1
|
Caratti B, Fidan M, Caratti G, Breitenecker K, Engler M, Kazemitash N, Traut R, Wittig R, Casanova E, Ahmadian MR, Tuckermann JP, Moll HP, Cirstea IC. The glucocorticoid receptor associates with RAS complexes to inhibit cell proliferation and tumor growth. Sci Signal 2022; 15:eabm4452. [PMID: 35316097 DOI: 10.1126/scisignal.abm4452] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Mutations that activate members of the RAS family of GTPases are associated with various cancers and drive tumor growth. The glucocorticoid receptor (GR), a member of the nuclear receptor family, has been proposed to interact with and inhibit the activation of components of the PI3K-AKT and MAPK pathways downstream of RAS. In the absence of activating ligands, we found that GR was present in cytoplasmic KRAS-containing complexes and inhibited the activation of wild-type and oncogenic KRAS in mouse embryonic fibroblasts and human lung cancer A549 cells. The DNA binding domain of GR was involved in the interaction with KRAS, but GR-dependent inhibition of RAS activation did not depend on the nuclear translocation of GR. The addition of ligand released GR-dependent inhibition of RAS, AKT, the MAPK p38, and the MAPKK MEK. CRISPR-Cas9-mediated deletion of GR in A549 cells enhanced tumor growth in xenografts in mice. Patient samples of non-small cell lung carcinomas showed lower expression of NR3C1, the gene encoding GR, compared to adjacent normal tissues and lower NR3C1 expression correlated with a worse disease outcome. These results suggest that glucocorticoids prevent the ability of GR to limit tumor growth by inhibiting RAS activation, which has potential implications for the use of glucocorticoids in patients with cancer.
Collapse
Affiliation(s)
- Bozhena Caratti
- Institute of Comparative Molecular Endocrinology, University of Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Miray Fidan
- Institute of Comparative Molecular Endocrinology, University of Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Giorgio Caratti
- Institute of Comparative Molecular Endocrinology, University of Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Kristina Breitenecker
- Department of Pharmacology, Center of Physiology and Pharmacology, Comprehensive Cancer Center (CCC), Medical University of Vienna, Vienna 1090, Austria
| | - Melanie Engler
- Institute of Comparative Molecular Endocrinology, University of Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Naser Kazemitash
- Institute of Comparative Molecular Endocrinology, University of Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Rebecca Traut
- Institute of Comparative Molecular Endocrinology, University of Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Rainer Wittig
- Institute for Laser Technologies in Medicine and Metrology (ILM), University of Ulm, Helmholtzstrasse 12, 89081 Ulm, Germany
| | - Emilio Casanova
- Department of Pharmacology, Center of Physiology and Pharmacology, Comprehensive Cancer Center (CCC), Medical University of Vienna, Vienna 1090, Austria
| | - Mohammad Reza Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Universitätsstraße 1, Building 22.03.05, 40225 Düsseldorf, Germany
| | - Jan P Tuckermann
- Institute of Comparative Molecular Endocrinology, University of Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Herwig P Moll
- Department of Pharmacology, Center of Physiology and Pharmacology, Comprehensive Cancer Center (CCC), Medical University of Vienna, Vienna 1090, Austria
| | - Ion Cristian Cirstea
- Institute of Comparative Molecular Endocrinology, University of Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| |
Collapse
|
2
|
Regulation of H-Ras-driven MAPK signaling, transformation and tumorigenesis, but not PI3K signaling and tumor progression, by plasma membrane microdomains. Oncogenesis 2016; 5:e228. [PMID: 27239960 PMCID: PMC4945753 DOI: 10.1038/oncsis.2016.36] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 04/17/2016] [Indexed: 12/16/2022] Open
Abstract
In this study, we assessed the contributions of plasma membrane (PM) microdomain targeting to the functions of H-Ras and R-Ras. These paralogs have identical effector-binding regions, but variant C-terminal targeting domains (tDs) which are responsible for lateral microdomain distribution: activated H-Ras targets to lipid ordered/disordered (Lo/Ld) domain borders, and R-Ras to Lo domains (rafts). We hypothesized that PM distribution regulates Ras-effector interactions and downstream signaling. We used tD swap mutants, and assessed effects on signal transduction, cell proliferation, transformation and tumorigenesis. R-Ras harboring the H-Ras tD (R-Ras-tH) interacted with Raf, and induced Raf and ERK phosphorylation similar to H-Ras. R-Ras-tH stimulated proliferation and transformation in vitro, and these effects were blocked by both MEK and PI3K inhibition. Conversely, the R-Ras tD suppressed H-Ras-mediated Raf activation and ERK phosphorylation, proliferation and transformation. Thus, Ras access to Raf at the PM is sufficient for MAPK activation and is a principal component of Ras mitogenesis and transformation. Fusion of the R-Ras extended N-terminal domain to H-Ras had no effect on proliferation, but inhibited transformation and tumor progression, indicating that the R-Ras N-terminus also contributes negative regulation to these Ras functions. PI3K activation was tD independent; however, H-Ras was a stronger activator of PI3K than R-Ras, with either tD. PI3K inhibition nearly ablated transformation by R-Ras-tH, H-Ras and H-Ras-tR, whereas MEK inhibition had a modest effect on Ras-tH-driven transformation but no effect on H-Ras-tR transformation. R-Ras-tH supported tumor initiation, but not tumor progression. While H-Ras-tR-induced transformation was reduced relative to H-Ras, tumor progression was robust and similar to H-Ras. H-Ras tumor growth was moderately suppressed by MEK inhibition, which had no effect on H-Ras-tR tumor growth. In contrast, PI3K inhibition markedly suppressed tumor growth by H-Ras and H-Ras-tR, indicating that sustained PI3K signaling is a critical pathway for H-Ras-driven tumor progression, independent of microdomains.
Collapse
|
3
|
Mitchell KAP, Szabo G, Otero ADS. Methods for the isolation of sensory and primary cilia--an overview. Methods Cell Biol 2009; 94:87-101. [PMID: 20362086 DOI: 10.1016/s0091-679x(08)94004-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Detailed proteomic analyses of mammalian olfactory and rod photoreceptor sensory cilia are now available, providing an inventory of resident ciliary proteins and laying the foundation for future studies of developmental and spatiotemporal changes in the composition of sensory cilia. Cilia purification methods that were elaborated and perfected over several decades were essential for these advances. In contrast, the proteome of primary cilia is yet to be established, because purification procedures for this organelle have been developed only recently. In this chapter, we review current techniques for the purification of olfactory and photoreceptor cilia, and evaluate methods designed for the selective isolation of primary cilia.
Collapse
Affiliation(s)
- Kimberly A P Mitchell
- Department of Biology and Chemistry, Liberty University, Lynchburg, Virginia 24502, USA
| | | | | |
Collapse
|
4
|
Walton KA, Gugiu BG, Thomas M, Basseri RJ, Eliav DR, Salomon RG, Berliner JA. A role for neutral sphingomyelinase activation in the inhibition of LPS action by phospholipid oxidation products. J Lipid Res 2006; 47:1967-74. [PMID: 16775254 DOI: 10.1194/jlr.m600060-jlr200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies from our laboratory and others presented evidence that oxidized 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphatidylcholine (OxPAPC) and oxidized 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphatidylethanolamine can inhibit lipopolysaccharide (LPS)-mediated induction of interleukin-8 (IL-8) in endothelial cells. Using synthetic derivatives of phosphatidylethanolamine, we now demonstrate that phospholipid oxidation products containing alpha,beta-unsaturated carboxylic acids are the most active inhibitors we examined. 5-Keto-6-octendioic acid ester of 2-phosphatidylcholine (KOdiA-PC) was 500-fold more inhibitory than OxPAPC, being active in the nanomolar range. Our studies in human aortic endothelial cells identify one important mechanism of the inhibitory response as involving the activation of neutral sphingomyelinase. There is evidence that Toll-like receptor-4 and other members of the LPS receptor complex must be colocalized to the caveolar/lipid raft region of the cell, where sphingomyelin is enriched, for effective LPS signaling. Previous work from our laboratory suggested that OxPAPC could disrupt this caveolar fraction. These studies present evidence that OxPAPC activates sphingomyelinase, increasing the levels of 16:0, 22:0, and 24:0 ceramide and that the neutral sphingomyelinase inhibitor GW4869 reduces the inhibitory effect of OxPAPC and KOdiA-PC. We also show that cell-permeant C6 ceramide, like OxPAPC, causes the inhibition of LPS-induced IL-8 synthesis and alters caveolin distribution similar to OxPAPC. Together, these data identify a new pathway by which oxidized phospholipids inhibit LPS action involving the activation of neutral sphingomyelinase, resulting in a change in caveolin distribution. Furthermore, we identify specific oxidized phospholipids responsible for this inhibition.
Collapse
Affiliation(s)
- Kimberly A Walton
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Rubin J, Murphy TC, Rahnert J, Song H, Nanes MS, Greenfield EM, Jo H, Fan X. Mechanical inhibition of RANKL expression is regulated by H-Ras-GTPase. J Biol Chem 2005; 281:1412-8. [PMID: 16306046 DOI: 10.1074/jbc.m508639200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mechanical input is known to regulate bone remodeling, yet the molecular events involved in mechanical signal transduction are poorly understood. We here investigate proximal events leading to the ERK1/2 activation that is required for mechanical repression of RANKL (receptor activator of NF-kappaB ligand) expression, the factor that controls local recruitment of osteoclasts. Using primary murine bone stromal cells we show that dynamic mechanical strain via substrate deformation activates Ras-GTPase, in particular the H-Ras isoform. Pharmacological inhibition of H-Ras function prevents strain activation of H-Ras as well as the downstream mechanical repression of RANKL. Furthermore, small interfering RNA silencing of H-Ras, but not K-Ras, abrogates mechanical strain repression of RANKL. H-Ras-specific inhibition of mechanorepression of RANKL was also demonstrated in a murine pre-osteoblast cell line (CIMC-4). The requirement of cholesterol for H-Ras activation was probed; cholesterol depletion of rafts using methyl-betacyclodextrin prevented mechanical H-Ras activation. That the mechanical repression of RANKL requires activation of H-Ras, a specific isoform of Ras-GTP that is known to reside in the lipid raft microdomain, suggests that spatial arrangements are critical for generation of specific downstream events in response to mechanical signals. By partitioning signals this way, cells may be able to generate different downstream responses through seemingly similar signaling cascades.
Collapse
Affiliation(s)
- Janet Rubin
- Department of Medicine, Emory University School of Medicine and Veterans Affairs Medical Center, Atlanta, Georgia 30033, USA.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Roy S, Plowman S, Rotblat B, Prior IA, Muncke C, Grainger S, Parton RG, Henis YI, Kloog Y, Hancock JF. Individual palmitoyl residues serve distinct roles in H-ras trafficking, microlocalization, and signaling. Mol Cell Biol 2005; 25:6722-33. [PMID: 16024806 PMCID: PMC1190337 DOI: 10.1128/mcb.25.15.6722-6733.2005] [Citation(s) in RCA: 174] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
H-ras is anchored to the plasma membrane by two palmitoylated cysteine residues, Cys181 and Cys184, operating in concert with a C-terminal S-farnesyl cysteine carboxymethylester. Here we demonstrate that the two palmitates serve distinct biological roles. Monopalmitoylation of Cys181 is required and sufficient for efficient trafficking of H-ras to the plasma membrane, whereas monopalmitoylation of Cys184 does not permit efficient trafficking beyond the Golgi apparatus. However, once at the plasma membrane, monopalmitoylation of Cys184 supports correct GTP-regulated lateral segregation of H-ras between cholesterol-dependent and cholesterol-independent microdomains. In contrast, monopalmitoylation of Cys181 dramatically reverses H-ras lateral segregation, driving GTP-loaded H-ras into cholesterol-dependent microdomains. Intriguingly, the Cys181 monopalmitoylated H-ras anchor emulates the GTP-regulated microdomain interactions of N-ras. These results identify N-ras as the Ras isoform that normally signals from lipid rafts but also reveal that spacing between palmitate and prenyl groups influences anchor interactions with the lipid bilayer. This concept is further supported by the different plasma membrane affinities of the monopalmitoylated anchors: Cys181-palmitate is equivalent to the dually palmitoylated wild-type anchor, whereas Cys184-palmitate is weaker. Thus, membrane affinity of a palmitoylated anchor is a function both of the hydrophobicity of the lipid moieties and their spatial organization. Finally we show that the plasma membrane affinity of monopalmitoylated anchors is absolutely dependent on cholesterol, identifying a new role for cholesterol in promoting interactions with the raft and nonraft plasma membrane.
Collapse
Affiliation(s)
- Sandrine Roy
- Institute for Molecular Bioscience, 306 Carmody Road, University of Queensland, Brisbane 4072, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Kiyokawa E, Baba T, Otsuka N, Makino A, Ohno S, Kobayashi T. Spatial and Functional Heterogeneity of Sphingolipid-rich Membrane Domains. J Biol Chem 2005; 280:24072-84. [PMID: 15840575 DOI: 10.1074/jbc.m502244200] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Little is known about the organization of lipids in biomembranes. Lipid rafts are defined as sphingolipid- and cholesterol-rich clusters in the membrane. Details of the lipid distribution of lipid rafts are not well characterized mainly because of a lack of appropriate probes. Ganglioside GM1-specific protein, cholera toxin, has long been the only lipid probe of lipid rafts. Recently it was shown that earthworm toxin, lysenin, specifically recognizes sphingomyelin-rich membrane domains. Binding of lysenin to sphingomyelin is accompanied by the oligomerization of the toxin that leads to pore formation in the target membrane. In this study, we generated a truncated lysenin mutant that does not oligomerize and thus is non-toxic. Using this mutant lysenin, we showed that plasma membrane sphingomyelin-rich domains are spatially distinct from ganglioside GM1-rich membrane domains in Jurkat T cells. Like T cell receptor activation and cross-linking of GM1, cross-linking of sphingomyelin induced calcium influx and ERK phosphorylation in the cell. However, unlike CD3 or GM1, cross-linking of sphingomyelin did not induce significant protein tyrosine phosphorylation. Combination of lysenin and sphingomyelinase treatment suggested the involvement of G-protein-coupled receptor in sphingomyelin-mediated signal transduction. These results thus suggest that the sphingomyelin-rich domain provides a functional signal cascade platform that is distinct from those provided by T cell receptor or GM1. Our study therefore elucidates the spatial and functional heterogeneity of lipid rafts.
Collapse
|
8
|
Evans TM, Simpson F, Parton RG, Wicking C. Characterization of Rab23, a negative regulator of sonic hedgehog signaling. Methods Enzymol 2005; 403:759-77. [PMID: 16473637 DOI: 10.1016/s0076-6879(05)03066-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The hedgehog signaling pathway is indispensable in embryogenesis, being responsible for the development of a wide array of vertebrate organs. Given its importance in embryogenesis, the precise regulation of hedgehog signaling is crucial. Aberrant activation of this pathway in postnatal life has been associated with a number of tumor types, reinforcing the role of developmental signaling pathways in tumorigenesis. The small GTPase Rab23 acts as a negative regulator of the hedgehog signaling pathway, most notably in the vertebrate neural system. By analogy with studies of other Rab proteins, analysis of the localization of wild-type and constitutively active and inactive forms of Rab23 provides the potential to shed light on the role of Rab23 at the cellular level. We previously produced expression constructs encoding these proteins for analysis in mammalian cell cultures at both the light and the electron microscopy level. This revealed that both wild-type and active Rab23 localizes to the plasma membrane and to endocytic vesicles (T. M. Evans et al. [2003] Traffic4, 869-884). We describe the methods used to design and make the Rab23 expression constructs, and to assess their localization relative to key hedgehog pathways and endocytic markers in both transiently and stably transfected cell cultures.
Collapse
|
9
|
Kusumi A, Koyama-Honda I, Suzuki K. Molecular dynamics and interactions for creation of stimulation-induced stabilized rafts from small unstable steady-state rafts. Traffic 2004; 5:213-30. [PMID: 15030563 DOI: 10.1111/j.1600-0854.2004.0178.x] [Citation(s) in RCA: 293] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have evaluated the sizes and lifetimes of rafts in the plasma membrane from the existing literature, with a special attention paid to their intrinsically broad distributions and the limited time and space scales that are covered by the observation methods used for these studies. Distinguishing the rafts in the steady state (reserve rafts) from those after stimulation or unintentional crosslinking of raft molecules (stabilized receptor-cluster rafts) is critically important. In resting cells, the rafts appear small and unstable, and the consensus now is that their sizes are smaller than the optical diffraction limit (250 nm). Upon stimulation, the raft-preferring receptors are clustered, inducing larger, stabilized rafts, probably by coalescing small, unstable rafts or cholesterol-glycosphingolipid complexes in the receptor clusters. This receptor-cluster-induced conversion of raft types may be caused by suppression of alkyl chain isomerization and the lipid lateral diffusion in the cluster, with the aid of exclusion of cholesterol from the bulk domain and the boundary region of the majority of transmembrane proteins. We critically inspected the possible analogy to the boundary lipid concept. Finally, we propose a hypothesis for the coupling of GPI-anchored receptor signals with lipid-anchored signaling molecules in the inner-leaflet raft.
Collapse
Affiliation(s)
- Akihiro Kusumi
- Department of Biological Science and Institute for Advanced Research, Nagoya University, Nagoya 464-8602, Japan.
| | | | | |
Collapse
|
10
|
Yeh M, Cole AL, Choi J, Liu Y, Tulchinsky D, Qiao JH, Fishbein MC, Dooley AN, Hovnanian T, Mouilleseaux K, Vora DK, Yang WP, Gargalovic P, Kirchgessner T, Shyy JYJ, Berliner JA. Role for Sterol Regulatory Element-Binding Protein in Activation of Endothelial Cells by Phospholipid Oxidation Products. Circ Res 2004; 95:780-8. [PMID: 15388640 DOI: 10.1161/01.res.0000146030.53089.18] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Oxidized phospholipids, including oxidation products of palmitoyl-arachidonyl-phosphatidyl choline (PAPC), are mediators of inflammation in endothelial cells (ECs) and known to induce several chemokines, including interleukin-8 (IL-8). In this study, we show that oxidized PAPC (OxPAPC), which accumulates in atherosclerotic lesions, paradoxically depletes endothelial cholesterol, causing caveolin-1 internalization from the plasma membrane to the endoplasmic reticulum and Golgi, and activates sterol regulatory element-binding protein (SREBP). Cholesterol loading reversed these effects. SREBP activation resulted in increased transcription of the low-density lipoprotein receptor, a target gene of SREBP. We also provide evidence that cholesterol depletion and SREBP activation are signals for OxPAPC induction of IL-8. Cholesterol depletion by methyl-beta-cyclodextrin induced IL-8 synthesis in a dose-dependent manner. Furthermore, cholesterol loading of ECs by either the cholesterol-cyclodextrin complex or caveolin-1 overexpression inhibited OxPAPC induction of IL-8. These observations suggest that changes in cholesterol level can modulate IL-8 synthesis in ECs. The OxPAPC induction of IL-8 was mediated through the increased binding of SREBP to the IL-8 promoter region, as revealed by mobility shift assays. Overexpression of either dominant-negative SREBP cleavage-activating protein or 25-hydroxycholesterol significantly suppressed the effect of OxPAPC on IL-8 transcription. A role for SREBP activation in atherosclerosis is suggested by the observation that EC nuclei showed strong SREBP staining in human atherosclerotic lesions. The current studies suggest a novel role for endothelial cholesterol depletion and subsequent SREBP activation in inflammatory processes in which phospholipid oxidation products accumulate.
Collapse
Affiliation(s)
- Michael Yeh
- Department of Medicine, Geffen School of Medicine at University of California Los Angeles, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Hansen M, Prior IA, Hughes PE, Oertli B, Chou FL, Willumsen BM, Hancock JF, Ginsberg MH. C-terminal sequences in R-Ras are involved in integrin regulation and in plasma membrane microdomain distribution. Biochem Biophys Res Commun 2004; 311:829-38. [PMID: 14623256 DOI: 10.1016/j.bbrc.2003.10.074] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The small GTPases R-Ras and H-Ras are highly homologous proteins with contrasting biological properties, for example, they differentially modulate integrin affinity: H-Ras suppresses integrin activation in fibroblasts whereas R-Ras can reverse this effect of H-Ras. To gain insight into the sequences directing this divergent phenotype, we investigated a panel of H-Ras/R-Ras chimeras and found that sequences in the R-Ras hypervariable C-terminal region including amino acids 175-203 are required for the R-Ras ability to increase integrin activation in CHO cells; however, the proline-rich site in this region, previously reported to bind the adaptor protein Nck, was not essential for this effect. In addition, we found that the GTPase TC21 behaved similarly to R-Ras. Because the C-termini of Ras proteins can control their subcellular localization, we compared the localization of H-Ras and R-Ras. In contrast to H-Ras, which migrates out of lipid rafts upon activation, we found that activated R-Ras remained localized to lipid rafts. However, functionally distinct H-Ras/R-Ras chimeras containing different C-terminal R-Ras segments localized to lipid rafts irrespective of their integrin phenotype.
Collapse
Affiliation(s)
- Malene Hansen
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Evans TM, Ferguson C, Wainwright BJ, Parton RG, Wicking C. Rab23, a Negative Regulator of Hedgehog Signaling, Localizes to the Plasma Membrane and the Endocytic Pathway. Traffic 2003; 4:869-84. [PMID: 14617350 DOI: 10.1046/j.1600-0854.2003.00141.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The regulation of hedgehog signaling by vesicular trafficking was exemplified by the finding that Rab23, a Rab-GTPase vesicular transport protein, is mutated in open brain mice. In this study, the localization of Rab23 was analyzed by light and immunoelectron microscopy after expression of wild-type (Rab23-GFP), constitutively active Rab23 (Rab23Q68L-GFP), and inactive Rab23 (Rab23S23N-GFP) in a range of mammalian cell types. Rab23-GFP and Rab23Q68L-GFP were predominantly localized to the plasma membrane but were also associated with intracellular vesicular structures, whereas Rab23S23N-GFP was predominantly cytosolic. Vesicular Rab23-GFP colocalized with Rab5Q79L and internalized transferrin-biotin, but not with a marker of the late endosome or the Golgi complex. To investigate Rab23 with respect to members of the hedgehog signaling pathway, Rab23-GFP was coexpressed with either patched or smoothened. Patched colocalized with intracellular Rab23-GFP but smoothened did not. Analysis of patched distribution by light and immunoelectron microscopy revealed it is primarily localized to endosomal elements, including transferrin receptor-positive early endosomes and putative endosome carrier vesicles and, to a lesser extent, with LBPA-positive late endosomes, but was excluded from the plasma membrane. Neither patched or smoothened distribution was altered in the presence of wild-type nor mutant Rab23-GFP, suggesting that despite the endosomal colocalization of Rab23 and patched, it is likely that Rab23 acts more distally in regulating hedgehog signaling.
Collapse
Affiliation(s)
- Timothy M Evans
- Institute for Molecular Bioscience, Department of Biochemistry, The University of Queensland, Brisbane QLD 4072, Australia
| | | | | | | | | |
Collapse
|
13
|
Chen HQ, Tannous M, Veluthakal R, Amin R, Kowluru A. Novel roles for palmitoylation of Ras in IL-1β-induced nitric oxide release and caspase 3 activation in insulin-secreting β cells. Biochem Pharmacol 2003; 66:1681-94. [PMID: 14563479 DOI: 10.1016/s0006-2952(03)00549-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We recently demonstrated that functional inactivation of H-Ras results in significant reduction in interleukin 1 beta (IL-1 beta)-mediated effects on isolated beta cells. Since palmitoylation of Ras has been implicated in its membrane targeting, we examined the contributory roles of palmitoylation of Ras in IL-1 beta-induced nitric oxide (NO) release and subsequent activation of caspases. Preincubation of HIT-T15 or INS-1 cells with cerulenin (CER, 134 microM; 3 hr), an inhibitor of protein palmitoylation, significantly reduced (-95%) IL-1 beta-induced NO release from these cells. 2-Bromopalmitate, a structurally distinct inhibitor of protein palmitoylation, but not 2-hydroxymyristic acid, an inhibitor of protein myristoylation, also reduced (-67%) IL-1 beta-induced NO release from HIT cells. IL-induced inducible nitric oxide synthase gene expression was markedly attenuated by CER. Further, CER markedly reduced incorporation of [3H]palmitate into H-Ras and caused significant accumulation of Ras in the cytosolic fraction. CER-treatment also prevented IL-1 beta-induced activation of caspase 3 in these cells. Moreover, N-monomethyl-L-arginine, a known inhibitor of inducible nitric oxide synthase, markedly inhibited IL-induced activation of caspase 3, thus establishing a link between IL-induced NO release and caspase 3 activation. Depletion of membrane-bound cholesterol using methyl-beta-cyclodextrin, which also disrupts caveolar organization within the plasma membrane, abolished IL-1 beta-induced NO release suggesting that IL-1 beta-mediated Ras-dependent signaling in these cells involves the intermediacy of caveolae and their key constituents (e.g. caveolin-1) in isolated beta cells. Confocal light microscopic evidence indicated significant colocalization of Ras with caveolin-1. Taken together, our data provide the first evidence to indicate that palmitoylation of Ras is essential for IL-1 beta-induced cytotoxic effects on the islet beta cell.
Collapse
Affiliation(s)
- Hai-Qing Chen
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University and beta Cell Biochemistry Research Laboratory, John D. Dingell VA Medical Center, Detroit, MI 48201, USA
| | | | | | | | | |
Collapse
|
14
|
Abstract
Ras signalling has classically been thought to occur exclusively at the inner surface of a relatively uniform plasma membrane. Recent studies have shown that Ras proteins interact dynamically with specific microdomains of the plasma membrane as well as with other internal cell membranes. These different membrane microenvironments modulate Ras signal output and highlight the complex interplay between Ras location and function.
Collapse
Affiliation(s)
- John F Hancock
- Institute for Molecular Bioscience and Department of Molecular and Cellular Pathology, University of Queensland, Brisbane, Australia 4072.
| |
Collapse
|
15
|
Prior IA, Parton RG, Hancock JF. Observing cell surface signaling domains using electron microscopy. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2003; 2003:PL9. [PMID: 12684529 DOI: 10.1126/stke.2003.177.pl9] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The plasma membrane is made up of a complex mosaic of different functional microdomains, but the tools required to accurately visualize them have always been limited. We present a protocol that allows both inner and outer leaflet domains to be visualized on a nanometer scale. With a combination of electron microscopic and statistical analysis approaches, it is possible to screen proteins associating with, and co-localizing within, lipid rafts and other morphologically featureless microdomains. The approach has enormous potential to determine plasma membrane organization and the spatial dynamics of regulated signaling and membrane trafficking events associated with the cell surface.
Collapse
Affiliation(s)
- Ian A Prior
- The Physiological Laboratory, University of Liverpool, UK
| | | | | |
Collapse
|
16
|
Prior IA, Muncke C, Parton RG, Hancock JF. Direct visualization of Ras proteins in spatially distinct cell surface microdomains. J Cell Biol 2003; 160:165-70. [PMID: 12527752 PMCID: PMC2172642 DOI: 10.1083/jcb.200209091] [Citation(s) in RCA: 595] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Localization of signaling complexes to specific microdomains coordinates signal transduction at the plasma membrane. Using immunogold electron microscopy of plasma membrane sheets coupled with spatial point pattern analysis, we have visualized morphologically featureless microdomains, including lipid rafts, in situ and at high resolution. We find that an inner-plasma membrane lipid raft marker displays cholesterol-dependent clustering in microdomains with a mean diameter of 44 nm that occupy 35% of the cell surface. Cross-linking an outer-leaflet raft protein results in the redistribution of inner leaflet rafts, but they retain their modular structure. Analysis of Ras microlocalization shows that inactive H-ras is distributed between lipid rafts and a cholesterol-independent microdomain. Conversely, activated H-ras and K-ras reside predominantly in nonoverlapping, cholesterol-independent microdomains. Galectin-1 stabilizes the association of activated H-ras with these nonraft microdomains, whereas K-ras clustering is supported by farnesylation, but not geranylgeranylation. These results illustrate that the inner plasma membrane comprises a complex mosaic of discrete microdomains. Differential spatial localization within this framework can likely account for the distinct signal outputs from the highly homologous Ras proteins.
Collapse
Affiliation(s)
- Ian A Prior
- Department of Pathology and Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4006, Australia
| | | | | | | |
Collapse
|
17
|
Morrow IC, Rea S, Martin S, Prior IA, Prohaska R, Hancock JF, James DE, Parton RG. Flotillin-1/reggie-2 traffics to surface raft domains via a novel golgi-independent pathway. Identification of a novel membrane targeting domain and a role for palmitoylation. J Biol Chem 2002; 277:48834-41. [PMID: 12370178 DOI: 10.1074/jbc.m209082200] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Flotillins are lipid raft-associated proteins, which have been implicated in neuronal regeneration and insulin signaling. We now show that newly synthesized flotillin-1 reaches the plasma membrane via a Sar1-independent and brefeldin A-resistant targeting pathway. Consistent with post-translational membrane association of flotillin, protease sensitivity experiments suggest that flotillin-1 is not a transmembrane protein but is associated with the cytoplasmic face of the plasma membrane. The N terminus of flotillin contains a prohibitin-like domain (PHB), which shows homology to a number of proteins associated with raft domains including stomatin, podocin, and prohibitin. We show that the PHB domain of flotillin can efficiently target a heterologous protein, green fluorescent protein, to the plasma membrane. Another PHB-containing protein, stomatin, traffics to the plasma membrane via the conventional secretory pathway. Plasma membrane association of both full-length flotillin and the green fluorescent protein-tagged PHB domain of flotillin is dependent on palmitoylation and requires a conserved cysteine residue, Cys-34, in the PHB domain. The results identify a novel targeting mechanism for plasma membrane association of flotillin-1 involving a Golgi-independent trafficking pathway, the PHB domain, and palmitoylation.
Collapse
Affiliation(s)
- Isabel C Morrow
- Institute for Molecular Bioscience and Centre for Functional and Applied Genomics, University of Queensland, St. Lucia, Australia
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Carozzi AJ, Roy S, Morrow IC, Pol A, Wyse B, Clyde-Smith J, Prior IA, Nixon SJ, Hancock JF, Parton RG. Inhibition of lipid raft-dependent signaling by a dystrophy-associated mutant of caveolin-3. J Biol Chem 2002; 277:17944-9. [PMID: 11884389 DOI: 10.1074/jbc.m110879200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Specific point mutations in caveolin-3, a predominantly muscle-specific member of the caveolin family, have been implicated in limb-girdle muscular dystrophy and in rippling muscle disease. We examined the effect of these mutations on caveolin-3 localization and function. Using two independent assay systems, Raf activation in fibroblasts and neurite extension in PC12 cells, we show that one of the caveolin-3 point mutants, caveolin-3-C71W, specifically inhibits signaling by activated H-Ras but not by K-Ras. To gain insights into the effect of the mutant protein on H-Ras signaling, we examined the localization of the mutant proteins in fibroblastic cells and in differentiating myotubes. Unlike the previously characterized caveolin-3-DGV mutant, the inhibitory caveolin-3-C71W mutant reached the plasma membrane and colocalized with wild type caveolins. In BHK cells, caveolin-3-C71W associated with caveolae and in differentiating muscle cells with the developing T-tubule system. In contrast, the caveolin-3-P104L mutant accumulated in the Golgi complex and had no effect on H-Ras-mediated Raf activation. Inhibition by caveolin-3-C71W was rescued by cholesterol addition, suggesting that the mutant protein perturbs cholesterol-rich raft domains. Thus, we have demonstrated that a naturally occurring caveolin-3 mutation can inhibit signaling involving cholesterol-sensitive raft domains.
Collapse
Affiliation(s)
- Amanda J Carozzi
- Institute for Molecular Bioscience, Centre for Microscopy and Microanalysis, and School of Biomedical Sciences, University of Queensland, Brisbane 4072, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Jaumot M, Yan J, Clyde-Smith J, Sluimer J, Hancock JF. The linker domain of the Ha-Ras hypervariable region regulates interactions with exchange factors, Raf-1 and phosphoinositide 3-kinase. J Biol Chem 2002; 277:272-8. [PMID: 11689566 DOI: 10.1074/jbc.m108423200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ha-Ras and Ki-Ras have different distributions across plasma membrane microdomains. The Ras C-terminal anchors are primarily responsible for membrane micro-localization, but recent work has shown that the interaction of Ha-Ras with lipid rafts is modulated by GTP loading via a mechanism that requires the hypervariable region (HVR). We have now identified two regions in the HVR linker domain that regulate Ha-Ras raft association. Release of activated Ha-Ras from lipid rafts is blocked by deleting amino acids 173-179 or 166-172. Alanine replacement of amino acids 173-179 but not 166-172 restores wild type micro-localization, indicating that specific N-terminal sequences of the linker domain operate in concert with a more C-terminal spacer domain to regulate Ha-Ras raft association. Mutations in the linker domain that confine activated Ha-RasG12V to lipid rafts abrogate Raf-1, phosphoinositide 3-kinase, and Akt activation and inhibit PC12 cell differentiation. N-Myristoylation also prevents the release of activated Ha-Ras from lipid rafts and inhibits Raf-1 activation. These results demonstrate that the correct modulation of Ha-Ras lateral segregation is critical for downstream signaling. Mutations in the linker domain also suppress the dominant negative phenotype of Ha-RasS17N, indicating that HVR sequences are essential for efficient interaction of Ha-Ras with exchange factors in intact cells.
Collapse
Affiliation(s)
- Montserrat Jaumot
- Laboratory of Experimental Oncology, Department of Pathology, University of Queensland Medical School, Herston Road, Queensland 4006, Australia
| | | | | | | | | |
Collapse
|