrance of bacteria to the host cell symplast. Mechanisms for maintaining intracellular bacterial colony represent an important part of symbiosis that have still not been sufficiently clarified. This review focuses on the changes that occur in an endomembrane system of infected cells and on the putative mechanisms of infected cell adaptation to its unusual lifestyle.
Collapse
|
3
|
Visualization of the Crossroads between a Nascent Infection Thread and the First Cell Division Event in Phaseolus vulgaris Nodulation. Int J Mol Sci 2022; 23:ijms23095267. [PMID: 35563659 PMCID: PMC9105610 DOI: 10.3390/ijms23095267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 11/17/2022] Open
Abstract
The development of a symbiotic nitrogen-fixing nodule in legumes involves infection and organogenesis. Infection begins when rhizobia enter a root hair through an inward structure, the infection thread (IT), which guides the bacteria towards the cortical tissue. Concurrently, organogenesis takes place by inducing cortical cell division (CCD) at the infection site. Genetic analysis showed that both events are well-coordinated; however, the dynamics connecting them remain to be elucidated. To visualize the crossroads between IT and CCD, we benefited from the fact that, in Phaseolus vulgaris nodulation, where the first division occurs in subepidermal cortical cells located underneath the infection site, we traced a Rhizobium etli strain expressing DsRed, the plant cytokinesis marker YFP-PvKNOLLE, a nuclear stain and cell wall auto-fluorescence. We found that the IT exits the root hair to penetrate an underlying subepidermal cortical (S-E) cell when it is concluding cytokinesis.
Collapse
|
4
|
Walker L, Lagunas B, Gifford ML. Determinants of Host Range Specificity in Legume-Rhizobia Symbiosis. Front Microbiol 2020; 11:585749. [PMID: 33329456 PMCID: PMC7728800 DOI: 10.3389/fmicb.2020.585749] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/06/2020] [Indexed: 01/24/2023] Open
Abstract
Leguminous plants possess the almost unique ability to enter symbiosis with soil-resident, nitrogen fixing bacteria called rhizobia. During this symbiosis, the bacteria physically colonize specialized organs on the roots of the host plant called nodules, where they reduce atmospheric nitrogen into forms that can be assimilated by the host plant and receive photosynthates in return. In order for nodule development to occur, there is extensive chemical cross-talk between both parties during the formative stages of the symbiosis. The vast majority of the legume family are capable of forming root nodules and typically rhizobia are only able to fix nitrogen within the context of this symbiotic association. However, many legume species only enter productive symbiosis with a few, or even single rhizobial species or strains, and vice-versa. Permitting symbiosis with only rhizobial strains that will be able to fix nitrogen with high efficiency is a crucial strategy for the host plant to prevent cheating by rhizobia. This selectivity is enforced at all stages of the symbiosis, with partner choice beginning during the initial communication between the plant and rhizobia. However, it can also be influenced even once nitrogen-fixing nodules have developed on the root. This review sets out current knowledge about the molecular mechanisms employed by both parties to influence host range during legume-rhizobia symbiosis.
Collapse
Affiliation(s)
- Liam Walker
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Beatriz Lagunas
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Miriam L Gifford
- School of Life Sciences, University of Warwick, Coventry, United Kingdom.,Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
5
|
Genome-Wide Identification of the CrRLK1L Subfamily and Comparative Analysis of Its Role in the Legume-Rhizobia Symbiosis. Genes (Basel) 2020; 11:genes11070793. [PMID: 32674446 PMCID: PMC7397338 DOI: 10.3390/genes11070793] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 12/12/2022] Open
Abstract
The plant receptor-like-kinase subfamily CrRLK1L has been widely studied, and CrRLK1Ls have been described as crucial regulators in many processes in Arabidopsis thaliana (L.), Heynh. Little is known, however, about the functions of these proteins in other plant species, including potential roles in symbiotic nodulation. We performed a phylogenetic analysis of CrRLK1L subfamily receptors of 57 different plant species and identified 1050 CrRLK1L proteins, clustered into 11 clades. This analysis revealed that the CrRLK1L subfamily probably arose in plants during the transition from chlorophytes to embryophytes and has undergone several duplication events during its evolution. Among the CrRLK1Ls of legumes and A. thaliana, protein structure, gene structure, and expression patterns were highly conserved. Some legume CrRLK1L genes were active in nodules. A detailed analysis of eight nodule-expressed genes in Phaseolus vulgaris L. showed that these genes were differentially expressed in roots at different stages of the symbiotic process. These data suggest that CrRLK1Ls are both conserved and underwent diversification in a wide group of plants, and shed light on the roles of these genes in legume–rhizobia symbiosis.
Collapse
|
6
|
Coba de la Peña T, Fedorova E, Pueyo JJ, Lucas MM. The Symbiosome: Legume and Rhizobia Co-evolution toward a Nitrogen-Fixing Organelle? FRONTIERS IN PLANT SCIENCE 2018; 8:2229. [PMID: 29403508 PMCID: PMC5786577 DOI: 10.3389/fpls.2017.02229] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 12/19/2017] [Indexed: 05/21/2023]
Abstract
In legume nodules, symbiosomes containing endosymbiotic rhizobial bacteria act as temporary plant organelles that are responsible for nitrogen fixation, these bacteria develop mutual metabolic dependence with the host legume. In most legumes, the rhizobia infect post-mitotic cells that have lost their ability to divide, although in some nodules cells do maintain their mitotic capacity after infection. Here, we review what is currently known about legume symbiosomes from an evolutionary and developmental perspective, and in the context of the different interactions between diazotroph bacteria and eukaryotes. As a result, it can be concluded that the symbiosome possesses organelle-like characteristics due to its metabolic behavior, the composite origin and differentiation of its membrane, the retargeting of host cell proteins, the control of microsymbiont proliferation and differentiation by the host legume, and the cytoskeletal dynamics and symbiosome segregation during the division of rhizobia-infected cells. Different degrees of symbiosome evolution can be defined, specifically in relation to rhizobial infection and to the different types of nodule. Thus, our current understanding of the symbiosome suggests that it might be considered a nitrogen-fixing link in organelle evolution and that the distinct types of legume symbiosomes could represent different evolutionary stages toward the generation of a nitrogen-fixing organelle.
Collapse
Affiliation(s)
- Teodoro Coba de la Peña
- Instituto de Ciencias Agrarias ICA-CSIC, Madrid, Spain
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), La Serena, Chile
| | - Elena Fedorova
- Instituto de Ciencias Agrarias ICA-CSIC, Madrid, Spain
- K. A. Timiryazev Institute of Plant Physiology, Russian Academy of Science, Moscow, Russia
| | - José J Pueyo
- Instituto de Ciencias Agrarias ICA-CSIC, Madrid, Spain
| | | |
Collapse
|
7
|
Ogden AJ, Gargouri M, Park J, Gang DR, Kahn ML. Integrated analysis of zone-specific protein and metabolite profiles within nitrogen-fixing Medicago truncatula-Sinorhizobium medicae nodules. PLoS One 2017; 12:e0180894. [PMID: 28700717 PMCID: PMC5507277 DOI: 10.1371/journal.pone.0180894] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/22/2017] [Indexed: 11/19/2022] Open
Abstract
Symbiotic nitrogen fixation (SNF) between rhizobia and legumes requires metabolic coordination within specialized root organs called nodules. Nodules formed in the symbiosis between S. medicae and barrel medic (M. truncatula) are indeterminate, cylindrical, and contain spatially distinct developmental zones. Bacteria in the infection zone II (ZII), interzone II-III (IZ), and nitrogen fixation zone III (ZIII) represent different stages in the metabolic progression from free-living bacteria into nitrogen fixing bacteroids. To better understand the coordination of plant and bacterial metabolism within the nodule, we used liquid and gas chromatography coupled to tandem mass spectrometry (MS) to observe protein and metabolite profiles representative of ZII, IZ, ZIII, whole-nodule, and primary root. Our MS-based approach confidently identified 361 S. medicae proteins and 888 M. truncatula proteins, as well as 160 metabolites from each tissue. The data are consistent with several organ- and zone-specific protein and metabolite localization patterns characterized previously. We used our comprehensive dataset to demonstrate how multiple branches of primary metabolism are coordinated between symbionts and zones, including central carbon, fatty acid, and amino acid metabolism. For example, M. truncatula glycolysis enzymes accumulate from zone I to zone III within the nodule, while equivalent S. medicae enzymes decrease in abundance. We also show the localization of S. medicae's transition to dicarboxylic acid-dependent carbon metabolism within the IZ. The spatial abundance patterns of S. medicae fatty acid (FA) biosynthesis enzymes indicate an increased demand for FA production in the IZ and ZIII as compared to ZI. These observations provide a resource for those seeking to understand coordinated physiological changes during the development of SNF.
Collapse
Affiliation(s)
- Aaron J. Ogden
- Molecular Plant Science Program, Washington State University, Pullman, Washington, United States of America
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, United States of America
| | - Mahmoud Gargouri
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, United States of America
| | - JeongJin Park
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, United States of America
| | - David R. Gang
- Molecular Plant Science Program, Washington State University, Pullman, Washington, United States of America
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, United States of America
| | - Michael L. Kahn
- Molecular Plant Science Program, Washington State University, Pullman, Washington, United States of America
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, United States of America
- * E-mail:
| |
Collapse
|
8
|
Hagberg KL, Yurgel SN, Mulder M, Kahn ML. Interaction between Nitrogen and Phosphate Stress Responses in Sinorhizobium meliloti. Front Microbiol 2016; 7:1928. [PMID: 27965651 PMCID: PMC5127829 DOI: 10.3389/fmicb.2016.01928] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/16/2016] [Indexed: 11/13/2022] Open
Abstract
Bacteria have developed various stress response pathways to improve their assimilation and allocation of limited nutrients, such as nitrogen and phosphate. While both the nitrogen stress response (NSR) and phosphate stress response (PSR) have been studied individually, there are few experiments reported that characterize effects of multiple stresses on one or more pathways in Sinorhizobium meliloti, a facultatively symbiotic, nitrogen-fixing bacteria. The PII proteins, GlnB and GlnK, regulate the NSR activity, but analysis of global transcription changes in a PII deficient mutant suggest that the S. meliloti PII proteins may also regulate the PSR. PII double deletion mutants grow very slowly and pseudoreversion of the slow growth phenotype is common. To understand this phenomenon better, transposon mutants were isolated that had a faster growing phenotype. One mutation was in phoB, the response regulator for a two component regulatory system that is important in the PSR. phoB::Tn5 mutants had different phenotypes in the wild type compared to a PII deficient background. This led to the hypothesis that phosphate stress affects the NSR and conversely, that nitrogen stress affects the PSR. Our results show that phosphate availability affects glutamine synthetase activity and expression, which are often used as indicators of NSR activity, but that nitrogen availability did not affect alkaline phosphatase activity and expression, which are indicators of PSR activity. We conclude that the NSR is co-regulated by nitrogen and phosphate, whereas the PSR does not appear to be co-regulated by nitrogen in addition to its known phosphate regulation.
Collapse
Affiliation(s)
- Kelly L Hagberg
- School of Molecular Biosciences, Washington State University, PullmanWA, USA; Institute of Biological Chemistry, Washington State University, PullmanWA, USA
| | - Svetlana N Yurgel
- Institute of Biological Chemistry, Washington State University, Pullman WA, USA
| | - Monika Mulder
- Institute of Biological Chemistry, Washington State University, Pullman WA, USA
| | - Michael L Kahn
- School of Molecular Biosciences, Washington State University, PullmanWA, USA; Institute of Biological Chemistry, Washington State University, PullmanWA, USA
| |
Collapse
|
9
|
Lelandais-Brière C, Moreau J, Hartmann C, Crespi M. Noncoding RNAs, Emerging Regulators in Root Endosymbioses. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:170-80. [PMID: 26894282 DOI: 10.1094/mpmi-10-15-0240-fi] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Endosymbiosis interactions allow plants to grow in nutrient-deficient soil environments. The arbuscular mycorrhizal (AM) symbiosis is an ancestral interaction between land plants and fungi, whereas nitrogen-fixing symbioses are highly specific for certain plants, notably major crop legumes. The signaling pathways triggered by specific lipochitooligosaccharide molecules involved in these interactions have common components that also overlap with plant root development. These pathways include receptor-like kinases, transcription factors (TFs), and various intermediate signaling effectors, including noncoding (nc)RNAs. These latter molecules have emerged as major regulators of gene expression and small ncRNAs, composed of micro (mi)RNAs and small interfering (si)RNAs, are known to control gene expression at transcriptional (chromatin) or posttranscriptional levels. In this review, we describe exciting recent data connecting variants of conserved si/miRNAs with the regulation of TFs, such as NSP2, NFY-A1, auxin-response factors, and AP2-like proteins, known to be involved in symbiosis. The link between hormonal regulations and these si- and miRNA-TF nodes is proposed in a model in which different feedback loops or regulations controlling endosymbiosis signaling are integrated. The diversity and emerging regulatory networks of young legume miRNAs are also highlighted.
Collapse
Affiliation(s)
- Christine Lelandais-Brière
- Institute of Plant Sciences Paris-Saclay, IPS2, Univ. Paris-Diderot, CNRS, INRA, Univ. Paris-Sud, Univ. Evry, Sorbone Paris-Cité, University of Paris-Saclay, 91405 Orsay, France
| | - Jérémy Moreau
- Institute of Plant Sciences Paris-Saclay, IPS2, Univ. Paris-Diderot, CNRS, INRA, Univ. Paris-Sud, Univ. Evry, Sorbone Paris-Cité, University of Paris-Saclay, 91405 Orsay, France
| | - Caroline Hartmann
- Institute of Plant Sciences Paris-Saclay, IPS2, Univ. Paris-Diderot, CNRS, INRA, Univ. Paris-Sud, Univ. Evry, Sorbone Paris-Cité, University of Paris-Saclay, 91405 Orsay, France
| | - Martin Crespi
- Institute of Plant Sciences Paris-Saclay, IPS2, Univ. Paris-Diderot, CNRS, INRA, Univ. Paris-Sud, Univ. Evry, Sorbone Paris-Cité, University of Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
10
|
Lodeiro AR. [Queries related to the technology of soybean seed inoculation with Bradyrhizobium spp]. Rev Argent Microbiol 2015; 47:261-73. [PMID: 26364183 DOI: 10.1016/j.ram.2015.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 05/29/2015] [Accepted: 06/06/2015] [Indexed: 10/23/2022] Open
Abstract
With the aim of exploiting symbiotic nitrogen fixation, soybean crops are inoculated with selected strains of Bradyrhizobium japonicum, Bradyrhizobium diazoefficiens or Bradyrhizobium elkanii (collectively referred to as Bradyrhizobium spp.). The most common method of inoculation used is seed inoculation, whether performed immediately before sowing or using preinoculated seeds or pretreated seeds by the professional seed treatment. The methodology of inoculation should not only cover the seeds with living rhizobia, but must also optimize the chances of these rhizobia to infect the roots and nodulate. To this end, inoculated rhizobia must be in such an amount and condition that would allow them to overcome the competition exerted by the rhizobia of the allochthonous population of the soil, which are usually less effective for nitrogen fixation and thus dilute the effect of inoculation on yield. This optimization requires solving some queries related to the current knowledge of seed inoculation, which are addressed in this article. I conclude that the aspects that require further research are the adhesion and survival of rhizobia on seeds, the release of rhizobia once the seeds are deposited in the soil, and the movement of rhizobia from the vicinity of the seeds to the infection sites in the roots.
Collapse
Affiliation(s)
- Aníbal R Lodeiro
- Laboratorio de Interacciones entre Rizobios y Soja (LIRyS), IBBM-Facultad de Ciencias Exactas, UNLP y CCT-La Plata CONICET, La Plata, Buenos Aires, Argentina.
| |
Collapse
|
11
|
Wang Y, Wang L, Zou Y, Chen L, Cai Z, Zhang S, Zhao F, Tian Y, Jiang Q, Ferguson BJ, Gresshoff PM, Li X. Soybean miR172c targets the repressive AP2 transcription factor NNC1 to activate ENOD40 expression and regulate nodule initiation. THE PLANT CELL 2014; 26:4782-801. [PMID: 25549672 PMCID: PMC4311200 DOI: 10.1105/tpc.114.131607] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 11/19/2014] [Accepted: 12/08/2014] [Indexed: 05/18/2023]
Abstract
MicroRNAs are noncoding RNAs that act as master regulators to modulate various biological processes by posttranscriptionally repressing their target genes. Repression of their target mRNA(s) can modulate signaling cascades and subsequent cellular events. Recently, a role for miR172 in soybean (Glycine max) nodulation has been described; however, the molecular mechanism through which miR172 acts to regulate nodulation has yet to be explored. Here, we demonstrate that soybean miR172c modulates both rhizobium infection and nodule organogenesis. miR172c was induced in soybean roots inoculated with either compatible Bradyrhizobium japonicum or lipooligosaccharide Nod factor and was highly upregulated during nodule development. Reduced activity and overexpression of miR172c caused dramatic changes in nodule initiation and nodule number. We show that soybean miR172c regulates nodule formation by repressing its target gene, Nodule Number Control1, which encodes a protein that directly targets the promoter of the early nodulin gene, ENOD40. Interestingly, transcriptional levels of miR172c were regulated by both Nod Factor Receptor1α/5α-mediated activation and by autoregulation of nodulation-mediated inhibition. Thus, we established a direct link between miR172c and the Nod factor signaling pathway in addition to adding a new layer to the precise nodulation regulation mechanism of soybean.
Collapse
Affiliation(s)
- Youning Wang
- Key State Laboratory of Plant Cell and Chromosome Engineering, Center of Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
| | - Lixiang Wang
- Key State Laboratory of Plant Cell and Chromosome Engineering, Center of Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yanmin Zou
- Key State Laboratory of Plant Cell and Chromosome Engineering, Center of Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
| | - Liang Chen
- Key State Laboratory of Plant Cell and Chromosome Engineering, Center of Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
| | - Zhaoming Cai
- Key State Laboratory of Plant Cell and Chromosome Engineering, Center of Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Senlei Zhang
- Key State Laboratory of Plant Cell and Chromosome Engineering, Center of Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Zhao
- Key State Laboratory of Plant Cell and Chromosome Engineering, Center of Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
| | - Yinping Tian
- Key State Laboratory of Plant Cell and Chromosome Engineering, Center of Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
| | - Qiong Jiang
- Key State Laboratory of Plant Cell and Chromosome Engineering, Center of Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Brett J Ferguson
- Centre for Integrative Legume Research, University of Queensland, Brisbane St. Lucia, Queensland 4072, Australia
| | - Peter M Gresshoff
- Centre for Integrative Legume Research, University of Queensland, Brisbane St. Lucia, Queensland 4072, Australia
| | - Xia Li
- Key State Laboratory of Plant Cell and Chromosome Engineering, Center of Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
| |
Collapse
|
12
|
Lazali M, Drevon JJ. The nodule conductance to O₂ diffusion increases with phytase activity in N₂-fixing Phaseolus vulgaris L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 80:53-9. [PMID: 24727788 DOI: 10.1016/j.plaphy.2014.03.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 03/22/2014] [Indexed: 05/26/2023]
Abstract
To understand the relationship between phosphorus use efficiency (PUE) and respiration for symbiotic nitrogen fixation (SNF) in legume nodules, six recombinant inbred lines of common bean (RIL Phaseolus vulgaris L.), contrasting in PUE for SNF, were inoculated with Rhizobium tropici CIAT899, and grown under hydroaeroponic culture with sufficient versus deficient P supply (250 versus 75 μmol P plant(-1) week(-1)). At the flowering stage, the biomass of plants and phytase activity in nodules were analyzed after measuring O2 uptake by nodulated roots. Our results show that the P-deficiency significantly increased the phytase activity in nodules of all RILs though with highest extent for RILs 147, 29 and 83 (ca 45%). This increase in phytase activity was associated with an increase in nodule respiration (ca 22%) and in use of the rhizobial symbiosis (ca 21%). A significant correlation was found under P-deficiency between nodule O2 permeability and phytase activity in nodules for RILs 104, 34 and 115. This observation is to our knowledge the first description of a correlation between O2 permeability and phytase activity of a legume nodule. It is concluded that the variation of phytase activity in nodules can increase the internal utilization of P and might be involved in the regulation of nodule permeability for the respiration linked with SNF and the adaptation to P-deficiency.
Collapse
Affiliation(s)
- Mohamed Lazali
- Université de Khemis Miliana, Faculté des Sciences de la Nature et de la Vie & des Sciences de la Terre, Route Theniet El Had, 44225 Khemis Miliana, Algerie; Institut National de la Recherche Agronomique, UMR Ecologie Fonctionnelle & Biogéochimie des Sols et Agroécosystèmes, INRA-IRD-CIRAD-SupAgro, Place Pierre Viala, 34060 Montpellier, France.
| | - Jean Jacques Drevon
- Institut National de la Recherche Agronomique, UMR Ecologie Fonctionnelle & Biogéochimie des Sols et Agroécosystèmes, INRA-IRD-CIRAD-SupAgro, Place Pierre Viala, 34060 Montpellier, France
| |
Collapse
|
13
|
Bustos-Sanmamed P, Mao G, Deng Y, Elouet M, Khan GA, Bazin JRM, Turner M, Subramanian S, Yu O, Crespi M, Lelandais-Bri Re C. Overexpression of miR160 affects root growth and nitrogen-fixing nodule number in Medicago truncatula. FUNCTIONAL PLANT BIOLOGY : FPB 2013; 40:1208-1220. [PMID: 32481189 DOI: 10.1071/fp13123] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 08/21/2013] [Indexed: 05/13/2023]
Abstract
Auxin action is mediated by a complex signalling pathway involving transcription factors of the auxin response factor (ARF) family. In Arabidopsis, microRNA160 (miR160) negatively regulates three ARF genes (ARF10/ARF16/ARF17) and therefore controls several developmental processes, including primary and lateral root growth. Here, we analysed the role of miR160 in root development and nodulation in Medicago truncatula Gaertn. Bioinformatic analyses identified two main mtr-miR160 variants (mtr-miR160abde and mtr-miR160c) and 17 predicted ARF targets. The miR160-dependent cleavage of four predicted targets in roots was confirmed by analysis of parallel analysis of RNA ends (PARE) data and RACE-PCR experiments. Promoter-GUS analyses for mtr-miR160d and mtr-miR160c genes revealed overlapping but distinct expression profiles during root and nodule development. In addition, the early miR160 activation in roots during symbiotic interaction was not observed in mutants of the nodulation signalling or autoregulation pathways. Composite plants that overexpressed mtr-miR160a under two different promoters exhibited distinct defects in root growth and nodulation: the p35S:miR160a construct led to reduced root length associated to a severe disorganisation of the RAM, whereas pCsVMV:miR160a roots showed gravitropism defects and lower nodule numbers. Our results suggest that a regulatory loop involving miR160/ARFs governs root and nodule organogenesis in M. truncatula.
Collapse
Affiliation(s)
- Pilar Bustos-Sanmamed
- Institut des Sciences du Végétal (ISV), Centre National de la Recherche Scientifique (CNRS), Gif sur Yvette F-91198 Gif-sur-Yvette Cedex, France
| | - Guohong Mao
- Donald Danforth Plant Science Center, St Louis, MO 63132, USA
| | - Ying Deng
- Donald Danforth Plant Science Center, St Louis, MO 63132, USA
| | - Morgane Elouet
- Institut des Sciences du Végétal (ISV), Centre National de la Recherche Scientifique (CNRS), Gif sur Yvette F-91198 Gif-sur-Yvette Cedex, France
| | - Ghazanfar Abbas Khan
- Institut des Sciences du Végétal (ISV), Centre National de la Recherche Scientifique (CNRS), Gif sur Yvette F-91198 Gif-sur-Yvette Cedex, France
| | - J R Mie Bazin
- Institut des Sciences du Végétal (ISV), Centre National de la Recherche Scientifique (CNRS), Gif sur Yvette F-91198 Gif-sur-Yvette Cedex, France
| | - Marie Turner
- Department of Plant Science, Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Senthil Subramanian
- Department of Plant Science, Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Oliver Yu
- Donald Danforth Plant Science Center, St Louis, MO 63132, USA
| | - Martin Crespi
- Institut des Sciences du Végétal (ISV), Centre National de la Recherche Scientifique (CNRS), Gif sur Yvette F-91198 Gif-sur-Yvette Cedex, France
| | - Christine Lelandais-Bri Re
- Institut des Sciences du Végétal (ISV), Centre National de la Recherche Scientifique (CNRS), Gif sur Yvette F-91198 Gif-sur-Yvette Cedex, France
| |
Collapse
|
14
|
Gu F, Nielsen E. Targeting and regulation of cell wall synthesis during tip growth in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:835-46. [PMID: 23758901 DOI: 10.1111/jipb.12077] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 05/20/2013] [Indexed: 05/20/2023]
Abstract
Root hairs and pollen tubes are formed through tip growth, a process requiring synthesis of new cell wall material and the precise targeting and integration of these components to a selected apical plasma membrane domain in the growing tips of these cells. Presence of a tip-focused calcium gradient, control of actin cytoskeleton dynamics, and formation and targeting of secretory vesicles are essential to tip growth. Similar to cells undergoing diffuse growth, cellulose, hemicelluloses, and pectins are also deposited in the growing apices of tip-growing cells. However, differences in the manner in which these cell wall components are targeted and inserted in the expanding portion of tip-growing cells is reflected by the identification of elements of the plant cell wall synthesis machinery which have been shown to play unique roles in tip-growing cells. In this review, we summarize our current understanding of the tip growth process, with a particular focus on the subcellular targeting of newly synthesized cell wall components, and their roles in this form of plant cell expansion.
Collapse
Affiliation(s)
- Fangwei Gu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
15
|
Analysis of two polyhydroxyalkanoate synthases in Bradyrhizobium japonicum USDA 110. J Bacteriol 2013; 195:3145-55. [PMID: 23667236 DOI: 10.1128/jb.02203-12] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bradyrhizobium japonicum USDA 110 has five polyhydroxyalkanoate (PHA) synthases (PhaC) annotated in its genome: bll4360 (phaC1), bll6073 (phaC2), blr3732 (phaC3), blr2885 (phaC4), and bll4548 (phaC5). All these proteins possess the catalytic triad and conserved amino acid residues of polyester synthases and are distributed into four different PhaC classes. We obtained mutants in each of these paralogs and analyzed phaC gene expression and PHA production in liquid cultures. Despite the genetic redundancy, only phaC1 and phaC2 were expressed at significant rates, while PHA accumulation in stationary-phase cultures was impaired only in the ΔphaC1 mutant. Meanwhile, the ΔphaC2 mutant produced more PHA than the wild type under this condition, and surprisingly, the phaC3 transcript increased in the ΔphaC2 background. A double mutant, the ΔphaC2 ΔphaC3 mutant, consistently accumulated less PHA than the ΔphaC2 mutant. PHA accumulation in nodule bacteroids followed a pattern similar to that seen in liquid cultures, being prevented in the ΔphaC1 mutant and increased in the ΔphaC2 mutant in relation to the level in the wild type. Therefore, we used these mutants, together with a ΔphaC1 ΔphaC2 double mutant, to study the B. japonicum PHA requirements for survival, competition for nodulation, and plant growth promotion. All mutants, as well as the wild type, survived for 60 days in a carbon-free medium, regardless of their initial PHA contents. When competing for nodulation against the wild type in a 1:1 proportion, the ΔphaC1 and ΔphaC1 ΔphaC2 mutants occupied only 13 to 15% of the nodules, while the ΔphaC2 mutant occupied 81%, suggesting that the PHA polymer is required for successful competitiveness. However, the bacteroid content of PHA did not affect the shoot dry weight accumulation.
Collapse
|
16
|
Pérez-Giménez J, Lodeiro AR. Two effects of combined nitrogen on the adhesion of Rhizobium etli to bean roots. Symbiosis 2013. [DOI: 10.1007/s13199-013-0229-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Sánchez-López R, Jáuregui D, Nava N, Alvarado-Affantranger X, Montiel J, Santana O, Sanchez F, Quinto C. Down-regulation of SymRK correlates with a deficiency in vascular bundle development in Phaseolus vulgaris nodules. PLANT, CELL & ENVIRONMENT 2011; 34:2109-21. [PMID: 21848862 DOI: 10.1111/j.1365-3040.2011.02408.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The symbiotic interaction of legumes and rhizobia results in the formation of nitrogen-fixing nodules. Nodulation depends on the finely coordinated expression of a battery of genes involved in the infection and the organogenesis processes. After Nod factor perception, symbiosis receptor kinase (SymRK) receptor triggers a signal transduction cascade essential for nodulation leading to cortical cell divisions, infection thread (IT) formation and final release of rhizobia to the intracellular space, forming the symbiosome. Herein, the participation of SymRK receptor during the nodule organogenesis in Phaseolus vulgaris is addressed. Our findings indicate that besides its expression in the nodule epidermis, in IT, and in uninfected cells of the infection zone, PvSymRK immunolocalizes in the root and nodule vascular system. On the other hand, knockdown expression of PvSymRK led to the formation of scarce and defective nodules, which presented alterations in both IT/symbiosome formation and vascular system.
Collapse
Affiliation(s)
- Rosana Sánchez-López
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Margaret I, Becker A, Blom J, Bonilla I, Goesmann A, Göttfert M, Lloret J, Mittard-Runte V, Rückert C, Ruiz-Sainz JE, Vinardell JM, Weidner S. Symbiotic properties and first analyses of the genomic sequence of the fast growing model strain Sinorhizobium fredii HH103 nodulating soybean. J Biotechnol 2011; 155:11-9. [PMID: 21458507 DOI: 10.1016/j.jbiotec.2011.03.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 03/11/2011] [Accepted: 03/22/2011] [Indexed: 10/18/2022]
Abstract
Glycine max (soybean) plants can be nodulated by fast-growing rhizobial strains of the genus Sinorhizobium as well as by slow-growing strains clustered in the genus Bradyrhizobium. Fast-growing rhizobia strains with different soybean cultivar specificities have been isolated from Chinese soils and from other geographical regions. Most of these strains have been clustered into the species Sinorhizobium fredii. The S. fredii strain HH103 was isolated from soils of Hubei province, Central China and was first described in 1985. This strain is capable to nodulate American and Asiatic soybean cultivars and many other different legumes and is so far the best studied fast-growing soybean-nodulating strain. Additionally to the chromosome S. fredii HH103 carries five indigenous plasmids. The largest plasmid (pSfrHH103e) harbours genes for the production of diverse surface polysaccharides, such as exopolysaccharides (EPS), lipopolysaccharides (LPS), and capsular polysaccharides (KPS). The second largest plasmid (pSfrHH103d) is a typical symbiotic plasmid (pSym), carrying nodulation and nitrogen fixation genes. The present mini review focuses on symbiotic properties of S. fredii HH103, in particular on nodulation and surface polysaccharides aspects. The model strain S. fredii HH103 was chosen for genomic sequencing, which is currently in progress. First analyses of the draft genome sequence revealed an extensive synteny between the chromosomes of S. fredii HH103 and Rhizobium sp. NGR234.
Collapse
Affiliation(s)
- Isabel Margaret
- Departamento de Microbiología, Universidad de Sevilla, Sevilla, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Althabegoiti MJ, Covelli JM, Pérez-Giménez J, Quelas JI, Mongiardini EJ, López MF, López-García SL, Lodeiro AR. Analysis of the role of the two flagella of Bradyrhizobium japonicum in competition for nodulation of soybean. FEMS Microbiol Lett 2011; 319:133-9. [PMID: 21470300 DOI: 10.1111/j.1574-6968.2011.02280.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Bradyrhizobium japonicum has two types of flagella. One has thin filaments consisting of the 33-kDa flagellins FliCI and FliCII (FliCI-II) and the other has thick filaments consisting of the 65-kDa flagellins FliC1, FliC2, FliC3, and FliC4 (FliC1-4). To investigate the roles of each flagellum in competition for nodulation, we obtained mutants deleted in fliCI-II and/or fliC1-4 in the genomic backgrounds of two derivatives from the reference strain USDA 110: the streptomycin-resistant derivative LP 3004 and its more motile derivative LP 3008. All mutations diminished swimming motility. When each mutant was co-inoculated with the parental strain on soybean plants cultivated in vermiculite either at field capacity or flooded, their competitiveness differed according to the flagellin altered. ΔfliCI-II mutants were more competitive, occupying 64-80% of the nodules, while ΔfliC1-4 mutants occupied 45-49% of the nodules. Occupation by the nonmotile double mutant decreased from 55% to 11% as the water content of the vermiculite increased from 85% to 95% field capacity to flooding. These results indicate that the influence of motility on competitiveness depended on the water status of the rooting substrate.
Collapse
Affiliation(s)
- Maria Julia Althabegoiti
- Departamento de Ciencias Biológicas, Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata y CCT La Plata-CONICET, La Plata, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Lin MH, Gresshoff PM, Indrasumunar A, Ferguson BJ. pHairyRed: a novel binary vector containing the DsRed2 reporter gene for visual selection of transgenic hairy roots. MOLECULAR PLANT 2011; 4:537-45. [PMID: 21324970 DOI: 10.1093/mp/ssq084] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
We developed a new plant transformation vector, pHairyRed, for enabling high throughput, non-destructive selection of Agrobacterium rhizogenes-mediated 'hairy-root' transformation. pHairyRed allows easy in planta visualization of transgenic tissue with minimal disturbance to the plant. The DsRed2 reporter gene, encoding a red fluorescent protein, was cloned to yield pHairyRed (harbouring a multiple cloning site), which was used with the highly efficient K599 A. rhizogenes strain to infect soybean (Glycine max L. Merrill) plants. DsRed2 fluorescence was easily detected in planta for the duration of a 5-week study with negligible levels of background autofluorescence. This enabled visual selection of transformed roots and subsequent excission of non-transformed roots. pHairyRed-transformed roots nodulated normally when inoculated with Bradyrhizobium japonicum. Within the nodule, DsRed2 fluorescence was plant-specific, being absent in the bacteroid-dominated nodule infected zone. To test the reliability of pHairyRed as a high-fidelity binary vector reporter system, the gene encoding the soybean Nod factor receptor, GmNFR1α, was cloned into the vector for use in a complementation study with a non-nodulating nfr1α mutant of soybean. Complementation was achieved and, without exception, DsRed2 fluorescence was detected in all hairy roots that successfully formed nodules (100%, n = 34). We anticipate broad application of this reporter system for the further analysis of root-related events in soybean and related legumes.
Collapse
Affiliation(s)
- Meng-Han Lin
- Australian Research Council Centre of Excellence for Integrative Legume Research, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | | | | | | |
Collapse
|
21
|
Mortier V, Fenta BA, Martens C, Rombauts S, Holsters M, Kunert K, Goormachtig S. Search for nodulation-related CLE genes in the genome of Glycine max. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:2571-83. [PMID: 21273331 DOI: 10.1093/jxb/erq426] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
CLE peptides are potentially involved in nodule organ development and in the autoregulation of nodulation (AON), a systemic process that restricts nodule number. A genome-wide survey of CLE peptide genes in the soybean glycine max genome resulted in the identification of 39 GmCLE genes, the majority of which have not yet been annotated. qRT-PCR analysis indicated two different nodulation-related CLE expression patterns, one linked with nodule primordium development and a new one linked with nodule maturation. Moreover, two GmCLE gene pairs, encoding group-III CLE peptides that were previously shown to be involved in AON, had a transient expression pattern during nodule development, were induced by the essential nodulation hormone cytokinin, and one pair was also slightly induced by the addition of nitrate. Hence, our data support the hypothesis that group-III CLE peptides produced in the nodules are involved in primordium homeostasis and intertwined in activating AON, but not in sustaining it.
Collapse
Affiliation(s)
- Virginie Mortier
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Gent, Belgium
| | | | | | | | | | | | | |
Collapse
|
22
|
Box J, Noel KD. Controlling the expression of rhizobial genes during nodule development with elements and an inducer of the lac operon. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:478-486. [PMID: 21375387 DOI: 10.1094/mpmi-07-10-0155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A simple strategy was tested for imposing artificial regulation of rhizobial genes during nodule development. Isopropyl-β-d-1-thiogalactoside (IPTG) was added to liquid root media to sustain expression of rhizobial genes controlled by Escherichia coli lac promoter/operators and repressor gene lacI. Conversely, a rinsing protocol was devised to remove IPTG sufficiently that genes could be repressed after having been induced. gusA under this control exhibited clearly delineated expression and repression in both the determinate Rhizobium etli-Phaseolus vulgaris and the indeterminate Sinorhizobium meliloti-Medicago sativa symbioses. Apparently, IPTG was taken up in sufficiently undegraded concentrations that gene expression was derepressed even in interior portions of the nodule. Moreover, the rinsing protocol led to obvious repression of gusA. Importantly, no deleterious effects of IPTG on nodule development, infection, or nitrogen fixation were observed. An R. etli CE3 gene required for lipopolysaccharide O antigen and infection on bean was put under this control by means of a two-plasmid construct. When this construct was added to a strain with a null mutation in this gene, infection, nodule development, and nitrogenase activity all depended on the length of time before IPTG was rinsed from the roots after inoculation.
Collapse
Affiliation(s)
- Jodie Box
- Department of Biological Sciences, Marquette University, PO Box 1881, Milwaukee, WI 53201, USA
| | | |
Collapse
|
23
|
Quelas JI, Mongiardini EJ, Casabuono A, López-García SL, Althabegoiti MJ, Covelli JM, Pérez-Giménez J, Couto A, Lodeiro AR. Lack of galactose or galacturonic acid in Bradyrhizobium japonicum USDA 110 exopolysaccharide leads to different symbiotic responses in soybean. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:1592-604. [PMID: 20636103 DOI: 10.1094/mpmi-05-10-0122] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Exopolysaccharide (EPS) and lipopolysaccharide (LPS) from Bradyrhizobium japonicum are important for infection and nodulation of soybean (Glycine max), although their roles are not completely understood. To better understand this, we constructed mutants in B. japonicum USDA 110 impaired in galactose or galacturonic acid incorporation into the EPS without affecting the LPS. The derivative LP 3010 had a deletion of lspL-ugdH and produced EPS without galacturonic acid whereas LP 3013, with an insertion in exoB, produced EPS without galactose. In addition, the strain LP 3017, with both mutations, had EPS devoid of both galactosides. The missing galactosides were not replaced by other sugars. The defects in EPS had different consequences. LP 3010 formed biofilms and nodulated but was defective in competitiveness for nodulation; and, inside nodules, the peribacteroid membranes tended to fuse, leading to the merging of symbiosomes. Meanwhile, LP 3013 and LP 3017 were unable to form biofilms and produced empty pseudonodules but exoB suppressor mutants were obtained when LP 3013 plant inoculation was supplemented with wild-type EPS. Similar phenotypes were observed with all these mutants in G. soja. Therefore, the lack of each galactoside in the EPS has a different functional effect on the B. japonicum-soybean symbiosis.
Collapse
Affiliation(s)
- Juan Ignacio Quelas
- Instituto de Biotecnología y Biología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata y CCT La Plata-CONICET, Calles 47 y 115 (1900) La Plata, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Ivashina TV, Fedorova EE, Ashina NP, Kalinchuk NA, Druzhinina TN, Shashkov AS, Shibaev VN, Ksenzenko VN. Mutation in the pssM gene encoding ketal pyruvate transferase leads to disruption of Rhizobium leguminosarum bv. viciae-Pisum sativum symbiosis. J Appl Microbiol 2010; 109:731-742. [PMID: 20233262 DOI: 10.1111/j.1365-2672.2010.04702.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS To study the question whether acidic exopolysaccharide (EPS) modification, e.g. pyruvylation, plays any role in the development of Rhizobium leguminosarum/Pisum sativum symbiosis. METHOD AND RESULTS The amino acid sequence deduced from the pssM gene, localized within the pss (polysaccharide synthesis) gene locus, was shown to be homologous to several known and putative ketal pyruvate transferases, including ExoV from Sinorhizobium meliloti and GumL from Xanthomonas campestris. Rh. l. bv. viciae strain VF39 carrying a Km-cassette insertion into the pssM gene was obtained by the gene replacement technique. Knock-out of pssM led to the absence of the pyruvic acid ketal group at the subterminal glucose in the repeating unit of EPS as it was shown by (13)C and (1)H nuclear magnetic resonance (NMR) analysis. Complementation in trans restored the EPS modification in the pssM mutant. Disruption of the pssM gene resulted also in the formation of aberrant non-nitrogen-fixing nodules on peas. Ultrastructural studies of mutant nodules revealed normal nodule invasion and release of bacteria into the plant cell cytoplasm, but further differentiation of bacteroids was impaired, and the existing symbiosomes underwent lysis. CONCLUSION PssM encodes ketal pyruvate transferase involved in the modification of the Rh. l. bv. viciae EPS. The absence of subterminal glucose pyruvylation in the EPS repeating units negatively influences (directly or indirectly) the formation of the nitrogen-fixing symbiosis with peas. SIGNIFICANCE AND IMPACT OF THE STUDY Our finding that the absence of modification even at the single position of EPS is likely to be crucial for establishment of nitrogen-fixing symbiosis argues in favour of the idea concerning their specific signalling role in this process.
Collapse
Affiliation(s)
- T V Ivashina
- Skryabin Institute of Biochemistry and Physiology of Micro-organisms, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - E E Fedorova
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| | - N P Ashina
- Skryabin Institute of Biochemistry and Physiology of Micro-organisms, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - N A Kalinchuk
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - T N Druzhinina
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - A S Shashkov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - V N Shibaev
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - V N Ksenzenko
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| |
Collapse
|
25
|
Li H, Deng Y, Wu T, Subramanian S, Yu O. Misexpression of miR482, miR1512, and miR1515 increases soybean nodulation. PLANT PHYSIOLOGY 2010; 153:1759-70. [PMID: 20508137 PMCID: PMC2923892 DOI: 10.1104/pp.110.156950] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2010] [Accepted: 05/20/2010] [Indexed: 05/18/2023]
Abstract
MicroRNAs (miRNAs) are important regulators of plant growth and development. Previously, we identified a group of conserved and novel miRNA families from soybean (Glycine max) roots. Many of these miRNAs are specifically induced during soybean-Bradyrhizobium japonicum interactions. Here, we examined the gene expression levels of six families of novel miRNAs and investigated their functions in nodule development. We used northern-blot analyses to study the tissue specificity and time course of miRNA expression. Transgenic expression of miR482, miR1512, and miR1515 led to significant increases of nodule numbers, while root length, lateral root density, and the number of nodule primordia were not altered in all tested miRNA lines. We also found differential expression of these miRNAs in nonnodulating and supernodulating soybean mutants. The expression levels of 22 predicted target genes regulated by six novel miRNAs were studied by real-time polymerase chain reaction and quantitative real-time polymerase chain reaction. These results suggested that miRNAs play important roles in soybean nodule development.
Collapse
Affiliation(s)
| | | | | | | | - Oliver Yu
- Shanghai JiaoTong University, School of Agriculture and Biology, Shanghai 200240, China (H.L., T.W.); Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (Y.D., S.S., O.Y.); Plant Science Department, South Dakota State University, Brookings, South Dakota 57007 (S.S.)
| |
Collapse
|
26
|
Vauclare P, Bligny R, Gout E, De Meuron V, Widmer F. Metabolic and structural rearrangement during dark-induced autophagy in soybean (Glycine max L.) nodules: an electron microscopy and 31P and 13C nuclear magnetic resonance study. PLANTA 2010; 231:1495-504. [PMID: 20358222 DOI: 10.1007/s00425-010-1148-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 02/26/2010] [Indexed: 05/13/2023]
Abstract
The effects of dark-induced stress on the evolution of the soluble metabolites present in senescent soybean (Glycine max L.) nodules were analysed in vitro using (13)C- and (31)P-NMR spectroscopy. Sucrose and trehalose were the predominant soluble storage carbons. During dark-induced stress, a decline in sugars and some key glycolytic metabolites was observed. Whereas 84% of the sucrose disappeared, only one-half of the trehalose was utilised. This decline coincides with the depletion of Gln, Asn, Ala and with an accumulation of ureides, which reflect a huge reduction of the N(2) fixation. Concomitantly, phosphodiesters and compounds like P-choline, a good marker of membrane phospholipids hydrolysis and cell autophagy, accumulated in the nodules. An autophagic process was confirmed by the decrease in cell fatty acid content. In addition, a slight increase in unsaturated fatty acids (oleic and linoleic acids) was observed, probably as a response to peroxidation reactions. Electron microscopy analysis revealed that, despite membranes dismantling, most of the bacteroids seem to be structurally intact. Taken together, our results show that the carbohydrate starvation induced in soybean by dark stress triggers a profound metabolic and structural rearrangement in the infected cells of soybean nodule which is representative of symbiotic cessation.
Collapse
Affiliation(s)
- Pierre Vauclare
- Laboratory of Plant Biology and Physiology, Biology Building UNIL, Room 5449, 1015 Lausanne, Switzerland.
| | | | | | | | | |
Collapse
|
27
|
Yurgel SN, Rice J, Mulder M, Kahn ML. GlnB/GlnK PII proteins and regulation of the Sinorhizobium meliloti Rm1021 nitrogen stress response and symbiotic function. J Bacteriol 2010; 192:2473-81. [PMID: 20304991 PMCID: PMC2863565 DOI: 10.1128/jb.01657-09] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 03/10/2010] [Indexed: 11/20/2022] Open
Abstract
The Sinorhizobium meliloti Rm1021 Delta glnD-sm2 mutant, which is predicted to make a GlnD nitrogen sensor protein truncated at its amino terminus, fixes nitrogen in symbiosis with alfalfa, but the plants cannot use this nitrogen for growth (S. N. Yurgel and M. L. Kahn, Proc. Natl. Acad. Sci. U. S. A. 105:18958-18963, 2008). The mutant also has a generalized nitrogen stress response (NSR) defect. These results suggest a connection between GlnD, symbiotic metabolism, and the NSR, but the nature of this connection is unknown. In many bacteria, GlnD modifies the PII proteins, GlnB and GlnK, as it transduces a measurement of bacterial nitrogen status to a cellular response. We have now constructed and analyzed Rm1021 mutants missing GlnB, GlnK, or both proteins. Rm1021 Delta glnK Delta glnB was much more defective in its NSR than either single mutant, suggesting that GlnB and GlnK overlap in regulating the NSR in free-living Rm1021. The single mutants and the double mutant all formed an effective symbiosis, indicating that symbiotic nitrogen exchange could occur without the need for either GlnB or GlnK. N-terminal truncation of the GlnD protein interfered with PII protein modification in vitro, suggesting either that unmodified PII proteins were responsible for the glnD mutant's ineffective phenotype or that connecting GlnD and appropriate symbiotic behavior does not require the PII proteins.
Collapse
Affiliation(s)
- Svetlana N Yurgel
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA.
| | | | | | | |
Collapse
|
28
|
Pucciariello C, Innocenti G, Van de Velde W, Lambert A, Hopkins J, Clément M, Ponchet M, Pauly N, Goormachtig S, Holsters M, Puppo A, Frendo P. (Homo)glutathione depletion modulates host gene expression during the symbiotic interaction between Medicago truncatula and Sinorhizobium meliloti. PLANT PHYSIOLOGY 2009; 151:1186-96. [PMID: 19587096 PMCID: PMC2773073 DOI: 10.1104/pp.109.142034] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Under nitrogen-limiting conditions, legumes interact with symbiotic rhizobia to produce nitrogen-fixing root nodules. We have previously shown that glutathione and homoglutathione [(h)GSH] deficiencies impaired Medicago truncatula symbiosis efficiency, showing the importance of the low M(r) thiols during the nodulation process in the model legume M. truncatula. In this study, the plant transcriptomic response to Sinorhizobium meliloti infection under (h)GSH depletion was investigated using cDNA-amplified fragment length polymorphism analysis. Among 6,149 expression tags monitored, 181 genes displayed significant differential expression between inoculated control and inoculated (h)GSH depleted roots. Quantitative reverse transcription polymerase chain reaction analysis confirmed the changes in mRNA levels. This transcriptomic analysis shows a down-regulation of genes involved in meristem formation and a modulation of the expression of stress-related genes in (h)GSH-depleted plants. Promoter-beta-glucuronidase histochemical analysis showed that the putative MtPIP2 aquaporin might be up-regulated during nodule meristem formation and that this up-regulation is inhibited under (h)GSH depletion. (h)GSH depletion enhances the expression of salicylic acid (SA)-regulated genes after S. meliloti infection and the expression of SA-regulated genes after exogenous SA treatment. Modification of water transport and SA signaling pathway observed under (h)GSH deficiency contribute to explain how (h)GSH depletion alters the proper development of the symbiotic interaction.
Collapse
|
29
|
Wudick MM, Luu DT, Maurel C. A look inside: localization patterns and functions of intracellular plant aquaporins. THE NEW PHYTOLOGIST 2009; 184:289-302. [PMID: 19674338 DOI: 10.1111/j.1469-8137.2009.02985.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Aquaporins form a superfamily of intrinsic channel proteins in the plasma and intracellular membranes of plant cells. While a lot of research effort has substantiated the importance of plasma membrane aquaporins for the regulation of plant water homeostasis, comparably little is known about the function of intracellular aquaporins. Yet, various low-molecular-weight compounds, in addition to water, were recently shown to permeate some of these aquaporins. In this review, we examine the diversity of transport properties and localization patterns of intracellular aquaporins. The discussed profiles include, for example, water and ammonia transport across the tonoplast or CO2 transport through the chloroplast envelope. Furthermore, we try to assess to what extent the diverse aquaporin distribution patterns, in relation to the high degree of compartmentation of plant cells, can be linked to a wide range of cellular functions.
Collapse
Affiliation(s)
- Michael M Wudick
- Biochimie et physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier 2, F-34060 Montpellier Cedex 2, France
| | - Doan-Trung Luu
- Biochimie et physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier 2, F-34060 Montpellier Cedex 2, France
| | - Christophe Maurel
- Biochimie et physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier 2, F-34060 Montpellier Cedex 2, France
| |
Collapse
|
30
|
Lelandais-Brière C, Naya L, Sallet E, Calenge F, Frugier F, Hartmann C, Gouzy J, Crespi M. Genome-wide Medicago truncatula small RNA analysis revealed novel microRNAs and isoforms differentially regulated in roots and nodules. THE PLANT CELL 2009; 21:2780-96. [PMID: 19767456 PMCID: PMC2768930 DOI: 10.1105/tpc.109.068130] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 07/09/2009] [Accepted: 07/26/2009] [Indexed: 05/18/2023]
Abstract
Posttranscriptional regulation of a variety of mRNAs by small 21- to 24-nucleotide RNAs, notably the microRNAs (miRNAs), is emerging as a novel developmental mechanism. In legumes like the model Medicago truncatula, roots are able to develop a de novo meristem through the symbiotic interaction with nitrogen-fixing rhizobia. We used deep sequencing of small RNAs from root apexes and nodules of M. truncatula to identify 100 novel candidate miRNAs encoded by 265 hairpin precursors. New atypical precursor classes producing only specific 21- and 24-nucleotide small RNAs were found. Statistical analysis on sequencing reads abundance revealed specific miRNA isoforms in a same family showing contrasting expression patterns between nodules and root apexes. The differentially expressed conserved and nonconserved miRNAs may target a large variety of mRNAs. In root nodules, which show diverse cell types ranging from a persistent meristem to a fully differentiated central region, we discovered miRNAs spatially enriched in nodule meristematic tissues, vascular bundles, and bacterial infection zones using in situ hybridization. Spatial regulation of miRNAs may determine specialization of regulatory RNA networks in plant differentiation processes, such as root nodule formation.
Collapse
Affiliation(s)
- Christine Lelandais-Brière
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, F-91198 Gif-sur-Yvette Cedex, France
- Université Paris Diderot-Paris 7, 75205 Paris Cedex 13, France
| | - Loreto Naya
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, F-91198 Gif-sur-Yvette Cedex, France
| | - Erika Sallet
- Laboratoire des Interactions Plantes Micro-organismes, Unité Mixte de Recherche, Centre National de la Recherche Scientifique–Institut National de la Recherche Agronomique 2594/441, F- 31320 Castanet Tolosan, France
- Plateforme Bioinformatique du Génopole Toulouse Midi-Pyrénées, Groupement d'Intérêt Scientifique Toulouse Genopole, F-31320 Castanet Tolosan, France
| | - Fanny Calenge
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, F-91198 Gif-sur-Yvette Cedex, France
- Université Paris Diderot-Paris 7, 75205 Paris Cedex 13, France
| | - Florian Frugier
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, F-91198 Gif-sur-Yvette Cedex, France
| | - Caroline Hartmann
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, F-91198 Gif-sur-Yvette Cedex, France
- Université Paris Diderot-Paris 7, 75205 Paris Cedex 13, France
| | - Jérome Gouzy
- Laboratoire des Interactions Plantes Micro-organismes, Unité Mixte de Recherche, Centre National de la Recherche Scientifique–Institut National de la Recherche Agronomique 2594/441, F- 31320 Castanet Tolosan, France
| | - Martin Crespi
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, F-91198 Gif-sur-Yvette Cedex, France
| |
Collapse
|
31
|
Sartorius M, Riccio A, Cermola M, Casoria P, Patriarca EJ, Taté R. Sulphadimethoxine inhibits Phaseolus vulgaris root growth and development of N-fixing nodules. CHEMOSPHERE 2009; 76:306-312. [PMID: 19423149 DOI: 10.1016/j.chemosphere.2009.03.067] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Revised: 03/18/2009] [Accepted: 03/27/2009] [Indexed: 05/27/2023]
Abstract
Sulphonamides contamination of cultivated lands occurs through the recurrent spreading of animal wastes from intensive farming. The aim of this study was to test the effect(s) of sulphadimethoxine on the beneficial N-fixing Rhizobium etli-Phaseolus vulgaris symbiosis under laboratory conditions. The consequence of increasing concentrations of sulphadimethoxine on the growth ability of free-living R. etli bacteria, as well as on seed germination, seedling development and growth of common bean plants was examined. We have established that sulphadimethoxine inhibited the growth of both symbiotic partners in a dose-dependent manner. Bacterial invasion occurring in developing root nodules was visualized by fluorescence microscopy generating EGFP-marked R. etli bacteria. Our results proved that the development of symbiotic N-fixing root nodules is hampered by sulphadimethoxine thus identifying sulphonamides as toxic compounds for the Rhizobium-legume symbiosis: a low-input sustainable agricultural practice.
Collapse
Affiliation(s)
- Marilena Sartorius
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, Via P. Castellino 111, CP 80131, Naples, Italy
| | | | | | | | | | | |
Collapse
|
32
|
Combier JP, de Billy F, Gamas P, Niebel A, Rivas S. Trans-regulation of the expression of the transcription factor MtHAP2-1 by a uORF controls root nodule development. Genes Dev 2008; 22:1549-59. [PMID: 18519645 DOI: 10.1101/gad.461808] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
MtHAP2-1 is a CCAAT-binding transcription factor from the model legume Medicago truncatula. We previously showed that MtHAP2-1 expression is regulated both spatially and temporally by microRNA169. Here we present a novel regulatory mechanism controlling MtHAP2-1 expression. Alternative splicing of an intron in the MtHAP2-1 5'leader sequence (LS) becomes predominant during the development of root nodules, leading to the production of a small peptide, uORF1p. Our results indicate that binding of uORF1p to MtHAP2-1 5'LS mRNA leads to reduced accumulation of the MtHAP2-1 transcript and may contribute to spatial restriction of MtHAP2-1 expression within the nodule. We propose that miR169 and uORF1p play essential, sequential, and nonredundant roles in regulating MtHAP2-1 expression. Importantly, in contrast to previously described cis-acting uORFs, uORF1p is able to act in trans to down-regulate gene expression. Our work thus contributes to a better understanding of the action of upstream ORFs (uORFs) in the regulation of gene expression.
Collapse
Affiliation(s)
- Jean Philippe Combier
- Laboratoire des Interactions Plantes Micro-organismes (LIPM), Centre National de la Recherche Scientifique-Institut National de la Recherche Agronomique UMR 2594/441, F-31320 Castanet Tolosan, France.
| | | | | | | | | |
Collapse
|
33
|
Teillet A, Garcia J, de Billy F, Gherardi M, Huguet T, Barker DG, de Carvalho-Niebel F, Journet EP. api, A novel Medicago truncatula symbiotic mutant impaired in nodule primordium invasion. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:535-46. [PMID: 18393613 DOI: 10.1094/mpmi-21-5-0535] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Genetic approaches have proved to be extremely useful in dissecting the complex nitrogen-fixing Rhizobium-legume endosymbiotic association. Here we describe a novel Medicago truncatula mutant called api, whose primary phenotype is the blockage of rhizobial infection just prior to nodule primordium invasion, leading to the formation of large infection pockets within the cortex of noninvaded root outgrowths. The mutant api originally was identified as a double symbiotic mutant associated with a new allele (nip-3) of the NIP/LATD gene, following the screening of an ethylmethane sulphonate-mutagenized population. Detailed characterization of the segregating single api mutant showed that rhizobial infection is also defective at the earlier stage of infection thread (IT) initiation in root hairs, as well as later during IT growth in the small percentage of nodules which overcome the primordium invasion block. Neither modulating ethylene biosynthesis (with L-alpha-(2-aminoethoxyvinylglycine or 1-aminocyclopropane-1-carboxylic acid) nor reducing ethylene sensitivity in a skl genetic background alters the basic api phenotype, suggesting that API function is not closely linked to ethylene metabolism or signaling. Genetic mapping places the API gene on the upper arm of the M. truncatula linkage group 4, and epistasis analyses show that API functions downstream of BIT1/ERN1 and LIN and upstream of NIP/LATD and the DNF genes.
Collapse
Affiliation(s)
- Alice Teillet
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR CNRS-INRA 2594/441, F-31320 Castanet-Tolosan, France
| | | | | | | | | | | | | | | |
Collapse
|
34
|
del Val C, Rivas E, Torres-Quesada O, Toro N, Jiménez-Zurdo JI. Identification of differentially expressed small non-coding RNAs in the legume endosymbiont Sinorhizobium meliloti by comparative genomics. Mol Microbiol 2007; 66:1080-91. [PMID: 17971083 PMCID: PMC2780559 DOI: 10.1111/j.1365-2958.2007.05978.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bacterial small non-coding RNAs (sRNAs) are being recognized as novel widespread regulators of gene expression in response to environmental signals. Here, we present the first search for sRNA-encoding genes in the nitrogen-fixing endosymbiont Sinorhizobium meliloti, performed by a genome-wide computational analysis of its intergenic regions. Comparative sequence data from eight related α-proteobacteria were obtained, and the interspecies pairwise alignments were scored with the programs eQRNA and RNAz as complementary predictive tools to identify conserved and stable secondary structures corresponding to putative non-coding RNAs. Northern experiments confirmed that eight of the predicted loci, selected among the original 32 candidates as most probable sRNA genes, expressed small transcripts. This result supports the combined use of eQRNA and RNAz as a robust strategy to identify novel sRNAs in bacteria. Furthermore, seven of the transcripts accumulated differentially in free-living and symbiotic conditions. Experimental mapping of the 5′-ends of the detected transcripts revealed that their encoding genes are organized in autonomous transcription units with recognizable promoter and, in most cases, termination signatures. These findings suggest novel regulatory functions for sRNAs related to the interactions of α-proteobacteria with their eukaryotic hosts.
Collapse
Affiliation(s)
- Coral del Val
- Department of Computer Science and Artificial Intelligence, E.T.S.I. Informatics, Universidad de Granada, Daniel Saucedo s/n, 18071 Granada, Spain
| | | | | | | | | |
Collapse
|
35
|
Genre A, Bonfante P. Check-in procedures for plant cell entry by biotrophic microbes. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:1023-30. [PMID: 17849704 DOI: 10.1094/mpmi-20-9-1023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Significant advances in the cell biology of plant-microbe interactions have been achieved recently, to a large extent based on new technical approaches such as the use of fluorescent protein tags in model plants exploited in conjunction with available genetic resources. They have highlighted the pivotal role played by epidermal cells as the first site at which direct cell-to-cell contact takes place between the plant and microbes it may host. Here, we compare the cellular aspects of early biotrophic interactions with symbiotic and pathogenic microbes and evaluate the hypothesis that their hosting by plant cells share common traits related to the necessity of preserving host-cell integrity. The cellular events that accompany cell entry by the different biotrophs are divided into three categories, depending on whether the cellular changes are triggered by diffusible molecules, direct contact, or cell lumen penetration. Similarities and differences mirror the nutritional and developmental strategies of each plant-interacting organism, underlining the fact that plant cell entry represents a key aspect in the establishment of biotrophy.
Collapse
Affiliation(s)
- Andrea Genre
- Dipartimento di Biologia Vegetale, Università di Torino, Italy.
| | | |
Collapse
|
36
|
Abstract
Why do bacteria have shape? Is morphology valuable or just a trivial secondary characteristic? Why should bacteria have one shape instead of another? Three broad considerations suggest that bacterial shapes are not accidental but are biologically important: cells adopt uniform morphologies from among a wide variety of possibilities, some cells modify their shape as conditions demand, and morphology can be tracked through evolutionary lineages. All of these imply that shape is a selectable feature that aids survival. The aim of this review is to spell out the physical, environmental, and biological forces that favor different bacterial morphologies and which, therefore, contribute to natural selection. Specifically, cell shape is driven by eight general considerations: nutrient access, cell division and segregation, attachment to surfaces, passive dispersal, active motility, polar differentiation, the need to escape predators, and the advantages of cellular differentiation. Bacteria respond to these forces by performing a type of calculus, integrating over a number of environmental and behavioral factors to produce a size and shape that are optimal for the circumstances in which they live. Just as we are beginning to answer how bacteria create their shapes, it seems reasonable and essential that we expand our efforts to understand why they do so.
Collapse
Affiliation(s)
- Kevin D Young
- Department of Microbiology and Immunology, University of North Dakota School of Medicine, Grand Forks, ND 58202-9037, USA.
| |
Collapse
|
37
|
Barsch A, Tellström V, Patschkowski T, Küster H, Niehaus K. Metabolite profiles of nodulated alfalfa plants indicate that distinct stages of nodule organogenesis are accompanied by global physiological adaptations. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2006; 19:998-1013. [PMID: 16941904 DOI: 10.1094/mpmi-19-0998] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
An effective symbiosis between Sinorhizobium meliloti and its host plant Medicago sativa is dependent on a balanced physiological interaction enabling the microsymbiont to fix atmospheric nitrogen. Maintenance of the symbiotic interaction is regulated by still poorly understood control mechanisms. A first step toward a better understanding of nodule metabolism was the determination of characteristic metabolites for alfalfa root nodules. Furthermore, nodules arrested at different developmental stages were analyzed in order to address metabolic changes induced during the progression of nodule formation. Metabolite profiles of bacteroid-free pseudonodule extracts indicated that early nodule developmental processes are accompanied by photosynthate translocation but no massive organic acid formation. To determine metabolic adaptations induced by the presence of nonfixing bacteroids, nodules induced by mutant S. meliloti strains lacking the nitrogenase protein were analyzed. The bacteroids are unable to provide ammonium to the host plant, which is metabolically reflected by reduced levels of characteristic amino acids involved in ammonium fixation. Elevated levels of starch and sugars in Fix(-) nodules provide strong evidence that plant sanctions preventing a transformation from a symbiotic to a potentially parasitic interaction are not strictly realized via photosynthate supply. Instead, metabolic and gene expression data indicate that alfalfa plants react to nitrogen-fixation-deficient bacteroids with a decreased organic acid synthesis and an early induction of senescence. Noneffective symbiotic interactions resulting from plants nodulated by mutant rhizobia also are reflected in characteristic metabolic changes in leaves. These are typical for nitrogen deficiency, but also highlight metabolites potentially involved in sensing the N status.
Collapse
Affiliation(s)
- Aiko Barsch
- Proteom und Metabolomforschung, Fakultät für Biologie, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany.
| | | | | | | | | |
Collapse
|
38
|
Quelas JI, López-García SL, Casabuono A, Althabegoiti MJ, Mongiardini EJ, Pérez-Giménez J, Couto A, Lodeiro AR. Effects of N-starvation and C-source on Bradyrhizobium japonicum exopolysaccharide production and composition, and bacterial infectivity to soybean roots. Arch Microbiol 2006; 186:119-28. [PMID: 16802172 DOI: 10.1007/s00203-006-0127-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2005] [Revised: 05/12/2006] [Accepted: 05/18/2006] [Indexed: 10/24/2022]
Abstract
The exopolysaccharide (EPS) is an extracellular molecule that in Bradyrhizobium japonicum affects bacterial efficiency to nodulate soybean. Culture conditions such as N availability, type of C-source, or culture age can modify the amount and composition of EPS. To better understand the relationship among these conditions for EPS production, we analyzed their influence on EPS in B. japonicum USDA 110 and its derived mutant DeltaP22. This mutant has a deletion including the 3' region of exoP, exoT, and the 5' region of exoB, and produces a shorter EPS devoid of galactose. The studies were carried out in minimal media with the N-source at starving or sufficient levels, and mannitol or malate as the only C-source. Under N-starvation there was a net EPS accumulation, the levels being similar in the wild type and the mutant with malate as the C-source. By contrast, the amount of EPS diminished in N-sufficient conditions, being poyhydroxybutyrate accumulated with culture age. Hexoses composition was the same in both N-situations, either with mannitol or malate as the only C-source, in contrast to previous observations made with different strains. This result suggests that the change in EPS composition in response to the environment is not general in B. japonicum. The wild type EPS composition was 1 glucose:0.5 galactose:0.5 galacturonic acid:0.17 mannose. In DeltaP22 the EPS had no galactose but had galacturonic acid, thus indicating that it was not produced from oxidation of UDP-galactose. Infectivity was lower in DeltaP22 than in USDA 110. When the mutant infectivity was compared between N-starved or N-sufficient cultures, the N-starved were not less infective, despite the fact that the amounts of altered EPS produced by this mutant under N-starvation were higher than in N-sufficiency. Since this altered EPS does not bind soybean lectin, the interaction of EPS with this protein was not involved in increasing DeltaP22 infectivity under N-starvation.
Collapse
Affiliation(s)
- Juan Ignacio Quelas
- Instituto de Bioquímica y Biología Molecular (IBBM), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 47 y 115, 1900 La Plata, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Wallace IS, Choi WG, Roberts DM. The structure, function and regulation of the nodulin 26-like intrinsic protein family of plant aquaglyceroporins. BIOCHIMICA ET BIOPHYSICA ACTA 2006; 1758:1165-75. [PMID: 16716251 DOI: 10.1016/j.bbamem.2006.03.024] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Revised: 03/08/2006] [Accepted: 03/17/2006] [Indexed: 10/24/2022]
Abstract
The nodulin 26-like intrinsic protein family is a group of highly conserved multifunctional major intrinsic proteins that are unique to plants, and which transport a variety of uncharged solutes ranging from water to ammonia to glycerol. Based on structure-function studies, the NIP family can be subdivided into two subgroups (I and II) based on the identity of the amino acids in the selectivity-determining filter (ar/R region) of the transport pore. Both subgroups appear to contain multifunctional transporters with low to no water permeability and the ability to flux multiple uncharged solutes of varying sizes depending upon the composition of the residues of the ar/R filter. NIPs are subject to posttranslational phosphorylation by calcium-dependent protein kinases. In the case of the family archetype, soybean nodulin 26, phosphorylation has been shown to stimulate its transport activity and to be regulated in response to developmental as well as environmental cues, including osmotic stresses. NIPs tend to be expressed at low levels in the plant compared to other MIPs, and several exhibit cell or tissue specific expression that is subject to spatial and temporal regulation during development.
Collapse
Affiliation(s)
- Ian S Wallace
- Department of Biochemistry, Cellular, and Molecular Biology, The University of Tennessee, Knoxville, TN 37996, USA.
| | | | | |
Collapse
|
40
|
Parada M, Vinardell JM, Ollero FJ, Hidalgo A, Gutiérrez R, Buendía-Clavería AM, Lei W, Margaret I, López-Baena FJ, Gil-Serrano AM, Rodríguez-Carvajal MA, Moreno J, Ruiz-Sainz JE. Sinorhizobium fredii HH103 mutants affected in capsular polysaccharide (KPS) are impaired for nodulation with soybean and Cajanus cajan. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2006; 19:43-52. [PMID: 16404952 DOI: 10.1094/mpmi-19-0043] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The Sinorhizobium fredii HH103 rkp-1 region, which is involved in capsular polysaccharides (KPS) production, was isolated and sequenced. The organization of the S. fredii genes identified, rkpUAGHIJ and kpsF3, was identical to that described for S. meliloti 1021 but different from that of S. meliloti AK631. The long rkpA gene (7.5 kb) of S. fredii HH103 and S. meliloti 1021 appears as a fusion of six clustered AK631 genes, rkpABCDEF. S. fredii HH103-Rif(r) mutants affected in rkpH or rkpG were constructed. An exoA mutant unable to produce exopolysaccharide (EPS) and a double mutant exoA rkpH also were obtained. Glycine max (soybean) and Cajanus cajan (pigeon pea) plants inoculated with the rkpH, rkpG, and rkpH exoA derivatives of S. fredii HH103 showed reduced nodulation and severe symptoms of nitrogen starvation. The symbiotic capacity of the exoA mutant was not significantly altered. All these results indicate that KPS, but not EPS, is of crucial importance for the symbiotic capacity of S. fredii HH103-Rif(r). S. meliloti strains that produce only EPS or KPS are still effective with alfalfa. In S. fredii HH103, however, EPS and KPS are not equivalent, because mutants in rkp genes are symbiotically impaired regardless of whether or not EPS is produced.
Collapse
Affiliation(s)
- Maribel Parada
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Av. Reina Mercedes 6. 41012-Sevilla, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Schroeder BK, House BL, Mortimer MW, Yurgel SN, Maloney SC, Ward KL, Kahn ML. Development of a functional genomics platform for Sinorhizobium meliloti: construction of an ORFeome. Appl Environ Microbiol 2005; 71:5858-64. [PMID: 16204497 PMCID: PMC1265944 DOI: 10.1128/aem.71.10.5858-5864.2005] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nitrogen-fixing, symbiotic bacterium Sinorhizobium meliloti reduces molecular dinitrogen to ammonia in a specific symbiotic context, supporting the nitrogen requirements of various forage legumes, including alfalfa. Determining the DNA sequence of the S. meliloti genome was an important step in plant-microbe interaction research, adding to the considerable information already available about this bacterium by suggesting possible functions for many of the >6,200 annotated open reading frames (ORFs). However, the predictive power of bioinformatic analysis is limited, and putting the role of these genes into a biological context will require more definitive functional approaches. We present here a strategy for genetic analysis of S. meliloti on a genomic scale and report the successful implementation of the first step of this strategy by constructing a set of plasmids representing 100% of the 6,317 annotated ORFs cloned into a mobilizable plasmid by using efficient PCR and recombination protocols. By using integrase recombination to insert these ORFs into other plasmids in vitro or in vivo (B. L. House et al., Appl. Environ. Microbiol. 70:2806-2815, 2004), this ORFeome can be used to generate various specialized genetic materials for functional analysis of S. meliloti, such as operon fusions, mutants, and protein expression plasmids. The strategy can be generalized to many other genome projects, and the S. meliloti clones should be useful for investigators wanting an accessible source of cloned genes encoding specific enzymes.
Collapse
Affiliation(s)
- Brenda K Schroeder
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Zhang C, Gong FC, Lambert GM, Galbraith DW. Cell type-specific characterization of nuclear DNA contents within complex tissues and organs. PLANT METHODS 2005; 1:7. [PMID: 16270943 PMCID: PMC1277020 DOI: 10.1186/1746-4811-1-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Accepted: 10/04/2005] [Indexed: 05/05/2023]
Abstract
BACKGROUND Eukaryotic organisms are defined by the presence of a nucleus, which encloses the chromosomal DNA, and is characterized by its DNA content (C-value). Complex eukaryotic organisms contain organs and tissues that comprise interspersions of different cell types, within which polysomaty, endoreduplication, and cell cycle arrest is frequently observed. Little is known about the distribution of C-values across different cell types within these organs and tissues. RESULTS We have developed, and describe here, a method to precisely define the C-value status within any specific cell type within complex organs and tissues of plants. We illustrate the application of this method to Arabidopsis thaliana, specifically focusing on the different cell types found within the root. CONCLUSION The method accurately and conveniently charts C-value within specific cell types, and provides novel insight into developmental processes. The method is, in principle, applicable to any transformable organism, including mammals, within which cell type specificity of regulation of endoreduplication, of polysomaty, and of cell cycle arrest is suspected.
Collapse
Affiliation(s)
- Changqing Zhang
- Department of Plant Sciences, The University of Arizona, Tucson, Arizona, 85721, USA
| | - Fang Cheng Gong
- Department of Plant Sciences, The University of Arizona, Tucson, Arizona, 85721, USA
- Operon Biotechnologies, Inc., 2705 Artie Street Bldg. 400, Ste. 27, Huntsville, AL 35805, USA
| | - Georgina M Lambert
- Department of Plant Sciences, The University of Arizona, Tucson, Arizona, 85721, USA
| | - David W Galbraith
- Department of Plant Sciences, The University of Arizona, Tucson, Arizona, 85721, USA
| |
Collapse
|
43
|
Ferraioli S, Tatè R, Rogato A, Chiurazzi M, Patriarca EJ. Development of ectopic roots from abortive nodule primordia. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2004; 17:1043-50. [PMID: 15497397 DOI: 10.1094/mpmi.2004.17.10.1043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The symbiotic phenotype of five Tn5-induced mutants of Rhizobium etli affected in different anabolic pathways (namely, gluconeogenesis and biosynthesis of lysine, purine, or pyrimidine) was analyzed. These mutants induced, on the root of Phaseolus vulgaris, a normal early sequence of morphogenetics events, including root hair deformation and development of nodule primordia. Later on, however, from the resulting root outgrowths, instead of nodules, one or more ectopic roots (spaced closely related and agravitropic) emerged. Therefore, this group of mutant was collectively called "root inducer" (RIND). It was observed that the RIND-induced infection threads aborted early inside the invaded root hair, and that the resulting abortive nodules lack induction of late nodulin genes. Moreover, experiments performed using a conditional mutant (a methionine-requiring invader) revealed that bacterial invasion plays a key role in the maintenance of the program of nodule development and, in particular, in the differentiation of the most specific symbiotic tissue of globose nodules, the central tissue. These data indicate that, in P. vulgaris, the nodule primordium is a root-specified pro-meristematic tissue.
Collapse
Affiliation(s)
- Simona Ferraioli
- Institute of Genetics and Biophysics A. Buzzati-Traverso, C.N.R., Via G. Marconi 10, 80125 Naples, Italy
| | | | | | | | | |
Collapse
|