1
|
Krutzke K, Seifert J, Gawaz M, Rheinlaender J, Schäffer TE. Volume Regulation and Nonosmotic Volume of Individual Human Platelets Quantified by High-Speed Scanning Ion Conductance Microscopy. Thromb Haemost 2025; 125:340-351. [PMID: 39094791 PMCID: PMC11961229 DOI: 10.1055/a-2378-9088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
Platelets are anucleate cells that play an important role in wound closure following vessel injury. Maintaining a constant platelet volume is critical for platelet function. For example, water-induced swelling can promote procoagulant activity and initiate thrombosis. However, techniques for measuring changes in platelet volume such as light transmittance or impedance techniques have inherent limitations as they only allow qualitative measurements or do not work on the single-cell level.Here, we introduce high-speed scanning ion conductance microscopy (HS-SICM) as a new platform for studying volume regulation mechanisms of individual platelets. We optimized HS-SICM to quantitatively image the morphology of adherent platelets as a function of time at scanning speeds up to 7 seconds per frame and with 0.1 fL precision.We demonstrate that HS-SICM can quantitatively measure the rapid swelling of individual platelets after a hypotonic shock and the following regulatory volume decrease (RVD). We found that the RVD of thrombin-, ADP-, and collagen-activated platelets was significantly reduced compared with nonactivated platelets. Applying the Boyle-van't Hoff relationship allowed us to extract the nonosmotic volume and volume fraction on a single-platelet level. Activation by thrombin or ADP, but not by collagen, resulted in a decrease of the nonosmotic volume, likely due to a release reaction, leaving the total volume unaffected.This work shows that HS-SICM is a versatile tool for resolving rapid morphological changes and volume dynamics of adherent living platelets.
Collapse
Affiliation(s)
| | - Jan Seifert
- Institute of Applied Physics, University of Tübingen, Tübingen, Germany
| | - Meinrad Gawaz
- Department of Internal Medicine III, Cardiology and Angiology, University of Tübingen, Tübingen, Germany
| | | | | |
Collapse
|
2
|
Highland RE, Rancu A, Price H, Parker SM, Reynolds M, Hoffman BD, Wax A. Multimodal segmentation of dynamic subcellular features using quantitative phase imaging and FRET-based sensors [Invited]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2024; 41:C38-C48. [PMID: 39889052 DOI: 10.1364/josaa.534440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/20/2024] [Indexed: 02/02/2025]
Abstract
Understanding cellular responses to mechanical environmental stimuli is important for cellular mechanotransduction studies. While fluorescence microscopy has been used for aiding mechanotransduction research due to its molecular sensitivity, the ability of quantitative phase imaging (QPI) to visualize morphology has yet to be widely applied, perhaps due to its limited specificity. Here, we seek to expand on previous work which combined quantitative phase imaging with a molecularly sensitive Förster resonance energy transfer (FRET) construct by developing additional analysis techniques. This work seeks to characterize the response of individual cells to mechanical stimulus through a novel, to the best of our knowledge, QPI-guided cellular segmentation algorithm. The multimodal imaging instrument and analysis techniques are employed to examine cellular responses to hypo-osmotic stimulus by observing the calcium ion flux using a FRET-based sensor coupled with a mapping of intracellular mass reorganization using QPI. The combined imaging modality enables a discrimination of cell response by localized region, revealing distinct behavior between regions and relative to a control group. Our novel analysis techniques can be used to identify cell expansion and cell region specific responses in both modalities due to the stimulus. With the broad array of FRET sensors under development, the complementary addition of QPI offers new avenues for studying cell responses to a range of environmental stimuli.
Collapse
|
3
|
Michelucci A, Catacuzzeno L. Piezo1, the new actor in cell volume regulation. Pflugers Arch 2024; 476:1023-1039. [PMID: 38581527 PMCID: PMC11166825 DOI: 10.1007/s00424-024-02951-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/29/2024] [Accepted: 03/20/2024] [Indexed: 04/08/2024]
Abstract
All animal cells control their volume through a complex set of mechanisms, both to counteract osmotic perturbations of the environment and to enable numerous vital biological processes, such as proliferation, apoptosis, and migration. The ability of cells to adjust their volume depends on the activity of ion channels and transporters which, by moving K+, Na+, and Cl- ions across the plasma membrane, generate the osmotic gradient that drives water in and out of the cell. In 2010, Patapoutian's group identified a small family of evolutionarily conserved, Ca2+-permeable mechanosensitive channels, Piezo1 and Piezo2, as essential components of the mechanically activated current that mediates mechanotransduction in vertebrates. Piezo1 is expressed in several tissues and its opening is promoted by a wide range of mechanical stimuli, including membrane stretch/deformation and osmotic stress. Piezo1-mediated Ca2+ influx is used by the cell to convert mechanical forces into cytosolic Ca2+ signals that control diverse cellular functions such as migration and cell death, both dependent on changes in cell volume and shape. The crucial role of Piezo1 in the regulation of cell volume was first demonstrated in erythrocytes, which need to reduce their volume to pass through narrow capillaries. In HEK293 cells, increased expression of Piezo1 was found to enhance the regulatory volume decrease (RVD), the process whereby the cell re-establishes its original volume after osmotic shock-induced swelling, and it does so through Ca2+-dependent modulation of the volume-regulated anion channels. More recently we reported that Piezo1 controls the RVD in glioblastoma cells via the modulation of Ca2+-activated K+ channels. To date, however, the mechanisms through which this mechanosensitive channel controls cell volume and maintains its homeostasis have been poorly investigated and are still far from being understood. The present review aims to provide a broad overview of the literature discussing the recent advances on this topic.
Collapse
Affiliation(s)
- A Michelucci
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123, Perugia, Italy.
| | - L Catacuzzeno
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123, Perugia, Italy.
| |
Collapse
|
4
|
Michelucci A, Sforna L, Di Battista A, Franciolini F, Catacuzzeno L. Ca 2+ -activated K + channels regulate cell volume in human glioblastoma cells. J Cell Physiol 2023; 238:2120-2134. [PMID: 37431808 DOI: 10.1002/jcp.31072] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/10/2023] [Accepted: 06/20/2023] [Indexed: 07/12/2023]
Abstract
Glioblastoma (GBM), the most lethal form of brain tumors, bases its malignancy on the strong ability of its cells to migrate and invade the narrow spaces of healthy brain parenchyma. Cell migration and invasion are both critically dependent on changes in cell volume and shape driven by the transmembrane transport of osmotically important ions such as K+ and Cl- . However, while the Cl- channels participating in cell volume regulation have been clearly identified, the precise nature of the K+ channels involved is still uncertain. Using a combination of electrophysiological and imaging approaches in GBM U87-MG cells, we found that hypotonic-induced cell swelling triggered the opening of Ca2+ -activated K+ (KCa ) channels of large and intermediate conductance (BKCa and IKCa , respectively), both highly expressed in GBM cells. The influx of Ca2+ mediated by the hypotonic-induced activation of mechanosensitive channels was found to be a key step for opening both the BKCa and the IKCa channels. Finally, the activation of both KCa channels mediated by mechanosensitive channels was found to be essential for the development of the regulatory volume decrease following hypotonic shock. Taken together, these data indicate that KCa channels are the main K+ channels responsible for the volume regulation in U87-MG cells.
Collapse
Affiliation(s)
- Antonio Michelucci
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, Perugia, Italy
| | - Luigi Sforna
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, Perugia, Italy
| | - Angela Di Battista
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, Perugia, Italy
| | - Fabio Franciolini
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, Perugia, Italy
| | - Luigi Catacuzzeno
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, Perugia, Italy
| |
Collapse
|
5
|
Medeiros IPM, Souza MM. Cell volume maintenance capacity of the sea anemone Bunodosoma cangicum: the effect of copper. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:50057-50066. [PMID: 36787068 DOI: 10.1007/s11356-023-25834-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 02/06/2023] [Indexed: 02/15/2023]
Abstract
Cell volume regulation is an essential strategy for the maintenance of life under unfavorable osmotic conditions. Mechanisms aimed at minimizing the physiological challenges caused by environmental changes are crucial in anisosmotic environments. However, aquatic ecosystems experience multiple stressors, including variations in salinity and heavy metal pollution. The accumulation of heavy metals in aquatic ecosystems has a significant effect on the biota, leading to impaired function. The aim of this study was to investigate the capacity of volume regulation in isolated cells of the sea anemone Bunodosoma cangicum exposed to nominal copper (Cu) concentrations of 5 and 50 µg L-1, associated or not with hypoosmotic (15‰) or hyperosmotic (45‰) shock for 15 min. In the absence of the metal, our results showed volume maintenance in all osmotic conditions. Our results showed that cell volume was maintained under all osmotic conditions in the absence of Cu. Similarly, no significant differences were observed in cell volumes under isosmotic and hyperosmotic conditions in the presence of both Cu concentrations. A similar homeostatic response was observed under the hypoosmotic condition with 5 µg L-1 Cu. Our results showed an increase in cell volume with exposure of the cells to the hypoosmotic condition and 50 µg L-1 Cu. The response could be associated with the increased bioavailability of Cu, reduced ability to resist multixenobiotics and their efflux pathways, and the impairment of water efflux in specialized transmembrane proteins. Therefore, B. cangicum pedal disk cells can tolerate osmotic variations in aquatic ecosystems. However, the capacity to regulate cell volume under hypoosmotic conditions can be affected by the presence of a metal contaminant (50 µg L-1 Cu), which could be due to the inhibition of water channels.
Collapse
Affiliation(s)
- Isadora Porto Martins Medeiros
- Programa de Pós-Graduação Em Ciências Fisiológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, Rio Grande Do Sul, Brazil.
| | - Marta Marques Souza
- Programa de Pós-Graduação Em Ciências Fisiológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, Rio Grande Do Sul, Brazil.,Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, Rio Grande Do Sul, Brazil
| |
Collapse
|
6
|
Nomiri S, Hoshyar R, Chamani E, Rezaei Z, Salmani F, Larki P, Tavakoli T, Gholipour F, Tabrizi NJ, Derakhshani A, Santarpia M, Franchina T, Brunetti O, Silvestris N, Safarpour H. Prediction and validation of GUCA2B as the hub-gene in colorectal cancer based on co-expression network analysis: In-silico and in-vivo study. Biomed Pharmacother 2022; 147:112691. [PMID: 35151227 DOI: 10.1016/j.biopha.2022.112691] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/25/2022] [Accepted: 02/02/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Several serious attempts to treat colorectal cancer have been made in recent decades. However, no effective treatment has yet been discovered due to the complexities of its etiology. METHODS we used Weighted Gene Co-expression Network Analysis (WGCNA) to identify key modules, hub-genes, and mRNA-miRNA regulatory networks associated with CRC. Next, enrichment analysis of modules has been performed using Cluepedia. Next, quantitative real-time PCR (RT-qPCR) was used to validate the expression of selected hub-genes in CRC tissues. RESULTS Based on the WGCNA results, the brown module had a significant positive correlation (r = 0.98, p-value=9e-07) with CRC. Using the survival and DEGs analyses, 22 genes were identified as hub-genes. Next, three candidate hub-genes were selected for RT-qPCR validation, and 22 pairs of cancerous and non-cancerous tissues were collected from CRC patients referred to the Gastroenterology and Liver Clinic. The RT-qPCR results revealed that the expression of GUCA2B was significantly reduced in CRC tissues, which is consistent with the results of differential expression analysis. Finally, top miRNAs correlated with GUCA2B were identified, and ROC analyses revealed that GUCA2B has a high diagnostic performance for CRC. CONCLUSIONS The current study discovered key modules and GUCA2B as a hub-gene associated with CRC, providing references to understand the pathogenesis and be considered a novel candidate to CRC target therapy.
Collapse
Affiliation(s)
- Samira Nomiri
- Department of Clinical Biochemistry, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Reyhane Hoshyar
- Department of Clinical Biochemistry, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Elham Chamani
- Department of Clinical Biochemistry, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Zohreh Rezaei
- Department of Biology, Faculty of Sciences, University of Sistan and Balouchestan, Zahedan, Iran
| | - Fatemeh Salmani
- Department of Epidemiology and Biostatistics, Social Determinants of Health Research Center, Faculty of Health, Birjand University of Medical Sciences, Birjand, Iran
| | - Pegah Larki
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tahmine Tavakoli
- Cardiovascular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Faranak Gholipour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Jalili Tabrizi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Afshin Derakhshani
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Mariacarmela Santarpia
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - Tindara Franchina
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - Oronzo Brunetti
- Medical Oncology Unit, IRCCS Istituto Tumori "Giovanni Paolo II" of Bari, Bari, Italy
| | - Nicola Silvestris
- Medical Oncology Unit, IRCCS Istituto Tumori "Giovanni Paolo II" of Bari, Bari, Italy; Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari, Bari, Italy.
| | - Hossein Safarpour
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
7
|
Ji MJ, Ryu HJ, Hong JH. Synovial Fluid of Patient With Rheumatoid Arthritis Enhanced Osmotic Sensitivity Through the Cytotoxic Edema Module in Synoviocytes. Front Cell Dev Biol 2021; 9:700879. [PMID: 34532317 PMCID: PMC8438158 DOI: 10.3389/fcell.2021.700879] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/28/2021] [Indexed: 12/12/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that causes inflammation of the synovial membrane ultimately leading to permanent damage in the affected joints. For this study, synovial fluids from 16 patients diagnosed with either RA or osteoarthritis (OA) were used to examine volume regulation and cooperative water channels, both of which are involved in the cytotoxic edema identified in RA-fibroblast-like synoviocytes (FLS). The osmolarity and inflammatory cytokine interleukin (IL)-6 of synovial fluids from RA patients were mildly enhanced compared to that from OA patients. RA-FLS demonstrated the enhanced property of regulatory volume increase in response to IL-6 and synovial fluids from RA patients. Although there was no difference in the protein expression of the volume-associated protein sodium–potassium–chloride cotransporter1 (NKCC1), its activity was increased by treatment with IL-6. Membrane localization of NKCC1 was also increased by IL-6 treatment. Additionally, both the protein and membrane expressions of aquaporin-1 were increased in RA-FLS by IL-6 stimulation. The IL-6-mediated enhanced osmotic sensitivity of RA-FLS likely involves NKCC1 and aquaporin-1, which mainly constitute the volume-associated ion transporter and water channel elements. These results suggest that RA-FLS provide enhanced electrolytes and concomitant water movement through NKCC1 and aquaporin-1, thereby inducing cellular swelling ultimately resulting in cytotoxic edema. Attenuation of cytotoxic edema and verification of its related mechanism will provide novel therapeutic approaches to RA treatment within the scope of cytotoxic edema.
Collapse
Affiliation(s)
- Min Jeong Ji
- Department of Physiology, College of Medicine, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, South Korea.,Department of Oral Biology, Yonsei University College of Dentistry, Seoul, South Korea
| | - Hee Jung Ryu
- Division of Rheumatology, Department of Internal Medicine, Gachon University College of Medicine Gil Medical Center, Incheon, South Korea
| | - Jeong Hee Hong
- Department of Physiology, College of Medicine, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, South Korea
| |
Collapse
|
8
|
Takeda Y, Niki Y, Fukuhara Y, Fukuda Y, Udagawa K, Shimoda M, Kikuchi T, Kobayashi S, Harato K, Miyamoto T, Matsumoto M, Nakamura M. Compressive mechanical stress enhances susceptibility to interleukin-1 by increasing interleukin-1 receptor expression in 3D-cultured ATDC5 cells. BMC Musculoskelet Disord 2021; 22:238. [PMID: 33648469 PMCID: PMC7923672 DOI: 10.1186/s12891-021-04095-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 02/17/2021] [Indexed: 12/31/2022] Open
Abstract
Background Mechanical overload applied on the articular cartilage may play an important role in the pathogenesis of osteoarthritis. However, the mechanism of chondrocyte mechanotransduction is not fully understood. The purpose of this study was to assess the effects of compressive mechanical stress on interleukin-1 receptor (IL-1R) and matrix-degrading enzyme expression by three-dimensional (3D) cultured ATDC5 cells. In addition, the implications of transient receptor potential vanilloid 4 (TRPV4) channel regulation in promoting effects of compressive mechanical loading were elucidated. Methods ATDC5 cells were cultured in alginate beads with the growth medium containing insulin-transferrin-selenium and BMP-2 for 6 days. The cultured cell pellet was seeded in collagen scaffolds to produce 3D-cultured constructs. Cyclic compressive loading was applied on the 3D-cultured constructs at 0.5 Hz for 3 h. The mRNA expressions of a disintegrin and metalloproteinases with thrombospondin motifs 4 (ADAMTS4) and IL-1R were determined with or without compressive loading, and effects of TRPV4 agonist/antagonist on mRNA expressions were examined. Immunoreactivities of reactive oxygen species (ROS), TRPV4 and IL-1R were assessed in 3D-cultured ATDC5 cells. Results In 3D-cultured ATDC5 cells, ROS was induced by cyclic compressive loading stress. The mRNA expression levels of ADAMTS4 and IL-1R were increased by cyclic compressive loading, which was mostly prevented by pyrollidine dithiocarbamate. Small amounts of IL-1β upregulated ADAMTS4 and IL-1R mRNA expressions only when combined with compressive loading. TRPV4 agonist suppressed ADAMTS4 and IL-1R mRNA levels induced by the compressive loading, whereas TRPV4 antagonist enhanced these levels. Immunoreactivities to TRPV4 and IL-1R significantly increased in constructs with cyclic compressive loading. Conclusion Cyclic compressive loading induced mRNA expressions of ADAMTS4 and IL-1R through reactive oxygen species. TRPV4 regulated these mRNA expressions, but excessive compressive loading may impair TRPV4 regulation. These findings suggested that TRPV4 regulates the expression level of IL-1R and subsequent IL-1 signaling induced by cyclic compressive loading and participates in cartilage homeostasis. Supplementary Information The online version contains supplementary material available at 10.1186/s12891-021-04095-x.
Collapse
Affiliation(s)
- Yuki Takeda
- Department of Orthopaedic Surgery, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yasuo Niki
- Department of Orthopaedic Surgery, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Yusuke Fukuhara
- Department of Orthopaedic Surgery, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yoshitsugu Fukuda
- Department of Orthopaedic Surgery, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kazuhiko Udagawa
- Department of Orthopaedic Surgery, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Masayuki Shimoda
- Department of Pathology, School of Medicine, Keio University, Tokyo, Japan
| | - Toshiyuki Kikuchi
- Department of Orthopaedic Surgery, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Shu Kobayashi
- Department of Orthopaedic Surgery, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kengo Harato
- Department of Orthopaedic Surgery, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Takeshi Miyamoto
- Department of Orthopaedic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Morio Matsumoto
- Department of Orthopaedic Surgery, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Masaya Nakamura
- Department of Orthopaedic Surgery, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| |
Collapse
|
9
|
Westman J, Walpole GFW, Kasper L, Xue BY, Elshafee O, Hube B, Grinstein S. Lysosome Fusion Maintains Phagosome Integrity during Fungal Infection. Cell Host Microbe 2020; 28:798-812.e6. [PMID: 33022213 DOI: 10.1016/j.chom.2020.09.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 08/10/2020] [Accepted: 09/02/2020] [Indexed: 12/20/2022]
Abstract
Phagosomes must maintain membrane integrity to exert their microbicidal function. Some microorganisms, however, survive and grow within phagosomes. In such instances, phagosomes must expand to avoid rupture and microbial escape. We studied whether phagosomes regulate their size to preserve integrity during infection with the fungal pathogen Candida albicans. Phagosomes release calcium as C. albicans hyphae elongate, inducing lysosome recruitment and insertion, thereby increasing the phagosomal surface area. As hyphae grow, the expanding phagosome consumes the majority of free lysosomes. Simultaneously, lysosome biosynthesis is stimulated by activation of TFEB, a transcriptional regulator of lysosomal biogenesis. Preventing lysosomal insertion causes phagosomal rupture, NLRP3 inflammasome activation, IL-1β secretion and host-cell death. Whole-genome transcriptomic analysis demonstrate that stress responses elicited in C. albicans upon engulfment are reversed if phagosome expansion is prevented. Our findings reveal a mechanism whereby phagosomes maintain integrity while expanding, ensuring that growing pathogens remain entrapped within this microbicidal compartment.
Collapse
Affiliation(s)
- Johannes Westman
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, the Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Glenn F W Walpole
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, the Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Lydia Kasper
- Department Microbial Pathogenicity Mechanisms, Hans Knoell Institute, 07745 Jena, Germany
| | - Bessie Y Xue
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Osama Elshafee
- Department Microbial Pathogenicity Mechanisms, Hans Knoell Institute, 07745 Jena, Germany
| | - Bernhard Hube
- Department Microbial Pathogenicity Mechanisms, Hans Knoell Institute, 07745 Jena, Germany; Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University, 07743 Jena, Germany
| | - Sergio Grinstein
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, the Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON M5C 1N8, Canada.
| |
Collapse
|
10
|
Immunohistochemical characterization and change in location of branchial ionocytes after transfer from freshwater to seawater in the euryhaline obscure puffer, Takifugu obscurus. J Comp Physiol B 2020; 190:585-596. [PMID: 32715333 DOI: 10.1007/s00360-020-01298-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/21/2020] [Accepted: 07/10/2020] [Indexed: 10/24/2022]
Abstract
The obscure puffer Takifugu obscurus is a euryhaline fish species suitable for studying the molecular mechanism of osmoregulation. The distributional changes of branchial ionocytes were detected following the transfer from freshwater (FW) to seawater (SW) based on two main ion transporters, Na+/K+-ATPase (NKA) and Na+/K+/ 2Cl- cotransporter 1 (NKCC1). The mRNA and protein expression levels of NKA and NKCC1 in the gills all increased rapidly in the first four days after transfer to SW. Double immunofluorescence staining showed that NKCC1 and NKA were colocalized in the branchial ionocytes and the immunoreaction of NKCC1 was stronger after transfer. Moreover, following transfer to SW, the number of lamellar ionocytes in the gills is reduced and the number of filament ionocytes is increased significantly. Taken together, these findings indicated that SW transfer of obscure puffer promotes the changes of distribution, function and size of branchial ionocytes.
Collapse
|
11
|
Huang W, Tan M, Wang Y, Liu L, Pan Y, Li J, Ouyang M, Long C, Qu X, Liu H, Liu C, Wang J, Deng L, Xiang Y, Qin X. Increased intracellular Cl - concentration improves airway epithelial migration by activating the RhoA/ROCK Pathway. Theranostics 2020; 10:8528-8540. [PMID: 32754261 PMCID: PMC7392015 DOI: 10.7150/thno.46002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 06/24/2020] [Indexed: 12/19/2022] Open
Abstract
In the airway, Cl- is the most abundant anion and is critically involved in transepithelial transport. The correlation of the abnormal expression and activation of chloride channels (CLCs), such as cystic fibrosis transmembrane conductance regulators (CFTRs), anoctamin-1, and CLC-2, with cell migration capability suggests a relationship between defective Cl- transport and epithelial wound repair. However, whether a correlation exists between intracellular Cl- and airway wound repair capability has not been explored thus far, and the underlying mechanisms involved in this relationship are not fully defined. Methods: In this work, the alteration of intracellular chloride concentration ([Cl-]i) was measured by using a chloride-sensitive fluorescent probe (N-[ethoxycarbonylmethyl]-6-methoxyquinolium bromide). Results: We found that clamping with high [Cl-]i and 1 h of treatment with the CLC inhibitor CFTR blocker CFTRinh-172 and chloride intracellular channel inhibitor IAA94 increased intracellular Cl- concentration ([Cl-]i) in airway epithelial cells. This effect improved epithelial cell migration. In addition, increased [Cl-]i in cells promoted F-actin reorganization, decreased cell stiffness, and improved RhoA activation and LIMK1/2 phosphorylation. Treatment with the ROCK inhibitor of Y-27632 and ROCK1 siRNA significantly attenuated the effects of increased [Cl-]i on LIMK1/2 activation and cell migration. In addition, intracellular Ca2+ concentration was unaffected by [Cl-]i clamping buffers and CFTRinh-172 and IAA94. Conclusion: Taken together, these results suggested that Cl- accumulation in airway epithelial cells could activate the RhoA/ROCK/LIMK cascade to induce F-actin reorganization, down-regulate cell stiffness, and improve epithelial migration.
Collapse
Affiliation(s)
- Wenjie Huang
- School of Basic Medicine, Central South University, Changsha, Hunan 410078, China
- Affiliated Liutie Central Hospital of Guangxi medical university, Liuzhou, Guangxi 545007, China
| | - Meiling Tan
- School of Basic Medicine, Central South University, Changsha, Hunan 410078, China
| | - Yue Wang
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou, Jiangsu 213164, China
- School of Nursing, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Lei Liu
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou, Jiangsu 213164, China
| | - Yan Pan
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou, Jiangsu 213164, China
| | - Jingjing Li
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou, Jiangsu 213164, China
| | - Mingxing Ouyang
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou, Jiangsu 213164, China
| | - Chunjiao Long
- School of Basic Medicine, Central South University, Changsha, Hunan 410078, China
| | - Xiangping Qu
- School of Basic Medicine, Central South University, Changsha, Hunan 410078, China
| | - Huijun Liu
- School of Basic Medicine, Central South University, Changsha, Hunan 410078, China
| | - Chi Liu
- School of Basic Medicine, Central South University, Changsha, Hunan 410078, China
| | - Jia Wang
- School of Basic Medicine, Central South University, Changsha, Hunan 410078, China
| | - Linhong Deng
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou, Jiangsu 213164, China
| | - Yang Xiang
- School of Basic Medicine, Central South University, Changsha, Hunan 410078, China
| | - Xiaoqun Qin
- School of Basic Medicine, Central South University, Changsha, Hunan 410078, China
| |
Collapse
|
12
|
Castellano GC, Lana PDC, Freire CA. Euryhalinity of subtropical marine and estuarine polychaetes evaluated through carbonic anhydrase activity and cell volume regulation. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 333:316-324. [PMID: 32306561 DOI: 10.1002/jez.2357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 12/31/2019] [Accepted: 02/17/2020] [Indexed: 11/11/2022]
Abstract
Polychaete worms are widespread and diverse in marine and estuarine habitats subject to varying salinity, in areas influenced by tides, demanding physiological adjustment for internal homeostasis. They are typically considered and reported to be osmoconformers, but they are not often studied for their osmoregulation. Here, three species of polychaete worms from distinct coastal habitats have been investigated: the spionid Scolelepis goodbody (intertidal in saline, exposed sandy beaches), the nereidid Laeonereis culveri (estuarine polyhaline), and the nephtyid Nephtys fluviatilis (estuarine oligohaline). The general objective here was to relate ecological aspects and physiology of the studied species. Constitutive whole body osmolality and carbonic anhydrase activity (CAA, relevant for osmoregulation, acid-base balance and respiration) have been assayed. In addition, cell volume regulatory capacity (from whole body cell dissociation) was challenged under hypoosmotic and hyperosmotic shocks (50% intensity), with respect to isosmotic control. S. googdbody and L. culveri, the two species from most saline environments (marine/estuarine), showed higher CAA than N. fluviatilis, which, in turn, displayed a hyperosmotic gradient to water of salinity 15. Cells from S. goodbody and L. culveri showed regulatory volume decrease upon swelling, with S. goodbody showing the largest volume increase. As in other more studied marine invertebrate groups, polychaetes also show variability in their osmoregulatory physiology, related to distinct saline challenges faced in their coastal habitats.
Collapse
Affiliation(s)
- Giovanna C Castellano
- Department of Zoology, Graduate Program in Zoology, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Paulo da Cunha Lana
- Center for Marine Studies, Universidade Federal do Paraná, Pontal do Paraná, Paraná, Brazil
| | - Carolina A Freire
- Department of Physiology, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| |
Collapse
|
13
|
Ayee MAA, LeMaster E, Teng T, Lee J, Levitan I. Hypotonic Challenge of Endothelial Cells Increases Membrane Stiffness with No Effect on Tether Force. Biophys J 2019; 114:929-938. [PMID: 29490252 DOI: 10.1016/j.bpj.2017.12.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/20/2017] [Accepted: 12/27/2017] [Indexed: 01/13/2023] Open
Abstract
Regulation of cell volume is a fundamental property of all mammalian cells. Multiple signaling pathways are known to be activated by cell swelling and to contribute to cell volume homeostasis. Although cell mechanics and membrane tension have been proposed to couple cell swelling to signaling pathways, the impact of swelling on cellular biomechanics and membrane tension have yet to be fully elucidated. In this study, we use atomic force microscopy under isotonic and hypotonic conditions to measure mechanical properties of endothelial membranes including membrane stiffness, which reflects the stiffness of the submembrane cytoskeleton complex, and the force required for membrane tether formation, reflecting membrane tension and membrane-cytoskeleton attachment. We find that hypotonic swelling results in significant stiffening of the endothelial membrane without a change in membrane tension/membrane-cytoskeleton attachment. Furthermore, depolymerization of F-actin, which, as expected, results in a dramatic decrease in the cellular elastic modulus of both the membrane and the deeper cytoskeleton, indicating a collapse of the cytoskeleton scaffold, does not abrogate swelling-induced stiffening of the membrane. Instead, this swelling-induced stiffening of the membrane is enhanced. We propose that the membrane stiffening should be attributed to an increase in hydrostatic pressure that results from an influx of solutes and water into the cells. Most importantly, our results suggest that increased hydrostatic pressure, rather than changes in membrane tension, could be responsible for activating volume-sensitive mechanisms in hypotonically swollen cells.
Collapse
Affiliation(s)
- Manuela Aseye Ayele Ayee
- Division of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Elizabeth LeMaster
- Division of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Tao Teng
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
| | - James Lee
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
| | - Irena Levitan
- Division of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
14
|
Mardones JI, Shabala L, Shabala S, Dorantes-Aranda JJ, Seger A, Hallegraeff GM. Fish gill damage by harmful microalgae newly explored by microelectrode ion flux estimation techniques. HARMFUL ALGAE 2018; 80:55-63. [PMID: 30502812 DOI: 10.1016/j.hal.2018.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/18/2018] [Accepted: 09/18/2018] [Indexed: 06/09/2023]
Abstract
Harmful algal blooms (HAB) are responsible for massive mortalities of wild and aquacultured fish due to noticeable gill damage, but the precise fish-killing mechanisms remain poorly understood. A non-invasive microelectrode ion flux estimation (MIFE) technique was successfully applied to assess changes in membrane-transport processes in a model fish gill cell line exposed to harmful microplankton. Net Ca2+, H+, K+ ion fluxes in the rainbow trout cell line RTgill-W1 were monitored before and after addition of lysed cells of this Paralytic Shellfish Toxins (PST) producer along with purified endocellular dinoflagellate PST. It was demonstrated that PST alone do not play a role in fish gill damage during A. catenella outbreaks as previously thought, but that other ichthyotoxic metabolites from lysed algal cells (i.e. lipid peroxidation products or other unknown metabolites) result in net K+ efflux from fish gill cells and thereby gill cell death.
Collapse
Affiliation(s)
- Jorge I Mardones
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Private Bag 129, Hobart, Tasmania 7001, Australia; Centro de Estudios de Algas Nocivas (CREAN), Instituto de Fomento Pesquero (IFOP), Puerto Montt, Chile.
| | - Lana Shabala
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tasmania 7001, Australia
| | - Sergey Shabala
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tasmania 7001, Australia
| | - Juan José Dorantes-Aranda
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Private Bag 129, Hobart, Tasmania 7001, Australia
| | - Andreas Seger
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Private Bag 129, Hobart, Tasmania 7001, Australia
| | - Gustaaf M Hallegraeff
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Private Bag 129, Hobart, Tasmania 7001, Australia
| |
Collapse
|
15
|
Brennan RS, Healy TM, Bryant HJ, La MV, Schulte PM, Whitehead A. Integrative Population and Physiological Genomics Reveals Mechanisms of Adaptation in Killifish. Mol Biol Evol 2018; 35:2639-2653. [PMID: 30102365 PMCID: PMC11325861 DOI: 10.1093/molbev/msy154] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Adaptive divergence between marine and freshwater (FW) environments is important in generating phyletic diversity within fishes, but the genetic basis of this process remains poorly understood. Genome selection scans can identify adaptive loci, but incomplete knowledge of genotype-phenotype connections makes interpreting their significance difficult. In contrast, association mapping (genome-wide association mapping [GWAS], random forest [RF] analyses) links genotype to phenotype, but offer limited insight into the evolutionary forces shaping variation. Here, we combined GWAS, RF, and selection scans to identify loci important in adaptation to FW environments. We utilized FW-native and brackish water (BW)-native populations of Atlantic killifish (Fundulus heteroclitus) as well as a naturally admixed population between the two. We measured morphology and multiple physiological traits that differ between populations and may contribute to osmotic adaptation (salinity tolerance, hypoxia tolerance, metabolic rate, body shape) and used a reduced representation approach for genome-wide genotyping. Our results show patterns of population divergence in physiological capabilities that are consistent with local adaptation. Population genomic scans between BW-native and FW-native populations identified genomic regions evolving by natural selection, whereas association mapping revealed loci that contribute to variation for each trait. There was substantial overlap in the genomic regions putatively under selection and loci associated with phenotypic traits, particularly for salinity tolerance, suggesting that these regions and genes are important for adaptive divergence between BW and FW environments. Together, these data provide insight into the mechanisms that enable diversification of fishes across osmotic boundaries.
Collapse
Affiliation(s)
- Reid S Brennan
- Department of Environmental Toxicology, University of California-Davis, Davis, CA
- Department of Biology, University of Vermont, Burlington, VT
| | - Timothy M Healy
- Department of Zoology, The University of British Columbia, Vancouver, BC, Canada
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, CA
| | - Heather J Bryant
- Department of Zoology, The University of British Columbia, Vancouver, BC, Canada
| | - Man Van La
- Department of Environmental Toxicology, University of California-Davis, Davis, CA
| | - Patricia M Schulte
- Department of Zoology, The University of British Columbia, Vancouver, BC, Canada
| | - Andrew Whitehead
- Department of Environmental Toxicology, University of California-Davis, Davis, CA
| |
Collapse
|
16
|
Ayee MA, Levitan I. Membrane Stiffening in Osmotic Swelling: Analysis of Membrane Tension and Elastic Modulus. CURRENT TOPICS IN MEMBRANES 2018; 81:97-123. [PMID: 30243442 PMCID: PMC6588289 DOI: 10.1016/bs.ctm.2018.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The effects of osmotic swelling on key cellular biomechanical properties are explored in this chapter. We present the governing equations and theoretical backgrounds of the models employed to estimate cell membrane tension and elastic moduli from experimental methods, and provide a summary of the prevailing experimental approaches used to obtain these biomechanical parameters. A detailed analysis of the current evidence of the effects of osmotic swelling on membrane tension and elastic moduli is provided. Briefly, due to the buffering effect of unfolding membrane reservoirs, mild hypotonic swelling does not change membrane tension or the adhesion of the membrane to the underlying cytoskeleton. Conversely, osmotic swelling causes the cell membrane envelope to stiffen, measured as an increase in the membrane elastic modulus.
Collapse
Affiliation(s)
| | - Irena Levitan
- University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
17
|
Carbajo JM, Maraver F. Salt water and skin interactions: new lines of evidence. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2018; 62:1345-1360. [PMID: 29675710 DOI: 10.1007/s00484-018-1545-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/08/2018] [Accepted: 04/10/2018] [Indexed: 06/08/2023]
Abstract
In Health Resort Medicine, both balneotherapy and thalassotherapy, salt waters and their peloids, or mud products are mainly used to treat rheumatic and skin disorders. These therapeutic agents act jointly via numerous mechanical, thermal, and chemical mechanisms. In this review, we examine a new mechanism of action specific to saline waters. When topically administered, this water rich in sodium and chloride penetrates the skin where it is able to modify cellular osmotic pressure and stimulate nerve receptors in the skin via cell membrane ion channels known as "Piezo" proteins. We describe several models of cutaneous adsorption/desorption and penetration of dissolved ions in mineral waters through the skin (osmosis and cell volume mechanisms in keratinocytes) and examine the role of these resources in stimulating cutaneous nerve receptors. The actions of salt mineral waters are mediated by a mechanism conditioned by the concentration and quality of their salts involving cellular osmosis-mediated activation/inhibition of cell apoptotic or necrotic processes. In turn, this osmotic mechanism modulates the recently described mechanosensitive piezoelectric channels.
Collapse
Affiliation(s)
- Jose Manuel Carbajo
- Department of Radiology, Rehabilitation and Physiotherapy, Faculty of Medicine, Universidad Complutense de Madrid, Plaza Ramon y Cajal, s/n, 28040, Madrid, Spain
| | - Francisco Maraver
- Department of Radiology, Rehabilitation and Physiotherapy, Faculty of Medicine, Universidad Complutense de Madrid, Plaza Ramon y Cajal, s/n, 28040, Madrid, Spain.
- Professional School of Medical Hydrology, Faculty of Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| |
Collapse
|
18
|
Synthesis and application of ratio fluorescence probe for chloride. Anal Bioanal Chem 2018; 410:6507-6516. [DOI: 10.1007/s00216-018-1250-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/08/2018] [Accepted: 07/06/2018] [Indexed: 11/25/2022]
|
19
|
Lu GY, Wang WX. Trace metals and macroelements in mussels from Chinese coastal waters: National spatial patterns and normalization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 626:307-318. [PMID: 29353779 DOI: 10.1016/j.scitotenv.2018.01.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 01/01/2018] [Accepted: 01/03/2018] [Indexed: 06/07/2023]
Abstract
Metal contamination is one of the most ubiquitous and complex problems in the Chinese coastal environment. To explore the large-scale spatial patterns of bioavailable metals, we sampled three major mussels, including 784 blue mussels (Mytilus edulis Linnaeus, 1758) of 14 sites, 224 hard-shelled mussels (Mytilus unguiculatus Valenciennes, 1858) of 4 sites, and 392 green mussels (Perna viridis (Linnaeus, 1758)) of 7 sites, ranging from temperate to tropical coastlines of China, during August and September 2015. The concentrations of macroelements (Na, K, Ca, Mg, and P) and toxic trace metals (Ag, Cd, Cr, Cu, Ni, Pb, Ti, and Zn) in the mussel's whole soft tissues were determined. Among the four Chinese coastal basins, Cd, Ti and Cr in the mussel tissues were the highest at Bohai Sea (BS) and Yellow Sea (YS), and Cu, Ni, Pb and Ag in the mussel tissues were the highest at East China Sea (ECS) and South China Sea (SCS). Zinc concentrations in mussels from YS were significantly higher than those from the other regions. Given the variability of environmental conditions such as salinity and nutrients, we further normalized the measured tissue metal concentrations with tissue Na and P levels. After Na normalization as the salinity proxy, the variability of Cd, Cu, Zn, Ag, and Ni was reduced. Trace elements accumulation in the mussel tissues was significantly related to both macroelements (Na or P) and body dry weight. The present study demonstrated that nonlinear optimization of different elements was necessary in assessing metal bioaccumulation patterns in marine mussels at a large spatial scale.
Collapse
Affiliation(s)
- Guang-Yuan Lu
- Marine Environmental Laboratory, Shenzhen Research Institute, The Hong Kong University of Science and Technology (HKUST), Shenzhen 518000 Shenzhen, China; Division of Life Science, HKUST, Clearwater Bay, Kowloon, Hong Kong, China
| | - Wen-Xiong Wang
- Marine Environmental Laboratory, Shenzhen Research Institute, The Hong Kong University of Science and Technology (HKUST), Shenzhen 518000 Shenzhen, China; Division of Life Science, HKUST, Clearwater Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
20
|
Younis LT, Abu Hassan MI, Taiyeb Ali TB, Bustami TJ. 3D TECA hydrogel reduces cellular senescence and enhances fibroblasts migration in wound healing. Asian J Pharm Sci 2017; 13:317-325. [PMID: 32104405 PMCID: PMC7032142 DOI: 10.1016/j.ajps.2017.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 08/08/2017] [Accepted: 12/04/2017] [Indexed: 12/11/2022] Open
Abstract
This study was designed to investigate the effect of 3D TECA hydrogel on the inflammatory-induced senescence marker, and to assess the influence of the gel on the periodontal ligament fibroblasts (PDLFs) migration in wound healing in vitro. PDLFs were cultured with 20 ng/ml TNF-α to induce inflammation in the presence and absence of 50 µM 3D TECA gel for 14 d. The gel effect on the senescence maker secretory associated-β-galactosidase (SA-β-gal) activity was measured by a histochemical staining. Chromatin condensation and DNA synthesis of the cells were assessed by 4′,6-diamidino-2-phenylindole and 5-ethynyl-2′-deoxyuridine fluorescent staining respectively. For evaluating fibroblasts migration, scratch wound healing assay and Pro-Plus Imaging software were used. The activity of senescence marker, SA-β-gal, was positive in the samples with TNF-α-induced inflammation. SA-β-gal percentage is suppressed (>65%, P < 0.05) in the treated cells with TECA gel as compared to the non-treated cells. Chromatin foci were obvious in the non-treated samples. DNA synthesis was markedly recognized by the fluorescent staining in the treated compared to non-treated cultures. Scratch wound test indicated that the cells migration rate was significantly higher (14.9 µm2/h, P < 0.05) in the treated versus (11 µm2/h) for control PDLFs. The new formula of 3D TECA suppresses the inflammatory-mediated cellular senescence and enhanced fibroblasts proliferation and migration. Therefore, 3D TECA may be used as an adjunct to accelerate repair and healing of periodontal tissues.
Collapse
Affiliation(s)
- Luay Thanoon Younis
- Faculty of Dentistry, Universiti Teknologi MARA, Sungai Buloh 47000, Malaysia
| | | | - Tara Bai Taiyeb Ali
- Faculty of Dentistry, Universiti Teknologi MARA, MAHSA University, Jenjarom 42610, Malaysia
| | | |
Collapse
|
21
|
Ahmadyan S, Kabiri M, Hanaee-Ahvaz H, Farazmand A. Osmolyte Type and the Osmolarity Level Affect Chondrogenesis of Mesenchymal Stem Cells. Appl Biochem Biotechnol 2017; 185:507-523. [PMID: 29196933 DOI: 10.1007/s12010-017-2647-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 10/26/2017] [Indexed: 01/20/2023]
Abstract
The inductive effects of increased osmolarity on chondrogenesis are well approved. However, the effects of the osmolyte agent invoked to induce hyperosmolarity are largely neglected. Herein, we scrutinized how hyperosmotic conditions acquired by addition of different osmolytes would impact chondrogenesis. We briefly assessed whether such conditions would differentially affect hypertrophy and angiogenesis during MSC chondrogenesis. Chondrogenic and hypertrophic marker expression along with VEGF secretion during adipose-derived (AD)-MSC chondrogenesis under three osmolarity levels (350, 450, and 550 mOsm) using three different osmolytes (NaCl, sorbitol, and PEG) were assessed. MTT assay, qRT-PCR, immunocytochemistry, Alcian Blue staining, ELISA, and ALP assays proved osmolyte-type dependent effects of hyperosmolarity on chondrogenesis, hypertrophy, and angiogenesis. At same osmolarity level, PEG had least cytotoxic/cytostatic effect and most prohibitive effects on angiogenesis. As expected, all hyperosmolar conditions led to enhanced chondrogenesis with slightly varying degrees. PEG and sorbitol had higher chondro-promotive and hypertrophy-suppressive effects compared to NaCl, while NaCl had exacerbated hypertrophy. We observed that TonEBP was involved in osmoadaptation of all treatments in varying degrees. Of importance, we highlighted differential effects of hyperosmolarity obtained by different osmolytes on the efficacy of chondrogenesis and more remarkably on the induction/suppression of cartilage pathologic markers. Our study underlies the need for a more vigilant exploitation of physicobiochemical inducers in order to maximize chondrogenesis while restraining unwanted hypertrophy and angiogenesis.
Collapse
Affiliation(s)
- Sorour Ahmadyan
- Department of Biotechnology, College of Science, University of Tehran, P.O.Box: 14155-6455, Tehran, Iran
- Department of Cellular and Molecular Biology, Kish International Campus, Kish Island, Iran
- Stem Cell Technology Research Center, Tehran, Iran
| | - Mahboubeh Kabiri
- Department of Biotechnology, College of Science, University of Tehran, P.O.Box: 14155-6455, Tehran, Iran.
| | | | - Ali Farazmand
- Department of Cellular and Molecular Biology, Kish International Campus, Kish Island, Iran
- Faculty of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
22
|
Edwards A, Layton AT. Cell Volume Regulation in the Proximal Tubule of Rat Kidney : Proximal Tubule Cell Volume Regulation. Bull Math Biol 2017; 79:2512-2533. [PMID: 28900833 PMCID: PMC5660676 DOI: 10.1007/s11538-017-0338-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 08/25/2017] [Indexed: 10/18/2022]
Abstract
We developed a dynamic model of a rat proximal convoluted tubule cell in order to investigate cell volume regulation mechanisms in this nephron segment. We examined whether regulatory volume decrease (RVD), which follows exposure to a hyposmotic peritubular solution, can be achieved solely via stimulation of basolateral K[Formula: see text] and [Formula: see text] channels and [Formula: see text]-[Formula: see text] cotransporters. We also determined whether regulatory volume increase (RVI), which follows exposure to a hyperosmotic peritubular solution under certain conditions, may be accomplished by activating basolateral [Formula: see text]/H[Formula: see text] exchangers. Model predictions were in good agreement with experimental observations in mouse proximal tubule cells assuming that a 10% increase in cell volume induces a fourfold increase in the expression of basolateral K[Formula: see text] and [Formula: see text] channels and [Formula: see text]-[Formula: see text] cotransporters. Our results also suggest that in response to a hyposmotic challenge and subsequent cell swelling, [Formula: see text]-[Formula: see text] cotransporters are more efficient than basolateral K[Formula: see text] and [Formula: see text] channels at lowering intracellular osmolality and reducing cell volume. Moreover, both RVD and RVI are predicted to stabilize net transcellular [Formula: see text] reabsorption, that is, to limit the net [Formula: see text] flux decrease during a hyposmotic challenge or the net [Formula: see text] flux increase during a hyperosmotic challenge.
Collapse
Affiliation(s)
- Aurélie Edwards
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA.
| | - Anita T Layton
- Departments of Mathematics and Biomedical Engineering, Duke University, Durham, NC, 27708-0320, USA
| |
Collapse
|
23
|
Abstract
WNK kinases, along with their upstream regulators (CUL3/KLHL3) and downstream targets (the SPAK/OSR1 kinases and the cation-Cl- cotransporters [CCCs]), comprise a signaling cascade essential for ion homeostasis in the kidney and nervous system. Recent work has furthered our understanding of the WNKs in epithelial transport, cell volume homeostasis, and GABA signaling, and uncovered novel roles for this pathway in immune cell function and cell proliferation.
Collapse
Affiliation(s)
- Masoud Shekarabi
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Jinwei Zhang
- Departments of Neurosurgery, Centers for Mendelian Genomics, Yale School of Medicine, New Haven, CT 06477, USA; MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Arjun R Khanna
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurosurgery, Harvard Medical School, Boston, MA 02115, USA
| | - David H Ellison
- Division of Nephrology & Hypertension, Department of Medicine, Oregon Health & Science University, Portland, Oregon 97239, USA; VA Portland Health Care System, Portland, OR 97239, USA
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Kristopher T Kahle
- Departments of Neurosurgery, Pediatrics, and Cellular & Molecular Physiology, Centers for Mendelian Genomics, Yale School of Medicine, New Haven, CT 06477, USA.
| |
Collapse
|
24
|
Haase K, Shendruk TN, Pelling AE. Rapid dynamics of cell-shape recovery in response to local deformations. SOFT MATTER 2017; 13:567-577. [PMID: 27942684 DOI: 10.1039/c6sm02560a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
It is vital that cells respond rapidly to mechanical cues within their microenvironment through changes in cell shape and volume, which rely upon the mechanical properties of cells' highly interconnected cytoskeletal networks and intracellular fluid redistributions. While previous research has largely investigated deformation mechanics, we now focus on the immediate cell-shape recovery response following mechanical perturbation by inducing large, local, and reproducible cellular deformations using AFM. By continuous imaging within the plane of deformation, we characterize the membrane and cortical response of HeLa cells to unloading, and model the recovery via overdamped viscoelastic dynamics. Importantly, the majority (90%) of HeLa cells recover their cell shape in <1 s. Despite actin remodelling on this time scale, we show that cell-shape recovery time is not affected by load duration, nor magnitude for untreated cells. To further explore this rapid recovery response, we expose cells to cytoskeletal destabilizers and osmotic shock conditions, which uncovers the interplay between actin and osmotic pressure. We show that the rapid dynamics of recovery depend crucially on intracellular pressure, and provide strong evidence that cortical actin is the key regulator in the cell-shape recovery processes, in both cancerous and non-cancerous epithelial cells.
Collapse
Affiliation(s)
- Kristina Haase
- Department of Physics, University of Ottawa, MacDonald Hall, 150 Louis Pasteur, Canada.
| | - Tyler N Shendruk
- The Rudolf Peierls Centre for Theoretical Physics, Department of Physics, University of Oxford, 1 Keble Road, Oxford, OX1 3NP, UK
| | - Andrew E Pelling
- Department of Physics, University of Ottawa, MacDonald Hall, 150 Louis Pasteur, Canada. and Department of Biology, University of Ottawa, Gendron Hall, 30 Marie Curie, Canada and Institute for Science, Society and Policy, University of Ottawa, Simard Hall, 60 University, Ottawa, ON K1N 6N5, Canada and SymbioticA, School of Anatomy, Physiology and Human Biology, University of Western Australia, Perth WA 6009, Australia
| |
Collapse
|
25
|
Junatas KL, Tonar Z, Kubíková T, Liška V, Pálek R, Mik P, Králíčková M, Witter K. Stereological analysis of size and density of hepatocytes in the porcine liver. J Anat 2016; 230:575-588. [PMID: 28032348 DOI: 10.1111/joa.12585] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2016] [Indexed: 02/06/2023] Open
Abstract
The porcine liver is frequently used as a large animal model for verification of surgical techniques, as well as experimental therapies. Often, a histological evaluation is required that include measurements of the size, nuclearity or density of hepatocytes. Our aims were to assess the mean number-weighted volume of hepatocytes, the numerical density of hepatocytes, and the fraction of binuclear hepatocytes (BnHEP) in the porcine liver, and compare the distribution of these parameters among hepatic lobes and macroscopic regions of interest (ROIs) with different positions related to the liver vasculature. Using disector and nucleator as design-based stereological methods, the morphometry of hepatocytes was quantified in seven healthy piglets. The samples were obtained from all six hepatic lobes and three ROIs (peripheral, paracaval and paraportal) within each lobe. Histological sections (thickness 16 μm) of formalin-fixed paraffin-embedded material were stained with the periodic acid-Schiff reaction to indicate the cell outlines and were assessed in a series of 3-μm-thick optical sections. The mean number-weighted volume of mononuclear hepatocytes (MnHEP) in all samples was 3670 ± 805 μm3 (mean ± SD). The mean number-weighted volume of BnHEP was 7050 ± 2550 μm3 . The fraction of BnHEP was 4 ± 2%. The numerical density of all hepatocytes was 146 997 ± 15 738 cells mm-3 of liver parenchyma. The porcine hepatic lobes contained hepatocytes of a comparable size, nuclearity and density. No significant differences were identified between the lobes. The peripheral ROIs of the hepatic lobes contained the largest MnHEP with the smallest numerical density. The distribution of a larger MnHEP was correlated with a larger volume of BnHEP and a smaller numerical density of all hepatocytes. Practical recommendations for designing studies that involve stereological evaluations of the size, nuclearity and density of hepatocytes in porcine liver are provided.
Collapse
Affiliation(s)
- Khan L Junatas
- Department for Pathobiology, Institute of Anatomy, Histology and Embryology, University of Veterinary Medicine Vienna, Vienna, Austria.,College of Veterinary Medicine, University of Southern Mindanao, Cotabato, Philippines
| | - Zbyněk Tonar
- Department of Histology and Embryology and Biomedical Center, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, Czech Republic
| | - Tereza Kubíková
- NTIS, European Centre of Excellence, Faculty of Applied Sciences, University of West Bohemia, Pilsen, Czech Republic
| | - Václav Liška
- Department of Surgery and Biomedical Center, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, Czech Republic
| | - Richard Pálek
- Department of Surgery and Biomedical Center, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, Czech Republic
| | - Patrik Mik
- Department of Anatomy, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, Czech Republic
| | - Milena Králíčková
- Department of Histology and Embryology and Biomedical Center, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, Czech Republic
| | - Kirsti Witter
- Department for Pathobiology, Institute of Anatomy, Histology and Embryology, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
26
|
Igbokwe NA, Igbokwe IO. Phenotypic homogeneity with minor deviance in osmotic fragility of Sahel goat erythrocytes in non-ionic sucrose media during various physiologic states. J Basic Clin Physiol Pharmacol 2016; 27:633-641. [PMID: 27428847 DOI: 10.1515/jbcpp-2016-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 06/04/2016] [Indexed: 11/15/2022]
Abstract
BACKGROUND Erythrocyte swelling in non-ionic sucrose media and the subsequent osmotic lysis are influenced by mechanisms of regulatory volume adjustment and osmotic water permeability. Kinetics of transmembrane water and ion fluxes in varied physiologic states may determine the phenotype of erythrocyte osmotic fragility (EOF) and affect estimates of EOF. METHODS Effects of sex, age, late pregnancy (third trimester) and lactation on the haemolysis of Sahel goat erythrocytes incubated in a series of hyposmotic non-ionic sucrose media were investigated. RESULTS The fragiligram was sigmoidal in 72 (97%) out of 74 goats. Two male (3%) goats with low and high extreme median erythrocyte fragilities (MEF), had non-sigmoidal curves. The mean fragilities at osmolarities of 30-300 mosmol/L of sucrose and the mean osmolarities responsible for 10%-90% haemolysis (CH10-CH90) were not significantly different between males and non-pregnant dry (NPD) females, amongst the age groups and between pregnant or lactating and NPD female goats. The MEF (CH50) of the goats were at osmolarities of 126-252 mosmol/L (median of data: 171 mosmol/L) with a mean of 175.24±16.20 mosmol/L. Therefore, phenotypic homogeneity of EOF occurred with minor deviance, since EOF variables were not differentiated by sex, age, late pregnancy or lactation. CONCLUSIONS Physiologic states of the goat did not affect EOF phenotype in non-ionic sucrose media. Sigmoidal fragility phenotype seemed to be homogeneously conserved by osmoregulatory mechanisms not partitioned by sex, age, late pregnancy or lactation, but a minor non-sigmoidal curve might have occurred due to altered erythrocyte osmotic behaviour that would require further investigation.
Collapse
|
27
|
Restriction of protein synthesis abolishes senescence features at cellular and organismal levels. Sci Rep 2016; 6:18722. [PMID: 26729469 PMCID: PMC4700526 DOI: 10.1038/srep18722] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 11/24/2015] [Indexed: 01/26/2023] Open
Abstract
Cellular senescence or its equivalence is induced by treatment of cells with an appropriate inducer of senescence in various cell types. Mild restriction of cytoplasmic protein synthesis prevented induction of all aspects of cellular senescence in normal and tumor-derived human cells. It allowed the cells to continuously grow with no sign of senescent features in the presence of various inducers. It also delayed replicative senescence in normal human fibroblasts. Moreover, it allowed for growth of the cells that had entered a senescent state. When adult worms of the nematode C. elegans were grown under protein-restricted conditions, their average and maximal lifespans were significantly extended. These results suggest that accumulation of cytoplasmic proteins due to imbalance in macromolecule synthesis is a fundamental cause of cellular senescence.
Collapse
|
28
|
High concentrations of NaCl induce cell swelling leading to senescence in human cells. Mol Cell Biochem 2015; 411:117-25. [PMID: 26463993 DOI: 10.1007/s11010-015-2573-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 09/26/2015] [Indexed: 10/23/2022]
Abstract
Cell swelling and retardation in DNA replication are always observed in senescent cells. When DNA replication is slowed down with RNA and protein syntheses unchanged in proliferating cells, it causes a phenomenon known as unbalanced growth. The purpose of this study is to assess the role of cell swelling in unbalanced growth in terms of senescence and investigate the mechanism underlying this phenomenon. We tried to induce cell swelling with minimum damage to cells in this study. We perturbed the osmoregulatory functions to induce cell swelling under hypotonic and hypertonic conditions in normal human fibroblasts. Addition of excess NaCl was found to induce significant cell and nuclear swelling in dose- and time-dependent manners. Excess NaCl immediately retarded DNA replication, accumulated cells at G1 phase of the cell cycle, and eventually deprived division potential of the cells. Such cells showed typical senescent cell shape followed by expression of the typical senescence-associated genes. Excess NaCl also activated ERK1/2, p38, and JNK of the mitogen activated protein kinase family. Addition of U0126, an inhibitor of ERK1/2, prevented appearance of senescent features induced by excess NaCl. These results suggest that hypertonic conditions induce cell swelling due to unbalanced growth, thereby leading to cellular senescence.
Collapse
|
29
|
Enhanced expression of potassium-chloride cotransporter KCC2 in human temporal lobe epilepsy. Brain Struct Funct 2015; 221:3601-15. [PMID: 26427846 DOI: 10.1007/s00429-015-1122-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/23/2015] [Indexed: 12/19/2022]
Abstract
Synaptic reorganization in the epileptic hippocampus involves altered excitatory and inhibitory transmission besides the rearrangement of dendritic spines, resulting in altered excitability, ion homeostasis, and cell swelling. The potassium-chloride cotransporter-2 (KCC2) is the main chloride extruder in neurons and hence will play a prominent role in determining the polarity of GABAA receptor-mediated chloride currents. In addition, KCC2 also interacts with the actin cytoskeleton which is critical for dendritic spine morphogenesis, and for the maintenance of glutamatergic synapses and cell volume. Using immunocytochemistry, we examined the cellular and subcellular levels of KCC2 in surgically removed hippocampi of temporal lobe epilepsy (TLE) patients and compared them to control human tissue. We also studied the distribution of KCC2 in a pilocarpine mouse model of epilepsy. An overall increase in KCC2-expression was found in epilepsy and confirmed by Western blots. The cellular and subcellular distributions in control mouse and human samples were largely similar; moreover, changes affecting KCC2-expression were also alike in chronic epileptic human and mouse hippocampi. At the subcellular level, we determined the neuronal elements exhibiting enhanced KCC2 expression. In epileptic tissue, staining became more intense in the immunopositive elements detected in control tissue, and profiles with subthreshold expression of KCC2 in control samples became labelled. Positive interneuron somata and dendrites were more numerous in epileptic hippocampi, despite severe interneuron loss. Whether the elevation of KCC2-expression is ultimately a pro- or anticonvulsive change, or both-behaving differently during ictal and interictal states in a context-dependent manner-remains to be established.
Collapse
|
30
|
Mola MG, Sparaneo A, Gargano CD, Spray DC, Svelto M, Frigeri A, Scemes E, Nicchia GP. The speed of swelling kinetics modulates cell volume regulation and calcium signaling in astrocytes: A different point of view on the role of aquaporins. Glia 2015; 64:139-54. [PMID: 26413835 DOI: 10.1002/glia.22921] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 08/14/2015] [Accepted: 09/01/2015] [Indexed: 01/11/2023]
Abstract
Regulatory volume decrease (RVD) is a process by which cells restore their original volume in response to swelling. In this study, we have focused on the role played by two different Aquaporins (AQPs), Aquaporin-4 (AQP4), and Aquaporin-1 (AQP1), in triggering RVD and in mediating calcium signaling in astrocytes under hypotonic stimulus. Using biophysical techniques to measure water flux through the plasma membrane of wild-type (WT) and AQP4 knockout (KO) astrocytes and of an astrocyte cell line (DI TNC1) transfected with AQP4 or AQP1, we here show that AQP-mediated fast swelling kinetics play a key role in triggering and accelerating RVD. Using calcium imaging, we show that AQP-mediated fast swelling kinetics also significantly increases the amplitude of calcium transients inhibited by Gadolinium and Ruthenium Red, two inhibitors of the transient receptor potential vanilloid 4 (TRPV4) channels, and prevented by removing extracellular calcium. Finally, inhibition of TRPV4 or removal of extracellular calcium does not affect RVD. All together our study provides evidence that (1) AQP influenced swelling kinetics is the main trigger for RVD and in mediating calcium signaling after hypotonic stimulus together with TRPV4, and (2) calcium influx from the extracellular space and/or TRPV4 are not essential for RVD to occur in astrocytes.
Collapse
Affiliation(s)
- Maria Grazia Mola
- Department of Bioscience, Biotechnology, and Biopharmaceutics, University of Bari "Aldo Moro,", Bari, Italy
| | - Angelo Sparaneo
- Laboratory of Oncology, IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Italy
| | - Concetta Domenica Gargano
- Department of Bioscience, Biotechnology, and Biopharmaceutics, University of Bari "Aldo Moro,", Bari, Italy
| | - David C Spray
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Maria Svelto
- Department of Bioscience, Biotechnology, and Biopharmaceutics, University of Bari "Aldo Moro,", Bari, Italy
| | - Antonio Frigeri
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro,", Bari, Italy
| | - Eliana Scemes
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Grazia Paola Nicchia
- Department of Bioscience, Biotechnology, and Biopharmaceutics, University of Bari "Aldo Moro,", Bari, Italy.,Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
31
|
Rose KL, Watson AJ, Drysdale TA, Cepinskas G, Chan M, Rupar CA, Fraser DD. Simulated diabetic ketoacidosis therapy in vitro elicits brain cell swelling via sodium-hydrogen exchange and anion transport. Am J Physiol Endocrinol Metab 2015; 309:E370-E379. [PMID: 26081282 DOI: 10.1152/ajpendo.00107.2015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 06/11/2015] [Indexed: 01/08/2023]
Abstract
A common complication of type 1 diabetes mellitus is diabetic ketoacidosis (DKA), a state of severe insulin deficiency. A potentially harmful consequence of DKA therapy in children is cerebral edema (DKA-CE); however, the mechanisms of therapy-induced DKA-CE are unknown. Our aims were to identify the DKA treatment factors and membrane mechanisms that might contribute specifically to brain cell swelling. To this end, DKA was induced in juvenile mice with the administration of the pancreatic toxins streptozocin and alloxan. Brain slices were prepared and exposed to DKA-like conditions in vitro. Cell volume changes were imaged in response to simulated DKA therapy. Our experiments showed that cell swelling was elicited with isolated DKA treatment components, including alkalinization, insulin/alkalinization, and rapid reductions in osmolality. Methyl-isobutyl-amiloride, a nonselective inhibitor of sodium-hydrogen exchangers (NHEs), reduced cell swelling in brain slices elicited with simulated DKA therapy (in vitro) and decreased brain water content in juvenile DKA mice administered insulin and rehydration therapy (in vivo). Specific pharmacological inhibition of the NHE1 isoform with cariporide also inhibited cell swelling, but only in the presence of the anion transport (AT) inhibitor 4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid. DKA did not alter brain NHE1 isoform expression, suggesting that the cell swelling attributed to the NHE1 was activity dependent. In conclusion, our data raise the possibility that brain cell swelling can be elicited by DKA treatment factors and that it is mediated by NHEs and/or coactivation of NHE1 and AT.
Collapse
Affiliation(s)
- Keeley L Rose
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada; Children's Health Research Institute, London, Ontario, Canada
| | - Andrew J Watson
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada; Children's Health Research Institute, London, Ontario, Canada
| | - Thomas A Drysdale
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada; Children's Health Research Institute, London, Ontario, Canada; Department of Paediatrics, Western University, London, Ontario, Canada
| | | | - Melissa Chan
- Children's Health Research Institute, London, Ontario, Canada
| | - C Anthony Rupar
- Children's Health Research Institute, London, Ontario, Canada; Department of Paediatrics, Western University, London, Ontario, Canada
| | - Douglas D Fraser
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada; Children's Health Research Institute, London, Ontario, Canada; Centre for Critical Illness Research, London, Ontario, Canada; Department of Paediatrics, Western University, London, Ontario, Canada; Department of Clinical Neurological Sciences, Western University, London, Ontario, Canada; and Translational Research Centre, London, Ontario, Canada
| |
Collapse
|
32
|
Adragna NC, Ravilla NB, Lauf PK, Begum G, Khanna AR, Sun D, Kahle KT. Regulated phosphorylation of the K-Cl cotransporter KCC3 is a molecular switch of intracellular potassium content and cell volume homeostasis. Front Cell Neurosci 2015. [PMID: 26217182 PMCID: PMC4496573 DOI: 10.3389/fncel.2015.00255] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The defense of cell volume against excessive shrinkage or swelling is a requirement for cell function and organismal survival. Cell swelling triggers a coordinated homeostatic response termed regulatory volume decrease (RVD), resulting in K+ and Cl− efflux via activation of K+ channels, volume-regulated anion channels (VRACs), and the K+-Cl− cotransporters, including KCC3. Here, we show genetic alanine (Ala) substitution at threonines (Thr) 991 and 1048 in the KCC3a isoform carboxyl-terminus, preventing inhibitory phosphorylation at these sites, not only significantly up-regulates KCC3a activity up to 25-fold in normally inhibitory isotonic conditions, but is also accompanied by reversal of activity of the related bumetanide-sensitive Na+-K+-2Cl− cotransporter isoform 1 (NKCC1). This results in a rapid (<10 min) and significant (>90%) reduction in intracellular K+ content (Ki) via both Cl-dependent (KCC3a + NKCC1) and Cl-independent [DCPIB (VRAC inhibitor)-sensitive] pathways, which collectively renders cells less prone to acute swelling in hypotonic osmotic stress. Together, these data demonstrate the phosphorylation state of Thr991/Thr1048 in KCC3a encodes a potent switch of transporter activity, Ki homeostasis, and cell volume regulation, and reveal novel observations into the functional interaction among ion transport molecules involved in RVD.
Collapse
Affiliation(s)
- Norma C Adragna
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University Dayton, OH, USA
| | - Nagendra B Ravilla
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University Dayton, OH, USA
| | - Peter K Lauf
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University Dayton, OH, USA ; Department of Pathology, Boonshoft School of Medicine, Wright State University Dayton, OH, USA
| | - Gulnaz Begum
- Department of Neurology, University of Pittsburgh Pittsburgh, PA, USA
| | - Arjun R Khanna
- Department of Neurosurgery, Boston Children's Hospital and Harvard Medical School, Harvard University Boston, MA, USA
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh Pittsburgh, PA, USA ; Veterans Affairs Pittsburgh Health Care System, Geriatric Research, Educational and Clinical Center Pittsburgh, PA, USA
| | - Kristopher T Kahle
- Department of Neurosurgery, Boston Children's Hospital and Harvard Medical School, Harvard University Boston, MA, USA ; Manton Center for Orphan Disease Research, Children's Hospital Boston, Harvard University Boston, MA, USA
| |
Collapse
|
33
|
Zou L, Ding W, Sun S, Tang F, Gao D. Fatigue damage to pig erythrocytes during repeated swelling and shrinkage. Cryobiology 2015; 71:210-5. [PMID: 26143742 DOI: 10.1016/j.cryobiol.2015.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 06/05/2015] [Accepted: 07/02/2015] [Indexed: 01/28/2023]
Abstract
During the removal of cryoprotectants from cryopreserved-thawed blood with the dialysis-based or dilution-filtration method, due to the change in the extracellular osmolality, erythrocytes usually undergo repeated swelling and shrinkage. However, the erythrocyte fatigue damage induced by this repeated volume change has not yet been studied. In this work, by successively loading hypotonic and hypertonic solutions, we mimicked the repeated swelling and shrinkage of pig erythrocytes and then examined the effect of the number of cycle loops on the steady-state volume and the mortality of the pig erythrocytes. The results suggest that because of cell leakage in the swelling process, the steady-state volume of the pig erythrocytes after one cycle is smaller than the volume before the cycle, even though the cell performs a self-protective regulatory procedure. If the number of cycle loops is increased, the repeated swelling and shrinkage will cause a continuous decrease in the steady-state volume, and the ability of the pig erythrocytes to resist osmotic damage will decrease; as a result, the mortality of the pig erythrocytes increases as the number of cycle loops increases. The viability of the cells is also affected by the hypotonic and isotonic processing times: a short processing time may contribute to a decrease in the mortality of the pig erythrocytes. This work is of significance to optimizing the process of removing cryoprotectants.
Collapse
Affiliation(s)
- Lili Zou
- Center for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China; Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Weiping Ding
- Center for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China; Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Sijie Sun
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA
| | - Fangqiong Tang
- Center for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China; Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Dayong Gao
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
34
|
Alahmari KA, Prabhakaran H, Prabhakaran K, Chandramoorthy HC, Ramugounder R. Antioxidants and NOS inhibitors selectively targets manganese-induced cell volume via Na-K-Cl cotransporter-1 in astrocytes. Brain Res 2015; 1610:69-79. [PMID: 25817889 DOI: 10.1016/j.brainres.2015.03.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/07/2015] [Accepted: 03/18/2015] [Indexed: 11/26/2022]
Abstract
Manganese has shown to be involved in astrocyte swelling. Several factors such as transporters, exchangers and ion channels are attributed to astrocyte swelling as a result in the deregulation of cell volume. Products of oxidation and nitration have been implied to be involved in the pathophysiology of swelling; however, the direct link and mechanism of manganese induced astrocyte swelling has not been fully elucidated. In the current study, we used rat primary astrocyte cultures to investigate the activation of Na-K-Cl cotransporter-1 (NKCC1) a downstream mechanism for free radical induced astrocyte swelling as a result of manganese toxicity. Our results showed manganese, oxidants and NO donors as potent inducer of oxidation and nitration of NKCC1. Our results further confirmed that manganese (50 μM) increased the total protein, phosphorylation and activity of NKCC1 as well as cell volume (p < 0.05 vs. control). NKCC1 inhibitor (bumetanide), NKCC1-siRNA, antioxidants; DMTU, MnTBAP, tempol, catalase and Vit-E, NOS inhibitor; L-NAME, peroxinitrite scavenger; uric acid all significantly reversed the effects of NKCC1 activation (p < 0.05). From the current investigation we infer that manganese or oxidants and NO induced activation, oxidation/nitration of NKCC1 play an important role in the astrocyte swelling.
Collapse
Affiliation(s)
- Khalid A Alahmari
- Department of Medical Rehabilitation Sciences, College of Applied Medical Sciences, King Khalid University, PO Box 3236, Abha, Saudi Arabia
| | - Harini Prabhakaran
- Volunteer Summer Research Intern at Department of Pharmacy, Elizabeth City State University, Elizabeth City, NC 27909, USA
| | - Krishnan Prabhakaran
- Department of Pharmacy and Health Professions, Elizabeth City State University, Elizabeth City, NC 27909, USA
| | - Harish C Chandramoorthy
- Center for Stem Cell Research, Department of Clinical Biochemistry, College of Medicine, King Khalid University, PO Box 3236, Abha, Saudi Arabia
| | - Ramakrishnan Ramugounder
- Department of Medical Rehabilitation Sciences, College of Applied Medical Sciences, King Khalid University, PO Box 3236, Abha, Saudi Arabia.
| |
Collapse
|
35
|
Takemoto K, Shiozaki A, Ichikawa D, Komatsu S, Konishi H, Nako Y, Murayama Y, Kuriu Y, Nakanishi M, Fujiwara H, Okamoto K, Sakakura C, Nakahari T, Marunaka Y, Otuji E. Evaluation of the efficacy of peritoneal lavage with distilled water in colorectal cancer surgery: in vitro and in vivo study. J Gastroenterol 2015; 50:287-97. [PMID: 24908098 DOI: 10.1007/s00535-014-0971-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 05/15/2014] [Indexed: 02/04/2023]
Abstract
BACKGROUND Peritoneal lavage with distilled water has been performed during colorectal cancer surgery. This study investigated the cytocidal effects of hypotonic shock in vitro and in vivo in colorectal cancer cells. METHODS Three human colorectal cancer cell lines, DLD1, HT29, and CACO2, were exposed to distilled water, and morphological changes were observed under a differential interference contrast microscope connected to a high-speed digital video camera. Cell volume changes were assessed using a high-resolution flow cytometer. Re-incubation experiments were performed to investigate the cytocidal effects of distilled water. In the in vivo experiment, cancer cells after hypotonic shock were injected intraperitoneally into mice and the degree of established peritoneal metastasis was subsequently evaluated. The effects of the blockade of Cl(-) channels on these cells during hypotonic shock were also analyzed. RESULTS Morphological observations revealed a rapid cell swelling followed by cell rupture. Measurements of cell volume changes showed that mild hypotonic shock induced regulatory volume decrease (RVD) while severe hypotonic shock broke cells into fragments. Re-incubation experiments demonstrated the cytocidal effects of hypotonicity. In vivo experiments revealed the absence of peritoneal dissemination in mice in the distilled water group, and its presence in all mice in the control group. The blockade of Cl(-) channels increased cell volume by inhibiting RVD and enhanced cytocidal effects during mild hypotonic shock. CONCLUSIONS These results clearly support the efficacy of peritoneal lavage with distilled water during colorectal cancer surgery and suggest that regulating of Cl(-) transport may enhance the cytocidal effects of hypotonic shock.
Collapse
Affiliation(s)
- Kenichi Takemoto
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Effect of the polydispersity of RBCs on the recovery rate of RBCs during the removal of CPAs. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2015; 2014:792302. [PMID: 25580156 PMCID: PMC4279270 DOI: 10.1155/2014/792302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 11/10/2014] [Accepted: 11/16/2014] [Indexed: 11/18/2022]
Abstract
In the process of removing cryoprotectants from cryopreserved blood, the theoretically optimal operating condition, which is based on the assumption that the distribution of red blood cells is uniform, is often used to reduce or even avoid the hypotonic damage to cells. However, due to the polydispersity of cells, the optimal condition is actually not reliable. In this study, based on the discrete concept developed in our previous work, the effect of the polydispersity on the recovery rate of cells in the dilution-filtration system was statistically investigated by assigning three random parameters, isotonic cell volume, cell surface area, and osmotically inactive cell volume, to cells in small units of blood. The results show that, due to the polydispersity, the real recovery rate deviates from the ideal value that is based on uniform distribution. The deviation significantly increases with the standard errors of cell parameters, and it can be also magnified by high cryoprotectant concentrations. Under the effect of polydispersity, the uniform distribution-based optimized blood or diluent flow rate is not perfect. In practice, one should adopt a more conservative blood or diluent flow rate so that the hypotonic damage to cells can be further reduced.
Collapse
|
37
|
Tang G, Liu Y, Zhang Z, Lu Y, Wang Y, Huang J, Li Y, Chen X, Gu X, Wang Y, Yang GY. Mesenchymal Stem Cells Maintain Blood-Brain Barrier Integrity by Inhibiting Aquaporin-4 Upregulation After Cerebral Ischemia. Stem Cells 2014; 32:3150-62. [DOI: 10.1002/stem.1808] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 07/07/2014] [Indexed: 12/22/2022]
Affiliation(s)
- Guanghui Tang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering; Shanghai Jiao Tong University; Shanghai People's Republic of China
| | - Yanqun Liu
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering; Shanghai Jiao Tong University; Shanghai People's Republic of China
- Department of Neurology, Ruijin Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai People's Republic of China
| | - Zhijun Zhang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering; Shanghai Jiao Tong University; Shanghai People's Republic of China
| | - Yifan Lu
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering; Shanghai Jiao Tong University; Shanghai People's Republic of China
| | - Yang Wang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering; Shanghai Jiao Tong University; Shanghai People's Republic of China
- Department of Neurology, Ruijin Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai People's Republic of China
| | - Jun Huang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering; Shanghai Jiao Tong University; Shanghai People's Republic of China
| | - Yaning Li
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering; Shanghai Jiao Tong University; Shanghai People's Republic of China
| | - Xiaoyan Chen
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering; Shanghai Jiao Tong University; Shanghai People's Republic of China
| | - Xiang Gu
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering; Shanghai Jiao Tong University; Shanghai People's Republic of China
| | - Yongting Wang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering; Shanghai Jiao Tong University; Shanghai People's Republic of China
| | - Guo-Yuan Yang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering; Shanghai Jiao Tong University; Shanghai People's Republic of China
- Department of Neurology, Ruijin Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai People's Republic of China
| |
Collapse
|
38
|
Skaalure SC, Radhakrishnan SM, Bryant SJ. Physiological osmolarities do not enhance long-term tissue synthesis in chondrocyte-laden degradable poly(ethylene glycol) hydrogels. J Biomed Mater Res A 2014; 103:2186-92. [DOI: 10.1002/jbm.a.35329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 08/20/2014] [Accepted: 09/05/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Stacey C. Skaalure
- Department of Chemical and Biological Engineering; University of Colorado; Boulder Colorado 80309
| | | | - Stephanie J. Bryant
- Department of Chemical and Biological Engineering; University of Colorado; Boulder Colorado 80309
- BioFrontiers Institute, University of Colorado; Boulder Colorado 80309
- Materials Science and Engineering Program; University of Colorado; Boulder Colorado 80309
| |
Collapse
|
39
|
Yamakami Y, Miki K, Yonekura R, Kudo I, Fujii M, Ayusawa D. Molecular basis for premature senescence induced by surfactants in normal human cells. Biosci Biotechnol Biochem 2014; 78:2022-9. [PMID: 25198914 DOI: 10.1080/09168451.2014.946391] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Sublethal doses of surfactants as exemplified by NP-40 clearly induce premature senescence in normal human cells. To understand molecular basis for this phenomenon, we tried to suppress it with use of various inhibitors. An inhibitor of p38 of the MAPK family almost completely suppressed growth arrest and morphological changes induced by surfactants; however, other inhibitors tested had no effect. Oleic acid, a weak inducer of premature senescence, was found to suppress the effect of NP-40. Fluorescein-labeled oleic acid rapidly bound to the cell surface, and this binding was clearly blocked by pre-treatment with surfactants, suggesting that surfactants and oleic acid compete for binding to the cell surface. Moderate concentrations of cycloheximide, an inhibitor of protein synthesis, also suppressed the senescent features induced by NP-40. These results suggest that surfactants activate p38 signaling pathway by binding to the cell surface, and induce cellular senescence.
Collapse
Affiliation(s)
- Yoshimi Yamakami
- a Graduate School of Nanobioscience , Yokohama City University , Yokohama , Japan
| | | | | | | | | | | |
Collapse
|
40
|
Qiao H, Ding W, Sun S, Gong L, Gao D. Theoretical optimization of the removal of cryoprotective agents using a dilution-filtration system. Biomed Eng Online 2014; 13:120. [PMID: 25145611 PMCID: PMC4148939 DOI: 10.1186/1475-925x-13-120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 07/29/2014] [Indexed: 12/28/2022] Open
Abstract
Background In the cryopreservation of blood, removing cryoprotectants from the cryopreserved blood safely and effectively is always being focused on. In our previous work, a dilution-filtration system was proposed to achieve the efficient clearance of cryoprotectants from the cryopreserved blood. Method In this study, a theoretical method is presented to optimize the diluent flow rate in the system to further reduce the osmotic damage to red blood cells (RBCs) and shorten the washing time necessary to remove cryoprotective agents (CPAs), based on a discrete mass transfer concept. In the method, the diluent flow rate is automatically adjusted by a program code in each cycle to maximize the clearance of CPAs, whereas the volume of RBCs is always maintained below the upper volume tolerance limit. Results The results show that the optimized diluent flow rate can significantly decrease the washing time of CPAs. The washing time under the optimized diluent flow rate can be reduced by over 50%, compared to the one under the fixed diluent flow rate. In addition, the advantage of our method becomes more significant when the blood flow rate is lower, the dilution region volume is larger, the initial CPA concentration is higher, or the cell-swelling limit set by the system is smaller. Conclusion The proposed method for the dilution-filtration system is an ideal solution for not only guaranteeing the volume safety of RBCs but also shortening the washing time of CPAs. In practice, the optimization strategies provided here will be useful in the rapid preparation of cryopreserved blood for clinical use.
Collapse
Affiliation(s)
| | - Weiping Ding
- Center for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | | | | | | |
Collapse
|
41
|
Li P, Zhang S, Fan N, Xiao H, Zhang W, Zhang W, Wang H, Tang B. Quantitative Fluorescence Ratio Imaging of Intralysosomal Chloride Ions with Single Excitation/Dual Maximum Emission. Chemistry 2014; 20:11760-7. [DOI: 10.1002/chem.201402999] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Indexed: 12/11/2022]
|
42
|
Huttu M, Turunen S, Sokolinski V, Tiitu V, Lammi M, Korhonen RK. Effects of medium and temperature on cellular responses in the superficial zone of hypo-osmotically challenged articular cartilage. J Funct Biomater 2014; 3:544-55. [PMID: 23807905 PMCID: PMC3691548 DOI: 10.3390/jfb3030544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Osmotic loading of articular cartilage has been used to study cell-tissue interactions and mechanisms in chondrocyte volume regulation in situ. Since cell volume changes are likely to affect cell’s mechanotransduction, it is important to understand how environmental factors, such as composition of the immersion medium and temperature affect cell volume changes in situ in osmotically challenged articular cartilage. In this study, chondrocytes were imaged in situ with a confocal laser scanning microscope (CLSM) through cartilage surface before and 3 min and 120 min after a hypo-osmotic challenge. Samples were measured either in phosphate buffered saline (PBS, without glucose and Ca2+) or in Dulbecco’s modified Eagle’s medium (DMEM, with glucose and Ca2+), and at 21 °C or at 37 °C. In all groups, cell volumes increased shortly after the hypotonic challenge and then recovered back to the original volumes. At both observation time points, cell volume changes as a result of the osmotic challenge were similar in PBS and DMEM in both temperatures. Our results indicate that the initial chondrocyte swelling and volume recovery as a result of the hypo-osmotic challenge of cartilage are not dependent on commonly used immersion media or temperature.
Collapse
Affiliation(s)
- Mari Huttu
- Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland; (M.H.); (S.T.);
(V.S.); (R.K.)
| | - Siru Turunen
- Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland; (M.H.); (S.T.);
(V.S.); (R.K.)
| | - Viktoria Sokolinski
- Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland; (M.H.); (S.T.);
(V.S.); (R.K.)
| | - Virpi Tiitu
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland;
- SIB-Labs, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland
| | - Mikko Lammi
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland;
- Biocenter Kuopio, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland
- Author to whom correspondence should be addressed; ; Tel.: +358-40-355-3027; Fax: +358-17-162-131
| | - Rami K. Korhonen
- Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland; (M.H.); (S.T.);
(V.S.); (R.K.)
| |
Collapse
|
43
|
Nuclear Swelling Occurs during Premature Senescence Mediated by MAP Kinases in Normal Human Fibroblasts. Biosci Biotechnol Biochem 2014; 72:1122-5. [DOI: 10.1271/bbb.70760] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
44
|
Sublethal Doses of Surfactants Induce Premature Senescence in Normal Human Skin Cells. Biosci Biotechnol Biochem 2014; 75:1395-8. [DOI: 10.1271/bbb.110179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
45
|
Hoffmann EK, Lambert IH. Ion channels and transporters in the development of drug resistance in cancer cells. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130109. [PMID: 24493757 PMCID: PMC3917363 DOI: 10.1098/rstb.2013.0109] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Multi-drug resistance (MDR) to chemotherapy is the major challenge in the treatment of cancer. MDR can develop by numerous mechanisms including decreased drug uptake, increased drug efflux and the failure to undergo drug-induced apoptosis. Evasion of drug-induced apoptosis through modulation of ion transporters is the main focus of this paper and we demonstrate how pro-apoptotic ion channels are downregulated, while anti-apoptotic ion transporters are upregulated in MDR. We also discuss whether upregulation of ion transport proteins that are important for proliferation contribute to MDR. Finally, we discuss the possibility that the development of MDR involves sequential and localized upregulation of ion channels involved in proliferation and migration and a concomitant global and persistent downregulation of ion channels involved in apoptosis.
Collapse
Affiliation(s)
- Else K Hoffmann
- Department of Biology, University of Copenhagen, , 13 Universitetsparken, Copenhagen Ø 2100, Denmark
| | | |
Collapse
|
46
|
Woo JE, Kwon MY, Chung SW, Woo JM. Expression of TonEBP by Hypertonic and Hyperosmolar Stress in RGC-5 Cells. JOURNAL OF THE KOREAN OPHTHALMOLOGICAL SOCIETY 2014. [DOI: 10.3341/jkos.2014.55.8.1195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Jong Eun Woo
- Department of Ophthalmology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Min Young Kwon
- School of Biological Sciences, College of Natural Science, University of Ulsan, Ulsan, Korea
| | - Su Wol Chung
- School of Biological Sciences, College of Natural Science, University of Ulsan, Ulsan, Korea
| | - Je Moon Woo
- Department of Ophthalmology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| |
Collapse
|
47
|
Abstract
Cell shrinkage is a hallmark and contributes to signaling of apoptosis. Apoptotic cell shrinkage requires ion transport across the cell membrane involving K(+) channels, Cl(-) or anion channels, Na(+)/H(+) exchange, Na(+),K(+),Cl(-) cotransport, and Na(+)/K(+)ATPase. Activation of K(+) channels fosters K(+) exit with decrease of cytosolic K(+) concentration, activation of anion channels triggers exit of Cl(-), organic osmolytes, and HCO3(-). Cellular loss of K(+) and organic osmolytes as well as cytosolic acidification favor apoptosis. Ca(2+) entry through Ca(2+)-permeable cation channels may result in apoptosis by affecting mitochondrial integrity, stimulating proteinases, inducing cell shrinkage due to activation of Ca(2+)-sensitive K(+) channels, and triggering cell-membrane scrambling. Signaling involved in the modification of cell-volume regulatory ion transport during apoptosis include mitogen-activated kinases p38, JNK, ERK1/2, MEKK1, MKK4, the small G proteins Cdc42, and/or Rac and the transcription factor p53. Osmosensing involves integrin receptors, focal adhesion kinases, and tyrosine kinase receptors. Hyperosmotic shock leads to vesicular acidification followed by activation of acid sphingomyelinase, ceramide formation, release of reactive oxygen species, activation of the tyrosine kinase Yes with subsequent stimulation of CD95 trafficking to the cell membrane. Apoptosis is counteracted by mechanisms involved in regulatory volume increase (RVI), by organic osmolytes, by focal adhesion kinase, and by heat-shock proteins. Clearly, our knowledge on the interplay between cell-volume regulatory mechanisms and suicidal cell death is still far from complete and substantial additional experimental effort is needed to elucidate the role of cell-volume regulatory mechanisms in suicidal cell death.
Collapse
Affiliation(s)
- Florian Lang
- Institute of Physiology, University of Tübingen, Tübingen, Germany
| | | |
Collapse
|
48
|
Dall'asta V, Franchi-Gazzola R, Bussolati O, Sala R, Rotoli BM, Rossi PA, Uggeri J, Belletti S, Visigalli R, Gazzola GC. Emerging roles for sodium dependent amino acid transport in mesenchymal cells. Amino Acids 2013; 11:117-33. [PMID: 24178683 DOI: 10.1007/bf00813856] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/1996] [Accepted: 02/20/1996] [Indexed: 11/25/2022]
Abstract
The functional aspects of sodium dependent amino acid transport in mesenchymal cells are the subject of this contribution. In a survey of the cross-talk existing among the various transport mechanisms, particular attention is devoted to the role played by substrates shared by several transport systems, such as L-glutamine. Intracellular levels of glutamine are determined by the activity of System A, the main transducer of ion gradients built on by Na,K-ATPase into neutral amino acid gradients. Changes in the activity of the System are employed to regulate intracellular amino acid pool and, hence, cell volume. System A activity has been found increased in hypertonically shrunken cells and in proliferating cells. Under both these conditions cells have to increase their volume; therefore, System A can be employed as a convenient mechanism to increase cell volume both under hypertonic and isotonic conditions. Although less well characterized, the uptake of anionic amino acids performed by System X(-) AG may be involved in the maintenance of intracellular amino acid pool under conditions of limited availability of neutral amino acids substrates of System A.
Collapse
Affiliation(s)
- V Dall'asta
- Istituto di Patologia Generale, Università degli Studi di Parma, Via Gramsci 14, I-43100, Parma, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Dagger F, Valdivieso E, Marcano AK, Ayesta C. Regulatory volume decrease in Leishmania mexicana: effect of anti-microtubule drugs. Mem Inst Oswaldo Cruz 2013; 108:84-90. [PMID: 23440120 PMCID: PMC3974315 DOI: 10.1590/s0074-02762013000100014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 08/02/2012] [Indexed: 11/21/2022] Open
Abstract
The trypanosomatid cytoskeleton is responsible for the parasite's shape and it is modulated throughout the different stages of the parasite's life cycle. When parasites are exposed to media with reduced osmolarity, they initially swell, but subsequently undergo compensatory shrinking referred to as regulatory volume decrease (RVD). We studied the effects of anti-microtubule (Mt) drugs on the proliferation of Leishmania mexicana promastigotes and their capacity to undergo RVD. All of the drugs tested exerted antiproliferative effects of varying magnitudes [ansamitocin P3 (AP3)> trifluoperazine > taxol > rhizoxin > chlorpromazine]. No direct relationship was found between antiproliferative drug treatment and RVD. Similarly, Mt stability was not affected by drug treatment. Ansamitocin P3, which is effective at nanomolar concentrations, blocked amastigote-promastigote differentiation and was the only drug that impeded RVD, as measured by light dispersion. AP3 induced 2 kinetoplasts (Kt) 1 nucleus cells that had numerous flagella-associated Kts throughout the cell. These results suggest that the dramatic morphological changes induced by AP3 alter the spatial organisation and directionality of the Mts that are necessary for the parasite's hypotonic stress-induced shape change, as well as its recovery.
Collapse
Affiliation(s)
- Francehuli Dagger
- Laboratorio de Biología Celular de Parásitos, Instituto de Biología Experimental, Facultad de Ciencias, Universidad Central de Venezuela, Caracas, Venezuela.
| | | | | | | |
Collapse
|
50
|
Torre A, Trischitta F, Faggio C. Effect of CdCl2 on Regulatory Volume Decrease (RVD) in Mytilus galloprovincialis digestive cells. Toxicol In Vitro 2013; 27:1260-6. [DOI: 10.1016/j.tiv.2013.02.017] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 02/12/2013] [Accepted: 02/25/2013] [Indexed: 01/04/2023]
|