1
|
Loos HM, Schaal B, Pause BM, Smeets MAM, Ferdenzi C, Roberts SC, de Groot J, Lübke KT, Croy I, Freiherr J, Bensafi M, Hummel T, Havlíček J. Past, Present, and Future of Human Chemical Communication Research. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2025; 20:20-44. [PMID: 37669015 PMCID: PMC11720269 DOI: 10.1177/17456916231188147] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Although chemical signaling is an essential mode of communication in most vertebrates, it has long been viewed as having negligible effects in humans. However, a growing body of evidence shows that the sense of smell affects human behavior in social contexts ranging from affiliation and parenting to disease avoidance and social threat. This article aims to (a) introduce research on human chemical communication in the historical context of the behavioral sciences; (b) provide a balanced overview of recent advances that describe individual differences in the emission of semiochemicals and the neural mechanisms underpinning their perception, that together demonstrate communicative function; and (c) propose directions for future research toward unraveling the molecular principles involved and understanding the variability in the generation, transmission, and reception of chemical signals in increasingly ecologically valid conditions. Achieving these goals will enable us to address some important societal challenges but are within reach only with the aid of genuinely interdisciplinary approaches.
Collapse
Affiliation(s)
- Helene M. Loos
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg
- Department of Sensory Analytics and Technologies, Fraunhofer Institute for Process Engineering and Packaging IVV
| | - Benoist Schaal
- Development of Olfactory Cognition and Communication Lab, Centre des Sciences du Goût et de l’Alimentation, CNRS UMR 6265, Université de Bourgogne
| | - Bettina M. Pause
- Department of Experimental Psychology, Heinrich-Heine-Universität Düsseldorf
| | | | - Camille Ferdenzi
- Centre de Recherche en Neurosciences de Lyon, CNRS UMR 5292, Inserm U1028, Université Claude Bernard Lyon 1, Centre Hospitalier Le Vinatier
| | | | | | - Katrin T. Lübke
- Department of Experimental Psychology, Heinrich-Heine-Universität Düsseldorf
| | - Ilona Croy
- Institute for Psychology, Friedrich-Schiller-Universität Jena
| | - Jessica Freiherr
- Department of Sensory Analytics and Technologies, Fraunhofer Institute for Process Engineering and Packaging IVV
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg
| | - Moustafa Bensafi
- Centre de Recherche en Neurosciences de Lyon, CNRS UMR 5292, Inserm U1028, Université Claude Bernard Lyon 1, Centre Hospitalier Le Vinatier
| | - Thomas Hummel
- Smell and Taste Clinic, Department of Otorhinolaryngology, TU Dresden
| | | |
Collapse
|
2
|
Sanmartín-Vázquez E, Ortiz-Leal I, Torres MV, Kalak P, Kubiak-Nowak D, Dzięcioł M, Sanchez-Quinteiro P. Functional Role of the Incisive Duct in Neonatal Dogs. Cells Tissues Organs 2024:1-18. [PMID: 39561740 DOI: 10.1159/000542714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/14/2024] [Indexed: 11/21/2024] Open
Abstract
INTRODUCTION The detection of chemical signals by the vomeronasal organ (VNO) is critical for mammals from an early age, influencing behaviors such as suckling and recognition of the mother. Located at the base of the nasal cavity, the VNO features a duct covered with a sensory epithelium. A critical aspect of VNO functionality is the efficient access of stimuli from the nasal and oral cavities to the receptors. In adult dogs, it has been demonstrated how the vomeronasal duct (VD) communicates to the environment through the incisive duct (ID). In newborn puppies, the existence of functional communication between the ID and the VD has not been confirmed to date, raising doubts about the potential physiological obliteration of the ID. Determining this aspect is necessary to evaluate the role played by chemocommunication in the survival and socialization of puppies. METHODS This study employs serial histological staining to examine the presence and functionality of the ID in neonatal dogs. Additionally, a histochemical study was conducted using periodic acid-Schiff and Alcian Blue staining, along with labeling with six lectins to characterize the expression of glycoconjugates in the incisive papilla and in the area between the ID and the VD. RESULTS The histological study has confirmed both the existence of functional communication between both ducts in perinatal puppies and the dual functional communication of the ID with the oral and nasal cavities. Lectin labeling has allowed for the characterization of the glycoconjugate expression profile in the papilla and ID, showing significant differences between lectins. CONCLUSION The ID is associated with a sophisticated cartilaginous complex that prevents its collapse, as well as erectile tissue that acts as a cushion, facilitating its action under pressure induced by sampling behaviors such as tonguing. This investigation demonstrates the communicative capabilities of the VNO during the perinatal stage in dogs.
Collapse
Affiliation(s)
- Eva Sanmartín-Vázquez
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| | - Irene Ortiz-Leal
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| | - Mateo V Torres
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| | - Patrycja Kalak
- Department of Reproduction and Clinic of Farm Animals, Faculty of Veterinary Medicine, Wrocław University of Environmental Sciences, Wrocław, Poland
| | - Dominika Kubiak-Nowak
- Department of Surgery, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Michał Dzięcioł
- Department of Reproduction and Clinic of Farm Animals, Faculty of Veterinary Medicine, Wrocław University of Environmental Sciences, Wrocław, Poland
| | - Pablo Sanchez-Quinteiro
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| |
Collapse
|
3
|
Agron S, de March CA, Weissgross R, Mishor E, Gorodisky L, Weiss T, Furman-Haran E, Matsunami H, Sobel N. A chemical signal in human female tears lowers aggression in males. PLoS Biol 2023; 21:e3002442. [PMID: 38127837 PMCID: PMC10734982 DOI: 10.1371/journal.pbio.3002442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Rodent tears contain social chemosignals with diverse effects, including blocking male aggression. Human tears also contain a chemosignal that lowers male testosterone, but its behavioral significance was unclear. Because reduced testosterone is associated with reduced aggression, we tested the hypothesis that human tears act like rodent tears to block male aggression. Using a standard behavioral paradigm, we found that sniffing emotional tears with no odor percept reduced human male aggression by 43.7%. To probe the peripheral brain substrates of this effect, we applied tears to 62 human olfactory receptors in vitro. We identified 4 receptors that responded in a dose-dependent manner to this stimulus. Finally, to probe the central brain substrates of this effect, we repeated the experiment concurrent with functional brain imaging. We found that sniffing tears increased functional connectivity between the neural substrates of olfaction and aggression, reducing overall levels of neural activity in the latter. Taken together, our results imply that like in rodents, a human tear-bound chemosignal lowers male aggression, a mechanism that likely relies on the structural and functional overlap in the brain substrates of olfaction and aggression. We suggest that tears are a mammalian-wide mechanism that provides a chemical blanket protecting against aggression.
Collapse
Affiliation(s)
- Shani Agron
- The Azrieli National Center for Human Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel
- The Department for Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Claire A. de March
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Reut Weissgross
- The Azrieli National Center for Human Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel
- The Department for Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Eva Mishor
- The Azrieli National Center for Human Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel
- The Department for Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Lior Gorodisky
- The Azrieli National Center for Human Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel
- The Department for Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Tali Weiss
- The Azrieli National Center for Human Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel
- The Department for Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Edna Furman-Haran
- The Azrieli National Center for Human Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Noam Sobel
- The Azrieli National Center for Human Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel
- The Department for Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
4
|
Brovkina MV, Chapman MA, Holding ML, Clowney EJ. Emergence and influence of sequence bias in evolutionarily malleable, mammalian tandem arrays. BMC Biol 2023; 21:179. [PMID: 37612705 PMCID: PMC10463633 DOI: 10.1186/s12915-023-01673-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/01/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND The radiation of mammals at the extinction of the dinosaurs produced a plethora of new forms-as diverse as bats, dolphins, and elephants-in only 10-20 million years. Behind the scenes, adaptation to new niches is accompanied by extensive innovation in large families of genes that allow animals to contact the environment, including chemosensors, xenobiotic enzymes, and immune and barrier proteins. Genes in these "outward-looking" families are allelically diverse among humans and exhibit tissue-specific and sometimes stochastic expression. RESULTS Here, we show that these tandem arrays of outward-looking genes occupy AT-biased isochores and comprise the "tissue-specific" gene class that lack CpG islands in their promoters. Models of mammalian genome evolution have not incorporated the sharply different functions and transcriptional patterns of genes in AT- versus GC-biased regions. To examine the relationship between gene family expansion, sequence content, and allelic diversity, we use population genetic data and comparative analysis. First, we find that AT bias can emerge during evolutionary expansion of gene families in cis. Second, human genes in AT-biased isochores or with GC-poor promoters experience relatively low rates of de novo point mutation today but are enriched for non-synonymous variants. Finally, we find that isochores containing gene clusters exhibit low rates of recombination. CONCLUSIONS Our analyses suggest that tolerance of non-synonymous variation and low recombination are two forces that have produced the depletion of GC bases in outward-facing gene arrays. In turn, high AT content exerts a profound effect on their chromatin organization and transcriptional regulation.
Collapse
Affiliation(s)
- Margarita V Brovkina
- Graduate Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Margaret A Chapman
- Neurosciences Graduate Program, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - E Josephine Clowney
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
5
|
Kharlamova AS, Godovalova OS, Otlyga EG, Proshchina AE. Primary and secondary olfactory centres in human ontogeny. Neurosci Res 2023; 190:1-16. [PMID: 36521642 DOI: 10.1016/j.neures.2022.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/19/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
The olfactory centres are the evolutionary oldest and most conservative area of the telencephalon. Olfactory deficiencies are involved in a large spectrum of neurologic disorders and neurodegenerative diseases. The growing interest in human olfaction has been also been driven by COVID-19-induced transitional anosmia. Nevertheless, recent data on the human olfactory centres concerning normal histology and morphogenesis are rare. Published data in the field are mainly restricted to classic studies with non-uniform nomenclature and varied definitions of certain olfactory areas. While the olfactory system in model animals (rats, mice, and more rarely non-human primates) has been extensively investigated, the developmental timetable of olfactory centres in both human prenatal and postnatal ontogeny are poorly understood and unsystemised, which complicates the process of analysing human material, including medical researches. The main purpose of this review is to provide and discuss relevant morphological data on the normal ontogeny of the human olfactory centres, with a focus on the timetable of maturation and developmental cytoarchitecture, and with special reference to the definitions and terminology of certain olfactory areas.
Collapse
Affiliation(s)
- A S Kharlamova
- Avtsyn Research Institute of Human Morphology of FSBSI "Petrovsky National Research Centre of Surgery", Tsyurupy st., 3, 117418 Moscow, Russia.
| | - O S Godovalova
- Moscow Regional Research Institute of Obstetrics and Gynecology, Pokrovka St., 22A, 101000 Moscow, Russia
| | - E G Otlyga
- Avtsyn Research Institute of Human Morphology of FSBSI "Petrovsky National Research Centre of Surgery", Tsyurupy st., 3, 117418 Moscow, Russia
| | - A E Proshchina
- Avtsyn Research Institute of Human Morphology of FSBSI "Petrovsky National Research Centre of Surgery", Tsyurupy st., 3, 117418 Moscow, Russia
| |
Collapse
|
6
|
Ijichi C, Kondo K, Kobayashi M, Shirasawa A, Shimbo K, Nakata K, Maruyama Y, Ihara Y, Kawato Y, Mannen T, Takeshita R, Kikuchi Y, Saito Y, Yamasoba T. Lipocalin 15 in the olfactory mucus is a biomarker for Bowman's gland activity. Sci Rep 2022; 12:9984. [PMID: 35750866 PMCID: PMC9232505 DOI: 10.1038/s41598-022-13464-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/24/2022] [Indexed: 12/04/2022] Open
Abstract
Olfactory mucus contributes to the specific functions of the olfactory mucosa, but the composition and source of mucus proteins have not been fully elucidated. In this study, we used comprehensive proteome analysis and identified lipocalin 15 (LCN15), a human-specific lipocalin family protein, as an abundant component of the olfactory mucus. Western blot analysis and enzyme-linked immunosorbent assay (ELISA) using a newly generated anti-LCN15 antibody showed that LCN15 was concentrated in olfactory mucus samples, but not in respiratory mucus samples. Immunohistochemical staining using anti-LCN15 antibody revealed that LCN15 localized to the cytokeratin 18-positive Bowman's glands of the olfactory cleft mucosa. Quantitative image analysis revealed that the area of LCN15 immunoreactivity along the olfactory cleft mucosa significantly correlated with the area of neuron-specific Protein-Gene Product 9.5 (PGP9.5) immunoreactivity, suggesting that LCN15 is produced in non-degenerated areas of the olfactory neuroepithelium. ELISA demonstrated that the concentration of LCN15 in the mucus was lower in participants with normal olfaction (≥ 50 years) and also tended to be lower in patients with idiopathic olfactory loss (≥ 50 years) than in participants with normal olfaction (< 50 years). Thus, LCN15 may serve as a biomarker for the activity of the Bowman’s glands.
Collapse
Affiliation(s)
- Chiori Ijichi
- Food Products Division, Technology & Solution Development Center, Institute of Food Science and Technologies, Ajinomoto Co., Inc., Kawasaki, 210-8681, Japan.
| | - Kenji Kondo
- Department of Otorhinolaryngology-Head and Neck Surgery, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan.
| | - Masayoshi Kobayashi
- Department of Otorhinolaryngology-Head and Neck Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Ayaka Shirasawa
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki, Japan
| | - Kazutaka Shimbo
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki, Japan
| | - Kunio Nakata
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki, Japan
| | - Yutaka Maruyama
- Food Products Division, Technology & Solution Development Center, Institute of Food Science and Technologies, Ajinomoto Co., Inc., Kawasaki, 210-8681, Japan
| | - Yusuke Ihara
- Food Products Division, Technology & Solution Development Center, Institute of Food Science and Technologies, Ajinomoto Co., Inc., Kawasaki, 210-8681, Japan
| | - Yayoi Kawato
- Food Products Division, Technology & Solution Development Center, Institute of Food Science and Technologies, Ajinomoto Co., Inc., Kawasaki, 210-8681, Japan
| | - Teruhisa Mannen
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki, Japan
| | - Rie Takeshita
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki, Japan
| | - Yoshimi Kikuchi
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki, Japan
| | - Yuki Saito
- Department of Otorhinolaryngology-Head and Neck Surgery, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Tatsuya Yamasoba
- Department of Otorhinolaryngology-Head and Neck Surgery, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| |
Collapse
|
7
|
Lessmann ME, Guducu C, Ibarlucea B, Hummel T. Electrophysiological Recordings from the Olfactory Epithelium and Human Brain in Response to Stimulation with HLA Related Peptides. Neuroscience 2021; 473:44-51. [PMID: 34407460 DOI: 10.1016/j.neuroscience.2021.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 10/20/2022]
Abstract
In many species, social communication and mate choice are influenced by olfactory cues associated with the major histocompatibility complex (MHC). It has been reported that humans also respond to olfactory signals related to the human MHC-equivalent, the Human Leucocyte Antigen (HLA)-System, and exhibit an olfactory-mediated preference for potential mating partners with a dissimilar, disassortative, HLA-type compared to their own. The aim of this study was to investigate whether HLA-associated peptides, presented as volatile cues, elicit neuronal responses at the receptors in the human olfactory epithelium and can be consciously perceived. To this end the discrimination ability for peptides was tested in a 3-alternative forced choice model. Furthermore electro-olfactograms of the olfactory epithelium and EEG-derived chemosensory event related potentials were recorded using precisely controlled olfactometric stimulation with peptides and control odors. Based on responses from 52 young, healthy participants the peptides could not be discriminated and the electrophysiological signals provided no evidence for a specific response to the peptides which was in contrast to the control odors. In conclusion, within the current setup the results suggest that HLA-associated peptides do not produce specific olfactory activation in humans.
Collapse
Affiliation(s)
- Marie-Elisabeth Lessmann
- Smell and Taste Clinic, Department of Otorhinolaryngology, Technische Universität Dresden, Dresden, Germany.
| | - Cagdas Guducu
- Department of Biophysics, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Bergoi Ibarlucea
- Institute of Materials Science, Max Bergmann Center of Biomaterials, and Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Dresden, Germany
| | - Thomas Hummel
- Smell and Taste Clinic, Department of Otorhinolaryngology, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
8
|
The Microvillar and Solitary Chemosensory Cells as the Novel Targets of Infection of SARS-CoV-2 in Syrian Golden Hamsters. Viruses 2021; 13:v13081653. [PMID: 34452517 PMCID: PMC8402700 DOI: 10.3390/v13081653] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/11/2021] [Accepted: 08/18/2021] [Indexed: 12/11/2022] Open
Abstract
Patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019, suffer from respiratory and non-respiratory symptoms. Among these symptoms, the loss of smell has attracted considerable attention. The objectives of this study were to determine which cells are infected, what happens in the olfactory system after viral infection, and how these pathologic changes contribute to olfactory loss. For this purpose, Syrian golden hamsters were used. First, we verified the olfactory structures in the nasal cavity of Syrian golden hamsters, namely the main olfactory epithelium, the vomeronasal organ, and their cellular components. Second, we found angiotensin-converting enzyme 2 expression, a receptor protein of SARS-CoV-2, in both structures and infections of supporting, microvillar, and solitary chemosensory cells. Third, we observed pathological changes in the infected epithelium, including reduced thickness of the mucus layer, detached epithelia, indistinct layers of epithelia, infiltration of inflammatory cells, and apoptotic cells in the overall layers. We concluded that a structurally and functionally altered microenvironment influences olfactory function. We observed the regeneration of the damaged epithelium, and found multilayers of basal cells, indicating that they were activated and proliferating to reconstitute the injured epithelium.
Collapse
|
9
|
Oleszkiewicz A, Suhle P, Haehner A, Croy I. Prior exposure to Hedione, a model of pheromone, does not affect female ratings of male facial attractiveness or likeability. Physiol Behav 2021; 238:113458. [PMID: 34033848 DOI: 10.1016/j.physbeh.2021.113458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/20/2021] [Accepted: 05/09/2021] [Indexed: 10/21/2022]
Abstract
The existence of pheromones in humans is controversial, partly because of definitional difficulties and partly because of the question of possible chemical substances. The synthetic compound Methyl dihydrojasmonate (Hedione) is potent to bind to vomeronasal-type 1 receptors (VN1R1s) and activate limbic areas of the brain in a sex-specific manner. However, one of the most important definitional points for a human pheromone effect has not yet been investigated, i.e., whether smelling Hedione, a model of pheromone, has a behavioral effect. We tested in females whether Hedione leads to altered perception of male social stimuli. Each of the included women were sensitive to Hedione and were tested around the time of ovulation in three consecutive sessions, during each they were exposed to either Hedione or Phenylethyl alcohol or Odorless air. We measured the speed of male face recognition (implicit priming task) and collected ratings of facial attractiveness and likeability of men (explicit task). Only about half of the women tested were sensitive to Hedione. Those women did not show any effect of Hedione exposure in the implicit priming task and moderate, but non-significant effects in the explicit task. We therefore assume that Hedione is not a potent model of pheromone in humans and this observation may be due to the fact that the artificially produced substance is not suited for signaling the proximity of other humans. Furthermore, the high rate of Hedione-specific anosmia leads to the hypothesis that a substantial proportion of individuals has a poor V1NR1 receptor expression.
Collapse
Affiliation(s)
- Anna Oleszkiewicz
- Smell and Taste Clinic, Department of Otorhinolaryngology, TU Dresden, Germany; Institute of Psychology, University of Wroclaw, Poland.
| | - Paulina Suhle
- Department of Psychotherapy and Psychosomatic Medicine, TU Dresden, Germany
| | - Antje Haehner
- Smell and Taste Clinic, Department of Otorhinolaryngology, TU Dresden, Germany
| | - Ilona Croy
- Department of Psychotherapy and Psychosomatic Medicine, TU Dresden, Germany; Department of Psychology, Friedrich Schiller University Jena, Germany
| |
Collapse
|
10
|
Gebhart VM, Rodewald A, Wollbaum E, Hertel K, Bitter T, Jirikowski GF. Evidence for accessory chemosensory cells in the adult human nasal cavity. J Chem Neuroanat 2019; 104:101732. [PMID: 31874203 DOI: 10.1016/j.jchemneu.2019.101732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 12/15/2019] [Accepted: 12/15/2019] [Indexed: 12/16/2022]
Abstract
The existence of functionally relevant accessory olfactory organs in humans is still a matter of controversy. A vomeronasal organ (VNO) with sensory and non-sensory epithelia exists only in macrosmatic mammals. A similar structure is regularly observed in humans during fetal development. The postnatal persistence of a VNO like epithelial duct has been described in about 10 %. Here we studied tissue samples of nasal mucosa from adults. In all individuals we found epithelial cells in the lower part of the nasal septum which exhibited morphological features of sensory neurons and which showed immunostaining for olfactory marker protein OMP. These cells were interposed by ciliated cells, goblet cells and small intraepithelial capillaries. Only occasionally we found such cells within a morphologically defined epithelial duct. A clear separation of sensory and non-sensory epithelia could not be observed. In most cases we found OMP positive groups of cells either in epithelial cavities or just embedded in respiratory epithelium. With RT-PCR we could confirm the presence of OMP encoding mRNA thus supporting the idea of intrinsic expression of this protein in the nasal mucosa. We conclude that accessory chemosensory structures are regularly conserved in adult humans in the approximate anatomical location of the VNO of microsmatic animals. Their functional importance is yet to be determined.
Collapse
Affiliation(s)
| | - Andrea Rodewald
- Institute of Anatomy II, Jena University Hospital, Jena, Germany
| | - Enrico Wollbaum
- Institute of Anatomy I, Jena University Hospital, Jena, Germany
| | - Kay Hertel
- Institute of Pathology, HELIOS Klinikum, Erfurt, Germany
| | - Thomas Bitter
- Department of Otorhinolaryngology, Jena University Hospital, Jena, Germany
| | | |
Collapse
|
11
|
Lovejoy DA, Hogg DW, Dodsworth TL, Jurado FR, Read CC, D'Aquila AL, Barsyte-Lovejoy D. Synthetic Peptides as Therapeutic Agents: Lessons Learned From Evolutionary Ancient Peptides and Their Transit Across Blood-Brain Barriers. Front Endocrinol (Lausanne) 2019; 10:730. [PMID: 31781029 PMCID: PMC6861216 DOI: 10.3389/fendo.2019.00730] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 10/10/2019] [Indexed: 11/18/2022] Open
Abstract
Peptides play a major role in the transmission of information to and from the central nervous system. However, because of their structural complexity, the development of pharmacological peptide-based therapeutics has been challenged by the lack of understanding of endogenous peptide evolution. The teneurin C-terminal associated peptides (TCAP) possess many of the required attributes of a practical peptide therapeutic. TCAPs, associated with the teneurin transmembrane proteins that bind to the latrophilins, members of the Adhesion family of G-protein-coupled receptors (GPCR). Together, this ligand-receptor unit plays an integral role in synaptogenesis, neurological development, and maintenance, and is present in most metazoans. TCAP has structural similarity to corticotropin-releasing factor (CRF), and related peptides, such as calcitonin and the secretin-based peptides and inhibits the (CRF)-associated stress response. Latrophilins are structurally related to the secretin family of GPCRs. TCAP is a soluble peptide that crosses the blood-brain barrier and regulates glucose transport into the brain. We posit that TCAP represents a phylogenetically older peptide system that evolved before the origin of the CRF-calcitonin-secretin clade of peptides and plays a fundamental role in the regulation of cell-to-cell energy homeostasis. Moreover, it may act as a phylogenetically older peptide system that evolved as a natural antagonist to the CRF-mediated stress response. Thus, TCAP's actions on the CNS may provide new insights into the development of peptide therapeutics for the treatment of CNS disorders.
Collapse
Affiliation(s)
- David A. Lovejoy
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
- Protagenic Therapeutics Inc., New York, NY, United States
| | - David W. Hogg
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Thomas L. Dodsworth
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Fernando R. Jurado
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Casey C. Read
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Andrea L. D'Aquila
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
- Department of Pediatrics, University of Alabama, Birmingham, AL, United States
| | | |
Collapse
|
12
|
Mantel M, Ferdenzi C, Roy JM, Bensafi M. Individual Differences as a Key Factor to Uncover the Neural Underpinnings of Hedonic and Social Functions of Human Olfaction: Current Findings from PET and fMRI Studies and Future Considerations. Brain Topogr 2019; 32:977-986. [PMID: 31564029 DOI: 10.1007/s10548-019-00733-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/18/2019] [Indexed: 01/20/2023]
Abstract
The hedonic and social dimensions of olfactory perception are characterized by a great diversity across people. Whereas the cerebral processing underlying these aspects of odor perception have been widely explored in the last decades, very few brain imaging studies considered individual differences. This lack of consideration weakens the current models in the field, where the paradigm of universality is the norm. The present review is aimed at examining this issue. Through a synthetic summary, we will first present past studies suggesting that (1) hedonics are represented consistently throughout the olfactory system from primary to secondary areas, with a progressive cognitive modulation and integration with other senses, (2) social dimension of odors may be represented in a distinct pathway involving social and attentional networks. In a second, and more critical part, we will highlight the importance of individual differences for the cerebral study of human olfaction.
Collapse
Affiliation(s)
- Marylou Mantel
- Lyon Neuroscience Research Center, University Claude Bernard of Lyon, CNRS, INSERM, Lyon, France.
- Ecole Normale Supérieure de Lyon, Lyon, France.
- Centre Hospitalier Le Vinatier, CRNL, CNRS UMR5292 - Inserm U1028 - UCBL, Bâtiment 462 - Neurocampus, 95 boulevard Pinel, 69675, Bron Cedex, France.
| | - Camille Ferdenzi
- Lyon Neuroscience Research Center, University Claude Bernard of Lyon, CNRS, INSERM, Lyon, France
| | | | - Moustafa Bensafi
- Lyon Neuroscience Research Center, University Claude Bernard of Lyon, CNRS, INSERM, Lyon, France.
- Centre Hospitalier Le Vinatier, CRNL, CNRS UMR5292 - Inserm U1028 - UCBL, Bâtiment 462 - Neurocampus, 95 boulevard Pinel, 69675, Bron Cedex, France.
| |
Collapse
|
13
|
Caldwell JD, Londe K, Ochs SD, Hajdu Z, Rodewald A, Gebhart VM, Jirikowski GF. Three steroid-binding globulins, their localization in the brain and nose, and what they might be doing there. Steroids 2019; 142:48-54. [PMID: 29246492 DOI: 10.1016/j.steroids.2017.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 10/06/2017] [Accepted: 12/07/2017] [Indexed: 12/01/2022]
Abstract
Steroid-binding globulins (SBGs) such as sex hormone binding globulin, corticosteroid binding globulin, and vitamin-D binding protein are receiving increasing notice as being actively involved in steroid actions. This paper reviews data of all three of these SBGs, focusing on their presence and possible activity in the brain and nose. We have found all three proteins in the brain in limbic areas such as the paraventricular (PVN) and supraoptic nuclei (SON) as well as other areas of the hypothalamus, hippocampus, and medial preoptic area. There is also evidence that all three are made in the PVN and SON, in conjunction with the neuropeptides oxytocin and vasopressin. The localization of these three SBGs is more variable within areas of the main olfactory area and the vomeronasal organ. However, all three are found in the mucus of these areas, suggesting that one of their functions is to sequester aerosol steroids, such as pheromones, and deliver them to sensory cells and then to deeper sensory areas. In this manuscript, we present multiple models of SBG action including: A) SBG binding to a membrane receptor, B) this SBG receptor being associated with a larger protein complex including cytoplasmic steroid receptors, C) when the SBGs binds to their SBG receptors, second messengers within the cells respond, D) after SBG binding to its receptor, it releases its associated steroid into the membrane's lipid bilayer, from which it gains access into the cell only when bound by an internal protein, E) the SBG, possibly with its bound SBG receptor, is internalized into the cell from which it can gain access to numerous organelles and possibly the cell's nucleus or F) associate with intracellular steroid receptors, G) SBGs produced in target cells are released from those cells upon specific stimulation, and H) according to the Free Steroid Hypothesis steroids released from the extracellular SBG passively diffuse across the plasma membrane of the cell. These models move the area of steroid endocrinology forward by providing important paths of steroid activity within many steroid target cells.
Collapse
Affiliation(s)
- J D Caldwell
- Department of Pharmacology, Edward Via College of Osteopathic Medicine and Gibbs Research Center, 350 Howard Street, Spartanburg, SC, USA.
| | - K Londe
- Department of Pharmacology, Edward Via College of Osteopathic Medicine and Gibbs Research Center, 350 Howard Street, Spartanburg, SC, USA
| | - S D Ochs
- Department of Pharmacology, Edward Via College of Osteopathic Medicine and Gibbs Research Center, 350 Howard Street, Spartanburg, SC, USA
| | - Z Hajdu
- Department of Pharmacology, Edward Via College of Osteopathic Medicine and Gibbs Research Center, 350 Howard Street, Spartanburg, SC, USA
| | - A Rodewald
- Institute of Anatomy, Anatomy II, Jena University Hospital, Jena, Germany
| | - V M Gebhart
- Institute of Anatomy, Anatomy II, Jena University Hospital, Jena, Germany
| | - G F Jirikowski
- Institute of Anatomy, Anatomy II, Jena University Hospital, Jena, Germany
| |
Collapse
|
14
|
Dennis JC, Stilwell NK, Smith TD, Park TJ, Bhatnagar KP, Morrison EE. Is the Mole Rat Vomeronasal Organ Functional? Anat Rec (Hoboken) 2019; 303:318-329. [DOI: 10.1002/ar.24060] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 11/02/2018] [Accepted: 12/13/2018] [Indexed: 11/06/2022]
Affiliation(s)
- John C. Dennis
- Department of Anatomy, Physiology, and Pharmacology Auburn University Auburn Alabama
| | | | - Timothy D. Smith
- School of Physical Therapy Slippery Rock University Slippery Rock Pennsylvania
- Department of Anthropology University of Pittsburgh Pittsburgh Pennsylvania
| | - Thomas J. Park
- Department of Biological Sciences University of Illinois at Chicago Chicago Illinois
| | - Kunwar P. Bhatnagar
- Department of Anatomical Sciences and Neurobiology University of Louisville School of Medicine Louisville Kentucky
| | - Edward E. Morrison
- Department of Anatomy, Physiology, and Pharmacology Auburn University Auburn Alabama
| |
Collapse
|
15
|
Salazar I, Sanchez-Quinteiro P, Barrios AW, López Amado M, Vega JA. Anatomy of the olfactory mucosa. HANDBOOK OF CLINICAL NEUROLOGY 2019; 164:47-65. [PMID: 31604563 DOI: 10.1016/b978-0-444-63855-7.00004-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The classic notion that humans are microsmatic animals was born from comparative anatomy studies showing the reduction in the size of both the olfactory bulbs and the limbic brain relative to the whole brain. However, the human olfactory system contains a number of neurons comparable to that of most other mammals, and humans have exquisite olfactory abilities. Major advances in molecular and genetic research have resulted in the identification of extremely large gene families that express receptors for sensing odors. Such advances have led to a renaissance of studies focused on both human and nonhuman aspects of olfactory physiology and function. Evidence that olfactory dysfunction is among the earliest signs of a number of neurodegenerative and neuropsychiatric disorders has led to considerable interest in the use of olfactory epithelial biopsies for potentially identifying such disorders. Moreover, the unique features of the olfactory ensheathing cells have made the olfactory mucosa a promising and unexpected source of cells for treating spinal cord injuries and other neural injuries in which cell guidance is critical. The olfactory system of humans and other primates differs in many ways from that of other species. In this chapter we provide an overview of the anatomy of not only the human olfactory mucosa but of mucosae from a range of mammals from which more detailed information is available. Basic information regarding the general organization of the olfactory mucosa, including its receptor cells and the large number of other cell types critical for their maintenance and function, is provided. Cross-species comparisons are made when appropriate. The polemic issue of the human vomeronasal organ in both the adult and fetus is discussed, along with recent findings regarding olfactory subsystems within the nose of a number of mammals (e.g., the septal organ and Grüneberg ganglion).
Collapse
Affiliation(s)
- Ignacio Salazar
- Department of Anatomy, Animal Production and Veterinary Clinical Sciences, Unit of Anatomy and Embryology, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain.
| | - Pablo Sanchez-Quinteiro
- Department of Anatomy, Animal Production and Veterinary Clinical Sciences, Unit of Anatomy and Embryology, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| | - Arthur W Barrios
- Laboratory of Histology, Embryology and Animal Pathology, Faculty of Veterinary Medicine, University Nacional Mayor of San Marcos, Lima, Peru
| | - Manuel López Amado
- Department of Otorhinolaryngology, University Hospital La Coruña, La Coruña, Spain
| | - José A Vega
- Unit of Anatomy, Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain
| |
Collapse
|
16
|
Witt M, Thiemer R, Meyer A, Schmitt O, Wree A. Main Olfactory and Vomeronasal Epithelium Are Differently Affected in Niemann-Pick Disease Type C1. Int J Mol Sci 2018; 19:ijms19113563. [PMID: 30424529 PMCID: PMC6274921 DOI: 10.3390/ijms19113563] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/01/2018] [Accepted: 11/08/2018] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION Olfactory impairment is one of the earliest symptoms in neurodegenerative disorders that has also been documented in Niemann-Pick disease type C1 (NPC1). NPC1 is a very rare, neurovisceral lipid storage disorder, characterized by a deficiency of Npc1 gene function that leads to progressive neurodegeneration. Here, we compared the pathologic effect of defective Npc1 gene on the vomeronasal neuroepithelium (VNE) with that of the olfactory epithelium (OE) in an NPC1 mouse model. METHODS Proliferation in the VNE and OE was assessed by applying a bromodeoxyuridine (BrdU) protocol. We further compared the immunoreactivities of anti-olfactory marker protein (OMP), and the lysosomal marker cathepsin-D in both epithelia. To investigate if degenerative effects of both olfactory systems can be prevented or reversed, some animals were treated with a combination of miglustat/allopregnanolone/2-hydroxypropyl-cyclodextrin (HPβCD), or a monotherapy with HPβCD alone. RESULTS Using BrdU to label dividing cells of the VNE, we detected a proliferation increase of 215% ± 12% in Npc1-/- mice, and 270% ± 10% in combination- treated Npc1-/- animals. The monotherapy with HPβCD led to an increase of 261% ± 10.5% compared to sham-treated Npc1-/- mice. Similar to the OE, we assessed the high regenerative potential of vomeronasal progenitor cells. OMP reactivity in the VNE of Npc1-/- mice was not affected, in contrast to that observed in the OE. Concomitantly, cathepsin-D reactivity in the VNE was virtually absent. Conclusion: Vomeronasal receptor neurons are less susceptible against NPC1 pathology than olfactory receptor neurons. Compared to control mice, however, the VNE of Npc1-/- mice displays an increased neuroregenerative potential, indicating compensatory cell renewal.
Collapse
Affiliation(s)
- Martin Witt
- Department of Anatomy, University of Rostock, 18057 Rostock, Germany.
| | - René Thiemer
- Department of Anatomy, University of Rostock, 18057 Rostock, Germany.
| | - Anja Meyer
- Department of Anatomy, University of Rostock, 18057 Rostock, Germany.
| | - Oliver Schmitt
- Department of Anatomy, University of Rostock, 18057 Rostock, Germany.
| | - Andreas Wree
- Department of Anatomy, University of Rostock, 18057 Rostock, Germany.
| |
Collapse
|
17
|
D'Aniello B, Semin GR, Scandurra A, Pinelli C. The Vomeronasal Organ: A Neglected Organ. Front Neuroanat 2017; 11:70. [PMID: 28871220 PMCID: PMC5566567 DOI: 10.3389/fnana.2017.00070] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/07/2017] [Indexed: 11/25/2022] Open
Affiliation(s)
- Biagio D'Aniello
- Department of Biology, University of Naples "Federico II,"Naples, Italy
| | - Gün R Semin
- William James Center for Research, Instituto Superior de Psicologia Aplicada - Instituto Universitário (ISPA-IU)Lisbon, Portugal
| | - Anna Scandurra
- Department of Biology, University of Naples "Federico II,"Naples, Italy
| | - Claudia Pinelli
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli,"Caserta, Italy
| |
Collapse
|
18
|
Berger S, Hatt H, Ockenfels A. Exposure to Hedione Increases Reciprocity in Humans. Front Behav Neurosci 2017; 11:79. [PMID: 28512400 PMCID: PMC5411439 DOI: 10.3389/fnbeh.2017.00079] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 04/12/2017] [Indexed: 12/29/2022] Open
Abstract
Cooperation among unrelated humans is frequently regarded as a defining feature in the evolutionary success of our species. Whereas, much research has addressed the strategic and cognitive mechanisms that underlie cooperation, investigations into chemosensory processes have received very limited research attention. To bridge that gap, we build on recent research that has identified the chemically synthesized odorant Hedione (HED) as a ligand for the putative human pheromone receptor (VN1R1) expressed in the olfactory mucosa, and hypothesize that exposure to HED may increase reciprocity. Applying behavioral economics paradigms, the present research shows that exposure to the ligand causes differentiated behavioral effects in reciprocal punishments (Study 1) as well as rewards (Study 2), two types of behaviors that are frequently regarded as essential for the development and maintenance of cooperation.
Collapse
Affiliation(s)
- Sebastian Berger
- Department of Organization, Department of Organization and Human Resource Management, University of BernBern, Switzerland
| | - Hanns Hatt
- Department of Cell Physiology, Ruhr-University BochumBochum, Germany
| | - Axel Ockenfels
- Department of Economics, University of CologneCologne, Germany
| |
Collapse
|
19
|
Kromer J, Hummel T, Pietrowski D, Giani AS, Sauter J, Ehninger G, Schmidt AH, Croy I. Influence of HLA on human partnership and sexual satisfaction. Sci Rep 2016; 6:32550. [PMID: 27578547 PMCID: PMC5006172 DOI: 10.1038/srep32550] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 08/09/2016] [Indexed: 12/22/2022] Open
Abstract
The major histocompatibility complex (MHC, called HLA in humans) is an important genetic component of the immune system. Fish, birds and mammals prefer mates with different genetic MHC code compared to their own, which they determine using olfactory cues. This preference increases the chances of high MHC variety in the offspring, leading to enhanced resilience against a variety of pathogens. Humans are also able to discriminate HLA related olfactory stimuli, however, it is debated whether this mechanism is of behavioural relevance. We show on a large sample (N = 508), with high-resolution typing of HLA class I/II, that HLA dissimilarity correlates with partnership, sexuality and enhances the desire to procreate. We conclude that HLA mediates mate behaviour in humans.
Collapse
Affiliation(s)
- J. Kromer
- Smell & Taste Clinic, Department of Otorhinolaryngology, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Fetscherstr 74, 01307 Dresden, Germany
| | - T. Hummel
- Smell & Taste Clinic, Department of Otorhinolaryngology, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Fetscherstr 74, 01307 Dresden, Germany
| | - D. Pietrowski
- Smell & Taste Clinic, Department of Otorhinolaryngology, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Fetscherstr 74, 01307 Dresden, Germany
| | - A. S. Giani
- DKMS German Bone Marrow Donor Center, Kressbach 1, 72072 Tübingen, Germany
| | - J. Sauter
- DKMS German Bone Marrow Donor Center, Kressbach 1, 72072 Tübingen, Germany
| | - G. Ehninger
- Department of Internal Medicine, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Fetscherstr 74, 01307 Dresden, Germany
| | - A. H. Schmidt
- DKMS German Bone Marrow Donor Center, Kressbach 1, 72072 Tübingen, Germany
| | - I. Croy
- Smell & Taste Clinic, Department of Otorhinolaryngology, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Fetscherstr 74, 01307 Dresden, Germany
- Department of Psychotherapy and Psychosomatic Medicine, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Fetscherstr 74, 01307 Dresden, Germany
| |
Collapse
|
20
|
Marcinek P, Geithe C, Krautwurst D. Chemosensory G Protein-Coupled Receptors (GPCR) in Blood Leukocytes. TOPICS IN MEDICINAL CHEMISTRY 2016. [DOI: 10.1007/7355_2016_101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
21
|
Takami S, Yukimatsu M, Matsumura G, Horie S, Nishiyama F. Morphological Analysis for Neuron-Like Cells in the Vomeronasal Organ of Human Fetuses at the Middle of Gestation. Anat Rec (Hoboken) 2015; 299:88-97. [PMID: 26565893 DOI: 10.1002/ar.23290] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 09/28/2015] [Accepted: 10/05/2015] [Indexed: 11/06/2022]
Abstract
The vomeronasal organ (VNO) of 5-month-old fetuses was examined immunohistochemically by the use of an antiserum to protein gene product 9.5 (PGP). The purpose was to identify if the human fetal VNO is lined by neuroepithelium. The PGP antiserum labeled abundant cells within the vomeronasal epithelium (VE), nerve fiber bundles in its lamina propria, and cells associated with these bundles. PGP-immunoreactive (ir) vomeronasal epithelial cells were classified into three subtypes. Type I cells, about 44% of the total cells observed, did not have any processes and tended to be located in the basal layer of the VE. Type II cells, about 37% had a single apical process that projected toward the lumen, ending at the epithelial surface. Type III cells sent a prominent process mainly toward the basement membrane, and occupied about 19% of the total cells observed. In the lamina propria, a considerable number of PGP-ir cells was observed. Some of them were present in nerve fiber bundles and contained processes parallel to the bundles. In addition, PGP-ir nerve fiber bundles and cells associated with them were even present in the portion of the nasal septal mucosa that was very close to the brain. The present results strongly suggested that the VE in human fetuses at mid-gestation is a neuroepithelium and that the VE may produce migrating cells toward the brain.
Collapse
Affiliation(s)
- Shigeru Takami
- Department of Anatomy, Faculty of Health Sciences, Kyorin University, Tokyo, Japan.,Sakai Electron Microscopy Application Laboratory, Saitama, Japan.,Department of Physiology, Iwate Medical University School of Dentistry, Iwate, Japan
| | - Maiko Yukimatsu
- Department of Anatomy, Faculty of Health Sciences, Kyorin University, Tokyo, Japan
| | - George Matsumura
- Department of Anatomy Faculty of Medicine, Kyorin Unversity, Tokyo, Japan
| | - Sawa Horie
- Department of Anatomy, Faculty of Health Sciences, Kyorin University, Tokyo, Japan.,Department of Anatomy, Kawasaki Medical School, Okayama, Japan
| | - Fumiaki Nishiyama
- Department of Anatomy, Faculty of Health Sciences, Kyorin University, Tokyo, Japan
| |
Collapse
|
22
|
Smith TD, Laitman JT, Bhatnagar KP. The shrinking anthropoid nose, the human vomeronasal organ, and the language of anatomical reduction. Anat Rec (Hoboken) 2015; 297:2196-204. [PMID: 25312373 DOI: 10.1002/ar.23035] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 06/25/2014] [Indexed: 11/09/2022]
Abstract
Humans and most of our closest extant relatives, the anthropoids, are notable for their reduced "snout." The striking reduction in facial projection is only a superficial similarity. All anthropoids, including those with long faces (e.g., baboons), have lost numerous internal projections (turbinals) and spaces (recesses). In sum, this equates to the loss of certain regions of olfactory mucosa in anthropoids. In addition, an accessory olfactory organ, the vomeronasal organ, is non-functional or even absent in all catarrhine primates (humans, apes, monkeys). In this commentary, we revisit the concept of anatomical reductions as it pertains to the anthropoid nasal region. Certain nasal structures and spaces in anthropoids exhibit well-known attributes of other known vestiges, such as variability in form or number. The cupular recess (a vestige of the olfactory recess) and some rudimentary ethmoturbinals constitute reduced structures that presumably were fully functional in our ancestors. Humans and at least some apes retain a vestige that is bereft of chemosensory function (while in catarrhine monkeys it is completely absent). However, the function of the vomeronasal system also includes prenatal roles, which may be common to most or all mammals. Notably, neurons migrate to the brain along vomeronasal and terminal nerve axons during embryogenesis. The time-specific role of the VNO raises the possibility that our concept of functional reduction is too static. The vomeronasal system of humans and other catarrhine primates appears to qualify as a "chronological" vestige, one which fulfills part of its function during ontogeny, and then becomes lost or vestigial.
Collapse
Affiliation(s)
- Timothy D Smith
- School of Physical Therapy, Slippery Rock University, Slippery Rock, Pennsylvania; Department of Anthropology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | | |
Collapse
|
23
|
Wallrabenstein I, Gerber J, Rasche S, Croy I, Kurtenbach S, Hummel T, Hatt H. The smelling of Hedione results in sex-differentiated human brain activity. Neuroimage 2015; 113:365-73. [PMID: 25797832 DOI: 10.1016/j.neuroimage.2015.03.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 03/10/2015] [Accepted: 03/11/2015] [Indexed: 11/16/2022] Open
Abstract
A large family of vomeronasal receptors recognizes pheromone cues in many animals including most amphibia, reptiles, rhodents, and other mammals. Humans possess five vomeronasal-type 1 receptor genes (VN1R1-VN1R5), which code for proteins that are functional in recombinant expression systems. We used two different recombinant expression systems and identified Hedione as a ligand for the putative human pheromone receptor VN1R1 expressed in the human olfactory mucosa. Following the ligand identification, we employed functional magnetic resonance imaging (fMRI) in healthy volunteers to characterize the in vivo action of the VN1R1 ligand Hedione. In comparison to a common floral odor (phenylethyl alcohol), Hedione exhibited significantly enhanced activation in limbic areas (amygdala, hippocampus) and elicited a sex-differentiated response in a hypothalamic region that is associated with hormonal release. Utilizing a novel combination of methods, our results indicate that the putative human pheromone receptor VN1R1 is involved in extra-olfactory neuronal activations induced by the odorous substance Hedione. The activation of VN1R1 might play a role in gender-specific modulation of hormonal secretion in humans.
Collapse
Affiliation(s)
- I Wallrabenstein
- Department of Cell Physiology, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany.
| | - J Gerber
- Department of Neuroradiology, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany.
| | - S Rasche
- Department of Cell Physiology, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany.
| | - I Croy
- Department of Otorhinolaryngology, Smell and Taste Clinic, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany.
| | - S Kurtenbach
- Department of Cell Physiology, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany.
| | - T Hummel
- Department of Otorhinolaryngology, Smell and Taste Clinic, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany.
| | - H Hatt
- Department of Cell Physiology, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany.
| |
Collapse
|
24
|
Patel RM, Pinto JM. Olfaction: anatomy, physiology, and disease. Clin Anat 2013; 27:54-60. [PMID: 24272785 DOI: 10.1002/ca.22338] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 10/02/2013] [Indexed: 11/08/2022]
Abstract
The olfactory system is an essential part of human physiology, with a rich evolutionary history. Although humans are less dependent on chemosensory input than are other mammals (Niimura 2009, Hum. Genomics 4:107-118), olfactory function still plays a critical role in health and behavior. The detection of hazards in the environment, generating feelings of pleasure, promoting adequate nutrition, influencing sexuality, and maintenance of mood are described roles of the olfactory system, while other novel functions are being elucidated. A growing body of evidence has implicated a role for olfaction in such diverse physiologic processes as kin recognition and mating (Jacob et al. 2002a, Nat. Genet. 30:175-179; Horth 2007, Genomics 90:159-175; Havlicek and Roberts 2009, Psychoneuroendocrinology 34:497-512), pheromone detection (Jacob et al. 200b, Horm. Behav. 42:274-283; Wyart et al. 2007, J. Neurosci. 27:1261-1265), mother-infant bonding (Doucet et al. 2009, PLoS One 4:e7579), food preferences (Mennella et al. 2001, Pediatrics 107:E88), central nervous system physiology (Welge-Lüssen 2009, B-ENT 5:129-132), and even longevity (Murphy 2009, JAMA 288:2307-2312). The olfactory system, although phylogenetically ancient, has historically received less attention than other special senses, perhaps due to challenges related to its study in humans. In this article, we review the anatomic pathways of olfaction, from peripheral nasal airflow leading to odorant detection, to epithelial recognition of these odorants and related signal transduction, and finally to central processing. Olfactory dysfunction, which can be defined as conductive, sensorineural, or central (typically related to neurodegenerative disorders), is a clinically significant problem, with a high burden on quality of life that is likely to grow in prevalence due to demographic shifts and increased environmental exposures.
Collapse
Affiliation(s)
- Riddhi M Patel
- Department of Surgery, Section of Otolaryngology-Head and Neck Surgery, The University of Chicago, Chicago, Illinois
| | | |
Collapse
|
25
|
Milinski M, Croy I, Hummel T, Boehm T. Major histocompatibility complex peptide ligands as olfactory cues in human body odour assessment. Proc Biol Sci 2013; 280:20122889. [PMID: 23345577 PMCID: PMC3574394 DOI: 10.1098/rspb.2012.2889] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In many animal species, social communication and mate choice are influenced by cues encoded by the major histocompatibility complex (MHC). The mechanism by which the MHC influences sexual selection is a matter of intense debate. In mice, peptide ligands of MHC molecules activate subsets of vomeronasal and olfactory sensory neurons and influence social memory formation; in sticklebacks, such peptides predictably modify the outcome of mate choice. Here, we examine whether this evolutionarily conserved mechanism of interindividual communication extends to humans. In psychometric tests, volunteers recognized the supplementation of their body odour by MHC peptides and preferred ‘self’ to ‘non-self’ ligands when asked to decide whether the modified odour smelled ‘like themselves’ or ‘like their favourite perfume’. Functional magnetic resonance imaging indicated that ‘self’-peptides specifically activated a region in the right middle frontal cortex. Our results suggest that despite the absence of a vomeronasal organ, humans have the ability to detect and evaluate MHC peptides in body odour. This may provide a basis for the sensory evaluation of potential partners during human mate choice.
Collapse
Affiliation(s)
- Manfred Milinski
- Department of Evolutionary Ecology, Max Planck Institute of Evolutionary Biology, August-Thienemann-Strasse 2, 24306 Ploen, Germany
| | | | | | | |
Collapse
|
26
|
Lapid H, Hummel T. Recording odor-evoked response potentials at the human olfactory epithelium. Chem Senses 2012; 38:3-17. [PMID: 22944611 DOI: 10.1093/chemse/bjs073] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Electro-olfactogram (EOG) represents the sum of generator potentials of olfactory receptor neurons in response to an olfactory stimulus. Although this measurement technique has been used extensively in animal research, its use in human olfaction research has been relatively limited. To understand the promises and limitations of this technique, this review provides an overview of the olfactory epithelium structure and function, and summarizes EOG characteristics and conventions. It describes methodological pitfalls and their possible solutions, artifacts, and questions of debate in the field. In summary, EOG measurements provide a rare opportunity of recording neuronal input from the peripheral olfactory system, while simultaneously obtaining psychophysical responses in awake humans.
Collapse
Affiliation(s)
- Hadas Lapid
- Department of Neurobiology, Hebrew University of Jerusalem, Israel.
| | | |
Collapse
|
27
|
Hummel T, Landis BN, Hüttenbrink KB. Smell and taste disorders. GMS CURRENT TOPICS IN OTORHINOLARYNGOLOGY, HEAD AND NECK SURGERY 2012; 10:Doc04. [PMID: 22558054 PMCID: PMC3341581 DOI: 10.3205/cto000077] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Smell and taste disorders can markedly affect the quality of life. In recent years we have become much better in the assessment of the ability to smell and taste. In addition, information is now available to say something about the prognosis of individual patients. With regard to therapy there also seems to be low but steady progress. Of special importance for the treatment is the ability of the olfactory epithelium to regenerate.
Collapse
|
28
|
Merigo F, Mucignat-Caretta C, Cristofoletti M, Zancanaro C. Epithelial membrane transporters expression in the developing to adult mouse vomeronasal organ and olfactory mucosa. Dev Neurobiol 2012; 71:854-69. [PMID: 21721139 DOI: 10.1002/dneu.20944] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
To contribute clarifying mechanisms operating in nose chemosensory epithelia and their developmental patterns, we analyzed the expression of different epithelial membrane transporters as well as the Clara cell secretory protein, CC26 in the olfactory, vomeronasal organ (VNO), and respiratory epithelia of embryonic (E13-E19) and postnatal (P1-P60) mice by means of immunohistochemistry and reverse transcriptase-polymerase chain reaction. Results showed that CC26, cAMP-activated chloride channel (CFTR), and the water channel protein aquaporin 2, 3, 4, and 5 (AQP2, AQP3, AQP4, and AQP5) are expressed in developing to adult chemosensory epithelia with differential timing; moreover, their pattern of expression is not identical in VNO and olfactory epithelia as well as the corresponding associated glands; co-localization experiments using olfactory marker protein showed that CFTR, CC26, and AQP4 are not expressed in olfactory neurones. CFTR is expressed in sustentacular cells of the VNO and olfactory epithelium as well as blood vessels of the underlying mucosa, and VNO (but not Bowman's) glands; a similar pattern (excluding blood vessels) is present for AQP2; AQP4 is found in the two chemosensory epithelia and in Bowman's glands. AQP3 is expressed in the olfactory epithelium and the associated Bowman's glands, but not in the VNO chemosensory epithelium and glands. AQP5 is expressed in the olfactory epithelium and both Bowman's and VNO glands. These results indicate that water/ions handling as well as antioxidant mechanisms operating at the surface and/or inside the nose chemosensory epithelia start developing in utero and are maintained up to sexual maturity.
Collapse
Affiliation(s)
- Flavia Merigo
- Department of Neurological, Neuropsychological, Morphological and Movement Sciences, University of Verona, Strada Le Grazie 8, Verona I-37134, Italy
| | | | | | | |
Collapse
|
29
|
Abstract
Olfaction represents an ancient, evolutionarily critical physiologic system. In humans, chemosensation mediates safety, nutrition, sensation of pleasure, and general well-being. Factors that affect human olfaction included structural aspects of the nasal cavity that can modulate airflow and therefore odorant access to the olfactory cleft, and inflammatory disease, which can affect both airflow as well as olfactory nerve function. After signals are generated, olfactory information is processed and coded in the olfactory bulb and disseminated to several areas in the brain. The discovery of olfactory receptors by Axel and Buck sparked greater understanding of the molecular basis of olfaction. However, the precise mechanisms used by this system are still under great scrutiny due to the complexity of understanding how an enormous number of chemically diverse odorant molecules are coded into signals understood by the brain. Additionally, it has been challenging to dissect olfactory sensation due to the multiple areas of areas of the brain that receive and modulate this information. Consequently, our knowledge of olfactory dysfunction in humans remains primitive. Aging represents the major cause of loss of smell, although a number of clinical and environmental factors are thought to affect chemosensory function. Treatment options focus on reducing sinonasal inflammation when present, ruling out other treatable causes, and counseling patients on safety measures.
Collapse
|
30
|
Hummel T, Schultz S, Witt M, Hatt H. Electrical responses to chemosensory stimulation recorded from the vomeronasal duct and the respiratory epithelium in humans. Int J Psychophysiol 2011; 81:116-20. [PMID: 21619899 DOI: 10.1016/j.ijpsycho.2011.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 04/15/2011] [Accepted: 05/10/2011] [Indexed: 11/18/2022]
Abstract
The physiological significance of the human vomeronasal duct (VND) is still unclear. The aim of the present study was to investigate the question whether mucosal responses obtained from the VND are different from those obtained from the respiratory epithelium. There were 15 healthy subjects (8 male, 7 female; age range 19-45 years; 14 normosmic subjects, 1 anosmic subject). All subjects participated in two sessions whereby the first session was used to acquaint them with the experimental conditions. For chemical stimulation, an olfactometer was used which delivered chemical stimulants without altering mechanical or thermal conditions at the stimulated nasal mucosa. For stimulation we used substances previously reported to produce vomeronasal activation ("estra"=estra-1,3,5(10),16-tetraen-3ol and "andro"=androsta-4,16-dien-3-on); in addition, gaseous CO(2) was used as a non-odorous, relatively specific stimulant of the trigeminal nerve. Placement of electrodes either in the VND or on the respiratory epithelium was performed under endoscopical guidance. Subjects rated the overall intensity of the stimuli, the strength of trigeminally mediated sensations, and the hedonic tone of the stimulants. Responses could not be recorded from all subjects. For the remaining 7 subjects, intensity was strongest for CO(2) stimuli (p<0.001), whereas no significant difference was observed between "andro" and "estra" (p=0.33). All three stimulants produced responses at the respiratory epithelium with largest responses obtained after stimulation with CO(2). Similar findings were made for recordings inside the VND. Due to the small sample size sexual dimorphisms could not be addressed. In summary, these results seem to indicate that the presently used stimulants produce similar responses at the respiratory epithelium and in the VND which argues against a specific responsiveness of the VND epithelium to chemosensory stimuli although it has to be kept in mind that the effective sample size was small.
Collapse
Affiliation(s)
- T Hummel
- Smell and Taste Clinic, Department of Otorhinolaryngology, Technical University of Dresden Medical School, Dresden, Germany.
| | | | | | | |
Collapse
|
31
|
Haehner A, Hummel T, Reichmann H. Olfactory loss in Parkinson's disease. PARKINSON'S DISEASE 2011; 2011:450939. [PMID: 21687752 PMCID: PMC3109349 DOI: 10.4061/2011/450939] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Accepted: 03/13/2011] [Indexed: 11/20/2022]
Abstract
Impairment of olfaction is a characteristic and early feature of Parkinson's disease. Recent data indicate that >95% of patients with Parkinson's disease present with significant olfactory loss. Deficits in the sense of smell may precede clinical motor symptoms by years and can be used to assess the risk for developing Parkinson's disease in otherwise asymptomatic individuals. This paper summarizes the available information about olfactory function in Parkinson's disease, indicating the advantageous use of olfactory probes in early and differential diagnosis.
Collapse
Affiliation(s)
- Antje Haehner
- Department of Otorhinolaryngology and Department of Neurology, Medical School, Dresden University of Technology, Fetscherstraße 74, 01307 Dresden, Germany
| | - Thomas Hummel
- Department of Otorhinolaryngology, Medical School, Dresden University of Technology, Fetscherstraße 74, 01307 Dresden, Germany
| | - Heinz Reichmann
- Department of Neurology, Medical School, Dresden University of Technology, Fetscherstraße 74, 01307 Dresden, Germany
| |
Collapse
|
32
|
Ubeda-Bañon I, Pro-Sistiaga P, Mohedano-Moriano A, Saiz-Sanchez D, de la Rosa-Prieto C, Gutierrez-Castellanos N, Lanuza E, Martinez-Garcia F, Martinez-Marcos A. Cladistic analysis of olfactory and vomeronasal systems. Front Neuroanat 2011; 5:3. [PMID: 21290004 PMCID: PMC3032080 DOI: 10.3389/fnana.2011.00003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 01/11/2011] [Indexed: 12/02/2022] Open
Abstract
Most tetrapods possess two nasal organs for detecting chemicals in their environment, which are the sensory detectors of the olfactory and vomeronasal systems. The seventies’ view that the olfactory system was only devoted to sense volatiles, whereas the vomeronasal system was exclusively specialized for pheromone detection was challenged by accumulating data showing deep anatomical and functional interrelationships between both systems. In addition, the assumption that the vomeronasal system appeared as an adaptation to terrestrial life is being questioned as well. The aim of the present work is to use a comparative strategy to gain insight in our understanding of the evolution of chemical “cortex.” We have analyzed the organization of the olfactory and vomeronasal cortices of reptiles, marsupials, and placental mammals and we have compared our findings with data from other taxa in order to better understand the evolutionary history of the nasal sensory systems in vertebrates. The olfactory and vomeronsasal cortices have been re-investigated in garter snakes (Thamnophis sirtalis), short-tailed opossums (Monodelphis domestica), and rats (Rattus norvegicus) by tracing the efferents of the main and accessory olfactory bulbs using injections of neuroanatomical anterograde tracers (dextran-amines). In snakes, the medial olfactory tract is quite evident, whereas the main vomeronasal-recipient structure, the nucleus sphaericus is a folded cortical-like structure, located at the caudal edge of the amygdala. In marsupials, which are acallosal mammals, the rhinal fissure is relatively dorsal and the olfactory and vomeronasal cortices relatively expanded. Placental mammals, like marsupials, show partially overlapping olfactory and vomeronasal projections in the rostral basal telencephalon. These data raise the interesting question of how the telencephalon has been re-organized in different groups according to the biological relevance of chemical senses.
Collapse
Affiliation(s)
- Isabel Ubeda-Bañon
- Laboratorio de Neuroplasticidad y Neurodegeneración, Departamento de Ciencias Médicas, Centro Regional de Investigaciones Biomédicas, Facultad de Medicina de Ciudad Real, Universidad de Castilla-la Mancha Ciudad Real, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Sela L, Sobel N. Human olfaction: a constant state of change-blindness. Exp Brain Res 2010; 205:13-29. [PMID: 20603708 PMCID: PMC2908748 DOI: 10.1007/s00221-010-2348-6] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Accepted: 06/21/2010] [Indexed: 12/01/2022]
Abstract
Paradoxically, although humans have a superb sense of smell, they don’t trust their nose. Furthermore, although human odorant detection thresholds are very low, only unusually high odorant concentrations spontaneously shift our attention to olfaction. Here we suggest that this lack of olfactory awareness reflects the nature of olfactory attention that is shaped by the spatial and temporal envelopes of olfaction. Regarding the spatial envelope, selective attention is allocated in space. Humans direct an attentional spotlight within spatial coordinates in both vision and audition. Human olfactory spatial abilities are minimal. Thus, with no olfactory space, there is no arena for olfactory selective attention. Regarding the temporal envelope, whereas vision and audition consist of nearly continuous input, olfactory input is discreet, made of sniffs widely separated in time. If similar temporal breaks are artificially introduced to vision and audition, they induce “change blindness”, a loss of attentional capture that results in a lack of awareness to change. Whereas “change blindness” is an aberration of vision and audition, the long inter-sniff-interval renders “change anosmia” the norm in human olfaction. Therefore, attentional capture in olfaction is minimal, as is human olfactory awareness. All this, however, does not diminish the role of olfaction through sub-attentive mechanisms allowing subliminal smells a profound influence on human behavior and perception.
Collapse
Affiliation(s)
- Lee Sela
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, 76100 Israel
| | - Noam Sobel
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, 76100 Israel
| |
Collapse
|
34
|
|
35
|
Salazar I, Quinteiro PS. The risk of extrapolation in neuroanatomy: the case of the Mammalian vomeronasal system. Front Neuroanat 2009; 3:22. [PMID: 19949452 PMCID: PMC2782799 DOI: 10.3389/neuro.05.022.2009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 10/05/2009] [Indexed: 12/13/2022] Open
Abstract
The sense of smell plays a crucial role in mammalian social and sexual behaviour, identification of food, and detection of predators. Nevertheless, mammals vary in their olfactory ability. One reason for this concerns the degree of development of their pars basalis rhinencephali, an anatomical feature that has been considered in classifying this group of animals as macrosmatic, microsmatic or anosmatic. In mammals, different structures are involved in detecting odours: the main olfactory system, the vomeronasal system (VNS), and two subsystems, namely the ganglion of Grüneberg and the septal organ. Here, we review and summarise some aspects of the comparative anatomy of the VNS and its putative relationship to other olfactory structures. Even in the macrosmatic group, morphological diversity is an important characteristic of the VNS, specifically of the vomeronasal organ and the accessory olfactory bulb. We conclude that it is a big mistake to extrapolate anatomical data of the VNS from species to species, even in the case of relatively close evolutionary proximity between them. We propose to study other mammalian VNS than those of rodents in depth as a way to clarify its exact role in olfaction. Our experience in this field leads us to hypothesise that the VNS, considered for all mammalian species, could be a system undergoing involution or regression, and could serve as one more integrated olfactory subsystem.
Collapse
Affiliation(s)
- Ignacio Salazar
- Unit of Anatomy and Embryology, Department of Anatomy and Animal Production, Faculty of Veterinary, University of Santiago de CompostelaLugo, Spain
| | - Pablo Sánchez Quinteiro
- Unit of Anatomy and Embryology, Department of Anatomy and Animal Production, Faculty of Veterinary, University of Santiago de CompostelaLugo, Spain
| |
Collapse
|
36
|
Hummel T, Witt M, Reichmann H, Welge-Luessen A, Haehner A. Immunohistochemical, volumetric, and functional neuroimaging studies in patients with idiopathic Parkinson's disease. J Neurol Sci 2009; 289:119-22. [PMID: 19775703 DOI: 10.1016/j.jns.2009.08.026] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Idiopathic Parkinson's disease (PD) is closely associated with olfactory loss. Deficits in the sense of smell may precede clinical motor symptoms by years. Although there is more and more evidence from recent studies to support this view, it remains unclear which substrates would cause the olfactory deficit. Studies based on biopsies from the olfactory epithelium did not reveal specific changes in the nasal mucosa of PD patients compared to patients who were hyposmic for other reasons. Thus, PD-related olfactory impairment seems not to be directly associated with specific changes in the olfactory epithelium. With regard to volumetrics of the olfactory bulb (OB) results indicated that there is little or no difference between PD patients and healthy controls in terms of OB volume. Again, these data support the idea that olfactory loss in PD is not a consequence of damage to the olfactory epithelium but rather results from central-nervous changes. Finally, studies based on functional MRI suggested that neuronal activity in the amygdala and hippocampus is reduced in PD patients compared to controls which may specifically impact on olfactory function. In addition, neuronal activity in components of cortico-striatal loops appears to be up-regulated indicating compensatory processes involving the dopaminergic system. Thus, it seems that cerebral changes, and not changes at the level of the olfactory epithelium, are the basis of the olfactory loss observed in PD patients.
Collapse
Affiliation(s)
- T Hummel
- Smell & Taste Clinic, Department of Otorhinolaryngology, University of Dresden Medical School, Dresden, Germany.
| | | | | | | | | |
Collapse
|
37
|
Kang N, Baum MJ, Cherry JA. A direct main olfactory bulb projection to the 'vomeronasal' amygdala in female mice selectively responds to volatile pheromones from males. Eur J Neurosci 2009; 29:624-34. [PMID: 19187265 PMCID: PMC2669936 DOI: 10.1111/j.1460-9568.2009.06638.x] [Citation(s) in RCA: 166] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The main olfactory system, like the accessory olfactory system, responds to pheromones involved in social communication. Whereas pheromones detected by the accessory system are transmitted to the hypothalamus via the medial ('vomeronasal') amygdala, the pathway by which pheromones are detected and transmitted by the main system is not well understood. We examined in female mice whether a direct projection from mitral/tufted (M/T) cells in the main olfactory bulb (MOB) to the medial amygdala exists, and whether medial amygdala-projecting M/T cells are activated by volatile urinary odors from conspecifics or a predator (cat). Simultaneous anterograde tracing using Phaseolus vulgaris leucoagglutinin and Fluoro-Ruby placed in the MOB and accessory olfactory bulb (AOB), respectively, revealed that axons of MOB M/T cells projected to superficial laminae of layer Ia in anterior and posterodorsal subdivisions of the medial amygdala, whereas projection neurons from the AOB sent axons to non-overlapping, deeper layer Ia laminae of the same subdivisions. Placement of the retrograde tracer cholera toxin B into the medial amygdala labeled M/T cells that were concentrated in the ventral MOB. Urinary volatiles from male mice, but not from female conspecifics or cat, induced Fos in medial amygdala-projecting MOB M/T cells of female subjects, suggesting that information about male odors is transmitted directly from the MOB to the 'vomeronasal' amygdala. The presence of a direct MOB-to-medial amygdala pathway in mice and other mammals could enable volatile, opposite-sex pheromones to gain privileged access to diencephalic structures that control mate recognition and reproduction.
Collapse
Affiliation(s)
- Ningdong Kang
- Department of Biology, Boston University, Boston, MA 02215, USA
| | | | | |
Collapse
|
38
|
Abstract
The human nose detects volatile chemical stimuli by at least three different receptor families: odorant receptors, trace amine-associated receptors, and vomeronasal type-1 receptors. As G protein-coupled receptors, all of the few functionally characterized olfactory receptors share major functional features: when expressed in heterologous cell systems, they 1) respond to odorants of certain chemical groups, e.g., amines, aliphatic carboxylic acids or aldehydes, floral or fruity odorants, including certain key-food odorants, and putative pheromones, and 2) transduce their signals to intracellular cAMP signaling. However, little is known yet about specific differences in the functional designation of the three olfactory receptor families. Recently, two heterologous cell systems expressing olfactory signaling molecules have been developed. Different screening strategies will shed light on the yet sparsely available odorant specificity profiles and structure-function relationships of olfactory receptors, as well as the structure-activity relationships of their odorants.
Collapse
Affiliation(s)
- Dietmar Krautwurst
- German Institute of Human Nutrition Potsdam-Rehbrücke, Molecular Genetics, D-14558 Nuthetal.
| |
Collapse
|
39
|
McEwen DP, Jenkins PM, Martens JR. Olfactory cilia: our direct neuronal connection to the external world. Curr Top Dev Biol 2008; 85:333-70. [PMID: 19147011 DOI: 10.1016/s0070-2153(08)00812-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An organism's awareness of its surroundings is dependent on sensory function. As antennas to our external environment, cilia are involved in fundamental biological processes such as olfaction, photoreception, and touch. The olfactory system has adapted this organelle for its unique sensory function and optimized it for detection of external stimuli. The elongated and tapering structure of olfactory cilia and their organization into an overlapping meshwork bathed by the nasal mucosa is optimized to enhance odor absorption and detection. As many as 15-30 nonmotile, sensory cilia on dendritic endings of single olfactory sensory neurons (OSNs) compartmentalize signaling molecules necessary for odor detection allowing for efficient and spatially confined responses to sensory stimuli. Although the loss of olfactory cilia or deletion of selected components of the olfactory signaling cascade leads to anosmia, the mechanisms of ciliogenesis and the selected enrichment of signaling molecules remain poorly understood. Much of our current knowledge is the result of elegant electron microscopy studies describing the structure and organization of the olfactory epithelium and cilia. New genetic and cell biological approaches, which compliment these early studies, show promise in elucidating the mechanisms of olfactory cilia assembly, maintenance, and compartmentalization. Importantly, emerging evidence suggests that olfactory dysfunction represents a previously unrecognized clinical manifestation of multiple ciliary disorders. Future work investigating the mechanisms of olfactory dysfunction combining both clinical studies with basic science research will provide us important new information regarding the pathogenesis of human sensory perception diseases.
Collapse
Affiliation(s)
- Dyke P McEwen
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109-5632, USA
| | | | | |
Collapse
|
40
|
Abstract
A recent paper published by Kimchi, Xu, and Dulac in Nature describes the emergence of male-type sexual behavior in female mice following incapacitation of the accessory olfactory system. The authors argue that this implies a default male-type behavioral pattern that is otherwise constantly inhibited in the female brain by chemical signals transduced in the accessory olfactory system. In addition to reviewing these findings, we suggest in this Preview how these findings in the mouse could have relevance for human behavior.
Collapse
Affiliation(s)
- Hartwig Spors
- WIN Group of Olfactory Dynamics, Heidelberger Akademie der Wissenschaften and Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, D-69120 Heidelberg, Germany
| | | |
Collapse
|
41
|
Abstract
Recent insights have revolutionized our understanding of the importance of chemical signals in influencing vertebrate behaviour. Previously unknown families of pheromonal signals have been identified that are expanding the traditional definition of a pheromone. Although previously regarded as functioning independently, the main olfactory and vomeronasal systems have been found to have considerable overlap in terms of the chemosignals they detect and the effects that they mediate. Studies using gene-targeted mice have revealed an unexpected diversity of chemosensory systems and their underlying cellular and molecular mechanisms. Future developments could show how the functions of the different chemosensory systems are integrated to regulate innate and learned behavioural and physiological responses to pheromones.
Collapse
Affiliation(s)
- Peter A Brennan
- Department of Physiology, University of Bristol, Medical School Building, University Walk, Bristol BS8 1TD, UK.
| | | |
Collapse
|
42
|
Vergriete J. Les phéromones humaines ont-elles un intérêt pratique en sexologie? SEXOLOGIES 2007. [DOI: 10.1016/j.sexol.2006.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
43
|
Sbarbati A, Osculati F. Allelochemical Communication in Vertebrates: Kairomones, Allomones and Synomones. Cells Tissues Organs 2006; 183:206-19. [PMID: 17159346 DOI: 10.1159/000096511] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Indexed: 12/22/2022] Open
Abstract
Communication between different species by means of chemicals (allelomones) is widespread among prokaryotes, plants and invertebrates. This study reviews data suggesting that allelochemically mediated communication also exists among vertebrates. The work aims to provide a concise, interdisciplinary review of communication mediated by infochemicals, with a focus on interspecies and interkingdom signaling. A definition of infochemicals is given, with a brief review of the general principles of chemical communication in different kingdoms in nature. Findings are reported which suggest that interspecies chemical signaling is important for vertebrates also. It is proposed that the general laws of chemical ecology are valid for mammals too, and that the terms indicating the different types of allelomones (i.e. kairomone, allomone and synomone) might also be used in medicine. In particular, the microchemical environment at the airway and digestive interfaces are discussed from an infochemical point of view.
Collapse
Affiliation(s)
- A Sbarbati
- Department of Morphological-Biomedical Sciences, Section of Anatomy and Histology, University of Verona, Verona, Italy.
| | | |
Collapse
|
44
|
Weiler E, Benali A. Olfactory epithelia differentially express neuronal markers. ACTA ACUST UNITED AC 2006; 34:217-40. [PMID: 16841165 DOI: 10.1007/s11068-005-8355-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Revised: 02/17/2006] [Accepted: 03/02/2006] [Indexed: 01/09/2023]
Abstract
All three olfactory epithelia, the olfactory epithelium proper (OE), the septal organ of Masera (SO), and the vomeronasal organ of Jacobson (VNO) originate from the olfactory placode. Here, their diverse neurochemical phenotypes were analyzed using the immunohistochemical expression pattern of different neuronal markers. The olfactory bulb (OB) served as neuronal control. Neuronal Nuclei Marker (NeuN) is neither expressed in sensory neurons in any of the three olfactory epithelia, nor in relay neurons (mitral/tufted cells) of the OB. However, OB interneurons (periglomerular/granule cells) labeled, as did supranuclear structures of VNO supporting cells and VNO glands. Protein Gene Product 9.5 (PGP9.5 = C-terminal ubiquitin hydrolase L1 = UCHL1) expression is exactly the opposite: all olfactory sensory neurons express PGP9.5 as do OB mitral/tufted cells but not interneurons. Neuron Specific Enolase (NSE) expression is highest in the most apically located OE and SO sensory neurons and patchy in VNO. In contrast, the cytoplasm of the most basally located neurons of OE and SO immunoreacted for Growth Associated Protein 43 (GAP-43/B50). In VNO neurons GAP-43 labeling is also nuclear. In the cytoplasm, Olfactory Marker Protein (OMP) is most intensely expressed in SO, followed by OE and least in VNO neurons; further, OMP is also expressed in the nucleus of basally located VNO neurons. OB mitral/tufted cells express OMP at low levels. Neurons closer to respiratory epithelium often expressed a higher level of neuronal markers, suggesting a role of those markers for neuronal protection against take-over. Within the VNO the neurons show clear apical-basal expression diversity, as they do for factors of the signal transduction cascade. Overall, expression patterns of the investigated neuronal markers suggest that OE and SO are more similar to each other than to VNO.
Collapse
Affiliation(s)
- Elke Weiler
- Department of Neurophysiology, Ruhr-University Bochum, Universitätsstr. 150, 44801, Bochum, Germany.
| | | |
Collapse
|
45
|
The chemical senses, olfaction and taste: a tribute to Al Farbman. JOURNAL OF NEUROCYTOLOGY 2005; 33:575-702. [PMID: 16217614 DOI: 10.1007/s11068-005-3326-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Accepted: 06/15/2005] [Indexed: 11/26/2022]
|