1
|
Lan T, Peng C, Yao X, Chan RST, Wei T, Rupanya A, Radakovic A, Wang S, Chen S, Lovell S, Snyder SA, Bogyo M, Dickinson BC. Discovery of Thioether-Cyclized Macrocyclic Covalent Inhibitors by mRNA Display. J Am Chem Soc 2024; 146:24053-24060. [PMID: 39136646 PMCID: PMC11837906 DOI: 10.1021/jacs.4c07851] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Macrocyclic peptides are promising scaffolds for the covalent ligand discovery. However, platforms enabling the direct identification of covalent macrocyclic ligands in a high-throughput manner are limited. In this study, we present an mRNA display platform allowing selection of covalent macrocyclic inhibitors using 1,3-dibromoacetone-vinyl sulfone (DBA-VS). Testcase selections on TEV protease resulted in potent covalent inhibitors with diverse cyclic structures, among which cTEV6-2, a macrocyclic peptide with a unique C-terminal cyclization, emerged as the most potent covalent inhibitor of TEV protease described to-date. This study outlines the workflow for integrating chemical functionalization─installation of a covalent warhead─with mRNA display and showcases its application in targeted covalent ligand discovery.
Collapse
Affiliation(s)
- Tong Lan
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Cheng Peng
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Xiyuan Yao
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | | | - Tongyao Wei
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Anuchit Rupanya
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | | | - Sijie Wang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Shiyu Chen
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Scott Lovell
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Scott A Snyder
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Bryan C Dickinson
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
- Chan Zuckerberg Biohub, Chicago, IL 60642
| |
Collapse
|
2
|
Hutchings CJ, Sato AK. Phage display technology and its impact in the discovery of novel protein-based drugs. Expert Opin Drug Discov 2024; 19:887-915. [PMID: 39074492 DOI: 10.1080/17460441.2024.2367023] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/07/2024] [Indexed: 07/31/2024]
Abstract
INTRODUCTION Phage display technology is a well-established versatile in vitro display technology that has been used for over 35 years to identify peptides and antibodies for use as reagents and therapeutics, as well as exploring the diversity of alternative scaffolds as another option to conventional therapeutic antibody discovery. Such successes have been responsible for spawning a range of biotechnology companies, as well as many complementary technologies devised to expedite the drug discovery process and resolve bottlenecks in the discovery workflow. AREAS COVERED In this perspective, the authors summarize the application of phage display for drug discovery and provide examples of protein-based drugs that have either been approved or are being developed in the clinic. The amenability of phage display to generate functional protein molecules to challenging targets and recent developments of strategies and techniques designed to harness the power of sampling diverse repertoires are highlighted. EXPERT OPINION Phage display is now routinely combined with cutting-edge technologies to deep-mine antibody-based repertoires, peptide, or alternative scaffold libraries generating a wealth of data that can be leveraged, e.g. via artificial intelligence, to enable the potential for clinical success in the discovery and development of protein-based therapeutics.
Collapse
|
3
|
Nishikawa S, Watanabe H, Terasaka N, Katoh T, Fujishima K. De Novo Single-Stranded RNA-Binding Peptides Discovered by Codon-Restricted mRNA Display. Biomacromolecules 2024; 25:355-365. [PMID: 38051119 PMCID: PMC10777347 DOI: 10.1021/acs.biomac.3c01024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/07/2023]
Abstract
RNA-binding proteins participate in diverse cellular processes, including DNA repair, post-transcriptional modification, and cancer progression through their interactions with RNAs, making them attractive for biotechnological applications. While nature provides an array of naturally occurring RNA-binding proteins, developing de novo RNA-binding peptides remains challenging. In particular, tailoring peptides to target single-stranded RNA with low complexity is difficult due to the inherent structural flexibility of RNA molecules. Here, we developed a codon-restricted mRNA display and identified multiple de novo peptides from a peptide library that bind to poly(C) and poly(A) RNA with KDs ranging from micromolar to submicromolar concentrations. One of the newly identified peptides is capable of binding to the cytosine-rich sequences of the oncogenic Cdk6 3'UTR RNA and MYU lncRNA, with affinity comparable to that of the endogenous binding protein. Hence, we present a novel platform for discovering de novo single-stranded RNA-binding peptides that offer promising avenues for regulating RNA functions.
Collapse
Affiliation(s)
- Shota Nishikawa
- Earth-Life
Science Institute, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- School
of Life Science and Technology, Tokyo Institute
of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Hidenori Watanabe
- Earth-Life
Science Institute, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Naohiro Terasaka
- Earth-Life
Science Institute, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Takayuki Katoh
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kosuke Fujishima
- Earth-Life
Science Institute, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- Graduate
School of Media and Governance, Keio University, Fujisawa 252-0882, Japan
| |
Collapse
|
4
|
Brango-Vanegas J, Leite ML, de Oliveira KBS, da Cunha NB, Franco OL. From exploring cancer and virus targets to discovering active peptides through mRNA display. Pharmacol Ther 2023; 252:108559. [PMID: 37952905 DOI: 10.1016/j.pharmthera.2023.108559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/26/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
During carcinogenesis, neoplastic cells accumulate mutations in genes important for cellular homeostasis, producing defective proteins. Viral infections occur when viral capsid proteins bind to the host cell receptor, allowing the virus to enter the cells. In both cases, proteins play important roles in cancer development and viral infection, so these targets can be exploited to develop alternative treatments. mRNA display technology is a very powerful tool for the development of peptides capable of acting on specific targets in neoplastic cells or on viral capsid proteins. mRNA display technology allows the selection and evolution of peptides with desired functional properties from libraries of many nucleic acid variants. Among other advantages of this technology, the use of flexizymes allows the production of peptides with unnatural amino acid residues, which can enhance the activity of these molecules. From target immobilization, peptides with greater specificity for the targets of interest are generated during the selection rounds. Herein, we will explore the use of mRNA display technology for the development of active peptides after successive rounds of selection, using proteins present in neoplastic cells and viral particles as targets.
Collapse
Affiliation(s)
- José Brango-Vanegas
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil
| | - Michel Lopes Leite
- Departamento de Biologia Molecular, Instituto de Ciências Biológicas, Universidade de Brasília, Campus Darcy Ribeiro, Brasília, DF, Brazil
| | - Kamila Botelho Sampaio de Oliveira
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil
| | - Nicolau Brito da Cunha
- Universidade de Brasília, Faculdade de Agronomia e Medicina Veterinária, Campus Darcy Ribeiro, Brasília, DF, Brazil
| | - Octávio Luiz Franco
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil.
| |
Collapse
|
5
|
Protein Transduction Domain-Mediated Delivery of Recombinant Proteins and In Vitro Transcribed mRNAs for Protein Replacement Therapy of Human Severe Genetic Mitochondrial Disorders: The Case of Sco2 Deficiency. Pharmaceutics 2023; 15:pharmaceutics15010286. [PMID: 36678915 PMCID: PMC9861957 DOI: 10.3390/pharmaceutics15010286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/31/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
Mitochondrial disorders represent a heterogeneous group of genetic disorders with variations in severity and clinical outcomes, mostly characterized by respiratory chain dysfunction and abnormal mitochondrial function. More specifically, mutations in the human SCO2 gene, encoding the mitochondrial inner membrane Sco2 cytochrome c oxidase (COX) assembly protein, have been implicated in the mitochondrial disorder fatal infantile cardioencephalomyopathy with COX deficiency. Since an effective treatment is still missing, a protein replacement therapy (PRT) was explored using protein transduction domain (PTD) technology. Therefore, the human recombinant full-length mitochondrial protein Sco2, fused to TAT peptide (a common PTD), was produced (fusion Sco2 protein) and successfully transduced into fibroblasts derived from a SCO2/COX-deficient patient. This PRT contributed to effective COX assembly and partial recovery of COX activity. In mice, radiolabeled fusion Sco2 protein was biodistributed in the peripheral tissues of mice and successfully delivered into their mitochondria. Complementary to that, an mRNA-based therapeutic approach has been more recently considered as an innovative treatment option. In particular, a patented, novel PTD-mediated IVT-mRNA delivery platform was developed and applied in recent research efforts. PTD-IVT-mRNA of full-length SCO2 was successfully transduced into the fibroblasts derived from a SCO2/COX-deficient patient, translated in host ribosomes into a nascent chain of human Sco2, imported into mitochondria, and processed to the mature protein. Consequently, the recovery of reduced COX activity was achieved, thus suggesting the potential of this mRNA-based technology for clinical translation as a PRT for metabolic/genetic disorders. In this review, such research efforts will be comprehensibly presented and discussed to elaborate their potential in clinical application and therapeutic usefulness.
Collapse
|
6
|
Yang K, Wang C, Kreutzberger AJB, Ojha R, Kuivanen S, Couoh-Cardel S, Muratcioglu S, Eisen TJ, White KI, Held RG, Subramanian S, Marcus K, Pfuetzner RA, Esquivies L, Doyle CA, Kuriyan J, Vapalahti O, Balistreri G, Kirchhausen T, Brunger AT. Nanomolar inhibition of SARS-CoV-2 infection by an unmodified peptide targeting the prehairpin intermediate of the spike protein. Proc Natl Acad Sci U S A 2022; 119:e2210990119. [PMID: 36122200 PMCID: PMC9546559 DOI: 10.1073/pnas.2210990119] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/16/2022] [Indexed: 12/02/2022] Open
Abstract
Variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) challenge currently available coronavirus disease 2019 vaccines and monoclonal antibody therapies through epitope change on the receptor binding domain of the viral spike glycoprotein. Hence, there is a specific urgent need for alternative antivirals that target processes less likely to be affected by mutation, such as the membrane fusion step of viral entry into the host cell. One such antiviral class includes peptide inhibitors, which block formation of the so-called heptad repeat 1 and 2 (HR1HR2) six-helix bundle of the SARS-CoV-2 spike (S) protein and thus interfere with viral membrane fusion. We performed structural studies of the HR1HR2 bundle, revealing an extended, well-folded N-terminal region of HR2 that interacts with the HR1 triple helix. Based on this structure, we designed an extended HR2 peptide that achieves single-digit nanomolar inhibition of SARS-CoV-2 in cell-based and virus-based assays without the need for modifications such as lipidation or chemical stapling. The peptide also strongly inhibits all major SARS-CoV-2 variants to date. This extended peptide is ∼100-fold more potent than all previously published short, unmodified HR2 peptides, and it has a very long inhibition lifetime after washout in virus infection assays, suggesting that it targets a prehairpin intermediate of the SARS-CoV-2 S protein. Together, these results suggest that regions outside the HR2 helical region may offer new opportunities for potent peptide-derived therapeutics for SARS-CoV-2 and its variants, and even more distantly related viruses, and provide further support for the prehairpin intermediate of the S protein.
Collapse
Affiliation(s)
- Kailu Yang
- HHMI, Stanford University, Stanford, CA 94305
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305
- Department of Structural Biology, Stanford University, Stanford, CA 94305
- Department of Photon Science, Stanford University, Stanford, CA 94305
| | - Chuchu Wang
- HHMI, Stanford University, Stanford, CA 94305
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305
- Department of Structural Biology, Stanford University, Stanford, CA 94305
- Department of Photon Science, Stanford University, Stanford, CA 94305
| | - Alex J. B. Kreutzberger
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115
| | - Ravi Ojha
- Department of Virology, University of Helsinki, Helsinki 00290, Finland
| | - Suvi Kuivanen
- Department of Virology, University of Helsinki, Helsinki 00290, Finland
| | - Sergio Couoh-Cardel
- HHMI, Stanford University, Stanford, CA 94305
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305
- Department of Structural Biology, Stanford University, Stanford, CA 94305
- Department of Photon Science, Stanford University, Stanford, CA 94305
| | - Serena Muratcioglu
- HHMI, University of California, Berkeley, Berkeley, CA 94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Timothy J. Eisen
- HHMI, University of California, Berkeley, Berkeley, CA 94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - K. Ian White
- HHMI, Stanford University, Stanford, CA 94305
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305
- Department of Structural Biology, Stanford University, Stanford, CA 94305
- Department of Photon Science, Stanford University, Stanford, CA 94305
| | - Richard G. Held
- HHMI, Stanford University, Stanford, CA 94305
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305
- Department of Structural Biology, Stanford University, Stanford, CA 94305
- Department of Photon Science, Stanford University, Stanford, CA 94305
| | - Subu Subramanian
- HHMI, University of California, Berkeley, Berkeley, CA 94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Kendra Marcus
- HHMI, University of California, Berkeley, Berkeley, CA 94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Richard A. Pfuetzner
- HHMI, Stanford University, Stanford, CA 94305
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305
- Department of Structural Biology, Stanford University, Stanford, CA 94305
- Department of Photon Science, Stanford University, Stanford, CA 94305
| | - Luis Esquivies
- HHMI, Stanford University, Stanford, CA 94305
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305
- Department of Structural Biology, Stanford University, Stanford, CA 94305
- Department of Photon Science, Stanford University, Stanford, CA 94305
| | - Catherine A. Doyle
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22903
| | - John Kuriyan
- HHMI, University of California, Berkeley, Berkeley, CA 94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Olli Vapalahti
- Department of Virology, University of Helsinki, Helsinki 00290, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki 00290, Finland
- Helsinki University Hospital Diagnostic Center, Clinical Microbiology, University of Helsinki, Helsinki 00290, Finland
| | | | - Tom Kirchhausen
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Axel T. Brunger
- HHMI, Stanford University, Stanford, CA 94305
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305
- Department of Structural Biology, Stanford University, Stanford, CA 94305
- Department of Photon Science, Stanford University, Stanford, CA 94305
| |
Collapse
|
7
|
Yang K, Wang C, Kreutzberger AJB, Ojha R, Kuivanen S, Couoh-Cardel S, Muratcioglu S, Eisen TJ, White KI, Held RG, Subramanian S, Marcus K, Pfuetzner RA, Esquivies L, Doyle CA, Kuriyan J, Vapalahti O, Balistreri G, Kirchhausen T, Brunger AT. Nanomolar inhibition of SARS-CoV-2 infection by an unmodified peptide targeting the pre-hairpin intermediate of the spike protein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.08.11.503553. [PMID: 35982670 PMCID: PMC9387137 DOI: 10.1101/2022.08.11.503553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) challenge currently available COVID-19 vaccines and monoclonal antibody therapies through epitope change on the receptor binding domain of the viral spike glycoprotein. Hence, there is a specific urgent need for alternative antivirals that target processes less likely to be affected by mutation, such as the membrane fusion step of viral entry into the host cell. One such antiviral class includes peptide inhibitors which block formation of the so-called HR1HR2 six-helix bundle of the SARS-CoV-2 spike (S) protein and thus interfere with viral membrane fusion. Here we performed structural studies of the HR1HR2 bundle, revealing an extended, well-folded N-terminal region of HR2 that interacts with the HR1 triple helix. Based on this structure, we designed an extended HR2 peptide that achieves single-digit nanomolar inhibition of SARS-CoV-2 in cell-based fusion, VSV-SARS-CoV-2 chimera, and authentic SARS-CoV-2 infection assays without the need for modifications such as lipidation or chemical stapling. The peptide also strongly inhibits all major SARS-CoV-2 variants to date. This extended peptide is ~100-fold more potent than all previously published short, unmodified HR2 peptides, and it has a very long inhibition lifetime after washout in virus infection assays, suggesting that it targets a pre-hairpin intermediate of the SARS-CoV-2 S protein. Together, these results suggest that regions outside the HR2 helical region may offer new opportunities for potent peptide-derived therapeutics for SARS-CoV-2 and its variants, and even more distantly related viruses, and provide further support for the pre-hairpin intermediate of the S protein. Significance Statement SARS-CoV-2 infection requires fusion of viral and host membranes, mediated by the viral spike glycoprotein (S). Due to the importance of viral membrane fusion, S has been a popular target for developing vaccines and therapeutics. We discovered a simple peptide that inhibits infection by all major variants of SARS-CoV-2 with nanomolar efficacies. In marked contrast, widely used shorter peptides that lack a key N-terminal extension are about 100 x less potent than this peptide. Our results suggest that a simple peptide with a suitable sequence can be a potent and cost-effective therapeutic against COVID-19 and they provide new insights at the virus entry mechanism.
Collapse
|
8
|
Melsen PRA, Yoshisada R, Jongkees SAK. Opportunities for Expanding Encoded Chemical Diversification and Improving Hit Enrichment in mRNA-Displayed Peptide Libraries. Chembiochem 2022; 23:e202100685. [PMID: 35100479 PMCID: PMC9306583 DOI: 10.1002/cbic.202100685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/27/2022] [Indexed: 11/07/2022]
Abstract
DNA-encoded small-molecule libraries and mRNA displayed peptide libraries both use numerically large pools of oligonucleotide-tagged molecules to identify potential hits for protein targets. They differ dramatically, however, in the 'drug-likeness' of the molecules that each can be used to discover. We give here an overview of the two techniques, comparing some advantages and disadvantages of each, and suggest areas where particularly mRNA display can benefit from adopting advances developed with DNA-encoded small molecule libraries. We outline cases where chemical modification of the peptide library has already been used in mRNA display, and survey opportunities to expand this using examples from DNA-encoded small molecule libraries. We also propose potential opportunities for encoding such reactions within the mRNA/cDNA tag of an mRNA-displayed peptide library to allow a more diversity-oriented approach to library modification. Finally, we outline alternate approaches for enriching target-binding hits from a pooled and tagged library, and close by detailing several examples of how an adjusted mRNA-display based approach could be used to discover new 'drug-like' modified small peptides.
Collapse
Affiliation(s)
- Paddy R. A. Melsen
- Department of Chemistry and Pharmaceutical SciencesVU AmsterdamDe Boelelaan 11081081 HZAmsterdamThe Netherlands
| | - Ryoji Yoshisada
- Department of Chemistry and Pharmaceutical SciencesVU AmsterdamDe Boelelaan 11081081 HZAmsterdamThe Netherlands
| | - Seino A. K. Jongkees
- Department of Chemistry and Pharmaceutical SciencesVU AmsterdamDe Boelelaan 11081081 HZAmsterdamThe Netherlands
| |
Collapse
|
9
|
Tanaka S, Olson CA, Barnes CO, Higashide W, Gonzalez M, Taft J, Richardson A, Martin-Fernandez M, Bogunovic D, Gnanapragasam PNP, Bjorkman PJ, Spilman P, Niazi K, Rabizadeh S, Soon-Shiong P. Rapid identification of neutralizing antibodies against SARS-CoV-2 variants by mRNA display. Cell Rep 2022; 38:110348. [PMID: 35114110 PMCID: PMC8769934 DOI: 10.1016/j.celrep.2022.110348] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/06/2021] [Accepted: 01/14/2022] [Indexed: 11/26/2022] Open
Abstract
The increasing prevalence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with the ability to escape existing humoral protection conferred by previous infection and/or immunization necessitates the discovery of broadly reactive neutralizing antibodies (nAbs). Utilizing mRNA display, we identify a set of antibodies against SARS-CoV-2 spike (S) proteins and characterize the structures of nAbs that recognize epitopes in the S1 subunit of the S glycoprotein. These structural studies reveal distinct binding modes for several antibodies, including the targeting of rare cryptic epitopes in the receptor-binding domain (RBD) of S that interact with angiotensin-converting enzyme 2 (ACE2) to initiate infection, as well as the S1 subdomain 1. Further, we engineer a potent ACE2-blocking nAb to sustain binding to S RBD with the E484K and L452R substitutions found in multiple SARS-CoV-2 variants. We demonstrate that mRNA display is an approach for the rapid identification of nAbs that can be used in combination to combat emerging SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Shiho Tanaka
- ImmunityBio, Inc., 9920 Jefferson Boulevard, Culver City, CA 90232, USA
| | - C Anders Olson
- ImmunityBio, Inc., 9920 Jefferson Boulevard, Culver City, CA 90232, USA.
| | - Christopher O Barnes
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Wendy Higashide
- ImmunityBio, Inc., 9920 Jefferson Boulevard, Culver City, CA 90232, USA
| | - Marcos Gonzalez
- ImmunityBio, Inc., 9920 Jefferson Boulevard, Culver City, CA 90232, USA
| | - Justin Taft
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, 1 Gustave Lane, Levy Plaza, New York, NY 10029-5674, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave Lane, Levy Plaza, New York, NY 10029-5674, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave Lane, Levy Plaza, New York, NY 10029-5674, USA
| | - Ashley Richardson
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, 1 Gustave Lane, Levy Plaza, New York, NY 10029-5674, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, 1 Gustave Lane, Levy Plaza, New York, NY 10029-5674, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave Lane, Levy Plaza, New York, NY 10029-5674, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave Lane, Levy Plaza, New York, NY 10029-5674, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave Lane, Levy Plaza, New York, NY 10029-5674, USA
| | - Marta Martin-Fernandez
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, 1 Gustave Lane, Levy Plaza, New York, NY 10029-5674, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, 1 Gustave Lane, Levy Plaza, New York, NY 10029-5674, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave Lane, Levy Plaza, New York, NY 10029-5674, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave Lane, Levy Plaza, New York, NY 10029-5674, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave Lane, Levy Plaza, New York, NY 10029-5674, USA
| | - Dusan Bogunovic
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, 1 Gustave Lane, Levy Plaza, New York, NY 10029-5674, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, 1 Gustave Lane, Levy Plaza, New York, NY 10029-5674, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave Lane, Levy Plaza, New York, NY 10029-5674, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave Lane, Levy Plaza, New York, NY 10029-5674, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave Lane, Levy Plaza, New York, NY 10029-5674, USA
| | - Priyanthi N P Gnanapragasam
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Patricia Spilman
- ImmunityBio, Inc., 9920 Jefferson Boulevard, Culver City, CA 90232, USA
| | - Kayvan Niazi
- ImmunityBio, Inc., 9920 Jefferson Boulevard, Culver City, CA 90232, USA
| | | | | |
Collapse
|
10
|
Tanaka S, Anders Olson C, Barnes CO, Higashide W, Gonzalez M, Taft J, Richardson A, Martin-Fernandez M, Bogunovic D, Gnanapragasam PNP, Bjorkman PJ, Spilman P, Niazi K, Rabizadeh S, Soon-Shiong P. Rapid Identification of Neutralizing Antibodies against SARS-CoV-2 Variants by mRNA Display. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.09.14.460356. [PMID: 34545362 PMCID: PMC8452091 DOI: 10.1101/2021.09.14.460356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The increasing prevalence of SARS-CoV-2 variants with the ability to escape existing humoral protection conferred by previous infection and/or immunization necessitates the discovery of broadly-reactive neutralizing antibodies (nAbs). Utilizing mRNA display, we identified a set of antibodies against SARS-CoV-2 spike (S) proteins and characterized the structures of nAbs that recognized epitopes in the S1 subunit of the S glycoprotein. These structural studies revealed distinct binding modes for several antibodies, including targeting of rare cryptic epitopes in the receptor-binding domain (RBD) of S that interacts with angiotensin- converting enzyme 2 (ACE2) to initiate infection, as well as the S1 subdomain 1. A potent ACE2-blocking nAb was further engineered to sustain binding to S RBD with the E484K and L452R substitutions found in multiple SARS-CoV-2 variants. We demonstrate that mRNA display is a promising approach for the rapid identification of nAbs that can be used in combination to combat emerging SARS-CoV-2 variants.
Collapse
|
11
|
Kamalinia G, Grindel BJ, Takahashi TT, Millward SW, Roberts RW. Directing evolution of novel ligands by mRNA display. Chem Soc Rev 2021; 50:9055-9103. [PMID: 34165126 PMCID: PMC8725378 DOI: 10.1039/d1cs00160d] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
mRNA display is a powerful biological display platform for the directed evolution of proteins and peptides. mRNA display libraries covalently link the displayed peptide or protein (phenotype) with the encoding genetic information (genotype) through the biochemical activity of the small molecule puromycin. Selection for peptide/protein function is followed by amplification of the linked genetic material and generation of a library enriched in functional sequences. Iterative selection cycles are then performed until the desired level of function is achieved, at which time the identity of candidate peptides can be obtained by sequencing the genetic material. The purpose of this review is to discuss the development of mRNA display technology since its inception in 1997 and to comprehensively review its use in the selection of novel peptides and proteins. We begin with an overview of the biochemical mechanism of mRNA display and its variants with a particular focus on its advantages and disadvantages relative to other biological display technologies. We then discuss the importance of scaffold choice in mRNA display selections and review the results of selection experiments with biological (e.g., fibronectin) and linear peptide library architectures. We then explore recent progress in the development of "drug-like" peptides by mRNA display through the post-translational covalent macrocyclization and incorporation of non-proteogenic functionalities. We conclude with an examination of enabling technologies that increase the speed of selection experiments, enhance the information obtained in post-selection sequence analysis, and facilitate high-throughput characterization of lead compounds. We hope to provide the reader with a comprehensive view of current state and future trajectory of mRNA display and its broad utility as a peptide and protein design tool.
Collapse
Affiliation(s)
- Golnaz Kamalinia
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA.
| | | | | | | | | |
Collapse
|
12
|
Porosk L, Gaidutšik I, Langel Ü. Approaches for the discovery of new cell-penetrating peptides. Expert Opin Drug Discov 2020; 16:553-565. [PMID: 33874824 DOI: 10.1080/17460441.2021.1851187] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Introduction: The capability of cell-penetrating peptides (CPP), also known as protein transduction domains (PTD), to enter into cells possibly with an attached cargo, makes their application as delivery vectors or as direct therapeutics compelling. They are generally biocompatible, nontoxic, and easy to synthesize and modify. Three decades after the discovery of the first CPPs, ~2,000 CPP sequences have been identified, and many more predicted. Nevertheless, the field has a strong commitment to authenticate new, more efficient, and specific CPPs.Areas covered: Although a scattering of CPPs have been found by chance, various systematic approaches have been developed and refined over the years to directly aid the identification and depiction of new peptide-based delivery vectors or therapeutics. Here, the authors give an overview of CPPs, and review various approaches of discovering new ones. An emphasis is placed on in silico methods, as these have advanced rapidly in recent years.Expert opinion: Although there are many known CPPs, there is a need to find more efficient and specific CPPs. Several approaches are used to identify such sequences. The success of these approaches depends on the advancement of others and the successful prediction of CPP sequences relies on experimental data.
Collapse
Affiliation(s)
- Ly Porosk
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Ilja Gaidutšik
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Ülo Langel
- Department Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| |
Collapse
|
13
|
Grindel B, Engel BJ, Hall CG, Kelderhouse LE, Lucci A, Zacharias NM, Takahashi TT, Millward SW. Mammalian Expression and In Situ Biotinylation of Extracellular Protein Targets for Directed Evolution. ACS OMEGA 2020; 5:25440-25455. [PMID: 33043224 PMCID: PMC7542843 DOI: 10.1021/acsomega.0c03990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 09/08/2020] [Indexed: 05/17/2023]
Abstract
Directed evolution is a powerful tool for the selection of functional ligands from molecular libraries. Extracellular domains (ECDs) of cell surface receptors are common selection targets for therapeutic and imaging agent development. Unfortunately, these proteins are often post-translationally modified and are therefore unsuitable for expression in bacterial systems. Directional immobilization of these targets is further hampered by the absence of biorthogonal groups for site-specific chemical conjugation. We have developed a nonadherent mammalian expression system for rapid, high-yield expression of biotinylated ECDs. ECDs from EGFR, HER2, and HER3 were site-specifically biotinylated in situ and recovered from the cell culture supernatant with yields of up to 10 mg/L at >90% purity. Biotinylated ECDs also contained a protease cleavage site for rapid and selective release of the ECD after immobilization on avidin/streptavidin resins and library binding. A model mRNA display selection round was carried out against the HER2 ECD with the HER2 affibody expressed as an mRNA-protein fusion. HER2 affibody-mRNA fusions were selectively released by thrombin and quantitative PCR revealed substantial improvements in the enrichment of functional affibody-mRNA fusions relative to direct PCR amplification of the resin-bound target. This methodology allows rapid purification of high-quality targets for directed evolution and selective elution of functional sequences at the conclusion of each selection round.
Collapse
Affiliation(s)
- Brian
J. Grindel
- Department
of Cancer Systems Imaging, MD Anderson Cancer
Center, Houston, Texas 77030, United States
| | - Brian J. Engel
- Department
of Cancer Systems Imaging, MD Anderson Cancer
Center, Houston, Texas 77030, United States
| | - Carolyn G. Hall
- Department
of Breast Surgical Oncology, MD Anderson
Cancer Center, Houston, Texas 77030, United States
| | - Lindsay E. Kelderhouse
- Department
of Cancer Systems Imaging, MD Anderson Cancer
Center, Houston, Texas 77030, United States
| | - Anthony Lucci
- Department
of Breast Surgical Oncology, MD Anderson
Cancer Center, Houston, Texas 77030, United States
| | - Niki M. Zacharias
- Department
of Urology, MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Terry T. Takahashi
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Steven W. Millward
- Department
of Cancer Systems Imaging, MD Anderson Cancer
Center, Houston, Texas 77030, United States
| |
Collapse
|
14
|
Cui Z, Johnston WA, Alexandrov K. Cell-Free Approach for Non-canonical Amino Acids Incorporation Into Polypeptides. Front Bioeng Biotechnol 2020; 8:1031. [PMID: 33117774 PMCID: PMC7550873 DOI: 10.3389/fbioe.2020.01031] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022] Open
Abstract
Synthetic biology holds promise to revolutionize the life sciences and biomedicine via expansion of macromolecular diversity outside the natural chemical space. Use of non-canonical amino acids (ncAAs) via codon reassignment has found diverse applications in protein structure and interaction analysis, introduction of post-translational modifications, production of constrained peptides, antibody-drug conjugates, and novel enzymes. However, simultaneously encoding multiple ncAAs in vivo requires complex engineering and is sometimes restricted by the cell's poor uptake of ncAAs. In contrast the open nature of cell-free protein synthesis systems offers much greater freedom for manipulation and repurposing of the biosynthetic machinery by controlling the level and identity of translational components and reagents, and allows simultaneous incorporation of multiple ncAAs with non-canonical side chains and even backbones (N-methyl, D-, β-amino acids, α-hydroxy acids etc.). This review focuses on the two most used Escherichia coli-based cell-free protein synthesis systems; cell extract- and PURE-based systems. The former is a biological mixture with >500 proteins, while the latter consists of 38 individually purified biomolecules. We delineate compositions of these two systems and discuss their respective advantages and applications. Also, we dissect the translational components required for ncAA incorporation and compile lists of ncAAs that can be incorporated into polypeptides via different acylation approaches. We highlight the recent progress in using unnatural nucleobase pairs to increase the repertoire of orthogonal codons, as well as using tRNA-specific ribozymes for in situ acylation. We summarize advances in engineering of translational machinery such as tRNAs, aminoacyl-tRNA synthetases, elongation factors, and ribosomes to achieve efficient incorporation of structurally challenging ncAAs. We note that, many engineered components of biosynthetic machinery are developed for the use in vivo but are equally applicable to the in vitro systems. These are included in the review to provide a comprehensive overview for ncAA incorporation and offer new insights for the future development in cell-free systems. Finally, we highlight the exciting progress in the genomic engineering, resulting in E. coli strains free of amber and some redundant sense codons. These strains can be used for preparation of cell extracts offering multiple reassignment options.
Collapse
Affiliation(s)
- Zhenling Cui
- Synthetic Biology Laboratory, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - Wayne A Johnston
- Synthetic Biology Laboratory, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - Kirill Alexandrov
- Synthetic Biology Laboratory, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
15
|
Evenson WE, Lin WZS, Pang K, Czaja AT, Jalali-Yazdi F, Takahashi TT, Malmstadt N, Roberts RW. Enabling Flow-Based Kinetic Off-Rate Selections Using a Microfluidic Enrichment Device. Anal Chem 2020; 92:10218-10222. [PMID: 32633489 PMCID: PMC10368462 DOI: 10.1021/acs.analchem.0c01867] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Modern genomic sequencing efforts are identifying potential diagnostic and therapeutic targets more rapidly than existing methods can generate the peptide- and protein-based ligands required to study them. To address this problem, we have developed a microfluidic enrichment device (MFED) enabling kinetic off-rate selection without the use of exogenous competitor. We tuned the conditions of the device (bed volume, flow rate, immobilized target) such that modest, readily achievable changes in flow rates favor formation or dissociation of target-ligand complexes based on affinity. Simple kinetic equations can be used to describe the behavior of ligand binding in the MFED and the kinetic rate constants observed agree with independent measurements. We demonstrate the utility of the MFED by showing a 4-fold improvement in enrichment compared to standard selection. The MFED described here provides a route to simultaneously bias pools toward high-affinity ligands while reducing the demand for target-protein to less than a nanomole per selection.
Collapse
Affiliation(s)
- William E Evenson
- Department of Chemistry, University of Southern California, 3620 McClintock Avenue, SGM 418, Los Angeles, California 90089, United States
| | - Wan-Zhen Sophie Lin
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, 925 Bloom Walk, HED 216, Los Angeles, California 90089, United States
| | - Kenmond Pang
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, 925 Bloom Walk, HED 216, Los Angeles, California 90089, United States
| | - Alexander T Czaja
- Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Denney Research Center (DRB) 140, Los Angeles, California 90089, United States
| | - Farzad Jalali-Yazdi
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, 925 Bloom Walk, HED 216, Los Angeles, California 90089, United States
| | - Terry T Takahashi
- Department of Chemistry, University of Southern California, 3620 McClintock Avenue, SGM 418, Los Angeles, California 90089, United States
| | - Noah Malmstadt
- Department of Chemistry, University of Southern California, 3620 McClintock Avenue, SGM 418, Los Angeles, California 90089, United States.,Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, 925 Bloom Walk, HED 216, Los Angeles, California 90089, United States.,Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Denney Research Center (DRB) 140, Los Angeles, California 90089, United States.,USC Norris Comprehensive Cancer Center, 1441 Eastlake Avenue, Los Angeles, California 90033, United States
| | - Richard W Roberts
- Department of Chemistry, University of Southern California, 3620 McClintock Avenue, SGM 418, Los Angeles, California 90089, United States.,Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, 925 Bloom Walk, HED 216, Los Angeles, California 90089, United States.,Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Denney Research Center (DRB) 140, Los Angeles, California 90089, United States.,USC Norris Comprehensive Cancer Center, 1441 Eastlake Avenue, Los Angeles, California 90033, United States.,Department of Molecular and Computational Biology, University of Southern California, 1050 Child Way, RRI 201, Los Angeles, California 90089, United States
| |
Collapse
|
16
|
Chu XY, Zhang HY. Cofactors as Molecular Fossils To Trace the Origin and Evolution of Proteins. Chembiochem 2020; 21:3161-3168. [PMID: 32515532 DOI: 10.1002/cbic.202000027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 06/03/2020] [Indexed: 12/16/2022]
Abstract
Due to their early origin and extreme conservation, cofactors are valuable molecular fossils for tracing the origin and evolution of proteins. First, as the order of protein folds binding with cofactors roughly coincides with protein-fold chronology, cofactors are considered to have facilitated the origin of primitive proteins by selecting them from pools of random amino acid sequences. Second, in the subsequent evolution of proteins, cofactors still played an important role. More interestingly, as metallic cofactors evolved with geochemical variations, some geochemical events left imprints in the chronology of protein architecture; this provides further evidence supporting the coevolution of biochemistry and geochemistry. In this paper, we attempt to review the molecular fossils used in tracing the origin and evolution of proteins, with a special focus on cofactors.
Collapse
Affiliation(s)
- Xin-Yi Chu
- Hubei Key Laboratory of Agricultural Bioinformatics College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hong-Yu Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
17
|
Engel BJ, Grindel BJ, Gray JP, Millward SW. Purification of poly-dA oligonucleotides and mRNA-protein fusions with dT 25-OAS resin. Bioorg Med Chem Lett 2020; 30:126934. [PMID: 31919017 PMCID: PMC6986445 DOI: 10.1016/j.bmcl.2019.126934] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/17/2019] [Accepted: 12/23/2019] [Indexed: 11/21/2022]
Abstract
Solid-phase resins functionalized with poly-deoxythymidine (dT) oligos facilitate purification of poly-adenylated molecules from solution through high affinity, high selectivity base-pairing interactions. These resins are commonly used to purify messenger RNA (mRNA) from complex biological mixtures as well as mRNA-protein fusion molecules for mRNA Display selections. Historically, dT-conjugated cellulose was the primary resin for poly-dA purification, but its scarcity has prompted the development of alternative resins, most notably dT-functionalized magnetic beads. In order to develop a cost-effective alternative to commercially available poly-dT resins for large-scale purifications of mRNA-protein fusions, we investigated the purification properties of dT25-conjugated Oligo Affinity Support resin (dT25-OAS) alongside poly-dT14 magnetic beads and dT25-cellulose. dT25-OAS was found to have the highest dA21 oligo binding capacity at 4 pmol/µg, followed by dT14-magnetic beads (1.1 pmol/µg) and dT25-cellulose (0.7 pmol/µg). To determine the resin specificity in the context of a complex biological mixture, we translated mRNA-protein fusions consisting of a radiolabeled Her2 affibody fused to its encoding mRNA. Commercial dT25-cellulose showed the highest mRNA-affibody purification specificity, followed by dT25-OAS and dT14-magnetic beads. Overall, dT25-OAS showed exceptionally high binding capacity and low background binding, making it an attractive alternative for large-scale mRNA purification and mRNA Display library enrichment.
Collapse
Affiliation(s)
- Brian J Engel
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, United States
| | - Brian J Grindel
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, United States
| | - Joshua P Gray
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, United States
| | - Steven W Millward
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, United States.
| |
Collapse
|
18
|
Atangcho L, Navaratna T, Thurber GM. Hitting Undruggable Targets: Viewing Stabilized Peptide Development through the Lens of Quantitative Systems Pharmacology. Trends Biochem Sci 2019; 44:241-257. [PMID: 30563724 PMCID: PMC6661118 DOI: 10.1016/j.tibs.2018.11.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/31/2018] [Accepted: 11/22/2018] [Indexed: 01/10/2023]
Abstract
Stabilized peptide therapeutics have the potential to hit currently undruggable targets, dramatically expanding the druggable genome. However, major obstacles to their development include poor intracellular delivery, rapid degradation, low target affinity, and membrane toxicity. With the emergence of multiple stabilization techniques and screening technologies, the high efficacy of various bioactive peptides has been demonstrated in vitro, albeit with limited success in vivo. We discuss here the chemical and pharmacokinetic barriers to achieving in vivo efficacy, analyze the characteristics of FDA-approved peptide drugs, and propose a developmental tool that considers the molecular properties of stabilized peptides in a comprehensive and quantitative manner to achieve the necessary rates for in vivo delivery to the target, efficacy, and ultimately clinical translation.
Collapse
Affiliation(s)
- Lydia Atangcho
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Tejas Navaratna
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Greg M Thurber
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
19
|
Nguyen DN, Xu B, Stanfield RL, Bailey JK, Horiya S, Temme JS, Leon DR, LaBranche CC, Montefiori DC, Costello CE, Wilson IA, Krauss IJ. Oligomannose Glycopeptide Conjugates Elicit Antibodies Targeting the Glycan Core Rather than Its Extremities. ACS CENTRAL SCIENCE 2019; 5:237-249. [PMID: 30834312 PMCID: PMC6396197 DOI: 10.1021/acscentsci.8b00588] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Indexed: 06/01/2023]
Abstract
Up to ∼20% of HIV-infected individuals eventually develop broadly neutralizing antibodies (bnAbs), and many of these antibodies (∼40%) target a region of dense high-mannose glycosylation on gp120 of the HIV envelope protein, known as the "high-mannose patch" (HMP). Thus, there have been numerous attempts to develop glycoconjugate vaccine immunogens that structurally mimic the HMP and might elicit bnAbs targeting this conserved neutralization epitope. Herein, we report on the immunogenicity of glycopeptides, designed by in vitro selection, that bind tightly to anti-HMP antibody 2G12. By analyzing the fine carbohydrate specificity of rabbit antibodies elicited by these immunogens, we found that they differ from some natural human bnAbs, such as 2G12 and PGT128, in that they bind primarily to the core structures within the glycan, rather than to the Manα1 → 2Man termini (2G12) or to the whole glycan (PGT128). Antibody specificity for the glycan core may result from extensive serum mannosidase trimming of the immunogen in the vaccinated animals. This finding has broad implications for vaccine design aiming to target glycan-dependent HIV neutralizing antibodies.
Collapse
Affiliation(s)
- Dung N. Nguyen
- Department
of Chemistry, Brandeis University, Waltham, Massachusetts 02454-9110, United States
| | - Bokai Xu
- Department
of Chemistry, Brandeis University, Waltham, Massachusetts 02454-9110, United States
| | - Robyn L. Stanfield
- Department
of Integrative Structural and Computational Biology and the Skaggs
Institute for Chemical Biology, The Scripps
Research Institute, La Jolla, California 92037, United States
| | - Jennifer K. Bailey
- Department
of Chemistry, Brandeis University, Waltham, Massachusetts 02454-9110, United States
| | - Satoru Horiya
- Department
of Chemistry, Brandeis University, Waltham, Massachusetts 02454-9110, United States
| | - J. Sebastian Temme
- Department
of Chemistry, Brandeis University, Waltham, Massachusetts 02454-9110, United States
| | - Deborah R. Leon
- Department
of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, Massachusetts 02215, United States
| | - Celia C. LaBranche
- Department
of Surgery, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - David C. Montefiori
- Department
of Surgery, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Catherine E. Costello
- Department
of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, Massachusetts 02215, United States
| | - Ian A. Wilson
- Department
of Integrative Structural and Computational Biology and the Skaggs
Institute for Chemical Biology, The Scripps
Research Institute, La Jolla, California 92037, United States
| | - Isaac J. Krauss
- Department
of Chemistry, Brandeis University, Waltham, Massachusetts 02454-9110, United States
| |
Collapse
|
20
|
Anzalone AV, Zairis S, Lin AJ, Rabadan R, Cornish VW. Interrogation of Eukaryotic Stop Codon Readthrough Signals by in Vitro RNA Selection. Biochemistry 2019; 58:1167-1178. [PMID: 30698415 DOI: 10.1021/acs.biochem.8b01280] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
RNA signals located downstream of stop codons in eukaryotic mRNAs can stimulate high levels of translational readthrough by the ribosome, thereby giving rise to functionally distinct C-terminally extended protein products. Although many readthrough events have been previously discovered in Nature, a broader description of the stimulatory RNA signals would help to identify new reprogramming events in eukaryotic genes and provide insights into the molecular mechanisms of readthrough. Here, we explore the RNA reprogramming landscape by performing in vitro translation selections to enrich RNA readthrough signals de novo from a starting randomized library comprising >1013 unique sequence variants. Selection products were characterized using high-throughput sequencing, from which we identified primary sequence and secondary structure readthrough features. The activities of readthrough signals, including three novel sequence motifs, were confirmed in cellular reporter assays. Then, we used machine learning and our HTS data to predict readthrough activity from human 3'-untranslated region sequences. This led to the discovery of >1.5% readthrough in four human genes (CDKN2B, LEPROTL1, PVRL3, and SFTA2). Together, our results provide valuable insights into RNA-mediated translation reprogramming, offer tools for readthrough discovery in eukaryotic genes, and present new opportunities to explore the biological consequences of stop codon readthrough in humans.
Collapse
Affiliation(s)
- Andrew V Anzalone
- Department of Chemistry , Columbia University , New York , New York 10027 , United States
| | - Sakellarios Zairis
- Department of Systems Biology , Columbia University , New York , New York 10032 , United States
| | - Annie J Lin
- Department of Chemistry , Columbia University , New York , New York 10027 , United States.,Department of Systems Biology , Columbia University , New York , New York 10032 , United States
| | - Raul Rabadan
- Department of Systems Biology , Columbia University , New York , New York 10032 , United States
| | - Virginia W Cornish
- Department of Chemistry , Columbia University , New York , New York 10027 , United States.,Department of Systems Biology , Columbia University , New York , New York 10032 , United States
| |
Collapse
|
21
|
Huang Y, Wiedmann MM, Suga H. RNA Display Methods for the Discovery of Bioactive Macrocycles. Chem Rev 2018; 119:10360-10391. [PMID: 30395448 DOI: 10.1021/acs.chemrev.8b00430] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The past two decades have witnessed the emergence of macrocycles, including macrocyclic peptides, as a promising yet underexploited class of de novo drug candidates. Both rational/computational design and in vitro display systems have contributed tremendously to the development of cyclic peptide binders of either traditional targets such as cell-surface receptors and enzymes or challenging targets such as protein-protein interaction surfaces. mRNA display, a key platform technology for the discovery of cyclic peptide ligands, has become one of the leading strategies that can generate natural-product-like macrocyclic peptide binders with antibody-like affinities. On the basis of the original cell-free transcription/translation system, mRNA display is highly evolvable to realize its full potential by applying genetic reprogramming and chemical/enzymatic modifications. In addition, mRNA display also allows the follow-up hit-to-lead development using high-throughput focused affinity maturation. Finally, mRNA-displayed peptides can be readily engineered to create chemical conjugates based on known small molecules or biologics. This review covers the birth and growth of mRNA display and discusses the above features of mRNA display with success stories and future perspectives and is up to date as of August 2018.
Collapse
Affiliation(s)
- Yichao Huang
- Department of Chemistry, Graduate School of Science , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-0033 , Japan
| | - Mareike Margarete Wiedmann
- Department of Chemistry, Graduate School of Science , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-0033 , Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-0033 , Japan
| |
Collapse
|
22
|
Garri C, Howell S, Tiemann K, Tiffany A, Jalali-Yazdi F, Alba MM, Katz JE, Takahashi TT, Landgraf R, Gross ME, Roberts RW, Kani K. Identification, characterization and application of a new peptide against anterior gradient homolog 2 (AGR2). Oncotarget 2018; 9:27363-27379. [PMID: 29937991 PMCID: PMC6007958 DOI: 10.18632/oncotarget.25221] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 04/02/2018] [Indexed: 01/15/2023] Open
Abstract
The cancer-associated protein Anterior Gradient 2 (AGR2) has been described, predominantly in adenocarcinomas. Increased levels of extracellular AGR2 (eAGR2) have been correlated with poor prognosis in cancer patients, making it a potential biomarker. Additionally, neutralizing AGR2 antibodies showed preclinical effectiveness in murine cancer models suggesting eAGR2 may be a therapeutic target. We set out to identify a peptide by mRNA display that would serve as a theranostic tool targeting AGR2. This method enables the selection of peptides from a complex (>1011) library and incorporates a protease incubation step that filters the selection for serum stable peptides. We performed six successive rounds of enrichment using a 10-amino acid mRNA display library and identified several AGR2 binding peptides. One of these peptides (H10), demonstrated high affinity binding to AGR2 with a binding constant (KD) of 6.4 nM. We developed an AGR2 ELISA with the H10 peptide as the capture reagent. Our H10-based ELISA detected eAGR2 from cancer cell spent media with a detection limit of (20-50 ng/ml). Furthermore, we investigated the therapeutic utility of H10 and discovered that it inhibited cell viability at IC50 (9-12 μmoles/L) in cancer cell lines. We also determined that 10 μg/ml of H10 was sufficient to inhibit cancer cell migration in breast and prostate cancer cell lines. A control peptide did not show any appreciable activity in these cells. The H10 peptide showed promise as both a novel diagnostic and a potential therapeutic peptide.
Collapse
Affiliation(s)
- Carolina Garri
- Keck School of Medicine, Lawrence J. Ellison Institute for Transformative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shannon Howell
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Katrin Tiemann
- Keck School of Medicine, Lawrence J. Ellison Institute for Transformative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Aleczandria Tiffany
- Mork Family Department of Chemical Engineering and Material Science, University of Southern California, Los Angeles, CA, USA
| | - Farzad Jalali-Yazdi
- Mork Family Department of Chemical Engineering and Material Science, University of Southern California, Los Angeles, CA, USA
| | - Mario M Alba
- Keck School of Medicine, Lawrence J. Ellison Institute for Transformative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jonathan E Katz
- Keck School of Medicine, Lawrence J. Ellison Institute for Transformative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Terry T Takahashi
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Ralf Landgraf
- University of Miami, Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, FL, USA
| | - Mitchell E Gross
- Keck School of Medicine, Lawrence J. Ellison Institute for Transformative Medicine, University of Southern California, Los Angeles, CA, USA.,USC Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Richard W Roberts
- USC Norris Comprehensive Cancer Center, Los Angeles, CA, USA.,Department of Chemistry, University of Southern California, Los Angeles, CA, USA.,Mork Family Department of Chemical Engineering and Material Science, University of Southern California, Los Angeles, CA, USA
| | - Kian Kani
- Keck School of Medicine, Lawrence J. Ellison Institute for Transformative Medicine, University of Southern California, Los Angeles, CA, USA.,USC Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| |
Collapse
|
23
|
Duan T, He L, Tokura Y, Liu X, Wu Y, Shi Z. Construction of tunable peptide nucleic acid junctions. Chem Commun (Camb) 2018; 54:2846-2849. [PMID: 29364308 DOI: 10.1039/c8cc00108a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We report here the construction of 3-way and 4-way peptide nucleic acid (PNA) junctions as basic structural units for PNA nanostructuring. The incorporation of amino acid residues into PNA chains makes PNA nanostructures with more structural complexity and architectural flexibility possible, as exemplified by building 3-way PNA junctions with tunable nanopores. Given that PNA nanostructures have good thermal and enzymatic stabilities, they are expected to have broad potential applications in biosensing, drug delivery and bioengineering.
Collapse
Affiliation(s)
- Tanghui Duan
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, 430074 Hongshan, Wuhan, P. R. China.
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
Directed evolution is a useful method for the discovery of nucleic acids, peptides, or proteins that have desired binding abilities or functions. Because of the abundance and importance of glycosylation in nature, directed evolution of glycopeptides and glycoproteins is also highly desirable. However, common directed evolution platforms such as phage-, yeast-, or mammalian-cell display are limited for these applications by several factors. Glycan structure at each glycosylation site is not genetically encoded, and yeast and mammalian cells produce a heterogeneous mixture of glycoforms at each site on the protein. Although yeast, mammalian and Escherichia coli cells can be engineered to produce a homogenous glycoform at all glycosylation sites, there are just a few specific glycan structures that can readily be accessed in this manner. Recently, we reported a novel system for the directed evolution of glycopeptide libraries, which could in principle be decorated with any desired glycan. Our method combines in vitro peptide selection by mRNA display with unnatural amino acid incorporation and chemical attachment of synthetic oligosaccharides. Here, we provide an updated and optimized protocol for this method, which is designed to create glycopeptide mRNA display libraries containing ~1013 sequences and select them for target binding. The target described here is the HIV broadly neutralizing monoclonal antibody 2G12; 2G12 binds to cluster of high-mannose oligosaccharides on the HIV envelope glycoprotein gp120; and glycopeptides that mimic this epitope may be useful in HIV vaccine applications. This method is expected to be readily applicable for other types of glycans and targets of interest in glycobiology.
Collapse
|
25
|
Abstract
Life on Earth is incredibly diverse. Yet, underneath that diversity, there are a number of constants and highly conserved processes: all life is based on DNA and RNA; the genetic code is universal; biology is limited to a small subset of potential chemistries. A vast amount of knowledge has been accrued through describing and characterizing enzymes, biological processes and organisms. Nevertheless, much remains to be understood about the natural world. One of the goals in Synthetic Biology is to recapitulate biological complexity from simple systems made from biological molecules-gaining a deeper understanding of life in the process. Directed evolution is a powerful tool in Synthetic Biology, able to bypass gaps in knowledge and capable of engineering even the most highly conserved biological processes. It encompasses a range of methodologies to create variation in a population and to select individual variants with the desired function-be it a ligand, enzyme, pathway or even whole organisms. Here, we present some of the basic frameworks that underpin all evolution platforms and review some of the recent contributions from directed evolution to synthetic biology, in particular methods that have been used to engineer the Central Dogma and the genetic code.
Collapse
|
26
|
Svensen N, Peersen OB, Jaffrey SR. Peptide Synthesis on a Next-Generation DNA Sequencing Platform. Chembiochem 2016; 17:1628-35. [PMID: 27385640 PMCID: PMC5183537 DOI: 10.1002/cbic.201600298] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Indexed: 11/11/2022]
Abstract
Methods for displaying large numbers of peptides on solid surfaces are essential for high-throughput characterization of peptide function and binding properties. Here we describe a method for converting the >10(7) flow cell-bound clusters of identical DNA strands generated by the Illumina DNA sequencing technology into clusters of complementary RNA, and subsequently peptide clusters. We modified the flow-cell-bound primers with ribonucleotides thus enabling them to be used by poliovirus polymerase 3D(pol) . The primers hybridize to the clustered DNA thus leading to RNA clusters. The RNAs fold into functional protein- or small molecule-binding aptamers. We used the mRNA-display approach to synthesize flow-cell-tethered peptides from these RNA clusters. The peptides showed selective binding to cognate antibodies. The methods described here provide an approach for using DNA clusters to template peptide synthesis on an Illumina flow cell, thus providing new opportunities for massively parallel peptide-based assays.
Collapse
Affiliation(s)
- Nina Svensen
- Department of Pharmacology, Weill Cornell Medical College, Cornell University, New York, NY, 10065, USA
| | - Olve B Peersen
- Department of Biochemistry, Colorado State University, Fort Collins, CO, 80523, USA
| | - Samie R Jaffrey
- Department of Pharmacology, Weill Cornell Medical College, Cornell University, New York, NY, 10065, USA.
| |
Collapse
|
27
|
Wu NC, Dai L, Olson CA, Lloyd-Smith JO, Sun R. Adaptation in protein fitness landscapes is facilitated by indirect paths. eLife 2016; 5. [PMID: 27391790 PMCID: PMC4985287 DOI: 10.7554/elife.16965] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/07/2016] [Indexed: 12/11/2022] Open
Abstract
The structure of fitness landscapes is critical for understanding adaptive protein evolution. Previous empirical studies on fitness landscapes were confined to either the neighborhood around the wild type sequence, involving mostly single and double mutants, or a combinatorially complete subgraph involving only two amino acids at each site. In reality, the dimensionality of protein sequence space is higher (20L) and there may be higher-order interactions among more than two sites. Here we experimentally characterized the fitness landscape of four sites in protein GB1, containing 204 = 160,000 variants. We found that while reciprocal sign epistasis blocked many direct paths of adaptation, such evolutionary traps could be circumvented by indirect paths through genotype space involving gain and subsequent loss of mutations. These indirect paths alleviate the constraint on adaptive protein evolution, suggesting that the heretofore neglected dimensions of sequence space may change our views on how proteins evolve. DOI:http://dx.doi.org/10.7554/eLife.16965.001 Proteins can evolve over time by changing their component parts, which are called amino acids. These changes usually happen one at a time and natural selection tends to preserve those changes that make the protein more efficient at its specific tasks, while discarding those that impair the protein’s activity. However the effect of each change depends on the protein as a whole, and so two changes that separately make the protein worse can make it much better if they occur together. This phenomenon is called epistasis and in some cases it can trap proteins in a sub-optimal form and prevent them from improving further. Proteins are made from twenty different kinds of amino acid, and there are millions of different combinations of amino acids that could, in theory, make a protein of a given length. Studying protein evolution involves making variants of the same protein, each with just a few changes, and comparing how efficient, or “fit”, they are. Previous studies only measured the fitness of a few variants and showed that epistasis could block protein evolution by requiring the protein to lose some fitness before it could improve further. However, new techniques have now made it easier to study protein evolution by testing many more protein variants. Wu, Dai et al. focused on four amino acids in part of a protein called GB1 and tested the efficiency of every possible combination of these four amino acids, a total of 160,000 (204) variants. Contrary to expectations, the results suggested that the protein could evolve quickly to maximise fitness despite there being epistasis between the four amino acids. Overcoming epistasis typically involved making a change to one amino acid that paved the way for further changes while avoiding the need to lose fitness. The original change could then be reversed once the epistasis was overcome. The complexity of this solution means it can only be seen by studying a large number of protein variants that represent many alternative sequences of protein changes. Wu, Dai et al. conclude that proteins are able to achieve a higher level of fitness through evolution by exploring a large number of changes. There are many possible changes for each protein and it is this variety that, despite epistasis, allows proteins to become naturally optimised for the tasks that they perform. While the full complexity of protein evolution cannot be explored at the moment, as technology advances it will become possible to study more protein variants. Such advances would therefore hopefully allow researchers to discover even more about the natural mechanisms of protein evolution. DOI:http://dx.doi.org/10.7554/eLife.16965.002
Collapse
Affiliation(s)
- Nicholas C Wu
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, United States.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, United States
| | - Lei Dai
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, United States.,Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, United States
| | - C Anders Olson
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, United States
| | - James O Lloyd-Smith
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, United States
| | - Ren Sun
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, United States.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, United States
| |
Collapse
|
28
|
Reprogramming eukaryotic translation with ligand-responsive synthetic RNA switches. Nat Methods 2016; 13:453-8. [PMID: 26999002 PMCID: PMC4850110 DOI: 10.1038/nmeth.3807] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 02/13/2016] [Indexed: 01/01/2023]
Abstract
Protein synthesis in eukaryotes is regulated by diverse reprogramming mechanisms that expand the coding capacity of individual genes. Here, we exploit one such mechanism termed −1 programmed ribosomal frameshifting (−1 PRF) to engineer ligand-responsive RNA switches that regulate protein expression. First, efficient −1 PRF stimulatory RNA elements were discovered by in vitro selection; then, ligand-responsive switches were constructed by coupling −1 PRF stimulatory elements to RNA aptamers using rational design and in vivo directed evolution. We demonstrate that −1 PRF switches tightly control the relative stoichiometry of two distinct protein outputs from a single mRNA, exhibiting consistent ligand response across whole populations of cells. Furthermore, −1 PRF switches were applied to build single-mRNA logic gates and an apoptosis module in yeast. Together, these results showcase the potential for harnessing translation-reprogramming mechanisms for synthetic biology, and establish −1 PRF switches as powerful RNA tools for controlling protein synthesis in eukaryotes.
Collapse
|
29
|
Naimuddin M, Kubo T. A High Performance Platform Based on cDNA Display for Efficient Synthesis of Protein Fusions and Accelerated Directed Evolution. ACS COMBINATORIAL SCIENCE 2016; 18:117-29. [PMID: 26812183 DOI: 10.1021/acscombsci.5b00139] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We describe a high performance platform based on cDNA display technology by developing a new modified puromycin linker-oligonucleotide. The linker consists of four major characteristics: a "ligation site" for hybridization and ligation of mRNA by T4 RNA ligase, a "puromycin arm" for covalent linkage of the protein, a "polyadenosine site" for a longer puromycin arm and purification of protein fusions (optional) using oligo-dT matrices, and a "reverse transcription site" for the formation of stable cDNA protein fusions whose cDNA is covalently linked to its encoded protein. The linker was synthesized by a novel branching strategy and provided >8-fold higher yield than previous linkers. This linker enables rapid and highly efficient ligation of mRNA (>90%) and synthesis of protein fusions (∼ 50-95%) in various cell-free expression systems. Overall, this new cDNA display method provides 10-200 fold higher end-usage fusions than previous methods and benefits higher diversity libraries crucial for directed protein/peptide evolution. With the increased efficiency, this system was able to reduce the time for one selection cycle to <8 h and is potentially amenable to high-throughput systems. We demonstrate the efficiency of this system for higher throughput selections of various biomolecular interactions and achieved 30-40-fold enrichment per selection cycle. Furthermore, a 4-fold higher enrichment of Flag-tag was obtained from a doped mixture compared with that of the previous cDNA display method. A three-finger protein library was evolved to isolate superior nanomolar range binding candidates for vascular endothelial growth factor. This method is expected to provide a beneficial impact to accelerated drug discovery and proteome analysis.
Collapse
Affiliation(s)
- Mohammed Naimuddin
- Biomedical
Research Institute, National Institute of Advanced Industrial Science and Technology, Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
- Janusys Corporation, #508, Saitama
Industrial Technology Center, Skip City, 3-12-18 Kami-Aoki, Kawaguchi, Saitama 333-0844, Japan
| | - Tai Kubo
- Biomedical
Research Institute, National Institute of Advanced Industrial Science and Technology, Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
- Molecular
Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| |
Collapse
|
30
|
Chen L, Kutskova YA, Hong F, Memmott JE, Zhong S, Jenkinson MD, Hsieh CM. Preferential germline usage and VH/VL pairing observed in human antibodies selected by mRNA display. Protein Eng Des Sel 2015; 28:427-35. [PMID: 26337062 DOI: 10.1093/protein/gzv042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/31/2015] [Indexed: 11/13/2022] Open
Abstract
Since the invention of phage display, in vitro antibody display technologies have revolutionized the field of antibody discovery. In combination with antibody libraries constructed with sequences of human origin, such technologies enable accelerated therapeutic antibody discovery while bypassing the laborious animal immunization and hybridoma generation processes. Many in vitro display technologies developed since aim to differentiate from phage display by displaying full-length IgG proteins, utilizing eukaryotic translation system and codons, increasing library size or real-time kinetic selection by fluorescent activated cell sorting. We report here the development of an mRNA display technology and an accompanying HCDR3 size spectratyping monitor for human antibody discovery. Importantly, the mRNA display technology maintains a monovalent linkage between the mRNA (genotype) and display binding protein (phenotype), which minimizes avidity effect common in other display systems and allows for a stringent affinity and off-rate selection. The mRNA display technology successfully identified 100 human antibodies in 15 different selections against various targets from naïve human antibody libraries. These antibodies in general have high affinity and diversity. By analyzing the germline usage and combination of antibodies selected by the mRNA display technology, we identified trends and determined the productivity of each germline subgroup in the libraries that could serve as the knowledge base for constructing fully synthetic, next generation antibody libraries.
Collapse
Affiliation(s)
- Lei Chen
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Yuliya A Kutskova
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Feng Hong
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - John E Memmott
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Suju Zhong
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Megan D Jenkinson
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Chung-Ming Hsieh
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| |
Collapse
|
31
|
Calabretta A, Küpfer PA, Leumann CJ. The effect of RNA base lesions on mRNA translation. Nucleic Acids Res 2015; 43:4713-20. [PMID: 25897124 PMCID: PMC4482091 DOI: 10.1093/nar/gkv377] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 04/09/2015] [Indexed: 11/26/2022] Open
Abstract
The biological effect of oxidatively damaged RNA, unlike oxidatively damaged DNA, has rarely been investigated, although it poses a threat to any living cell. Here we report on the effect of the commonly known RNA base-lesions 8-oxo-rG, 8-oxo-rA, ε-rC, ε-rA, 5-HO-rC, 5-HO-rU and the RNA abasic site (rAS) on ribosomal translation. To this end we have developed an in vitro translation assay based on the mRNA display methodology. A short synthetic mRNA construct containing the base lesion in a predefined position of the open reading frame was 32P-labeled at the 5′-end and equipped with a puromycin unit at the 3′-end. Upon in vitro translation in rabbit reticulocyte lysates, the encoded peptide chain is transferred to the puromycin unit and the products analyzed by gel electrophoresis. Alternatively, the unlabeled mRNA construct was used and incubated with 35S-methionine to prove peptide elongation of the message. We find that all base-lesions interfere substantially with ribosomal translation. We identified two classes, the first containing modifications at the base coding edge (ε-rC, ε-rA and rAS) which completely abolish peptide synthesis at the site of modification, and the second consisting of 8-oxo-rG, 8-oxo-rA, 5-HO-rC and 5-HO-rU that significantly retard full-length peptide synthesis, leading to some abortive peptides at the site of modification.
Collapse
Affiliation(s)
- Alessandro Calabretta
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Pascal A Küpfer
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Christian J Leumann
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| |
Collapse
|
32
|
Horiya S, MacPherson IS, Krauss IJ. Recent strategies targeting HIV glycans in vaccine design. Nat Chem Biol 2014; 10:990-9. [PMID: 25393493 PMCID: PMC4431543 DOI: 10.1038/nchembio.1685] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 10/03/2014] [Indexed: 12/20/2022]
Abstract
Although efforts to develop a vaccine against HIV have so far met with little success, recent studies of HIV-positive patients with strongly neutralizing sera have shown that the human immune system is capable of producing potent and broadly neutralizing antibodies (bnAbs), some of which neutralize up to 90% of HIV strains. These antibodies bind conserved vulnerable sites on the viral envelope glycoprotein gp120, and identification of these sites has provided exciting clues about the design of potentially effective vaccines. Carbohydrates have a key role in this field, as a large fraction of bnAbs bind carbohydrates or combinations of carbohydrate and peptide elements on gp120. Additionally, carbohydrates partially mask some peptide surfaces recognized by bnAbs. The use of engineered glycoproteins and other glycostructures as vaccines to elicit antibodies with broad neutralizing activity is therefore a key area of interest in HIV vaccine design.
Collapse
Affiliation(s)
- Satoru Horiya
- Department of Chemistry, Brandeis University, Waltham, Massachusetts, USA
| | - Iain S MacPherson
- Department of Chemistry, Brandeis University, Waltham, Massachusetts, USA
| | - Isaac J Krauss
- Department of Chemistry, Brandeis University, Waltham, Massachusetts, USA
| |
Collapse
|
33
|
Jalali-Yazdi F, Corbin JM, Takahashi TT, Roberts RW. Robust, quantitative analysis of proteins using peptide immunoreagents, in vitro translation, and an ultrasensitive acoustic resonant sensor. Anal Chem 2014; 86:4715-22. [PMID: 24749546 PMCID: PMC4030805 DOI: 10.1021/ac500084d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
![]()
A major benefit of
proteomic and genomic data is the potential
for developing thousands of novel diagnostic and analytical tests
of cells, tissues, and clinical samples. Monoclonal antibody technologies,
phage display and mRNA display, are methods that could be used to
generate affinity ligands against each member of the proteome. Increasingly,
the challenge is not ligand generation, rather the analysis and affinity
rank-ordering of the many ligands generated by these methods. Here,
we developed a quantitative method to analyze protein interactions
using in vitro translated ligands. In this assay, in vitro translated
ligands generate a signal by simultaneously binding to a target immobilized
on a magnetic bead and to a sensor surface in a commercial acoustic
sensing device. We then normalize the binding of each ligand with
its relative translation efficiency in order to rank-order the different
ligands. We demonstrate the method with peptides directed against
the cancer marker Bcl-xL. Our method has 4- to 10-fold
higher sensitivity, using 100-fold less protein and 5-fold less antibody
per sample, as compared directly with ELISA. Additionally, all analysis
can be conducted in complex mixtures at physiological ionic strength.
Lastly, we demonstrate the ability to use peptides as ultrahigh affinity
reagents that function in complex matrices, as would be needed in
diagnostic applications.
Collapse
Affiliation(s)
- Farzad Jalali-Yazdi
- 3710 McClintock Avenue, RTH 507, Los Angeles, California 90089-2905, United States
| | | | | | | |
Collapse
|
34
|
Horiya S, Bailey JK, Temme JS, Guillen Schlippe YV, Krauss IJ. Directed evolution of multivalent glycopeptides tightly recognized by HIV antibody 2G12. J Am Chem Soc 2014; 136:5407-15. [PMID: 24645849 PMCID: PMC4004241 DOI: 10.1021/ja500678v] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
![]()
Herein,
we report a method for in vitro selection of multivalent
glycopeptides, combining mRNA display with incorporation of unnatural
amino acids and “click” chemistry. We have demonstrated
the use of this method to design potential glycopeptide vaccines against
HIV. From libraries of ∼1013 glycopeptides containing
multiple Man9 glycan(s), we selected variants that bind
to HIV broadly neutralizing antibody 2G12 with picomolar to low nanomolar
affinity. This is comparable to the strength of the natural 2G12–gp120
interaction, and is the strongest affinity achieved to date with constructs
containing 3–5 glycans. These glycopeptides are therefore of
great interest in HIV vaccine design.
Collapse
Affiliation(s)
- Satoru Horiya
- Department of Chemistry, Brandeis University , Waltham, Massachusetts 02454-9110, United States
| | | | | | | | | |
Collapse
|
35
|
Rogers A, Constantinou PE, Jamison DK, Driver JW, Diehl MR. Construction and analyses of elastically coupled multiple-motor systems. Methods Enzymol 2014; 540:189-204. [PMID: 24630108 DOI: 10.1016/b978-0-12-397924-7.00011-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Precision analyses of the collective motor behaviors have become important to dissecting mechanisms underlying the trafficking of subcellular commodities in eukaryotic cells. Here, we describe a synthetic approach to create structurally defined multiple protein complexes containing two elastically coupled motor molecules. Motors are connected using a simple DNA-scaffolding molecule and DNA-conjugated, artificial protein polymers that function as tunable elastic linkers. The procedure to self-assemble these components produces complexes in high synthetic yield and allows individual multiple-motor systems to be interrogated at the single-complex level. Methods to evaluate cooperative motor responses in a static optical trap are also discussed. While enabling the average transport properties of single/noninteracting and coupled motors to be compared, these procedures can provide insight into the extent to which motors cooperate productively via load sharing as well as the roles loading-rate-dependent phenomena play in collective motor functions.
Collapse
Affiliation(s)
- Arthur Rogers
- Departments of Chemistry and Bioengineering, Rice University, Houston, Texas, USA
| | | | - D Kenneth Jamison
- Departments of Chemistry and Bioengineering, Rice University, Houston, Texas, USA
| | - Jonathan W Driver
- Departments of Chemistry and Bioengineering, Rice University, Houston, Texas, USA
| | - Michael R Diehl
- Departments of Chemistry and Bioengineering, Rice University, Houston, Texas, USA.
| |
Collapse
|
36
|
Recombinant probes reveal dynamic localization of CaMKIIα within somata of cortical neurons. J Neurosci 2013; 33:14579-90. [PMID: 24005308 DOI: 10.1523/jneurosci.2108-13.2013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In response to NMDA receptor stimulation, CaMKIIα moves rapidly from a diffuse distribution within the shafts of neuronal dendrites to a clustered postsynaptic distribution. However, less is known about CaMKIIα localization and trafficking within neuronal somata. Here we use a novel recombinant probe capable of labeling endogenous CaMKIIα in living rat neurons to examine its localization and trafficking within the somata of cortical neurons. This probe, which was generated using an mRNA display selection, binds to endogenous CaMKIIα at high affinity and specificity following expression in rat cortical neurons in culture. In ∼45% of quiescent cortical neurons, labeled clusters of CaMKIIα 1-4 μm in diameter were present. Upon exposure to glutamate and glycine, CaMKIIα clusters disappeared in a Ca(2+)-dependent manner within seconds. Moreover, minutes after the removal of glutamate and glycine, the clusters returned to their original configuration. The clusters, which also appear in cortical neurons in sections taken from mouse brains, contain actin and disperse upon exposure to cytochalasin D, an actin depolymerizer. In conclusion, within the soma, CaMKII localizes and traffics in a manner that is distinct from its localization and trafficking within the dendrites.
Collapse
|
37
|
Role of messenger RNA–ribosome complex in complementary DNA display. Anal Biochem 2013; 438:97-103. [DOI: 10.1016/j.ab.2013.03.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 03/18/2013] [Accepted: 03/20/2013] [Indexed: 11/20/2022]
|
38
|
Mochizuki Y, Kumachi S, Nishigaki K, Nemoto N. Increasing the library size in cDNA display by optimizing purification procedures. Biol Proced Online 2013; 15:7. [PMID: 23697943 PMCID: PMC3680162 DOI: 10.1186/1480-9222-15-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 05/19/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The library size is critical for selection in evolutionary molecular engineering (directed evolution). Although cDNA display has become a promising in vitro display technology by overcoming the instability of mRNA display, it is hindered by low yields. In this study, we improved the yield of cDNA display molecules by carefully examining each step of the preparation process. FINDINGS We found that steric hindrance of ribosomes binding to the mRNA-protein fusion molecules was interfering with biotin-streptavidin binding. Additionally, reducing buffer exchange by performing RNase digestion in the His-tag-binding buffer to release the cDNA display molecules improved their His-tag purification. CONCLUSION Our optimized conditions have improved the yield of cDNA display molecules by more than 10 times over currently used methods, making cDNA display more practically available in evolutionary molecular engineering.
Collapse
Affiliation(s)
- Yuki Mochizuki
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan.
| | | | | | | |
Collapse
|
39
|
Skirgaila R, Pudzaitis V, Paliksa S, Vaitkevicius M, Janulaitis A. Compartmentalization of destabilized enzyme-mRNA-ribosome complexes generated by ribosome display: a novel tool for the directed evolution of enzymes. Protein Eng Des Sel 2013; 26:453-61. [DOI: 10.1093/protein/gzt017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
40
|
Ito K, Passioura T, Suga H. Technologies for the synthesis of mRNA-encoding libraries and discovery of bioactive natural product-inspired non-traditional macrocyclic peptides. Molecules 2013; 18:3502-28. [PMID: 23507778 PMCID: PMC6270345 DOI: 10.3390/molecules18033502] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 02/04/2013] [Accepted: 02/25/2013] [Indexed: 01/04/2023] Open
Abstract
In this review, we discuss emerging technologies for drug discovery, which yields novel molecular scaffolds based on natural product-inspired non-traditional peptides expressed using the translation machinery. Unlike natural products, these technologies allow for constructing mRNA-encoding libraries of macrocyclic peptides containing non-canonical sidechains and N-methyl-modified backbones. The complexity of sequence space in such libraries reaches as high as a trillion (>1012), affording initial hits of high affinity ligands against protein targets. Although this article comprehensively covers several related technologies, we discuss in greater detail the technical development and advantages of the Random non-standard Peptide Integration Discovery (RaPID) system, including the recent identification of inhibitors against various therapeutic targets.
Collapse
Affiliation(s)
| | | | - Hiroaki Suga
- Author to whom correspondence should be addressed; E-Mail: ; Tel./Fax: +81-3-5841-8372
| |
Collapse
|
41
|
|
42
|
Cell-based arrays for the identification of interacting polypeptide domains or epitopes. Methods Mol Biol 2013; 1061:211-29. [PMID: 23963940 DOI: 10.1007/978-1-62703-589-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The specific regions on proteins which are responsible for protein-protein interaction are called interacting domains, or epitopes in case of antigen-antibody binding. These domains are one feature to characterize proteins and are important in clinical diagnostics and research. For the mapping of such domains the use of protein/peptide arrays has become popular. Regardless of which kind of array, the major requirements are a high number of candidates arranged in the array, high quality, ease of use, and cost-effectiveness. Here, the authors describe a general protocol for mapping the interacting domains of proteins demonstrated by a high affinity protein interaction, the interaction of an antibody to an antigen. The chapter describes a stepwise protocol from library production to the verification of the domain by the use of an automated cell-based polypeptide array, which comprises the named requirements of a good array.
Collapse
|
43
|
Abstract
In the past decade, in vitro evolution techniques have been used to improve the performance or alter the activity of a number of different enzymes and have generated enzymes de novo. In this review, we provide an overview of the available in vitro methods, their application, and some general considerations for enzyme engineering in vitro. We discuss the advantages of in vitro over in vivo approaches and focus on ribosome display, mRNA display, DNA display technologies, and in vitro compartmentalization (IVC) methods. This review aims to help researchers determine which approach is best suited for their own experimental needs and to highlight that in vitro methods offer a promising route for enzyme engineering.
Collapse
Affiliation(s)
- Misha V Golynskiy
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, MN, USA
| | | | | | | | | |
Collapse
|
44
|
Valencia CA, Zou J, Liu R. In vitro selection of proteins with desired characteristics using mRNA-display. Methods 2012. [PMID: 23201412 DOI: 10.1016/j.ymeth.2012.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
mRNA-display is an amplification-based, iterative rounds of in vitro protein selection technique that circumvents a number of difficulties associated with yeast two-hybrid and phage display. Because of the covalent linkage between the genotype and the phenotype, mRNA-display provides a powerful means for reading and amplifying a peptide or protein sequence after it has been selected from a library with very high diversity. The purpose of this article is to provide a summary of the field and practical framework of mRNA-display-based selections. We summarize the advantages and limitations of selections using mRNA-display as well as the recent applications, namely, the identification of novel affinity reagents, target-binding partners, and enzyme substrates from synthetic peptide or natural proteome libraries. Practically, we provide a detailed procedure for performing mRNA-display-based selections with the aim of identifying protease substrates and binding partners of a target protein. Furthermore, we describe how to confirm the function of the selected protein sequences by biochemical assays and bioinformatic tools.
Collapse
Affiliation(s)
- C Alexander Valencia
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| | | | | |
Collapse
|
45
|
Lee JH, Song C, Kim DH, Park IH, Lee SG, Lee YS, Kim BG. Glutamine (Q)-peptide screening for transglutaminase reaction using mRNA display. Biotechnol Bioeng 2012; 110:353-62. [DOI: 10.1002/bit.24622] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 05/16/2012] [Accepted: 07/26/2012] [Indexed: 11/06/2022]
|
46
|
MacPherson IS, Temme JS, Habeshian S, Felczak K, Pankiewicz K, Hedstrom L, Krauss IJ. Multivalent glycocluster design through directed evolution. Angew Chem Int Ed Engl 2012; 50:11238-42. [PMID: 22191092 DOI: 10.1002/anie.201105555] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Iain S MacPherson
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02454, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Gera N, Hussain M, Rao BM. Protein selection using yeast surface display. Methods 2012; 60:15-26. [PMID: 22465794 DOI: 10.1016/j.ymeth.2012.03.014] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 03/09/2012] [Indexed: 12/16/2022] Open
Abstract
Binding proteins are typically isolated from combinatorial libraries of scaffold proteins using one of the many library screening tools available, such as phage display, yeast surface display or mRNA display. A key principle underlying these screening technologies is the establishment of a link between each unique mutant protein and its corresponding genetic code. The mutant proteins binding a desired target species are separated and subsequently identified using the genetic code. In this review, we largely focus on the use of yeast surface display for the isolation of binding proteins from combinatorial libraries. In yeast surface display, the yeast cell links the mutant protein to its coding DNA. Each yeast cell expresses the mutant proteins as fusions to a yeast cell wall protein; the yeast cell also carries plasmid DNA that codes for the mutant protein. Over the years, the yeast surface display platform has emerged as a powerful tool for protein engineering, and has been used in a variety of applications including affinity maturation, epitope mapping and biophysical characterization of proteins. Here we present a broad overview of the yeast surface display system and its applications, and compare it with other contemporary screening platforms. Further, we present detailed protocols for the use of yeast surface display to isolate de novo binding proteins from combinatorial libraries, and subsequent biophysical characterization of binders. These protocols can also be easily modified for affinity maturation of the isolated de novo binders.
Collapse
Affiliation(s)
- Nimish Gera
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | | | | |
Collapse
|
48
|
Abstract
mRNA display is a powerful in vitro selection technique that can be applied toward the identification of peptides or proteins with desired properties. The physical conjugation between a protein and its own RNA presents unique challenges in manipulating the displayed proteins in an RNase-free environment. This protocol outlines the generation of synthetic peptide and natural proteome libraries as well as the steps required for generation of mRNA-protein fusion libraries, in vitro selection, and regeneration of the selected sequences. The selection procedures for the identification of Ca(2+)-dependent, calmodulin-binding proteins from synthetic peptide and natural proteome libraries are presented.
Collapse
|
49
|
Wang R, Cotten SW, Liu R. mRNA display using covalent coupling of mRNA to translated proteins. Methods Mol Biol 2012; 805:87-100. [PMID: 22094802 DOI: 10.1007/978-1-61779-379-0_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
mRNA display is a powerful technique that allows for covalent coupling of a translated protein with its coding mRNA. The resulting conjugation between genotype and phenotype can be used for the efficient selection and identification of peptides or proteins with desired properties from an mRNA-displayed peptide or protein library with high diversity. This protocol outlines the principle of mRNA display and the detailed procedures for the synthesis of mRNA-protein fusions. Some special considerations for library construction, generation, and purification are discussed.
Collapse
Affiliation(s)
- Rong Wang
- Eshelman School of Pharmacy and Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | |
Collapse
|
50
|
Abstract
Proteins are synthesized by the ribosome and generally must fold to become functionally active. Although it is commonly assumed that the ribosome affects the folding process, this idea has been extremely difficult to demonstrate. We have developed an experimental system to investigate the folding of single ribosome-bound stalled nascent polypeptides with optical tweezers. In T4 lysozyme, synthesized in a reconstituted in vitro translation system, the ribosome slows the formation of stable tertiary interactions and the attainment of the native state relative to the free protein. Incomplete T4 lysozyme polypeptides misfold and aggregate when free in solution, but they remain folding-competent near the ribosomal surface. Altogether, our results suggest that the ribosome not only decodes the genetic information and synthesizes polypeptides, but also promotes efficient de novo attainment of the native state.
Collapse
Affiliation(s)
- Christian M. Kaiser
- Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
- Department of Physics, University of California, Berkeley, CA 94720, USA
| | - Daniel H. Goldman
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - John D. Chodera
- Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
| | - Ignacio Tinoco
- Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Carlos Bustamante
- Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
- Department of Physics, University of California, Berkeley, CA 94720, USA
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| |
Collapse
|