1
|
Rafi SK, Fernández-Jaén A, Álvarez S, Nadeau OW, Butler MG. High Functioning Autism with Missense Mutations in Synaptotagmin-Like Protein 4 (SYTL4) and Transmembrane Protein 187 (TMEM187) Genes: SYTL4- Protein Modeling, Protein-Protein Interaction, Expression Profiling and MicroRNA Studies. Int J Mol Sci 2019; 20:E3358. [PMID: 31323913 PMCID: PMC6651166 DOI: 10.3390/ijms20133358] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/10/2019] [Accepted: 06/17/2019] [Indexed: 01/31/2023] Open
Abstract
We describe a 7-year-old male with high functioning autism spectrum disorder (ASD) and maternally-inherited rare missense variant of Synaptotagmin-like protein 4 (SYTL4) gene (Xq22.1; c.835C>T; p.Arg279Cys) and an unknown missense variant of Transmembrane protein 187 (TMEM187) gene (Xq28; c.708G>T; p. Gln236His). Multiple in-silico predictions described in our study indicate a potentially damaging status for both X-linked genes. Analysis of predicted atomic threading models of the mutant and the native SYTL4 proteins suggest a potential structural change induced by the R279C variant which eliminates the stabilizing Arg279-Asp60 salt bridge in the N-terminal half of the SYTL4, affecting the functionality of the protein's critical RAB-Binding Domain. In the European (Non-Finnish) population, the allele frequency for this variant is 0.00042. The SYTL4 gene is known to directly interact with several members of the RAB family of genes, such as, RAB27A, RAB27B, RAB8A, and RAB3A which are known autism spectrum disorder genes. The SYTL4 gene also directly interacts with three known autism genes: STX1A, SNAP25 and STXBP1. Through a literature-based analytical approach, we identified three of five (60%) autism-associated serum microRNAs (miRs) with high predictive power among the total of 298 mouse Sytl4 associated/predicted microRNA interactions. Five of 13 (38%) miRs were differentially expressed in serum from ASD individuals which were predicted to interact with the mouse equivalent Sytl4 gene. TMEM187 gene, like SYTL4, is a protein-coding gene that belongs to a group of genes which host microRNA genes in their introns or exons. The novel Q236H amino acid variant in the TMEM187 in our patient is near the terminal end region of the protein which is represented by multiple sequence alignments and hidden Markov models, preventing comparative structural analysis of the variant harboring region. Like SYTL4, the TMEM187 gene is expressed in the brain and interacts with four known ASD genes, namely, HCFC1; TMLHE; MECP2; and GPHN. TMM187 is in linkage with MECP2, which is a well-known determinant of brain structure and size and is a well-known autism gene. Other members of the TMEM gene family, TMEM132E and TMEM132D genes are associated with bipolar and panic disorders, respectively, while TMEM231 is a known syndromic autism gene. Together, TMEM187 and SYTL4 genes directly interact with recognized important ASD genes, and their mRNAs are found in extracellular vesicles in the nervous system and stimulate target cells to translate into active protein. Our evidence shows that both these genes should be considered as candidate genes for autism. Additional biological testing is warranted to further determine the pathogenicity of these gene variants in the causation of autism.
Collapse
Affiliation(s)
- Syed K Rafi
- Departments of Psychiatry & Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | | | - Sara Álvarez
- Genomics and Medicine, NIM Genetics, 28108 Madrid, Spain
| | - Owen W Nadeau
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Merlin G Butler
- Departments of Psychiatry & Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
2
|
Hirano S, Uemura T, Annoh H, Fujita N, Waguri S, Itoh T, Fukuda M. Differing susceptibility to autophagic degradation of two LC3-binding proteins: SQSTM1/p62 and TBC1D25/OATL1. Autophagy 2016; 12:312-26. [PMID: 26902585 DOI: 10.1080/15548627.2015.1124223] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
MAP1LC3/LC3 (a mammalian ortholog family of yeast Atg8) is a ubiquitin-like protein that is essential for autophagosome formation. LC3 is conjugated to phosphatidylethanolamine on phagophores and ends up distributed both inside and outside the autophagosome membrane. One of the well-known functions of LC3 is as a binding partner for receptor proteins, which target polyubiquitinated organelles and proteins to the phagophore through direct interaction with LC3 in selective autophagy, and their LC3-binding ability is essential for degradation of the polyubiquitinated substances. Although a number of LC3-binding proteins have been identified, it is unknown whether they are substrates of autophagy or how their interaction with LC3 is regulated. We previously showed that one LC3-binding protein, TBC1D25/OATL1, plays an inhibitory role in the maturation step of autophagosomes and that this function depends on its binding to LC3. Interestingly, TBC1D25 seems not to be a substrate of autophagy, despite being present on the phagophore. In this study we investigated the molecular basis for the escape of TBC1D25 from autophagic degradation by performing a chimeric analysis between TBC1D25 and SQSTM1/p62 (sequestosome 1), and the results showed that mutant TBC1D25 with an intact LC3-binding site can become an autophagic substrate when TBC1D25 is forcibly oligomerized. In addition, an ultrastructural analysis showed that TBC1D25 is mainly localized outside autophagosomes, whereas an oligomerized TBC1D25 mutant rather uniformly resides both inside and outside the autophagosomes. Our findings indicate that oligomerization is a key factor in the degradation of LC3-binding proteins and suggest that lack of oligomerization ability of TBC1D25 results in its asymmetric localization at the outer autophagosome membrane.
Collapse
Affiliation(s)
- Satoshi Hirano
- a Laboratory of Membrane Trafficking Mechanisms , Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University , Aobayama, Aoba-ku, Sendai , Miyagi , Japan
| | - Takefumi Uemura
- b Department of Anatomy and Histology , Fukushima Medical University School of Medicine , Fukushima , Japan
| | - Hiromichi Annoh
- b Department of Anatomy and Histology , Fukushima Medical University School of Medicine , Fukushima , Japan
| | - Naonobu Fujita
- a Laboratory of Membrane Trafficking Mechanisms , Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University , Aobayama, Aoba-ku, Sendai , Miyagi , Japan
| | - Satoshi Waguri
- b Department of Anatomy and Histology , Fukushima Medical University School of Medicine , Fukushima , Japan
| | - Takashi Itoh
- a Laboratory of Membrane Trafficking Mechanisms , Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University , Aobayama, Aoba-ku, Sendai , Miyagi , Japan.,c Center for Frontier Oral Science, Graduate School of Dentistry, Osaka University , Suita , Osaka , Japan
| | - Mitsunori Fukuda
- a Laboratory of Membrane Trafficking Mechanisms , Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University , Aobayama, Aoba-ku, Sendai , Miyagi , Japan
| |
Collapse
|
3
|
Marubashi S, Ohbayashi N, Fukuda M. A Varp-Binding Protein, RACK1, Regulates Dendrite Outgrowth through Stabilization of Varp Protein in Mouse Melanocytes. J Invest Dermatol 2016; 136:1672-1680. [PMID: 27066885 DOI: 10.1016/j.jid.2016.03.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 03/18/2016] [Accepted: 03/22/2016] [Indexed: 01/29/2023]
Abstract
Varp (VPS9-ankyrin repeat protein) in melanocytes is thought to function as a key player in the pigmentation of mammals. Varp regulates two different melanocyte functions: (i) transport of melanogenic enzymes to melanosomes by functioning as a Rab32/38 effector and (ii) promotion of dendrite outgrowth by functioning as a Rab21-guanine nucleotide exchange factor. The Varp protein level has recently been shown to be negatively regulated by proteasomal degradation through interaction of the ankyrin repeat 2 (ANKR2) domain of Varp with Rab40C. However, the molecular mechanisms by which Varp escapes from Rab40C and retains its own expression level remain completely unknown. Here, we identified RACK1 (receptor of activated protein kinase C 1) as a Varp-ANKR2 binding partner and investigated its involvement in Varp stabilization in mouse melanocytes. The results showed that knockdown of endogenous RACK1 in melanocytes caused dramatic reduction of the Varp protein level and inhibition of dendrite outgrowth, and intriguingly, overexpression of RACK1 inhibited the interaction between Varp and Rab40C and counteracted the negative effect of Rab40C on dendrite outgrowth. These findings indicated that RACK1 competes with Rab40C for binding to the ANKR2 domain of Varp and regulates dendrite outgrowth through stabilization of Varp in mouse melanocytes.
Collapse
Affiliation(s)
- Soujiro Marubashi
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Norihiko Ohbayashi
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan; Department of Physiological Chemistry, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan.
| |
Collapse
|
4
|
Aizawa M, Fukuda M. Small GTPase Rab2B and Its Specific Binding Protein Golgi-associated Rab2B Interactor-like 4 (GARI-L4) Regulate Golgi Morphology. J Biol Chem 2015. [PMID: 26209634 DOI: 10.1074/jbc.m115.669242] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rab small GTPases are crucial regulators of the membrane traffic that maintains organelle identity and morphology. Several Rab isoforms are present in the Golgi, and it has been suggested that they regulate the compacted morphology of the Golgi in mammalian cells. However, the functional relationships among the Golgi-resident Rabs, e.g. whether they are functionally redundant or different, are poorly understood. In this study, we used specific siRNAs to perform genome-wide screening for human Rabs that are involved in Golgi morphology in HeLa-S3 cells. The results showed that knockdown of any one of the six Rab isoforms (Rab1A/1B/2A/2B/6B/8A) induced fragmentation of the Golgi in HeLa-S3 cells and that its phenotype was rescued by re-expression of their respective siRNA-resistant construct. We then performed systematic knockdown-rescue experiments in relation to each of the six Rabs. Interestingly, with the exception of the Rab8A knockdown, the Golgi fragmentation phenotype induced by knockdown of a single Rab isoform, e.g. Rab2B, was efficiently rescued by re-expression of its siRNA-resistant Rab alone, not by any of the other five Rabs, e.g. Rab2A, which is highly homologous to Rab2B, indicating that these Rab isoforms non-redundantly regulate Golgi morphology possibly through interaction with isoform-specific effector molecules. In addition, we identified Golgi-associated Rab2B interactor-like 4 (GARI-L4) as a novel Golgi-resident Rab2B-specific binding protein whose knockdown also induced fragmentation of the Golgi. Our findings suggest that the compacted Golgi morphology of mammalian cells is finely tuned by multiple sets of Rab (or Rab-effector complexes) that for the most part function independently.
Collapse
Affiliation(s)
- Megumi Aizawa
- From the Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Mitsunori Fukuda
- From the Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
5
|
Yasuda T, Homma Y, Fukuda M. Slp2-a inactivates ezrin by recruiting protein phosphatase 1 to the plasma membrane. Biochem Biophys Res Commun 2015; 460:896-902. [PMID: 25817786 DOI: 10.1016/j.bbrc.2015.03.099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 03/18/2015] [Indexed: 02/06/2023]
Abstract
Synaptotagmin-like protein 2-a (Slp2-a) was originally described as a membrane trafficking protein that consists of a Slp homology domain (SHD), a linker domain, and tandem C2 domains (named the C2A domain and C2B domain). Slp2-a mediates docking of Rab27-bearing vesicles to the plasma membrane through simultaneous interaction with Rab27 and phospholipids in the plasma membrane. We have recently reported that Slp2-a regulates renal epithelial cell size through interaction with Rap1GAP2 via the C2B domain independently of Rab27 and demonstrated the presence of excess activation of ezrin, a membrane-cytoskeleton linker and signal transducer, in Slp2-a-knockdown Madin-Darby canine kidney II (MDCK II) cells. However, the precise mechanism of ezrin inactivation by Slp2-a in cell size control has remained largely unknown. In this study, we investigated the functional relationship between Slp2-a and ezrin in MDCK II cells. The results showed that activation of ezrin in control MDCK II cells either pharmacologically or by overexpression of a constitutively active ezrin mutant caused an increase in cell size, whereas inactivation of ezrin in Slp2-a-knockdown cells by a specific ezrin inhibitor restored them to their normal cell size. We also found that Slp2-a interacts via its previously uncharacterized linker domain with protein phosphatase 1β (PP1β), which inactivates ezrin, and that the interaction is required for the plasma membrane localization of PP1β. These results indicate that Slp2-a inactivates ezrin by recruiting PP1 to the plasma membrane.
Collapse
Affiliation(s)
- Takao Yasuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Yuta Homma
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan.
| |
Collapse
|
6
|
Etoh K, Fukuda M. Structure-function analyses of the small GTPase Rab35 and its effector protein centaurin-β2/ACAP2 during neurite outgrowth of PC12 cells. J Biol Chem 2015; 290:9064-74. [PMID: 25694427 DOI: 10.1074/jbc.m114.611301] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Indexed: 11/06/2022] Open
Abstract
The small GTPase Rab35 is a molecular switch for membrane trafficking that regulates a variety of cellular events. We previously showed that Rab35 promotes neurite outgrowth of nerve growth factor-stimulated PC12 cells through interaction with centaurin-β2 (also called ACAP2). Centaurin-β2 is the only Rab35-binding protein reported thus far that exclusively recognizes Rab35 and does not recognize any of the other 59 Rabs identified in mammals, but the molecular basis for the exclusive specificity of centaurin-β2 for Rab35 has remained completely unknown. In this study, we performed deletion and mutation analyses and succeeded in identifying the residues of Rab35 and centaurin-β2 that are crucial for formation of a Rab35·centaurin-β2 complex. We found that two threonine residues (Thr-76 and Thr-81) in the switch II region of Rab35 are responsible for binding centaurin-β2 and that the same residues are dispensable for Rab35 recognition by other Rab35-binding proteins. We also determined the minimal Rab35-binding site of centaurin-β2 and identified two asparagine residues (Asn-610 and Asn-691) in the Rab35-binding site as key residues for its specific Rab35 recognition. We further showed by knockdown-rescue approaches that neither a centaurin-β2 binding-deficient Rab35(T76S/T81A) mutant nor a Rab35 binding-deficient centaurin-β2(N610A/N691A) mutant supported neurite outgrowth of PC12 cells, thereby demonstrating the functional significance of the Rab35/centaurin-β2 interaction during neurite outgrowth of PC12 cells.
Collapse
Affiliation(s)
- Kan Etoh
- From the Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Mitsunori Fukuda
- From the Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
7
|
Yatsu A, Shimada H, Ohbayashi N, Fukuda M. Rab40C is a novel Varp-binding protein that promotes proteasomal degradation of Varp in melanocytes. Biol Open 2015; 4:267-75. [PMID: 25661869 PMCID: PMC4359733 DOI: 10.1242/bio.201411114] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Varp (VPS9-ankyrin repeat protein) was originally identified as an activator of small GTPase Rab21 through its VPS9 domain, but it has subsequently been shown to function as a Rab32/38 effector through its first ANKR1 domain. Although these functions of Varp are important for melanogenesis, Varp contains a second ANKR2 domain, whose function remained completely unknown. Here we identified Rab40C, an atypical Rab containing a SOCS box that recruits a ubiquitin ligase complex, as a novel ANKR2-binding protein and investigated its involvement in melanogenic enzyme trafficking in melanocytes. The results showed that overexpression of Rab40C in melanocytes caused a dramatic reduction in melanogenic enzyme Tyrp1 signals by promoting proteasomal degradation of Varp in a SOCS-box-dependent manner and that knockdown of Rab40C in melanocytes caused an increase in the amount of Varp. Intriguingly, Rab40C knockdown also caused a dramatic reduction in Tyrp1 signals, the same as Varp overexpression did. These findings indicated that Rab40C is a previously unexpected regulator of Tyrp1 trafficking in melanocytes through controlling the proteasomal degradation of Varp.
Collapse
Affiliation(s)
- Ayaka Yatsu
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Hikaru Shimada
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Norihiko Ohbayashi
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
8
|
Ishida M, Ohbayashi N, Fukuda M. Rab1A regulates anterograde melanosome transport by recruiting kinesin-1 to melanosomes through interaction with SKIP. Sci Rep 2015; 5:8238. [PMID: 25649263 PMCID: PMC4316160 DOI: 10.1038/srep08238] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 01/13/2015] [Indexed: 01/01/2023] Open
Abstract
Melanosomes are lysosome-related organelles in melanocytes that are transported from the perinucleus to the cell periphery by coordination between bidirectional (anterograde and retrograde) microtubule-dependent transport and unidirectional actin-dependent transport. Although the molecular machineries that mediate retrograde transport and actin-dependent transport have already been identified, little is known about the anterograde transport complex on microtubules in mammalian cells. Here we discovered that small GTPase Rab1A on melanosomes recruits SKIP/PLEKHM2 as a Rab1A-specific effector and that Rab1A, SKIP, and a kinesin-1/(Kif5b+KLC2) motor form a transport complex that mediates anterograde melanosome transport in melanocytes. Interestingly, Arl8, Arf-like small GTPase that also interacts with SKIP, is specifically localized at lysosomes and regulates their anterograde transport in melanocytes. Our findings suggest that the anterograde microtubule-dependent transport of melanosomes and lysosomes are differently regulated by independent cargo receptors, i.e., Rab1A and Arl8, respectively, but that a SKIP–kinesin-1 mechanism is responsible for the transport of both.
Collapse
Affiliation(s)
- Morié Ishida
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Norihiko Ohbayashi
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
9
|
Yasuda T, Mrozowska PS, Fukuda M. Functional analysis of Rab27A and its effector Slp2-a in renal epithelial cells. Methods Mol Biol 2015; 1298:127-139. [PMID: 25800838 DOI: 10.1007/978-1-4939-2569-8_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Polarized epithelial cells have two distinct plasma membrane domains, i.e., an apical membrane domain and a basolateral membrane domain, that are the result of polarized trafficking of proteins and lipids. Several members of the Rab-type small GTPases, which are general regulators of membrane trafficking, have been reported to be involved in the regulation of polarized trafficking in epithelial cells, but their precise role in polarized trafficking is poorly understood. In a recent study we used Madin-Darby canine kidney (MDCK) II cells as a model of polarized cells and concluded from the results that Rab27A and its effector synaptotagmin-like protein 2-a (Slp2-a) regulate apical transport of Rab27-bearing vesicles in polarized epithelial cells. Both Rab27A and Slp2-a are uniformly localized at the plasma membrane in subconfluent, non-polarized MDCK II cells, but their expression increases as the cells become polarized, and they are specifically localized at the apical membrane in polarized MDCK II cells (i.e., two-dimensional cell culture). Slp2-a is also localized at the apical membrane of tubular MDCK II cysts (i.e., three-dimensional cell culture) and promotes the formation of a single apical domain in the cysts by regulating polarized trafficking of Rab27-bearing vesicles. In this chapter we describe the assay procedures for analyzing the expression and localization of Rab27A and Slp2-a in non-polarized and polarized renal epithelial cells.
Collapse
Affiliation(s)
- Takao Yasuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | | | | |
Collapse
|
10
|
Menter DG, Tucker SC, Kopetz S, Sood AK, Crissman JD, Honn KV. Platelets and cancer: a casual or causal relationship: revisited. Cancer Metastasis Rev 2014; 33:231-69. [PMID: 24696047 PMCID: PMC4186918 DOI: 10.1007/s10555-014-9498-0] [Citation(s) in RCA: 232] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Human platelets arise as subcellular fragments of megakaryocytes in bone marrow. The physiologic demand, presence of disease such as cancer, or drug effects can regulate the production circulating platelets. Platelet biology is essential to hemostasis, vascular integrity, angiogenesis, inflammation, innate immunity, wound healing, and cancer biology. The most critical biological platelet response is serving as "First Responders" during the wounding process. The exposure of extracellular matrix proteins and intracellular components occurs after wounding. Numerous platelet receptors recognize matrix proteins that trigger platelet activation, adhesion, aggregation, and stabilization. Once activated, platelets change shape and degranulate to release growth factors and bioactive lipids into the blood stream. This cyclic process recruits and aggregates platelets along with thrombogenesis. This process facilitates wound closure or can recognize circulating pathologic bodies. Cancer cell entry into the blood stream triggers platelet-mediated recognition and is amplified by cell surface receptors, cellular products, extracellular factors, and immune cells. In some cases, these interactions suppress immune recognition and elimination of cancer cells or promote arrest at the endothelium, or entrapment in the microvasculature, and survival. This supports survival and spread of cancer cells and the establishment of secondary lesions to serve as important targets for prevention and therapy.
Collapse
Affiliation(s)
- David G Menter
- Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | | | | | | | | | | |
Collapse
|
11
|
Ishida M, Arai SP, Ohbayashi N, Fukuda M. The GTPase-deficient Rab27A(Q78L) mutant inhibits melanosome transport in melanocytes through trapping of Rab27A effector protein Slac2-a/melanophilin in their cytosol: development of a novel melanosome-targetinG tag. J Biol Chem 2014; 289:11059-11067. [PMID: 24584932 DOI: 10.1074/jbc.m114.552281] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The small GTPase Rab27A is a crucial regulator of actin-based melanosome transport in melanocytes, and functionally defective Rab27A causes human Griscelli syndrome type 2, which is characterized by silvery hair. A GTPase-deficient, constitutively active Rab27A(Q78L) mutant has been shown to act as an inhibitor of melanosome transport and to induce perinuclear aggregation of melanosomes, but the molecular mechanism by which Rab27A(Q78L) inhibits melanosome transport remained to be determined. In this study, we attempted to identify the primary cause of the perinuclear melanosome aggregation induced by Rab27A(Q78L). The results showed that Rab27A(Q78L) is unable to localize on mature melanosomes and that its inhibitory activity on melanosome transport is completely dependent on its binding to the Rab27A effector Slac2-a/melanophilin. When we forcibly expressed Rab27A(Q78L) on mature melanosomes by using a novel melanosome-targeting tag that we developed in this study and named the MST tag, the MST-Rab27A(Q78L) fusion protein behaved in the same manner as wild-type Rab27A. It localized on mature melanosomes without inducing melanosome aggregation and restored normal peripheral melanosome distribution in Rab27A-deficient cells. These findings indicate that the GTPase activity of Rab27A is required for its melanosome localization but is not required for melanosome transport.
Collapse
Affiliation(s)
- Morié Ishida
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Saki P Arai
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Norihiko Ohbayashi
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan.
| |
Collapse
|
12
|
Syntaxin-3 is required for melanosomal localization of Tyrp1 in melanocytes. J Invest Dermatol 2013; 133:2237-46. [PMID: 23549422 DOI: 10.1038/jid.2013.156] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 02/28/2013] [Accepted: 03/11/2013] [Indexed: 11/08/2022]
Abstract
Melanogenic enzymes are transported by vesicular/membrane trafficking to immature melanosomes in melanocytes where they catalyze the synthesis of melanin pigments. Although several factors involved in melanogenic enzyme trafficking have been identified in the past decade, involvement of the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins, which generally mediate membrane fusion, on melanosomes in the process of melanogenic enzyme trafficking has never been investigated. In this study we identified syntaxin-3, which was originally described as a target SNARE protein at the plasma membrane, as a melanosome-resident protein and investigated whether syntaxin-3 is involved in the trafficking of the melanogenic enzyme Tyrp1 (tyrosinase-related protein 1) in mouse melanocytes. The results showed that knockdown of endogenous syntaxin-3 protein in melanocytes caused a dramatic reduction in Tyrp1 signals, especially from peripheral melanosomes, presumably as a result of lysosomal degradation of Tyrp1. They also showed that syntaxin-3 interacts with another target SNARE SNAP23 (synaptosome-associated protein of 23 kDa) and with vesicle SNARE VAMP7 (vesicle-associated membrane protein 7), which has been shown to be localized at Tyrp1-containing vesicles/organelles. These findings suggested that the SNARE machinery composed of VAMP7 on Tyrp1-containing vesicles and syntaxin-3 and SNAP23 on melanosomes regulates Tyrp1 trafficking to the melanosome in melanocytes.
Collapse
|
13
|
Kobayashi H, Fukuda M. Rab35 establishes the EHD1-association site by coordinating two distinct effectors during neurite outgrowth. J Cell Sci 2013; 126:2424-35. [DOI: 10.1242/jcs.117846] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Endocytic recycling is a process in which molecules have been internalized are recycled back to the plasma membrane, and although it is crucial for regulating various cellular events, the molecular nexus underlying this process remains poorly understood. Here we report a well-orchestrated molecular link between two gatekeepers for endocytic recycling, the molecular switch Rab35 and the molecular scissors EHD1, that is mediated by two distinct Rab35 effectors during neurite outgrowth of PC12 cells. Rab35 forms a tripartite complex with MICAL-L1 and centaurin-β2/ACAP2 and recruits them to perinuclear Arf6-positive endosomes in response to nerve growth factor stimulation. MICAL-L1 and centaurin-β2 then cooperatively recruit EHD1 to the same compartment by functioning as a scaffold for EHD1 and as an inactivator of Arf6, respectively. We propose that Rab35 regulates the formation of an EHD1-association site on Arf6-positive endosomes by integrating the functions of two distinct Rab35 effectors for successful neurite outgrowth.
Collapse
|
14
|
Gálvez-Santisteban M, Rodriguez-Fraticelli AE, Bryant DM, Vergarajauregui S, Yasuda T, Bañón-Rodríguez I, Bernascone I, Datta A, Spivak N, Young K, Slim CL, Brakeman PR, Fukuda M, Mostov KE, Martín-Belmonte F. Synaptotagmin-like proteins control the formation of a single apical membrane domain in epithelial cells. Nat Cell Biol 2012; 14:838-49. [PMID: 22820376 PMCID: PMC3433678 DOI: 10.1038/ncb2541] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 06/14/2012] [Indexed: 12/16/2022]
Abstract
The formation of epithelial tissues requires both the generation of apical-basal polarity and the coordination of this polarity between neighbouring cells to form a central lumen. During de novo lumen formation, vectorial membrane transport contributes to the formation of a singular apical membrane, resulting in the contribution of each cell to only a single lumen. Here, from a functional screen for genes required for three-dimensional epithelial architecture, we identify key roles for synaptotagmin-like proteins 2-a and 4-a (Slp2-a/4-a) in the generation of a single apical surface per cell. Slp2-a localizes to the luminal membrane in a PtdIns(4,5)P(2)-dependent manner, where it targets Rab27-loaded vesicles to initiate a single lumen. Vesicle tethering and fusion is controlled by Slp4-a, in conjunction with Rab27/Rab3/Rab8 and the SNARE syntaxin-3. Together, Slp2-a/4-a coordinate the spatiotemporal organization of vectorial apical transport to ensure that only a single apical surface, and thus the formation of a single lumen, occurs per cell.
Collapse
Affiliation(s)
- Manuel Gálvez-Santisteban
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, C/Nicolás Cabrera 1, Madrid 28049, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Ishibashi K, Uemura T, Waguri S, Fukuda M. Atg16L1, an essential factor for canonical autophagy, participates in hormone secretion from PC12 cells independently of autophagic activity. Mol Biol Cell 2012; 23:3193-202. [PMID: 22740627 PMCID: PMC3418313 DOI: 10.1091/mbc.e12-01-0010] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Atg16L1, a protein essential for autophagy, is localized on dense-core vesicles in PC12 cells, and knockdown of Atg16L1 inhibits hormone secretion independently of autophagy. In addition, Atg16L1 interacts with the small GTPase Rab33A, and this interaction is required for the dense-core vesicle localization of Atg16L1. Autophagy is a bulk degradation system in all eukaryotic cells and regulates a variety of biological activities in higher eukaryotes. Recently involvement of autophagy in the regulation of the secretory pathway has also been reported, but the molecular mechanism linking autophagy with the secretory pathway remains largely unknown. Here we show that Atg16L1, an essential protein for canonical autophagy, is localized on hormone-containing dense-core vesicles in neuroendocrine PC12 cells and that knockdown of Atg16L1 causes a dramatic reduction in the level of hormone secretion independently of autophagic activity. We also find that Atg16L1 interacts with the small GTPase Rab33A and that this interaction is required for the dense-core vesicle localization of Atg16L1 in PC12 cells. Our findings indicate that Atg16L1 regulates not only autophagy in all cell types, but also secretion from dense-core vesicles, presumably by acting as a Rab33A effector, in particular cell types.
Collapse
Affiliation(s)
- Koutaro Ishibashi
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan
| | | | | | | |
Collapse
|
16
|
Matsui T, Ohbayashi N, Fukuda M. The Rab interacting lysosomal protein (RILP) homology domain functions as a novel effector domain for small GTPase Rab36: Rab36 regulates retrograde melanosome transport in melanocytes. J Biol Chem 2012; 287:28619-31. [PMID: 22740695 DOI: 10.1074/jbc.m112.370544] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Small GTPase Rab functions as a molecular switch that drives membrane trafficking through specific interaction with its effector molecule. Thus, identification of its specific effector domain is crucial to revealing the molecular mechanism that underlies Rab-mediated membrane trafficking. Because of the large numbers of Rab isoforms in higher eukaryotes, however, the effector domains of most of the vertebrate- or mammalian-specific Rabs have yet to be determined. In this study we screened for effector molecules of Rab36, a previously uncharacterized Rab isoform that is largely conserved in vertebrates, and we succeeded in identifying nine Rab36-binding proteins, including RILP (Rab interacting lysosomal protein) family members. Sequence comparison revealed that five of nine Rab36-binding proteins, i.e. RILP, RILP-L1, RILP-L2, and JIP3/4, contain a conserved coiled-coil domain. We identified the coiled-coil domain as a RILP homology domain (RHD) and characterized it as a common Rab36-binding site. Site-directed mutagenesis of the RHD of RILP revealed the different contributions by amino acids in the RHD to binding activity toward Rab7 and Rab36. Expression of RILP in melanocytes, but not expression of its Rab36 binding-deficient mutants, induced perinuclear aggregation of melanosomes, and this effect was clearly attenuated by knockdown of endogenous Rab36 protein. Moreover, knockdown of Rab36 in Rab27A-deficient melanocytes, which normally exhibit perinuclear melanosome aggregation because of increased retrograde melanosome transport activity, caused dispersion of melanosomes from the perinucleus to the cell periphery, but knockdown of Rab7 did not. Our findings indicated that Rab36 mediates retrograde melanosome transport in melanocytes through interaction with RILP.
Collapse
Affiliation(s)
- Takahide Matsui
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | | | | |
Collapse
|
17
|
Ishibashi K, Fujita N, Kanno E, Omori H, Yoshimori T, Itoh T, Fukuda M. Atg16L2, a novel isoform of mammalian Atg16L that is not essential for canonical autophagy despite forming an Atg12–5-16L2 complex. Autophagy 2012; 7:1500-13. [PMID: 22082872 DOI: 10.4161/auto.7.12.18025] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
A large protein complex consisting of Atg5, Atg12 and Atg16L1 has recently been shown to be essential for the elongation of isolation membranes (also called phagophores) during mammalian autophagy. However, the precise function and regulation of the Atg12–5-16L1 complex has largely remained unknown. In this study we identified a novel isoform of mammalian Atg16L, termed Atg16L2, that consists of the same domain structures as Atg16L1. Biochemical analysis revealed that Atg16L2 interacts with Atg5 and self-oligomerizes to form an ~800-kDa complex, the same as Atg16L1 does. A subcellular distribution analysis indicated that, despite forming the Atg12–5-16L2 complex, Atg16L2 is not recruited to phagophores and is mostly present in the cytosol. The results also showed that Atg16L2 is unable to compensate for the function of Atg16L1 in autophagosome formation, and knockdown of endogenous Atg16L2 did not affect autophagosome formation, indicating that Atg16L2 does not possess the ability to mediate canonical autophagy. Moreover, a chimeric analysis between Atg16L1 and Atg16L2 revealed that their difference in function in regard to autophagy is entirely attributable to the difference between their middle regions that contain a coiled-coil domain. Based on the above findings, we propose that formation of the Atg12–5-16L complex is necessary but insufficient to mediate mammalian autophagy and that an additional function of the middle region (especially around amino acid residues 229–242) of Atg16L1 (e.g., interaction with an unidentified binding partner on phagophores) is required for autophagosome formation.
Collapse
Affiliation(s)
- Koutaro Ishibashi
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | | | | | | | | | | | | |
Collapse
|
18
|
Kobayashi H, Fukuda M. Rab35 regulates Arf6 activity through centaurin-β2 (ACAP2) during neurite outgrowth. J Cell Sci 2012; 125:2235-43. [PMID: 22344257 DOI: 10.1242/jcs.098657] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Two small GTPases, Rab and Arf, are well-known molecular switches that function in diverse membrane-trafficking routes in a coordinated manner; however, very little is known about the direct crosstalk between Rab and Arf. Although Rab35 and Arf6 were independently reported to regulate the same cellular events, including endocytic recycling, phagocytosis, cytokinesis and neurite outgrowth, the molecular basis that links them remains largely unknown. Here we show that centaurin-β2 (also known as ACAP2) functions both as a Rab35 effector and as an Arf6-GTPase-activating protein (GAP) during neurite outgrowth of PC12 cells. We found that Rab35 accumulates at Arf6-positive endosomes in response to nerve growth factor (NGF) stimulation and that centaurin-β2 is recruited to the same compartment in a Rab35-dependent manner. We further showed by knockdown and rescue experiments that after the Rab35-dependent recruitment of centaurin-β2, the Arf6-GAP activity of centaurin-β2 at the Arf6-positive endosomes was indispensable for NGF-induced neurite outgrowth. These findings suggest a novel mode of crosstalk between Rab and Arf: a Rab effector and Arf-GAP coupling mechanism, in which Arf-GAP is recruited to a specific membrane compartment by its Rab effector function.
Collapse
Affiliation(s)
- Hotaka Kobayashi
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan
| | | |
Collapse
|
19
|
Ohbayashi N, Maruta Y, Ishida M, Fukuda M. Melanoregulin regulates retrograde melanosome transport through interaction with the RILP-p150Glued complex in melanocytes. J Cell Sci 2012; 125:1508-18. [PMID: 22275436 DOI: 10.1242/jcs.094185] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Melanoregulin (Mreg), a product of the dilute suppressor gene, has been implicated in the regulation of melanosome transport in mammalian epidermal melanocytes, given that Mreg deficiency was found to restore peripheral melanosome distribution from perinuclear melanosome aggregation in Rab27A-deficient melanocytes. However, the function of Mreg in melanosome transport has remained unclear. Here, we show that Mreg regulates microtubule-dependent retrograde melanosome transport through the dynein-dynactin motor complex. Mreg interacted with the C-terminal domain of Rab-interacting lysosomal protein (RILP) and formed a complex with RILP and p150(Glued) (also known as dynactin subunit 1, DCTN1), a component of the dynein-dynactin motor complex, in cultured cells. Overexpression of Mreg, RILP or both, in normal melanocytes induced perinuclear melanosome aggregation, whereas knockdown of Mreg or functional disruption of the dynein-dynactin motor complex restored peripheral melanosome distribution in Rab27A-deficient melanocytes. These findings reveal a new mechanism by which the dynein-dynactin motor complex recognizes Mreg on mature melanosomes through interaction with RILP and is involved in the centripetal movement of melanosomes.
Collapse
Affiliation(s)
- Norihiko Ohbayashi
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan.
| | | | | | | |
Collapse
|
20
|
Fukuda M, Kobayashi H, Ishibashi K, Ohbayashi N. Genome-wide investigation of the Rab binding activity of RUN domains: development of a novel tool that specifically traps GTP-Rab35. Cell Struct Funct 2011; 36:155-70. [PMID: 21737958 DOI: 10.1247/csf.11001] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The RUN domain is a less conserved protein motif that consists of approximately 70 amino acids, and because RUN domains are often found in proteins involved in the regulation of Rab small GTPases, the RUN domain has been suggested to be involved in Rab-mediated membrane trafficking, possibly as a Rab-binding site. However, since the Rab binding activity of most RUN domains has never been investigated, in this study we performed a genome-wide analysis of the Rab binding activity of the RUN domains of 19 different RUN domain-containing proteins by yeast two-hybrid assays with 60 different Rabs as bait. The results showed that only six of them interact with specific Rab isoforms with different Rab binding specificity, i.e., DENND5A/B with Rab6A/B, PLEKHM2 with Rab1A, RUFY2/3 with Rab33, and RUSC2 with Rab1/Rab35/Rab41. We also identified the minimal functional Rab35-binding site of RUSC2 (amino acid residues 982-1199) and succeeded in developing a novel GTP-Rab35-specific trapper, which we named RBD35 (Rab-binding domain specific for Rab35). Recombinant RBD35 was found to trap GTP-Rab35 specifically both in vitro and in PC12 cells, and overexpression of fluorescently tagged RBD35 in PC12 cells strongly inhibited nerve growth factor-dependent neurite outgrowth.
Collapse
Affiliation(s)
- Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Japan.
| | | | | | | |
Collapse
|
21
|
Itoh T, Kanno E, Uemura T, Waguri S, Fukuda M. OATL1, a novel autophagosome-resident Rab33B-GAP, regulates autophagosomal maturation. ACTA ACUST UNITED AC 2011; 192:839-53. [PMID: 21383079 PMCID: PMC3051816 DOI: 10.1083/jcb.201008107] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The GAP activity of OATL1, which is recruited to autophagosomes by Atg8, regulates autophagosome–lysosome fusion. Macroautophagy is a bulk degradation system conserved in all eukaryotic cells. A ubiquitin-like protein, Atg8, and its homologues are essential for autophagosome formation and act as a landmark for selective autophagy of aggregated proteins and damaged organelles. In this study, we report evidence demonstrating that OATL1, a putative Rab guanosine triphosphatase–activating protein (GAP), is a novel binding partner of Atg8 homologues in mammalian cells. OATL1 is recruited to isolation membranes and autophagosomes through direct interaction with Atg8 homologues and is involved in the fusion between autophagosomes and lysosomes through its GAP activity. We further provide evidence that Rab33B, an Atg16L1-binding protein, is a target substrate of OATL1 and is involved in the fusion between autophagosomes and lysosomes, the same as OATL1. Because both its GAP activity and its Atg8 homologue–binding activity are required for OATL1 to function, we propose a model that OATL1 uses Atg8 homologues as a scaffold to exert its GAP activity and to regulate autophagosomal maturation.
Collapse
Affiliation(s)
- Takashi Itoh
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | | | | | | | | |
Collapse
|
22
|
Tamura K, Ohbayashi N, Ishibashi K, Fukuda M. Structure-function analysis of VPS9-ankyrin-repeat protein (Varp) in the trafficking of tyrosinase-related protein 1 in melanocytes. J Biol Chem 2010; 286:7507-21. [PMID: 21187289 DOI: 10.1074/jbc.m110.191205] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Because Varp (VPS9-ankyrin-repeat protein)/Ankrd27 specifically binds two small GTPases, Rab32 and Rab38, which redundantly regulate the trafficking of melanogenic enzymes in mammalian epidermal melanocytes, it has recently been implicated in the regulation of trafficking of a melanogenic enzyme tyrosinase-related protein 1 (Tyrp1) to melanosomes. However, the functional interaction between Rab32/38 and Varp and the involvement of the VPS9 domain (i.e. Rab21-GEF domain) in Tyrp1 trafficking have never been elucidated. In this study, we succeeded in identifying critical residues of Rab32/38 and Varp that are critical for the formation of the Rab32/38·Varp complex by performing Ala-based site-directed mutagenesis, and we discovered that a conserved Val residue in the switch II region of Rab32(Val-92) and Rab38(Val-78) is required for Varp binding activity and that its point mutant, Rab38(V78A), does not support Tyrp1 trafficking in Rab32/38-deficient melanocytes. We also identified two critical residues for Rab32/38 binding in the Varp ANKR1 domain and demonstrated that their point mutants, Varp(Q509A) and Varp(Y550A), do not support peripheral melanosomal distribution of Tyrp1 in Varp-deficient cells. Interestingly, the VPS9 domain point mutants, Varp(D310A) and Varp(Y350A), did support Tyrp1 trafficking in Varp-deficient cells, and knockdown of Rab21 had no effect on Tyrp1 distribution. We also found evidence for the functional interaction between a vesicle SNARE VAMP7/TI-VAMP and Varp in Tyrp1 trafficking. These results collectively indicated that both the Rab32/38 binding activity and VAMP7 binding activity of Varp are essential for trafficking of Tyrp1 in melanocytes but that activation of Rab21 by the VPS9 domain is not necessary for Tyrp1 trafficking.
Collapse
Affiliation(s)
- Kanako Tamura
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | | | | | | |
Collapse
|
23
|
Sato M, Mori Y, Matsui T, Aoki R, Oya M, Yanagihara Y, Fukuda M, Tsuboi T. Role of the polybasic sequence in the Doc2alpha C2B domain in dense-core vesicle exocytosis in PC12 cells. J Neurochem 2010; 114:171-81. [PMID: 20403080 DOI: 10.1111/j.1471-4159.2010.06739.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The double C2 (Doc2) family is characterized by an N-terminal Munc13-1-interacting domain and C-terminal tandem C2 domains, and it comprises three isoforms, Doc2alpha, Doc2beta, and Doc2gamma, in humans and mice. Doc2alpha, the best-characterized, brain-specific isoform, exhibits Ca(2+)-dependent phospholipid-binding activity through its C2A domain, and the Ca(2+)-binding activity is thought to be important for the regulation of Ca(2+)-dependent exocytosis. In contrast to the C2A domain, however, nothing is known about the physiological functions of the C2B domain in regulated exocytosis. In this study, we demonstrated by a mutation analysis that the polybasic sequence in the C2B domain of Doc2alpha (306 KKSKHKTCVKKK 317) is required for binding of syntaxin-1a/synaptosome-associated protein of 25 kDa (SNAP-25) heterodimer. We also investigated the effect of Lys-to-Gln (named KQ) mutations in the polybasic sequence of the C2B domain on vesicle dynamics by total internal reflection fluorescence microscopy in PC12 cells. A Doc2alpha(KQ) mutant, which lacks binding activity toward syntaxin-1a/SNAP-25 heterodimer, significantly decreased the number of plasma membrane-docked vesicles before stimulation and strongly inhibited high-KCl-induced exocytosis from the plasma membrane-docked vesicles. These results indicate that the polybasic sequence in the C2B domain functions as a binding site for syntaxin-1a/SNAP-25 heterodimer and controls the number of 'readily releasable' vesicles in neuroendocrine cells.
Collapse
Affiliation(s)
- Mai Sato
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Ohbayashi N, Mamishi S, Ishibashi K, Maruta Y, Pourakbari B, Tamizifar B, Mohammadpour M, Fukuda M, Parvaneh N. Functional characterization of two RAB27A missense mutations found in Griscelli syndrome type 2. Pigment Cell Melanoma Res 2010; 23:365-74. [PMID: 20370853 DOI: 10.1111/j.1755-148x.2010.00705.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human Griscelli syndrome type 2 (GS-2) is characterized by partial albinism and a severe immunologic disorder as a result of RAB27A mutations. In melanocytes, Rab27A forms a tripartite complex with a specific effector Slac2-a/melanophilin and myosin Va, and the complex regulates melanosome transport. Here, we report a novel homozygous missense mutation of Rab27A, i.e. K22R, in a Persian GS-2 patient and the results of analysis of the impact of the K22R mutation and the previously reported I44T mutation on protein function. Both mutations completely abolish Slac2-a/melanophilin binding activity but they affect the biochemical properties of Rab27A differently. The Rab27A(K22R) mutant lacks the GTP binding ability and exhibits cytosolic localization in melanocytes. By contrast, neither intrinsic GTPase activity nor melanosomal localization of Rab27A is affected by the I44T mutation, but the Rab27A(I44T) mutant is unable to recruit Slac2-a/melanophilin. Interestingly, the two mutations differently affect binding to other Rab27A effectors, Slp2-a, Slp4-a/granuphilin-a, and Munc13-4. The Rab27A(K22R) mutant normally binds Munc13-4, but not Slp2-a or Slp4-a, whereas the Rab27A(I44T) mutant shows reduced binding activity to Slp2-a and Munc13-4 but normally binds Slp4-a.
Collapse
Affiliation(s)
- Norihiko Ohbayashi
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Friedrich R, Yeheskel A, Ashery U. DOC2B, C2 domains, and calcium: A tale of intricate interactions. Mol Neurobiol 2010; 41:42-51. [PMID: 20052564 DOI: 10.1007/s12035-009-8094-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2009] [Accepted: 12/09/2009] [Indexed: 11/28/2022]
Abstract
Ca(+2)-dependent exocytosis involves vesicle docking, priming, fusion, and recycling. This process is performed and regulated by a vast number of synaptic proteins and depends on proper protein-protein and protein-lipid interactions. Double C2 domain (DOC2) is a protein family of three isoforms found while screening DNA libraries with a C2 probe. DOC2 has three domains: the Munc13-interacting domain and tandem C2s (designated C2A and C2B) connected by a short polar linker. The C2 domain binds phospholipids in a Ca(2+)-dependent manner. This review focuses on the ubiquitously expressed isoform DOC2B. Sequence alignment of the tandem C2 protein family in mouse revealed high homology (81%) between rabphilin-3A and DOC2B proteins. We created a structural model of DOC2B's C2A based on the crystal structure of rabphilin-3A with and without calcium and found that the calcium-binding loops of DOC2B move upon calcium binding, enabling efficient plasma membrane penetration of its C2A. Here, we discuss the potential relation between the DOC2B bioinformatical model and its function and suggest a possible working model for its interaction with other proteins of the exocytotic machinery, including Munc13, Munc18, and syntaxin.
Collapse
Affiliation(s)
- Reut Friedrich
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Israel
| | | | | |
Collapse
|
26
|
Kanno E, Ishibashi K, Kobayashi H, Matsui T, Ohbayashi N, Fukuda M. Comprehensive screening for novel rab-binding proteins by GST pull-down assay using 60 different mammalian Rabs. Traffic 2010; 11:491-507. [PMID: 20070612 DOI: 10.1111/j.1600-0854.2010.01038.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The Rab family belongs to the Ras-like small GTPase superfamily and is implicated in membrane trafficking through interaction with specific effector molecules. Because of the large number of Rab isoforms in mammals, however, the effectors of most of the mammalian Rabs are yet to be identified. In this study, we systematically screened five different cell or tissue lysates for novel Rab effectors by a combination of glutathione S-transferase (GST) pull-down assay with 60 different mammalian Rabs and mass spectroscopic analysis. Three of the 21 Rab-binding proteins we identified, mKIAA1055/TBC1D2B (Rab22-binding protein), GAPCenA/TBC1D11 (Rab36-binding protein) and centaurin beta2/ACAP2 (Rab35-binding protein), are GTPase-activating proteins (GAPs) for Rab or Arf. Although it has recently been proposed that the Rab-GAP (Tre-2 /Bub2/Cdc16) domain physically interacts with its substrate Rab, these three GAPs interacted with specific Rabs via a domain other than a GAP domain, e.g. centaurin beta2 binds GTP-Rab35 via the ankyrin repeat (ANKR) domain. Although centaurin beta2 did not exhibit any Rab35-GAP activity in vitro, the Rab35-binding ANKR domain of centaurin beta2 was found to be required for its plasma membrane localization and regulation of Rab35-dependent neurite outgrowth of PC12 cells through inactivation of Arf6. These findings suggest a novel mode of interaction between Rab and GAP.
Collapse
Affiliation(s)
- Eiko Kanno
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Tamura K, Ohbayashi N, Maruta Y, Kanno E, Itoh T, Fukuda M. Varp is a novel Rab32/38-binding protein that regulates Tyrp1 trafficking in melanocytes. Mol Biol Cell 2009; 20:2900-8. [PMID: 19403694 DOI: 10.1091/mbc.e08-12-1161] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Two small GTPase Rabs, Rab32 and Rab38, have recently been proposed to regulate trafficking of melanogenic enzymes to melanosomes in mammalian epidermal melanocytes; however, the exact molecular mechanism of Rab32/38-mediated transport of melanogenic enzymes has never been clarified, because no Rab32/38-specific effector has ever been identified. In this study, we screened for a Rab32/38-specific effector by a yeast two-hybrid assay using a guanosine triphosphate (GTP)-locked Rab32/38 as bait and found that VPS9-ankyrin-repeat protein (Varp)/Ankrd27, characterized previously as a guanine nucleotide exchange factor (GEF) for Rab21, functions as a specific Rab32/38-binding protein in mouse melanocyte cell line melan-a. Deletion analysis showed that the first ankyrin-repeat (ANKR1) domain functions as a GTP-dependent Rab32/38-binding domain, but that the N-terminal VPS9 domain (i.e., Rab21-GEF domain) does not. Small interfering RNA-mediated knockdown of endogenous Varp in melan-a cells caused a dramatic reduction in Tyrp1 (tyrosinase-related protein 1) signals from melanosomes but did not cause any reduction in Pmel17 signals. Furthermore, expression of the ANKR1 domain in melan-a cells also caused a dramatic reduction of Tyrp1 signals, whereas the VPS9 domain had no effect. Based on these findings, we propose that Varp functions as the Rab32/38 effector that controls trafficking of Tyrp1 in melanocytes.
Collapse
Affiliation(s)
- Kanako Tamura
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
Exocrine, endocrine, and neuroendocrine cells store hormones and neuropeptides in secretory granules (SGs), which undergo regulated exocytosis in response to an appropriate stimulus. These cargo proteins are sorted at the trans-Golgi network into forming immature secretory granules (ISGs). ISGs undergo maturation while they are transported to and within the F-actin-rich cortex. This process includes homotypic fusion of ISGs, acidification of their lumen, processing, and aggregation of cargo proteins as well as removal of excess membrane and missorted cargo. The resulting mature secretory granules (MSGs) are stored in the F-actin-rich cell cortex, perhaps as segregated pools exhibiting specific responses to stimuli for regulated exocytosis. During the last decade our understanding of the maturation of ISGs advanced substantially. The use of biochemical approaches led to the identification of membrane molecules mechanistically involved in this process. Furthermore, live cell imaging in combination with fluorescently tagged marker proteins of SGs provided insights into the dynamics of maturing ISGs, and the functional implications of cytoskeletal elements and motor proteins.
Collapse
|
29
|
Kukimoto-Niino M, Sakamoto A, Kanno E, Hanawa-Suetsugu K, Terada T, Shirouzu M, Fukuda M, Yokoyama S. Structural Basis for the Exclusive Specificity of Slac2-a/Melanophilin for the Rab27 GTPases. Structure 2008; 16:1478-90. [DOI: 10.1016/j.str.2008.07.014] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Revised: 06/12/2008] [Accepted: 07/02/2008] [Indexed: 11/30/2022]
|
30
|
Kanno E, Fukuda M. Increased plasma membrane localization of O-glycosylation-deficient mutant of synaptotagmin I in PC12 cells. J Neurosci Res 2008; 86:1036-43. [PMID: 18058942 DOI: 10.1002/jnr.21568] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Synaptotagmin I (Syt I) is a Ca2+-binding protein on synaptic vesicles and presumably functions as a Ca2+ sensor for neurotransmitter release. Native Syt I protein in neuroendocrine PC12 cells undergoes several posttranslational modifications, such as O-glycosylation, N-glycosylation, and fatty acylation, and the latter two modifications have been shown to be required for the proper function of murine Syt I in PC12 cells. However, nothing is known about the physiological significance of the O-glycosylation of Syt I in dense-core vesicle exocytosis in PC12 cells. In this study, we created an O-glycosylation-deficient mutant (named TA = T15A/T16A) and an N-glycosylation-deficient mutant of Syt I (named T26A) and investigated their subcellular distribution in Syt I-deficient PC12 cells, where other Syt isoforms (e.g., IV and IX) and other membrane trafficking proteins (e.g., Rab27A, SNAP-25, syntaxin-1, and VAMP-2) are normally expressed. We found that some cells expressing high level of recombinant wild-type (WT) Syt I protein show mistargeting of Syt I(WT) protein to the plasma membrane, whereas most of the cells show normal dense-core vesicle localization of Syt I(WT) protein. Similar mistargeting was also observed in cells expressing high levels of the Syt I(T26A) and Syt I(TA) mutants, but the mistargeting of the Syt I(TA) mutant to the plasma membrane was much more evident than with the Syt I(WT) or (T26A) mutant. The results indicate that O-glycosylation, not N-glycosylation, is partially involved in efficient targeting of Syt I protein to dense-core vesicles in PC12 cells.
Collapse
Affiliation(s)
- Eiko Kanno
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi, Japan
| | | |
Collapse
|
31
|
Xu T, Xu P. Searching for Molecular Players Differentially Involved in Neurotransmitter and Neuropeptide Release. Neurochem Res 2008; 33:1915-9. [DOI: 10.1007/s11064-008-9648-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2007] [Accepted: 02/29/2008] [Indexed: 11/24/2022]
|
32
|
Fukuda M, Kanno E, Ishibashi K, Itoh T. Large scale screening for novel rab effectors reveals unexpected broad Rab binding specificity. Mol Cell Proteomics 2008; 7:1031-42. [PMID: 18256213 DOI: 10.1074/mcp.m700569-mcp200] [Citation(s) in RCA: 194] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Small GTPase Rab is generally thought to control intracellular membrane trafficking through interaction with specific effector molecules. Because of the large number of Rab isoforms in mammals, however, the effectors of most of the mammalian Rabs have never been identified, and the Rab binding specificity of the Rab effectors previously reported has never been thoroughly investigated. In this study we systematically screened for novel Rab effectors by a yeast two-hybrid assay with 28 different mouse or human Rabs (Rab1-30) as bait and identified 27 Rab-binding proteins, including 19 novel ones. We further investigated their Rab binding specificity by a yeast two-hybrid assay with a panel of 60 different GTP-locked mouse or human Rabs. Unexpectedly most (17 of 27) of the Rab-binding proteins we identified exhibited broad Rab binding specificity and bound multiple Rab isoforms. As an example, inositol-polyphosphate 5-phosphatase OCRL (oculocerebrorenal syndrome of Lowe) bound the greatest number of Rabs (i.e. 16 distinct Rabs). Others, however, specifically recognized only a single Rab isoform or only two closely related Rab isoforms. The interaction of eight of the novel Rab-binding proteins identified (e.g. INPP5E and Cog4) with a specific Rab isoform was confirmed by co-immunoprecipitation assay and/or colocalization analysis in mammalian cell cultures, and the novel Rab2B-binding domain of Golgi-associated Rab2B interactor (GARI) and GARI-like proteins was identified by deletion and homology search analyses. The findings suggest that most Rab effectors (or Rab-binding proteins) regulate intracellular membrane trafficking through interaction with several Rab isoforms rather than through a single Rab isoform.
Collapse
Affiliation(s)
- Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan.
| | | | | | | |
Collapse
|
33
|
Catz SD. Characterization of Rab27a and JFC1 as constituents of the secretory machinery of prostate-specific antigen in prostate carcinoma cells. Methods Enzymol 2008; 438:25-40. [PMID: 18413239 PMCID: PMC11960417 DOI: 10.1016/s0076-6879(07)38003-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Prostate-specific antigen (PSA) and prostate-specific acid phosphatase (PSAP) are produced by prostate carcinoma cells. Their secretion has implications in both prostate cancer diagnosis and progression. The mechanisms involved in PSA and PSAP secretion in response to androgens have remained relatively unknown. The small GTPase Rab27a regulates exocytosis in several tissues. Here, we present methods for the characterization of Rab27a and its effector JFC1/Slp1 as key components of the secretory machinery that regulates exocytosis in prostate carcinoma cells.
Collapse
Affiliation(s)
- Sergio D Catz
- Division of Biochemistry, Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
34
|
Swiatecka-Urban A, Talebian L, Kanno E, Moreau-Marquis S, Coutermarsh B, Hansen K, Karlson KH, Barnaby R, Cheney RE, Langford GM, Fukuda M, Stanton BA. Myosin Vb is required for trafficking of the cystic fibrosis transmembrane conductance regulator in Rab11a-specific apical recycling endosomes in polarized human airway epithelial cells. J Biol Chem 2007; 282:23725-36. [PMID: 17462998 DOI: 10.1074/jbc.m608531200] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR)-mediated Cl(-) secretion across fluid-transporting epithelia is regulated, in part, by modulating the number of CFTR Cl(-) channels in the plasma membrane by adjusting CFTR endocytosis and recycling. However, the mechanisms that regulate CFTR recycling in airway epithelial cells remain unknown, at least in part, because the recycling itineraries of CFTR in these cells are incompletely understood. In a previous study, we demonstrated that CFTR undergoes trafficking in Rab11a-specific apical recycling endosomes in human airway epithelial cells. Myosin Vb is a plus-end-directed, actin-based mechanoenzyme that facilitates protein trafficking in Rab11a-specific recycling vesicles in several cell model systems. There are no published studies examining the role of myosin Vb in airway epithelial cells. Thus, the goal of this study was to determine whether myosin Vb facilitates CFTR recycling in polarized human airway epithelial cells. Endogenous CFTR formed a complex with endogenous myosin Vb and Rab11a. Silencing myosin Vb by RNA-mediated interference decreased the expression of wild-type CFTR and DeltaF508-CFTR in the apical membrane and decreased CFTR-mediated Cl(-) secretion across polarized human airway epithelial cells. A recombinant tail domain fragment of myosin Vb attenuated the plasma membrane expression of CFTR by arresting CFTR recycling. The dominant-negative effect was dependent on the ability of the myosin Vb tail fragment to interact with Rab11a. Taken together, these data indicate that myosin Vb is required for CFTR recycling in Rab11a-specific apical recycling endosomes in polarized human airway epithelial cells.
Collapse
Affiliation(s)
- Agnieszka Swiatecka-Urban
- Department of Physiology, Dartmouth Medical School, Dartmouth College, Hanover, New Hampshire 03755, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Tsuboi T, Kanno E, Fukuda M. The polybasic sequence in the C2B domain of rabphilin is required for the vesicle docking step in PC12 cells. J Neurochem 2007; 100:770-9. [PMID: 17156129 DOI: 10.1111/j.1471-4159.2006.04266.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Rabphilin is generally thought to be involved in the regulation of secretory vesicle exocytosis in neurons and neuroendocrine cells, and it has recently been hypothesized that the C2B domain of rabphilin promotes the docking of dense-core vesicles to the plasma membrane through simultaneous interaction with a vesicle protein, Rab3A/27A, and a plasma membrane protein, SNAP-25 (synaptosome-associated protein of 25 kDa). However, the physiological significance of the rabphilin-SNAP-25 interaction in the vesicle-docking step has never been elucidated. In this study we demonstrated by a mutation analysis that the polybasic sequence (587 KKAKHKTQIKKK 598) in the C2B domain of rabphilin is required for SNAP-25 binding, and that the Asp residues in the Ca(2+)-binding loop 3 (D628 and D630) of the C2B domain are not required. We also investigated the effect of Lys-->Gln (KQ) mutations in the polybasic sequence of the C2B domain on vesicle dynamics by total internal reflection fluorescence microscopy in individual PC12 cells. A rabphilin(KQ) mutant that completely lacks SNAP-25-binding activity significantly decreased the number of plasma-membrane-docked vesicles and strongly inhibited high-KCl-induced dense-core vesicle exocytosis. These results indicate that the polybasic sequence in the C2B domain functions as an effector domain for SNAP-25 and controls the number of 'releasable' vesicles docked to the plasma membrane.
Collapse
Affiliation(s)
- Takashi Tsuboi
- Fukuda Initiative Research Unit, RIKEN (The Institute of Physical and Chemical Research), Wako, Saitama, Japan
| | | | | |
Collapse
|
36
|
Itoh T, Satoh M, Kanno E, Fukuda M. Screening for target Rabs of TBC (Tre-2/Bub2/Cdc16) domain-containing proteins based on their Rab-binding activity. Genes Cells 2006; 11:1023-37. [PMID: 16923123 DOI: 10.1111/j.1365-2443.2006.00997.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It has recently been proposed that the TBC (Tre2/Bub2/Cdc16) domain functions as a GAP (GTPase-activating protein) domain for small GTPase Rab. Because of the large number of Rab proteins in mammals, however, most TBC domains have never been investigated for Rab-GAP activity. In this study we established panels of the GTP-fixed form of 60 different Rabs constructed in pGAD-C1, a yeast two-hybrid bait vector. We also constructed a yeast two-hybrid prey vector (pGBDU-C1) that harbors the cDNA of 40 distinct TBC proteins. Systematic investigation of 2400 combinations of 60 GTP-fixed Rabs and 40 TBC proteins by yeast two-hybrid screening revealed that seven TBC proteins specifically and differentially interact with specific Rabs (e.g. OATL1 interacts with Rab2A; FLJ12085 with Rab5A/B/C; and Evi5-like with Rab10). Measurement of in vitro Rab-GAP activity revealed that OATL1 and Evi5-like actually possess significant Rab2A- and Rab10-GAP activity, respectively, but that FLJ12085 do not display Rab5A-GAP activity at all. These results indicate that specific interaction between TBC protein and Rab would be a useful indicator for screening for the target Rabs of some TBC/Rab-GAP domains, but that there is little correlation between the Rab-binding activity and Rab-GAP activity of other TBC proteins.
Collapse
Affiliation(s)
- Takashi Itoh
- Fukuda Initiative Research Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | |
Collapse
|
37
|
Fukuda M. Distinct Rab27A binding affinities of Slp2-a and Slac2-a/melanophilin: Hierarchy of Rab27A effectors. Biochem Biophys Res Commun 2006; 343:666-74. [PMID: 16554019 DOI: 10.1016/j.bbrc.2006.03.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Accepted: 03/01/2006] [Indexed: 11/22/2022]
Abstract
The small GTPase Rab27A has recently been shown to regulate melanosome transport in mammalian skin melanocytes through sequentially interacting with two Rab27A effectors, Slac2-a/melanophilin and Slp2-a. Although Slac2-a and Slp2-a contain a similar N-terminal Rab27A-binding domain (named SHD, Slp homology domain), nothing is known about the functional differences between the Slac2-a SHD and Slp2-a SHD. In this study, the Rab27A-binding affinity of ten putative Rab27A effector proteins has been investigated. It has been found that they could be classified into a low-affinity group (e.g., Slac2-a) and a high-affinity group (e.g., Slp2-a and Slp4-a) based on their Rab27A-binding affinity. Kinetic analysis of the GTP-Rab27A-binding to the SHD of Slp2-a, Slp4-a, and Slac2-a by surface plasmon resonance further indicated that the kinetic parameters of Rab27A for the Slp2-a SHD, Slp4-a SHD, and Slac2-a SHD consisted of a fast association rate constant (3.35 x 10(4), 2.06 x 10(4), and 2.11 x 10(4) M(-1) s(-1), respectively) and a slow dissociation rate constant (4.48 x 10(-4), 3.96 x 10(-4), and 2.37 x 10(-3) s(-1) respectively), and their equilibrium dissociation constants were determined to be 13.4, 19.2, and 112 nM, respectively. Our data suggest that distinct Rab27A binding activities of Slac2-a and Slp2-a ensure the order (or hierarchy) of Rab27A effectors that sequentially function in melanosome transport in melanocytes.
Collapse
Affiliation(s)
- Mitsunori Fukuda
- Fukuda Initiative Research Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
38
|
Tsuboi T, Fukuda M. The Slp4-a linker domain controls exocytosis through interaction with Munc18-1.syntaxin-1a complex. Mol Biol Cell 2006; 17:2101-12. [PMID: 16481396 PMCID: PMC1446092 DOI: 10.1091/mbc.e05-11-1047] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2005] [Revised: 02/06/2006] [Accepted: 02/08/2006] [Indexed: 11/11/2022] Open
Abstract
Synaptotagmin-like protein 4-a (Slp4-a)/granuphilin-a is specifically localized on dense-core vesicles in certain neuroendocrine cells and negatively controls dense-core vesicle exocytosis through specific interaction with Rab27A. However, the precise molecular mechanism of its inhibitory effect on exocytosis has never been elucidated and is still a matter of controversy. Here we show by deletion and chimeric analyses that the linker domain of Slp4-a interacts with the Munc18-1.syntaxin-1a complex by directly binding to Munc18-1 and that this interaction promotes docking of dense-core vesicles to the plasma membrane in PC12 cells. Despite increasing the number of plasma membrane docked vesicles, expression of Slp4-a strongly inhibited high-KCl-induced dense-core vesicle exocytosis. The inhibitory effect by Slp4-a is absolutely dependent on the linker domain of Slp4-a, because substitution of the linker domain of Slp4-a by that of Slp5 (the closest isoform of Slp4-a that cannot bind the Munc18-1.syntaxin-1a complex) completely abrogated the inhibitory effect. Our findings reveal a novel docking machinery for dense-core vesicle exocytosis: Slp4-a simultaneously interacts with Rab27A and Munc18-1 on the dense-core vesicle and with syntaxin-1a in the plasma membrane.
Collapse
Affiliation(s)
- Takashi Tsuboi
- Fukuda Initiative Research Unit, Riken (The Institute of Physical and Chemical Research), Wako, Saitama 351-0198, Japan
| | | |
Collapse
|
39
|
Tsuboi T, Fukuda M. The C2B domain of rabphilin directly interacts with SNAP-25 and regulates the docking step of dense core vesicle exocytosis in PC12 cells. J Biol Chem 2005; 280:39253-9. [PMID: 16203731 DOI: 10.1074/jbc.m507173200] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rabphilin is a membrane trafficking protein on secretory vesicles that consists of an N-terminal Rab-binding domain and C-terminal tandem C2 domains. The N-terminal part of rabphilin has recently been shown to function as an effector domain for both Rab27A and Rab3A in PC12 cells (Fukuda, M., Kanno, E., and Yamamoto, A. (2004) J. Biol. Chem. 279, 13065-13075), but the function of the C2 domains of rabphilin during secretory vesicle exocytosis is largely unknown. In this study we investigated the interaction between rabphilin and SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors, VAMP-2/synaptobrevin-2, syntaxin IA, and SNAP-25) and SNARE-associated proteins (Munc18-1 and Munc13-1) and found that the C2B domain of rabphilin, but not of other Rab27A-binding proteins with tandem C2 domains (i.e. Slp1-5), directly interacts with a plasma membrane protein, SNAP-25. The interaction between rabphilin and SNAP-25 occurs even in the absence of Ca(2+) (EC(50) = 0.817 microm SNAP-25), but 0.5 mm Ca(2+) increases the affinity for SNAP-25 2-fold (EC(50) = 0.405 microm SNAP-25) without changing the B(max) value (1.06 mol of SNAP-25/mol of rabphilin). Furthermore, vesicle dynamics were imaged by total internal reflection fluorescence microscopy in a single PC12 cell expressing a lumen-targeted pH-insensitive yellow fluorescent protein (Venus), neuropeptide Y-Venus. Expression of the wild-type rabphilin in PC12 cells significantly increased the number of docked vesicles to the plasma membrane without altering the kinetics of individual secretory events, whereas expression of the mutant rabphilin lacking the C2B domain, rabphilin-DeltaC2B, decreased the number of docked vesicle or fusing at the plasma membrane. These findings suggest that rabphilin is involved in the docking step of regulated exocytosis in PC12 cells, possibly through interaction between the C2B domain and SNAP-25.
Collapse
Affiliation(s)
- Takashi Tsuboi
- Fukuda Initiative Research Unit, RIKEN (The Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | |
Collapse
|
40
|
Fukuda M, Imai A, Nashida T, Shimomura H. Slp4-a/granuphilin-a interacts with syntaxin-2/3 in a Munc18-2-dependent manner. J Biol Chem 2005; 280:39175-84. [PMID: 16186111 DOI: 10.1074/jbc.m505759200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Slp4-a/granuphilin-a was originally described as a protein specifically associated with insulin-containing granules in pancreatic beta-cells, but it was subsequently found to be present on amylase-containing granules in parotid acinar cells. Although Slp4-a has been suggested to control insulin secretion through interaction with syntaxin-1a and/or Munc18-1, nothing is known about the binding partner(s) of Slp4-a during amylase release from parotid acinar cells, which do not endogenously express either syntaxin-1a or Munc18-1. In this study we systematically investigated the interaction between syntaxin-1-5 and Munc18-1-3 by co-immunoprecipitation assay using COS-7 cells and discovered that Slp4-a interacts with a closed conformation of syntaxin-2/3 in a Munc18-2-dependent manner, whereas Munc18-2 itself hardly interacts with Slp4-a at all. By contrast, Slp4-a was found to strongly interact with Munc18-1 regardless of the presence of syntaxin-2/3, and syntaxin-2/3 co-immunoprecipitated with Slp4-a only in the presence of Munc18-1/2. Deletion analysis showed that the syntaxin-2/3 (or Munc18-1/2)-binding site is a linker domain of Slp4-a (amino acid residues 144-354), a previously uncharacterized region located between the N-terminal Rab27A binding domain and the C2A domain. We also found that the Slp4-a.syntaxin-2 complex is actually present in rat parotid glands and that introduction of the antibody against Slp4-a linker domain into streptolysin O-permeabilized parotid acinar cells severely attenuates isoproterenol-stimulated amylase release, possibly by disrupting the interaction between Slp4-a and syntaxin-2/3 (or Munc18-2). These results suggest that Slp4-a modulates amylase release from parotid acinar cells through interaction with syntaxin-2/3 on the apical plasma membrane.
Collapse
Affiliation(s)
- Mitsunori Fukuda
- Fukuda Initiative Research Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | | | | | | |
Collapse
|