1
|
AbuMadighem A, Rubin E, Arazi E, Lunenfeld E, Huleihel M. Adrenocorticotropic hormone and its receptor as a novel testicular system involves in the development of spermatogenesis. Life Sci 2025; 368:123480. [PMID: 39978588 DOI: 10.1016/j.lfs.2025.123480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/17/2025] [Accepted: 02/16/2025] [Indexed: 02/22/2025]
Abstract
AIMS To identify functional membrane-associate-specific SSC markers and examine the development of these cells under in vitro conditions. MATERIALS AND METHODS Cells were enzymatically isolated from seminiferous tubules (STs) of immature mice. Spermatogonial cells (Thy1, alpha-6-integrin, and C-KIT) were sorted by FACS. RNA was extracted from these cells for RNAseq analysis. The effect of adrenocorticotropic hormone (ACTH) - the ligand of MC2R- on the development of mouse spermatogonial cells was performed in vitro using a methylcellulose culture system (MCS). Immunofluorescence staining was used to localize MC2R-positive cells in the testes of immature and adult humans and mice and testes of busulfan-treated immature mice. KEY FINDINGS Our RNAseq analysis revealed a high expression of melanocortin receptor 2 (MC2R) in Thy1-positive sorted cells. MC2R-positive cells were localized in the periphery of the STs of humans (prepubertal and adults) and mice at immature and adult ages (normal and busulfan-treated mice). MC2R was doubled stained with PLZF and CDH1 (SSC markers). ACTH was localized in mouse testicular germ cells (pre-meiotic, meiotic, and post-meiotic cells) and somatic cells (Sertoli, Leydig, and peritubular cells). The addition of ACTH to isolated cells from mouse STs in MCS significantly increased the development of pre-meiotic and meiotic/post-meiotic cells in vitro. SIGNIFICANCE We were able to identify, for the first time, a novel membrane-associated and functional SSC marker (MC2R) with relation to ACTH. This marker can be used in future male fertility preservation strategies. Furthermore, we explored a novel testicular system (ACTH system) that regulates the development of spermatogenesis.
Collapse
Affiliation(s)
- Ali AbuMadighem
- The Shraga Segal Dept. Microbiology, Immunology and Genetics, Israel; The Center of Advanced Research and Education in Reproduction (CARER), Israel; Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Eitan Rubin
- The Shraga Segal Dept. Microbiology, Immunology and Genetics, Israel; The Center of Advanced Research and Education in Reproduction (CARER), Israel; Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Eden Arazi
- The Shraga Segal Dept. Microbiology, Immunology and Genetics, Israel; The Center of Advanced Research and Education in Reproduction (CARER), Israel; Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | - Mahmoud Huleihel
- The Shraga Segal Dept. Microbiology, Immunology and Genetics, Israel; The Center of Advanced Research and Education in Reproduction (CARER), Israel; Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
2
|
Yi C, Kitamura Y, Maezawa S, Namekawa SH, Cairns BR. ZBTB16/PLZF regulates juvenile spermatogonial stem cell development through an extensive transcription factor poising network. Nat Struct Mol Biol 2025:10.1038/s41594-025-01509-5. [PMID: 40033150 DOI: 10.1038/s41594-025-01509-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/28/2025] [Indexed: 03/05/2025]
Abstract
Spermatogonial stem cells balance self-renewal with differentiation and spermatogenesis to ensure continuous sperm production. Here, we identify roles for the transcription factor zinc finger and BTB domain-containing protein 16 (ZBTB16; also known as promyelocytic leukemia zinc finger (PLZF)) in juvenile mouse undifferentiated spermatogonia (uSPG) in promoting self-renewal and cell-cycle progression to maintain uSPG and transit-amplifying states. Notably, ZBTB16, Spalt-like transcription factor 4 (SALL4) and SRY-box transcription factor 3 (SOX3) colocalize at over 12,000 promoters regulating uSPG and meiosis. These regions largely share broad histone 3 methylation and acetylation (H3K4me3 and H3K27ac), DNA hypomethylation, RNA polymerase II (RNAPol2) and often CCCTC-binding factor (CTCF). Hi-C analyses show robust three-dimensional physical interactions among these cobound promoters, suggesting the existence of a transcription factor and higher-order active chromatin interaction network within uSPG that poises meiotic promoters for subsequent activation. Conversely, these factors do not notably occupy germline-specific promoters driving spermiogenesis, which instead lack promoter-promoter physical interactions and bear DNA hypermethylation, even when active. Overall, ZBTB16 promotes uSPG cell-cycle progression and colocalizes with SALL4, SOX3, CTCF and RNAPol2 to help establish an extensive and interactive chromatin poising network.
Collapse
Affiliation(s)
- Chongil Yi
- Howard Hughes Medical Institute, Huntsman Cancer Institute, Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Yuka Kitamura
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, USA
| | - So Maezawa
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Satoshi H Namekawa
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, USA
| | - Bradley R Cairns
- Howard Hughes Medical Institute, Huntsman Cancer Institute, Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA.
| |
Collapse
|
3
|
Yang Y, Zhou Y, Wessel G, Hu W, Xu D. Single-cell transcriptomes reveal spermatogonial stem cells and the dynamic heterogeneity of spermatogenesis in a seasonal breeding teleost. Development 2024; 151:dev203142. [PMID: 39565695 DOI: 10.1242/dev.203142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 10/21/2024] [Indexed: 11/22/2024]
Abstract
Seasonal spermatogenesis in fish is driven by spermatogonial stem cells (SSCs), which undergo a complex cellular process to differentiate into mature sperm. In this study, we characterized spermatogenesis in the large yellow croaker (Larimichthys crocea), a marine fish of significant commercial value, based on a high-resolution single-cell RNA-sequencing atlas of testicular cells from three distinct developmental stages: juvenile, adult differentiating and regressed testes. We detailed a continuous developmental trajectory of spermatogenic cells, from spermatogonia to spermatids, elucidating the molecular events involved in spermatogenesis. We uncovered dynamic heterogeneity in cellular compositions throughout the annual reproductive cycle, accompanied by strong molecular signatures within specific testicular cells. Notably, we identified a distinct population of SSCs and observed a critical metabolic transition from glycolysis to oxidative phosphorylation, enhancing our understanding of the biochemical and molecular characteristics of SSCs. Additionally, we elucidated the interactions between somatic cells and spermatogonia, illuminating the mechanisms that regulate SSC development. Overall, this work enhances our understanding of spermatogenesis in seasonal breeding teleosts and provides essential insights for the further conservation and culture of SSCs.
Collapse
Affiliation(s)
- Yang Yang
- Key Laboratory of Mariculture and Enhancement of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China
- Ocean and Fisheries Research Institute, Zhejiang Ocean University, Zhoushan 316021, China
| | - Yinan Zhou
- Key Laboratory of Mariculture and Enhancement of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China
- School of Fisheries, Zhejiang Ocean University, Zhoushan 316022, China
| | - Gary Wessel
- Department of Molecular and Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Weihua Hu
- Key Laboratory of Mariculture and Enhancement of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China
- Ocean and Fisheries Research Institute, Zhejiang Ocean University, Zhoushan 316021, China
| | - Dongdong Xu
- Key Laboratory of Mariculture and Enhancement of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China
- Ocean and Fisheries Research Institute, Zhejiang Ocean University, Zhoushan 316021, China
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo 315100, China
| |
Collapse
|
4
|
Gu HJ, Ahn JS, Ahn GJ, Shin SH, Ryu BY. Restoration of PM2.5-induced spermatogonia GC-1 cellular damage by parthenolide via suppression of autophagy and inflammation: An in vitro study. Toxicology 2023; 499:153651. [PMID: 37858773 DOI: 10.1016/j.tox.2023.153651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 10/21/2023]
Abstract
Particulate matter (PM) generated by environmental and air pollution is known to have detrimental effects on human health. Among these, PM2.5 particles (diameter < 2.5 µm) can breach the alveolar-capillary barrier and disseminate to other organs, posing significant health risks. Numerous studies have shown that PMs can harm various organs, including the reproductive system. Therefore, this study aimed to investigate the harmful effects of PM2.5 on mouse GC-1 spermatogonia cells (GC-1 spg cells) and to verify the ameliorative effects of parthenolide (PTL) treatment on damaged GC-1 spg cells. We observed a significant dose-dependent reduction in cell proliferation after PM2.5 concentration of 2.5 μg/cm2. Additionally, treatment with 20 μg/cm2 PM2.5 concentration significantly increased the expression of autophagy-related proteins ATG7, the ratio of LC3-II/LC3-I, and decreased phosphorylation of PI3K and AKT. Furthermore, PM2.5 exposure augmented inflammation mediator gene expressions, the phosphorylation of the inflammation-related transcription factor NF-κB p65 at Ser536, and ubiquitination. Treatment of PM2.5-exposed GC-1 spg cells with PTL significantly reduced NF-κB p65 phosphorylation and the expression of autophagy-related proteins ATG7 and LC3-II, leading to a statistically significant recovery in cell proliferation. Together, our findings elucidated the detrimental effects of PM2.5 exposure on male germ cells, and the restorative properties of PTL against air pollutants.
Collapse
Affiliation(s)
- Hyo Jin Gu
- Department of Animal Science and Technology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, Republic of Korea
| | - Jin Seop Ahn
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| | - Gi Jeong Ahn
- Department of Animal Science and Technology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, Republic of Korea
| | - Seung Hee Shin
- Department of Animal Science and Technology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, Republic of Korea
| | - Buom-Yong Ryu
- Department of Animal Science and Technology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, Republic of Korea.
| |
Collapse
|
5
|
Chen Q, Malki S, Xu X, Bennett B, Lackford BL, Kirsanov O, Geyer CB, Hu G. Cnot3 is required for male germ cell development and spermatogonial stem cell maintenance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.13.562256. [PMID: 37873304 PMCID: PMC10592795 DOI: 10.1101/2023.10.13.562256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The foundation of spermatogenesis and lifelong fertility is provided by spermatogonial stem cells (SSCs). SSCs divide asymmetrically to either replenish their numbers (self-renewal) or produce undifferentiated progenitors that proliferate before committing to differentiation. However, regulatory mechanisms governing SSC maintenance are poorly understood. Here, we show that the CCR4-NOT mRNA deadenylase complex subunit CNOT3 plays a critical role in maintaining spermatogonial populations in mice. Cnot3 is highly expressed in undifferentiated spermatogonia, and its deletion in spermatogonia resulted in germ cell loss and infertility. Single cell analyses revealed that Cnot3 deletion led to the de-repression of transcripts encoding factors involved in spermatogonial differentiation, including those in the glutathione redox pathway that are critical for SSC maintenance. Together, our study reveals that CNOT3 - likely via the CCR4-NOT complex - actively degrades transcripts encoding differentiation factors to sustain the spermatogonial pool and ensure the progression of spermatogenesis, highlighting the importance of CCR4-NOT-mediated post-transcriptional gene regulation during male germ cell development.
Collapse
Affiliation(s)
- Qing Chen
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
- Present address: Clinical Microbiome Unit (CMU), Laboratory of Host Immunity and Microbiome (LHIM), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Safia Malki
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Xiaojiang Xu
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
- Present address: Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112
| | - Brian Bennett
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Brad L. Lackford
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Oleksandr Kirsanov
- Department of Anatomy & Cell Biology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Christopher B. Geyer
- Department of Anatomy & Cell Biology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
- East Carolina Diabetes and Obesity Institute East Carolina University, Greenville, NC, USA
| | - Guang Hu
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| |
Collapse
|
6
|
Svanholm S, Roza M, Marini D, Brouard V, Karlsson O, Berg C. Pubertal sexual development and endpoints for disrupted spermatogenesis in the model Xenopus tropicalis. Reprod Toxicol 2023; 120:108435. [PMID: 37400040 DOI: 10.1016/j.reprotox.2023.108435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
Peripubertal models to determine effects of anti-androgenic endocrine disrupting chemicals are needed. Using the toxicological model species Xenopus tropicalis, the aims of the study were to 1) provide data on sexual maturation and 2) characterise effects of short-term exposure to an anti-androgenic model substance. Juvenile (2.5 weeks post metamorphosis old) X. tropicalis were exposed to 0, 250, 500 or 1000 µg flutamide/L (nominal) for 2.5 weeks. Upon exposure termination, histology of gonads and Müllerian ducts was characterised in detail. New sperm stages were identified: pale and dark spermatogonial stem cells (SSCs). The testes of control males contained spermatozoa, indicating pubertal onset. The ovaries were immature, and composed of non-follicular and pre-vitellogenic follicular oocytes. The Müllerian ducts were more mature in females than males indicating development/regression in the females and males, respectively. In the 500 µg/L group, the number of dark SSCs per testis area was decreased and the number of secondary spermatogonia was increased. No treatment effects on ovaries or Müllerian ducts were detected. To conclude, our present data provide new knowledge on spermatogenesis, and pubertal onset in X. tropicalis. New endpoints for evaluating spermatogenesis are suggested to be added to existing assays used in endocrine and reproductive toxicology.
Collapse
Affiliation(s)
- Sofie Svanholm
- Department of Environmental Toxicology, Uppsala University, Uppsala 754 36, Sweden.
| | - Mauricio Roza
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm 114 18, Sweden
| | - Daniele Marini
- Department of Environmental Toxicology, Uppsala University, Uppsala 754 36, Sweden; Department of Veterinary Medicine, University of Perugia, Perugia 06126, Italy
| | - Vanessa Brouard
- Department of Environmental Toxicology, Uppsala University, Uppsala 754 36, Sweden
| | - Oskar Karlsson
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm 114 18, Sweden
| | - Cecilia Berg
- Department of Environmental Toxicology, Uppsala University, Uppsala 754 36, Sweden
| |
Collapse
|
7
|
Moghadasi S, Razeghian E, Shamsara M, Heidari F. The Effects of Pifithrin-µ on Spermatogonial Stem Cell Viability and Pluripotency. Sex Dev 2023; 17:190-197. [PMID: 37611547 DOI: 10.1159/000531825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 07/04/2023] [Indexed: 08/25/2023] Open
Abstract
INTRODUCTION Spermatogonial stem cells (SSCs) offer remarkable competencies for animal reproduction and overcoming human disease as a result of their differentiation capability. We evaluated the effect of small molecule pifithrin-mu (PFT-µ), a well-known inhibitor of P53 on SSC biological processes such as viability, apoptosis, and gene expression pattern. METHODS The SSCs were isolated from the testes of adult NMRI mice and then cultured in DMEM/F12 medium containing 10% FBS. Then, they were characterized by the immunocytochemistry technique by high PLZF and low c-Kit expressions. SSC colony formation assay was carried out and their viability was estimated by methylthiazolyldiphenyl-tetrazolium bromide (MTT, or 3-[4,5-dimethyl-2-thiazolyl]-2,5-diphenyl-2H-tetrazolium bromide) assay upon exposure to PFT-µ (0, 0.6, 1.2, 2.5, and 5 µm). The apoptosis percentages were also measured using FACS analysis, and finally, Oct4 and Stra8 expression at mRNA levels was assessed using real-time quantitative PCR. RESULTS The 0.6 and 1.2 µm PFT-µ improved the viability of SSC based on MTT assay results; however, 2.5 and 5 µm PFT-µ reduced SSC viability compared with the control group. Moreover, PFT-µ at lower concentrations enhanced the colony size of SSCs and diminished their apoptosis. As well, exposure to PFT-µ upregulated Oct4 expression while downregulating the meiotic entry marker, Stra8. CONCLUSION Based on findings, optimized concentrations of PFT-µ can decrease SSC apoptosis, and conversely potentiate their pluripotency and self-renewal capacities in vitro.
Collapse
Affiliation(s)
- Sara Moghadasi
- Animal Biotechnology Department, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Ehsan Razeghian
- Medical Biotechnology Department, National Institute of Genetics Engineering and Biotechnology (NIGEB), Tehran, Iran,
| | - Mehdi Shamsara
- Animal Biotechnology Department, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Farid Heidari
- Animal Biotechnology Department, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
8
|
Giassetti MI, Miao D, Law NC, Oatley MJ, Park J, Robinson LD, Maddison LA, Bernhardt ML, Oatley JM. ARRDC5 expression is conserved in mammalian testes and required for normal sperm morphogenesis. Nat Commun 2023; 14:2111. [PMID: 37069147 PMCID: PMC10110545 DOI: 10.1038/s41467-023-37735-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 03/28/2023] [Indexed: 04/19/2023] Open
Abstract
In sexual reproduction, sperm contribute half the genomic material required for creation of offspring yet core molecular mechanisms essential for their formation are undefined. Here, the α-arrestin molecule arrestin-domain containing 5 (ARRDC5) is identified as an essential regulator of mammalian spermatogenesis. Multispecies testicular tissue transcriptome profiling indicates that expression of Arrdc5 is testis enriched, if not specific, in mice, pigs, cattle, and humans. Knockout of Arrdc5 in mice leads to male specific sterility due to production of low numbers of sperm that are immotile and malformed. Spermiogenesis, the final phase of spermatogenesis when round spermatids transform to spermatozoa, is defective in testes of Arrdc5 deficient mice. Also, epididymal sperm in Arrdc5 knockouts are unable to capacitate and fertilize oocytes. These findings establish ARRDC5 as an essential regulator of mammalian spermatogenesis. Considering the role of arrestin molecules as modulators of cellular signaling and ubiquitination, ARRDC5 is a potential male contraceptive target.
Collapse
Affiliation(s)
- Mariana I Giassetti
- Center for Reproductive Biology, Washington State University, Pullman, WA, USA
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Deqiang Miao
- Center for Reproductive Biology, Washington State University, Pullman, WA, USA
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Nathan C Law
- Center for Reproductive Biology, Washington State University, Pullman, WA, USA
- Department of Animal Sciences, Washington State University, Pullman, WA, USA
| | - Melissa J Oatley
- Center for Reproductive Biology, Washington State University, Pullman, WA, USA
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Julie Park
- Center for Reproductive Biology, Washington State University, Pullman, WA, USA
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - LeeLa D Robinson
- Center for Reproductive Biology, Washington State University, Pullman, WA, USA
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Lisette A Maddison
- Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - Miranda L Bernhardt
- Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - Jon M Oatley
- Center for Reproductive Biology, Washington State University, Pullman, WA, USA.
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA.
| |
Collapse
|
9
|
Lee R, Park HJ, Lee WY, Choi Y, Song H. Nanoscale level gelatin-based scaffolds enhance colony formation of porcine testicular germ cells. Theriogenology 2023; 202:125-135. [PMID: 36958136 DOI: 10.1016/j.theriogenology.2023.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 02/01/2023] [Accepted: 03/13/2023] [Indexed: 03/16/2023]
Abstract
The extracellular matrix is important in cell growth, proliferation, and differentiation. Gelatin, a support for adhering cells, is used for coating culture plate surfaces of several primary and stem cells. However, gelatin characteristics on culture plates and its cell interactions are not understood. Here, we aimed to identify the effect of gelatin topography on culture plates on the proliferation and colony formation of porcine spermatogonial germ cells (pSGC). To generate different surface topographies, gelatin powder was dissolved in H2O at varying melting temperatures (40, 60, 80, and 120 °C) and coated on the surface of the culture plates. At 40 °C, the pores of the gelatin scaffold were regular ellipses 5-6 μm in diameter and 10-30 nm in thickness. However, at 120 °C, irregular pores 20-30 μm in diameter and 10-20 nm in thickness were obtained. Additionally, the number of attached cells and pSGC colonies were significantly more at 40 °C than at 120 °C after a week of culture. Interestingly, the feeder cells did not settle properly at 120 °C but detached easily from the culture dishes. PSGC colonies were 100 μm in diameter at 40 °C, with small and detached colonies observed at 120 °C. Thus, optimal topography of gelatin was obtained at 40 °C, which was sufficient for the proliferation of feeder cells and the formation of pSGC colonies. Thus, gelatin scaffold conditions at 40 °C and 60 °C were optimal for the derivation and culture of pSGC, and gelatin surface morphology is important for the maintenance of supportive feeder cells for pSGC proliferation and colony formation.
Collapse
Affiliation(s)
- Ran Lee
- Department of Stem Cells & Regenerative Technology, Konkuk University, Seoul, 05029, Republic of Korea.
| | - Hyun Jung Park
- Department of Animal Biotechnology, Sangji University, Wonju-si, 26339, Republic of Korea.
| | - Won Young Lee
- Department of Livestock, Korea National University of Agricultures and Fisheries, Jeonju-si, 54874, Republic of Korea.
| | - Youngsok Choi
- Department of Stem Cells & Regenerative Technology, Konkuk University, Seoul, 05029, Republic of Korea.
| | - Hyuk Song
- Department of Stem Cells & Regenerative Technology, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
10
|
Wang YJ, Li S, Tao HP, Zhang XN, Fang YG, Yang QE. ARHGEF15 is expressed in undifferentiated spermatogonia but is not required for spermatogenesis in mice. Reprod Biol 2023; 23:100727. [PMID: 36603298 DOI: 10.1016/j.repbio.2022.100727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023]
Abstract
Spermatogenesis is a continual process that relies on the activities of undifferentiated spermatogonia, which contain spermatogonial stem cells (SSCs) that serve as the basis of spermatogenesis. The gene expression pattern and molecular control of fate decisions of undifferentiated spermatogonia are not well understood. Rho guanine nucleotide exchange factor 15 (ARHGEF15, also known as EPHEXIN5) is a guanine nucleotide-exchange factor (GEF) that activates the Rho protein. Here, we reported that ARHGEF15 was expressed in undifferentiated spermatogonia and spermatocytes in mouse testes; however, its deletion did not affect spermatogenesis. Arhgef15-/- mice were fertile, and histological examination of the seminiferous tubules of Arhgef15-/- mice revealed complete spermatogenesis with the presence of all types of spermatogenic cells. Proliferation and differentiation of the undifferentiated spermatogonia were not impacted; however, further analysis showed that Arhgef15 deletion resulted in decreased expression of Nanos2, Lin28a and Ddx4. Together, these findings suggest that ARHGEF15 was specifically enriched in undifferentiated spermatogonia and regulated gene expression but dispensable for spermatogenesis in mice.
Collapse
Affiliation(s)
- Yu-Jun Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuang Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hai-Ping Tao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Na Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - You-Gui Fang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China; Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China
| | - Qi-En Yang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China; Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China.
| |
Collapse
|
11
|
Liu W, Lu X, Zhao ZH, SU R, Li QNL, Xue Y, Gao Z, Sun SMS, Lei WL, Li L, An G, Liu H, Han Z, Ouyang YC, Hou Y, Wang ZB, Sun QY, Liu J. SRSF10 is essential for progenitor spermatogonia expansion by regulating alternative splicing. eLife 2022; 11:e78211. [PMID: 36355419 PMCID: PMC9648972 DOI: 10.7554/elife.78211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 10/21/2022] [Indexed: 11/11/2022] Open
Abstract
Alternative splicing expands the transcriptome and proteome complexity and plays essential roles in tissue development and human diseases. However, how alternative splicing regulates spermatogenesis remains largely unknown. Here, using a germ cell-specific knockout mouse model, we demonstrated that the splicing factor Srsf10 is essential for spermatogenesis and male fertility. In the absence of SRSF10, spermatogonial stem cells can be formed, but the expansion of Promyelocytic Leukemia Zinc Finger (PLZF)-positive undifferentiated progenitors was impaired, followed by the failure of spermatogonia differentiation (marked by KIT expression) and meiosis initiation. This was further evidenced by the decreased expression of progenitor cell markers in bulk RNA-seq, and much less progenitor and differentiating spermatogonia in single-cell RNA-seq data. Notably, SRSF10 directly binds thousands of genes in isolated THY+ spermatogonia, and Srsf10 depletion disturbed the alternative splicing of genes that are preferentially associated with germ cell development, cell cycle, and chromosome segregation, including Nasp, Bclaf1, Rif1, Dazl, Kit, Ret, and Sycp1. These data suggest that SRSF10 is critical for the expansion of undifferentiated progenitors by regulating alternative splicing, expanding our understanding of the mechanism underlying spermatogenesis.
Collapse
Affiliation(s)
- Wenbo Liu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Xukun Lu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua UniversityBeijingChina
| | - Zheng-Hui Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Ruibao SU
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General HospitalGuangzhouChina
| | - Qian-Nan Li Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Yue Xue
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Zheng Gao
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Si-Min Sun Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Wen-Long Lei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Lei Li
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Geng An
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Hanyan Liu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Zhiming Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Ying-Chun Ouyang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Yi Hou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Qing-Yuan Sun
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General HospitalGuangzhouChina
| | - Jianqiao Liu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
12
|
Nagata K, Ohashi K, Hashimoto C, Sayed AEDH, Yasuda T, Dutta B, Kajihara T, Mitani H, Suzuki M, Funayama T, Oda S, Watanabe-Asaka T. Responses of hematopoietic cells after ionizing-irradiation in anemic adult medaka ( Oryzias latipes). Int J Radiat Biol 2022; 99:663-672. [PMID: 35939385 DOI: 10.1080/09553002.2022.2110328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/20/2022] [Accepted: 07/28/2022] [Indexed: 10/15/2022]
Abstract
PURPOSE Hematopoietic tissues of vertebrates are highly radiation sensitive and the effects of ionizing radiation on the hematopoiesis have been studied in mammals and teleosts for decades. In this study, radiation responses in the kidney, the main hematopoietic organ in teleosts, were investigated in Japanese medaka (Oryzias latipes), which has been a model animal and a large body of knowledge has been accumulated in radiation biology. METHODS Kidney, the main hematopoietic tissue of adult medaka fish, was locally irradiated using proton and carbon ion beams irradiation system of Takasaki Ion Accelerator for Advanced Radiation Application (TIARA), QST, and the effects on peripheral blood cells and histology of the kidney were investigated. RESULTS When only kidneys were locally irradiated with proton or carbon ion beam (15 Gy), the hematopoietic cells in the irradiated kidney and cell density in the peripheral blood decreased 7 days after the irradiation in the same manner as after the whole-body irradiation with γ-rays (15 Gy). These results demonstrate that direct irradiation of the hematopoietic cells in the kidney induced cell death and/or cell cycle arrest and stopped the supply of erythroid cells. Then, the cell density in the peripheral blood recovered to the control level within 4 days and 7 days after the γ-ray and proton beam irradiation (15 Gy), respectively, while the cell density in the peripheral blood did not recover after the carbon ion beam irradiation (15 Gy). The hematopoietic cells in the irradiated kidneys temporarily decreased and recovered to the control level within 21 days after the γ-ray or proton beam irradiation (15 Gy), while it did not recover after the carbon ion beam irradiation (15 Gy). In contrast, the recovery of the cell density in the peripheral blood delayed when anemic medaka were irradiated 1 day after the administration of phenylhydrazine. With and without γ-ray irradiation, a large number of hematopoietic cells was still proliferating in the kidney 7 days after the anemia induction. CONCLUSIONS The results obtained strongly suggest that the hematopoietic stem cells in medaka kidney prioritize to proliferate and increase peripheral blood cells to eliminate anemia, even when they are damaged by high-dose irradiation.
Collapse
Affiliation(s)
- Kento Nagata
- Department of Integrated Biosciences, The University of Tokyo, Kashiwa, Japan
- Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), National Institute of Radiological Sciences, Chiba, Japan
| | - Keita Ohashi
- Department of Integrated Biosciences, The University of Tokyo, Kashiwa, Japan
| | - Chika Hashimoto
- Department of Integrated Biosciences, The University of Tokyo, Kashiwa, Japan
| | - Alaa El-Din Hamid Sayed
- Department of Integrated Biosciences, The University of Tokyo, Kashiwa, Japan
- Zoology department, Faculty of Science, Assiut University, Assiut, Egypt
| | - Takako Yasuda
- Department of Integrated Biosciences, The University of Tokyo, Kashiwa, Japan
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Japan
- Department of Chemical and Biological Sciences, Japan Women's University, Tokyo, Japan
| | - Bibek Dutta
- Department of Integrated Biosciences, The University of Tokyo, Kashiwa, Japan
| | - Takayuki Kajihara
- Department of Integrated Biosciences, The University of Tokyo, Kashiwa, Japan
| | - Hiroshi Mitani
- Department of Integrated Biosciences, The University of Tokyo, Kashiwa, Japan
| | - Michiyo Suzuki
- Takasaki Advanced Radiation Research Institute, Quantum Beam Science Research Directorate, QST, Takasaki, Japan
| | - Tomoo Funayama
- Takasaki Advanced Radiation Research Institute, Quantum Beam Science Research Directorate, QST, Takasaki, Japan
| | - Shoji Oda
- Department of Integrated Biosciences, The University of Tokyo, Kashiwa, Japan
| | - Tomomi Watanabe-Asaka
- Department of Integrated Biosciences, The University of Tokyo, Kashiwa, Japan
- Division of Physiology, Faculty of Medicine, Tohoku Medical Pharmaceutical University, Sendai, Japan
| |
Collapse
|
13
|
Lin H, Cheng K, Kubota H, Lan Y, Riedel SS, Kakiuchi K, Sasaki K, Bernt KM, Bartolomei MS, Luo M, Wang PJ. Histone methyltransferase DOT1L is essential for self-renewal of germline stem cells. Genes Dev 2022; 36:752-763. [PMID: 35738678 PMCID: PMC9296001 DOI: 10.1101/gad.349550.122] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/06/2022] [Indexed: 12/25/2022]
Abstract
Self-renewal of spermatogonial stem cells is vital to lifelong production of male gametes and thus fertility. However, the underlying mechanisms remain enigmatic. Here, we show that DOT1L, the sole H3K79 methyltransferase, is required for spermatogonial stem cell self-renewal. Mice lacking DOT1L fail to maintain spermatogonial stem cells, characterized by a sequential loss of germ cells from spermatogonia to spermatids and ultimately a Sertoli cell only syndrome. Inhibition of DOT1L reduces the stem cell activity after transplantation. DOT1L promotes expression of the fate-determining HoxC transcription factors in spermatogonial stem cells. Furthermore, H3K79me2 accumulates at HoxC9 and HoxC10 genes. Our findings identify an essential function for DOT1L in adult stem cells and provide an epigenetic paradigm for regulation of spermatogonial stem cells.
Collapse
Affiliation(s)
- Huijuan Lin
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei Province 430072, China;,Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Keren Cheng
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Hiroshi Kubota
- Laboratory of Cell and Molecular Biology, Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan
| | - Yemin Lan
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Simone S. Riedel
- Division of Pediatric Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA;,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;,Abramson Cancer Center, Philadelphia, Pennsylvania 19104, USA
| | - Kazue Kakiuchi
- Laboratory of Cell and Molecular Biology, Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan
| | - Kotaro Sasaki
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Kathrin M. Bernt
- Division of Pediatric Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA;,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;,Abramson Cancer Center, Philadelphia, Pennsylvania 19104, USA
| | - Marisa S. Bartolomei
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Mengcheng Luo
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei Province 430072, China
| | - P. Jeremy Wang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
14
|
de Castro RO, Carbajal A, Previato de Almeida L, Goitea V, Griffin CT, Pezza RJ. Mouse Chd4-NURD is required for neonatal spermatogonia survival and normal gonad development. Epigenetics Chromatin 2022; 15:16. [PMID: 35568926 PMCID: PMC9107693 DOI: 10.1186/s13072-022-00448-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/11/2022] [Indexed: 11/10/2022] Open
Abstract
Testis development and sustained germ cell production in adults rely on the establishment and maintenance of spermatogonia stem cells and their proper differentiation into spermatocytes. Chromatin remodeling complexes regulate critical processes during gamete development by restricting or promoting accessibility of DNA repair and gene expression machineries to the chromatin. Here, we investigated the role of Chd4 and Chd3 catalytic subunits of the NURD complex during spermatogenesis. Germ cell-specific deletion of chd4 early in gametogenesis, but not chd3, resulted in arrested early gamete development due to failed cell survival of neonate undifferentiated spermatogonia stem cell population. Candidate assessment revealed that Chd4 controls expression of dmrt1 and its downstream target plzf, both described as prominent regulators of spermatogonia stem cell maintenance. Our results show the requirement of Chd4 in mammalian gametogenesis pointing to functions in gene expression early in the process.
Collapse
Affiliation(s)
- Rodrigo O de Castro
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Suite B305. 825 NE 13th street, Oklahoma City, OK, 73104, USA
| | - Agustin Carbajal
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Suite B305. 825 NE 13th street, Oklahoma City, OK, 73104, USA
| | - Luciana Previato de Almeida
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Suite B305. 825 NE 13th street, Oklahoma City, OK, 73104, USA
| | - Victor Goitea
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Suite B305. 825 NE 13th street, Oklahoma City, OK, 73104, USA
| | - Courtney T Griffin
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.,Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Roberto J Pezza
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Suite B305. 825 NE 13th street, Oklahoma City, OK, 73104, USA. .,Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA.
| |
Collapse
|
15
|
Thiageswaran S, Steele H, Voigt AL, Dobrinski I. A Role for Exchange of Extracellular Vesicles in Porcine Spermatogonial Co-Culture. Int J Mol Sci 2022; 23:ijms23094535. [PMID: 35562927 PMCID: PMC9103065 DOI: 10.3390/ijms23094535] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/14/2022] [Accepted: 04/16/2022] [Indexed: 12/22/2022] Open
Abstract
Spermatogonial stem cells (SSCs) provide the basis for lifelong male fertility through self-renewal and differentiation. Prepubertal male cancer patients may be rendered infertile by gonadotoxic chemotherapy and, unlike sexually mature men, cannot store sperm. Alternatively, testicular biopsies taken prior to treatment may be used to restore fertility in adulthood. Testicular SSC populations are limited, and in vitro culture systems are required to increase numbers of SSCs for treatment, demanding culture systems for SSC propagation. Using the pig as a non-rodent model, we developed culture systems to expand spermatogonia from immature testis tissue, comparing different feeders (Sertoli cells, peritubular myoid cells (PMCs) and pig fetal fibroblasts (PFFs)). Spermatogonia co-cultured with Sertoli cells, PMCs and PFFs had comparable rates of proliferation and apoptosis. To elucidate the mechanism behind the beneficial nature of feeder layers, we investigated the role of extracellular vesicles in crosstalk between spermatogonia and feeder cells. Sertoli cell-released exosomes are incorporated by spermatogonia, and inhibition of exosomal release reduces spermatogonial proliferation. Together, these results show that PMCs, PFFs and Sertoli cells promote spermatogonial proliferation in co-culture, with exosomal exchange representing one possible mechanism. Further characterization of exosomal cargo may ultimately allow the development of feeder-free culture systems for clinical use.
Collapse
Affiliation(s)
- Shiama Thiageswaran
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada;
| | - Heather Steele
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada; (H.S.); (A.L.V.)
| | - Anna Laura Voigt
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada; (H.S.); (A.L.V.)
| | - Ina Dobrinski
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada;
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada; (H.S.); (A.L.V.)
- Correspondence: ; Tel.: +1-403-210-6532
| |
Collapse
|
16
|
Ahn JS, Won JH, Kim DY, Jung SE, Kim BJ, Kim JM, Ryu BY. Transcriptome alterations in spermatogonial stem cells exposed to bisphenol A. Anim Cells Syst (Seoul) 2022; 26:70-83. [PMID: 35479511 PMCID: PMC9037227 DOI: 10.1080/19768354.2022.2061592] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Owing to their self-renewal and differentiation abilities, spermatogonial stem cells (SSCs) are essential for maintaining male fertility and species preservation through spermatogenesis. With an increase in exposure to plasticizers, the risk of endocrine-disrupting chemicals exerting mimetic effects on estrogen receptors, such as bisphenol A (BPA), has also increased. This has led to concerns regarding the preservation of male fertility. BPA impairs spermatogenesis and the maintenance of SSCs; however, the transcriptome differences caused by BPA in SSCs are poorly understood. Thus, this study aimed to investigate the transcriptome differences in SSCs exposed to BPA, using RNA sequencing (RNA-Seq) analysis. We found that cell proliferation and survival were suppressed by SSC exposure to BPA. Therefore, we investigated transcriptome differences through RNA-Seq, functional annotation, and gene set enrichment analysis. Our results showed repetitive and abundant terms related to two genes of lysosomal acidification and five genes of glycosaminoglycan degradation. Furthermore, we validated the transcriptome analyses by detecting mRNA and protein expression levels. The findings confirmed the discovery of differentially expressed genes (DEGs) and the mechanism of SSCs following exposure to BPA. Taken together, we expect that the identified DEGs and lysosomal mechanisms could provide new insights into the preservation of male fertility and related research.
Collapse
Affiliation(s)
- Jin Seop Ahn
- Department of Animal Science & Technology, BET Research Institute, Chung-Ang University, Anseong-si, Republic of Korea
| | - Jong-Hyun Won
- Department of Animal Science & Technology, BET Research Institute, Chung-Ang University, Anseong-si, Republic of Korea
| | - Do-Young Kim
- Department of Animal Science & Technology, BET Research Institute, Chung-Ang University, Anseong-si, Republic of Korea
| | - Sang-Eun Jung
- Department of Animal Science & Technology, BET Research Institute, Chung-Ang University, Anseong-si, Republic of Korea
| | - Bang-Jin Kim
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jun-Mo Kim
- Department of Animal Science & Technology, BET Research Institute, Chung-Ang University, Anseong-si, Republic of Korea
| | - Buom-Yong Ryu
- Department of Animal Science & Technology, BET Research Institute, Chung-Ang University, Anseong-si, Republic of Korea
| |
Collapse
|
17
|
Qamar AY, Hussain T, Rafique MK, Bang S, Tanga BM, Seong G, Fang X, Saadeldin IM, Cho J. The Role of Stem Cells and Their Derived Extracellular Vesicles in Restoring Female and Male Fertility. Cells 2021; 10:2460. [PMID: 34572109 PMCID: PMC8468931 DOI: 10.3390/cells10092460] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 12/21/2022] Open
Abstract
Infertility is a globally recognized issue caused by different reproductive disorders. To date, various therapeutic approaches to restore fertility have been attempted including etiology-specific medication, hormonal therapies, surgical excisions, and assisted reproductive technologies. Although these approaches produce results, however, fertility restoration is not achieved in all cases. Advances in using stem cell (SC) therapy hold a great promise for treating infertile patients due to their abilities to self-renew, differentiate, and produce different paracrine factors to regenerate the damaged or injured cells and replenish the affected germ cells. Furthermore, SCs secrete extracellular vesicles (EVs) containing biologically active molecules including nucleic acids, lipids, and proteins. EVs are involved in various physiological and pathological processes and show promising non-cellular therapeutic uses to combat infertility. Several studies have indicated that SCs and/or their derived EVs transplantation plays a crucial role in the regeneration of different segments of the reproductive system, oocyte production, and initiation of sperm production. However, available evidence triggers the need to testify the efficacy of SC transplantation or EVs injection in resolving the infertility issues of the human population. In this review, we highlight the recent literature covering the issues of infertility in females and males, with a special focus on the possible treatments by stem cells or their derived EVs.
Collapse
Affiliation(s)
- Ahmad Yar Qamar
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
- College of Veterinary and Animal Sciences, Jhang, Sub-Campus of University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Tariq Hussain
- College of Veterinary and Animal Sciences, Jhang, Sub-Campus of University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Muhammad Kamran Rafique
- College of Veterinary and Animal Sciences, Jhang, Sub-Campus of University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Seonggyu Bang
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Bereket Molla Tanga
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
- Faculty of Veterinary Medicine, Hawassa University, Hawassa 05, Ethiopia
| | - Gyeonghwan Seong
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Xun Fang
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Islam M Saadeldin
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Jongki Cho
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
18
|
Jung SE, Ahn JS, Kim YH, Oh HJ, Kim BJ, Kim SU, Ryu BY. Autophagy modulation alleviates cryoinjury in murine spermatogonial stem cell cryopreservation. Andrology 2021; 10:340-353. [PMID: 34499811 DOI: 10.1111/andr.13105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 08/11/2021] [Accepted: 08/28/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Cryopreservation can expand the usefulness of spermatogonial stem cells (SSCs) in various fields. However, previous investigations that have attempted to modulate cryoinjury-induced mechanisms to increase cryoprotective efficiency have mainly focused on apoptosis and necrosis. OBJECTIVES This study aimed to establish an effective molecular-based cryoprotectant for SSC cryopreservation via autophagy modulation. MATERIALS AND METHODS To determine the efficacy of autophagy modulation, we assessed the recovery rate and relative proliferation rate and performed western blotting for the determination of autophagy flux, immunocytochemistry and real-time quantitative polymerase chain reaction (RT-qPCR) for SSC characterization, and spermatogonial transplantation for in vivo SSC functional activity. RESULTS The results showed that a basal level of autophagy caused a higher relative proliferation rate (pifithrin-μ 0.01 μM, 184.2 ± 11.2%; 3-methyladenine 0.01 μM, 175.3 ± 10.3%; pifithrin-μ 0.01 μM + 3-methyladenine 0.01 μM, P3, 224.6 ± 22.3%) than the DMSO control (100 ± 6.2%). All treatment groups exhibited normal characteristics, suggesting that these modulators could be used as effective cryoprotectants without changing the properties of the undifferentiated germ cells. According to the results of the in vivo spermatogonial transplantation assay, the colonies per total number of cultured SSCs was significantly higher in the pifithrin-μ 0.01 μM (1596.7 ± 172.5 colonies), 3-methyladenine 0.01 μM (1522.1 ± 179.2 colonies), and P3 (1727.5 ± 196.5 colonies) treatment groups than in the DMSO control (842.8 ± 110.08 colonies), which was comparable to that of the fresh control (1882.1 ± 132.1 colonies). DISCUSSION A basal level of autophagy is more essential for resilience in frozen SSCs after thawing, rather than the excessive activation or inhibition of autophagy. CONCLUSION A basal level of autophagy plays a critical role in the pro-survival response of frozen SSCs after thawing; herein, a new approach by which SSC cryoprotective efficiency can be improved was identified.
Collapse
Affiliation(s)
- Sang-Eun Jung
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do, Republic of Korea
| | - Jin Seop Ahn
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do, Republic of Korea
| | - Yong-Hee Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do, Republic of Korea
| | - Hui-Jo Oh
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do, Republic of Korea
| | - Bang-Jin Kim
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sun-Uk Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungcheongbuk-do, Republic of Korea.,Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungcheongbuk-do, Republic of Korea
| | - Buom-Yong Ryu
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do, Republic of Korea
| |
Collapse
|
19
|
Jarysta A, Riou L, Firlej V, Lapoujade C, Kortulewski T, Barroca V, Gille AS, Dumont F, Jacques S, Letourneur F, Rosselli F, Allemand I, Fouchet P. Abnormal migration behavior linked to Rac1 signaling contributes to primordial germ cell exhaustion in Fanconi anemia pathway-deficient Fancg-/- embryos. Hum Mol Genet 2021; 31:97-110. [PMID: 34368842 PMCID: PMC8682768 DOI: 10.1093/hmg/ddab222] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/04/2021] [Accepted: 07/05/2021] [Indexed: 11/16/2022] Open
Abstract
Fanconi anemia (FA) is a rare human genetic disorder characterized by bone marrow failure, predisposition to cancer and developmental defects including hypogonadism. Reproductive defects leading to germ cell aplasia are the most consistent phenotypes seen in FA mouse models. We examined the role of the nuclear FA core complex gene Fancg in the development of primordial germ cells (PGCs), the embryonic precursors of adult gametes, during fetal development. PGC maintenance was severely impaired in Fancg−/− embryos. We observed a defect in the number of PGCs starting at E9.5 and a strong attrition at E11.5 and E13.5. Remarkably, we observed a mosaic pattern reflecting a portion of testicular cords devoid of PGCs in E13.5 fetal gonads. Our in vitro and in vivo data highlight a potential role of Fancg in the proliferation and in the intrinsic cell motility abilities of PGCs. The random migratory process is abnormally activated in Fancg−/− PGCs, altering the migration of cells. Increased cell death and PGC attrition observed in E11.5 Fancg−/− embryos are features consistent with delayed migration of PGCs along the migratory pathway to the genital ridges. Moreover, we show that an inhibitor of RAC1 mitigates the abnormal migratory pattern observed in Fancg−/− PGCs.
Collapse
Affiliation(s)
- Amandine Jarysta
- Université de Paris and Université Paris-Saclay, iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, Laboratoire des Cellules Souches Germinales, F-92265, Fontenay-aux-Roses, France
| | - Lydia Riou
- Université de Paris and Université Paris-Saclay, iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, Laboratoire des Cellules Souches Germinales, F-92265, Fontenay-aux-Roses, France
| | - Virginie Firlej
- Université de Paris and Université Paris-Saclay, iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, Laboratoire des Cellules Souches Germinales, F-92265, Fontenay-aux-Roses, France
| | - Clémentine Lapoujade
- Université de Paris and Université Paris-Saclay, iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, Laboratoire des Cellules Souches Germinales, F-92265, Fontenay-aux-Roses, France
| | - Thierry Kortulewski
- Université de Paris and Université Paris-Saclay, Inserm, iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, Laboratoire de RadioPathologie, F-92265, Fontenay-aux-Roses, France
| | - Vilma Barroca
- Université de Paris and Université Paris-Saclay, Inserm, iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, F-92265, Fontenay-aux-Roses, France
| | - Anne-Sophie Gille
- Université de Paris and Université Paris-Saclay, iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, Laboratoire des Cellules Souches Germinales, F-92265, Fontenay-aux-Roses, France.,Département de Génétique, Développement et Cancer. Team From Gametes to Birth, Institut Cochin, INSERM U1016, Paris, France
| | - Florent Dumont
- Université Paris Saclay, UMS IPSIT, F-92296, Châtenay-Malabry, France
| | - Sébastien Jacques
- Plate-Forme Séquençage et Génomique, Institut Cochin, Inserm U1016, Université de Paris, 22 rue Méchain, 75014 Paris, France
| | - Franck Letourneur
- Plate-Forme Séquençage et Génomique, Institut Cochin, Inserm U1016, Université de Paris, 22 rue Méchain, 75014 Paris, France
| | - Filippo Rosselli
- CNRS-UMR9019, Intégrité du Génome et Cancers, Equipe Labellisée « La Ligue Contre Le cancer », Gustave Roussy Cancer Center, Université Paris-Saclay, 94805 Villejuif, France
| | - Isabelle Allemand
- Université de Paris and Université Paris-Saclay, iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, Laboratoire des Cellules Souches Germinales, F-92265, Fontenay-aux-Roses, France
| | - Pierre Fouchet
- Université de Paris and Université Paris-Saclay, iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, Laboratoire des Cellules Souches Germinales, F-92265, Fontenay-aux-Roses, France
| |
Collapse
|
20
|
Voigt AL, Kondro DA, Powell D, Valli-Pulaski H, Ungrin M, Stukenborg JB, Klein C, Lewis IA, Orwig KE, Dobrinski I. Unique metabolic phenotype and its transition during maturation of juvenile male germ cells. FASEB J 2021; 35:e21513. [PMID: 33811704 DOI: 10.1096/fj.202002799r] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/06/2021] [Accepted: 02/23/2021] [Indexed: 12/22/2022]
Abstract
Human male reproductive development has a prolonged prepubertal period characterized by juvenile quiescence of germ cells with immature spermatogonial stem cell (SSC) precursors (gonocytes) present in the testis for an extended period of time. The metabolism of gonocytes is not defined. We demonstrate with mitochondrial ultrastructure studies via TEM and IHC and metabolic flux studies with UHPLC-MS that a distinct metabolic transition occurs during the maturation to SSCs. The mitochondrial ultrastructure of prepubertal human spermatogonia is shared with prepubertal pig spermatogonia. The metabolism of early prepubertal porcine spermatogonia (gonocytes) is characterized by the reliance on OXPHOS fuelled by oxidative decarboxylation of pyruvate. Interestingly, at the same time, a high amount of the consumed pyruvate is also reduced and excreted as lactate. With maturation, prepubertal spermatogonia show a metabolic shift with decreased OXHPOS and upregulation of the anaerobic metabolism-associated uncoupling protein 2 (UCP2). This shift is accompanied with stem cell specific promyelocytic leukemia zinc finger protein (PLZF) protein expression and glial cell-derived neurotropic factor (GDNF) pathway activation. Our results demonstrate that gonocytes differently from mature spermatogonia exhibit unique metabolic demands that must be attained to enable their maintenance and growth in vitro.
Collapse
Affiliation(s)
- Anna Laura Voigt
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Douglas Andrew Kondro
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Diana Powell
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Hanna Valli-Pulaski
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mark Ungrin
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Jan-Bernd Stukenborg
- NORDFERTIL Research Lab Stockholm, Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, Solna, Sweden
| | - Claudia Klein
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Ian A Lewis
- Department of Biological Sciences, Faculty of Sciences, University of Calgary, Calgary, AB, Canada
| | - Kyle E Orwig
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ina Dobrinski
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
21
|
Shin W, Alpaugh W, Hallihan LJ, Sinha S, Crowther E, Martin GR, Scheidl-Yee T, Yang X, Yoon G, Goldsmith T, Berger ND, de Almeida LG, Dufour A, Dobrinski I, Weinfeld M, Jirik FR, Biernaskie J. PNKP is required for maintaining the integrity of progenitor cell populations in adult mice. Life Sci Alliance 2021; 4:4/9/e202000790. [PMID: 34226276 PMCID: PMC8321660 DOI: 10.26508/lsa.202000790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 11/24/2022] Open
Abstract
Knockout of Pnkp in adult mice impairs the growth of hair follicle, spermatogonial, and neural progenitor populations. DNA repair proteins are critical to the maintenance of genomic integrity. Specific types of genotoxic factors, including reactive oxygen species generated during normal cellular metabolism or as a result of exposure to exogenous oxidative agents, frequently leads to “ragged” single-strand DNA breaks. The latter exhibits abnormal free DNA ends containing either a 5′-hydroxyl or 3′-phosphate requiring correction by the dual function enzyme, polynucleotide kinase phosphatase (PNKP), before DNA polymerase and ligation reactions can occur to seal the break. Pnkp gene deletion during early murine development leads to lethality; in contrast, the role of PNKP in adult mice is unknown. To investigate the latter, we used an inducible conditional mutagenesis approach to cause global disruption of the Pnkp gene in adult mice. This resulted in a premature aging-like phenotype, characterized by impaired growth of hair follicles, seminiferous tubules, and neural progenitor cell populations. These results point to an important role for PNKP in maintaining the normal growth and survival of these murine progenitor populations.
Collapse
Affiliation(s)
- Wisoo Shin
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Canada
| | - Whitney Alpaugh
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Canada
| | - Laura J Hallihan
- McCaig Institute for Bone and Joint Health, Calgary, Canada.,Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
| | - Sarthak Sinha
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Canada
| | - Emilie Crowther
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Canada
| | - Gary R Martin
- McCaig Institute for Bone and Joint Health, Calgary, Canada.,Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
| | | | - Xiaoyan Yang
- Department of Oncology, University of Alberta, and Cross Cancer Institute, Edmonton, Canada
| | - Grace Yoon
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Canada
| | - Taylor Goldsmith
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Canada
| | - Nelson D Berger
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
| | - Luiz Gn de Almeida
- McCaig Institute for Bone and Joint Health, Calgary, Canada.,Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
| | - Antoine Dufour
- McCaig Institute for Bone and Joint Health, Calgary, Canada.,Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada.,Department of Physiology and Pharmacology, University of Calgary, Calgary, Canada
| | - Ina Dobrinski
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Canada
| | - Michael Weinfeld
- Department of Oncology, University of Alberta, and Cross Cancer Institute, Edmonton, Canada
| | - Frank R Jirik
- McCaig Institute for Bone and Joint Health, Calgary, Canada .,Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada.,Alberta Children's Hospital Research Institute, Calgary, Canada
| | - Jeff Biernaskie
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Canada .,Department of Physiology and Pharmacology, University of Calgary, Calgary, Canada.,Department of Surgery, University of Calgary, Calgary, Canada.,Hotchkiss Brain Institute, Calgary, Canada
| |
Collapse
|
22
|
Antioxidant or Apoptosis Inhibitor Supplementation in Culture Media Improves Post-Thaw Recovery of Murine Spermatogonial Stem Cells. Antioxidants (Basel) 2021; 10:antiox10050754. [PMID: 34068575 PMCID: PMC8151184 DOI: 10.3390/antiox10050754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/19/2021] [Accepted: 05/06/2021] [Indexed: 01/03/2023] Open
Abstract
We postulated that supplementation of antioxidant or apoptosis inhibitor in post-thaw culture media of spermatogonial stem cells (SSCs) alleviates reactive oxygen species (ROS) generation and apoptosis. Our aim was to develop an effective culture media for improving post-thaw recovery of SSCs. To determine the efficacy of supplementation with hypotaurine (HTU), α-tocopherol (α-TCP), and Z-DEVD-FMK (ZDF), we assessed the relative proliferation rate and SSC functional activity and performed a ROS generation assay, apoptosis assay, and western blotting for determination of the Bax/Bcl-xL ratio, as well as immunocytochemistry and real-time quantitative polymerase chain reaction (RT-qPCR) for SSC characterization. The relative proliferation rates with HTU 400 μM (133.7 ± 3.2%), α-TCP 400 μM (158.9 ± 3.6%), and ZDF 200 μM (133.1 ± 7.6%) supplementation were higher than that in the DMSO control (100 ± 3.6%). ROS generation was reduced with α-TCP 400 μM (0.8-fold) supplementation in comparison with the control (1.0-fold). Early apoptosis and Bax/Bcl-xL were lower with α-TCP 400 μM (2.4 ± 0.4% and 0.5-fold) and ZDF 200 μM (1.8 ± 0.4% and 0.3-fold) supplementation in comparison with the control (5.3 ± 1.4% and 1.0-fold) with normal characterization and functional activity. Supplementation of post-thaw culture media with α-TCP 400 μM and ZDF 200 μM improved post-thaw recovery of frozen SSCs via protection from ROS generation and apoptosis after cryo-thawing.
Collapse
|
23
|
A regulatory role for CHD4 in maintenance of the spermatogonial stem cell pool. Stem Cell Reports 2021; 16:1555-1567. [PMID: 33961790 PMCID: PMC8190575 DOI: 10.1016/j.stemcr.2021.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 12/17/2022] Open
Abstract
Maintenance and self-renewal of the spermatogonial stem cell (SSC) population is the cornerstone of male fertility. Here, we have identified a key role for the nucleosome remodeling protein CHD4 in regulating SSC function. Gene expression analyses revealed that CHD4 expression is highly enriched in the SSC population in the mouse testis. Using spermatogonial transplantation techniques it was established that loss of Chd4 expression significantly impairs SSC regenerative capacity, causing a ∼50% reduction in colonization of recipient testes. An scRNA-seq comparison revealed reduced expression of “self-renewal” genes following Chd4 knockdown, along with increased expression of signature progenitor genes. Co-immunoprecipitation analyses demonstrated that CHD4 regulates gene expression in spermatogonia not only through its traditional association with the remodeling complex NuRD, but also via interaction with the GDNF-responsive transcription factor SALL4. Cumulatively, the results of this study depict a previously unappreciated role for CHD4 in controlling fate decisions in the spermatogonial pool. CHD4 is highly expressed in spermatogonial stem cells in the mouse testis CHD4 expression is required for spermatogonial stem cell maintenance CHD4 interacts with SALL4 and NuRD to activate expression of “self-renewal” genes
Collapse
|
24
|
Jung SE, Ahn JS, Kim YH, Kim SM, Um TG, Kim BJ, Ryu BY. Inhibition of Caspase-8 Activity Improves Freezing Efficiency of Male Germline Stem Cells in Mice. Biopreserv Biobank 2021; 19:493-502. [PMID: 33926212 DOI: 10.1089/bio.2021.0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cryopreservation of male germline stem cells (GSCs) is an essential technique for their long-term preservation and utilization in various fields. However, the specific apoptosis pathways involved in cryoinjury during freezing remain unclear. Therefore, our study sought to identify the pathways involved in cryoinjury-induced apoptosis and thereby to improve freezing efficiency during GSC cryopreservation through the creation of a specific molecular-based cryoprotectant. The activities of caspase-8, caspase-9, caspase-3, and caspase-7 were assessed by Western blot analyses to determine the role of specific apoptosis pathways in GSC cryoinjury. Specifically, the role of a specific caspase was identified by recovery rate, relative proliferation rate, Annexin V/propidium iodide co-staining, and caspase activity using its inhibitor and activator. Moreover, the safety of the cryoprotectant was assessed by immunofluorescence and quantitative real-time polymerase chain reaction (qRT-PCR). Furthermore, the efficacy of the molecular-based cryoprotectant was assessed using frozen cells in the presence of dimethyl sulfoxide (DMSO) (control), trehalose, a caspase-8 inhibitor Z-IETD-FMK [ZIF], or a mixture of the aforementioned compounds, after which the changes in Src signaling were measured. Our results demonstrated that caspase-8 plays a major role in cryoinjury-induced apoptosis and therefore its inhibition improves freezing efficiency. Specifically, a significantly higher relative proliferation rate was observed in the Z-IETD-FMK 0.01 μM-treated cells than in the DMSO control (100% ± 6.2% vs. 189.8% ± 9.5%), with decreases in both early apoptosis (16.6% ± 2.2% vs. 7.5% ± 1.0%) and caspase-8 activity (1.0-fold vs. 0.4-fold). The relative proliferation rate was significantly higher in the cryoprotectant mixture (246.0% ± 12.2%) than other individual treatment groups (trehalose 200 mM, 189.8% ± 9.5%; Z-IETD-FMK 0.01 μM, 189.7% ± 2.2%) with no significant differences in Src signaling. Therefore, our findings provide novel insights into the development of freezing protocols to enhance GSC freezing efficiency, thereby facilitating the wider adoption of GSCs in the livestock industry and/or clinical trials.
Collapse
Affiliation(s)
- Sang-Eun Jung
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Jin Seop Ahn
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Yong-Hee Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Seok-Man Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Tea Gun Um
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Bang-Jin Kim
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Buom-Yong Ryu
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| |
Collapse
|
25
|
Voigt AL, Thiageswaran S, de Lima e Martins Lara N, Dobrinski I. Metabolic Requirements for Spermatogonial Stem Cell Establishment and Maintenance In Vivo and In Vitro. Int J Mol Sci 2021; 22:1998. [PMID: 33670439 PMCID: PMC7922219 DOI: 10.3390/ijms22041998] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/11/2022] Open
Abstract
The spermatogonial stem cell (SSC) is a unique adult stem cell that requires tight physiological regulation during development and adulthood. As the foundation of spermatogenesis, SSCs are a potential tool for the treatment of infertility. Understanding the factors that are necessary for lifelong maintenance of a SSC pool in vivo is essential for successful in vitro expansion and safe downstream clinical usage. This review focused on the current knowledge of prepubertal testicular development and germ cell metabolism in different species, and implications for translational medicine. The significance of metabolism for cell biology, stem cell integrity, and fate decisions is discussed in general and in the context of SSC in vivo maintenance, differentiation, and in vitro expansion.
Collapse
Affiliation(s)
| | | | | | - Ina Dobrinski
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (A.L.V.); (S.T.); (N.d.L.e.M.L.)
| |
Collapse
|
26
|
Lu C, Zhang Y, Qin Y, Xu Q, Zhou R, Cui Y, Zhu Y, Zhang X, Zhang J, Wei X, Wang M, Hang B, Mao JH, Snijders AM, Liu M, Hu Z, Shen H, Zhou Z, Guo X, Wu X, Wang X, Xia Y. Human X chromosome exome sequencing identifies BCORL1 as contributor to spermatogenesis. J Med Genet 2021; 58:56-65. [PMID: 32376790 DOI: 10.1136/jmedgenet-2019-106598] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 03/16/2020] [Accepted: 03/21/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Infertility affects approximately 15% of couples worldwide with male infertility being responsible for approximately 50% of cases. Although accumulating evidence demonstrates the critical role of the X chromosome in spermatogenesis during the last few decades, the expression patterns and potential impact of the X chromosome, together with X linked genes, on male infertility are less well understood. METHODS We performed X chromosome exome sequencing followed by a two-stage independent population validation in 1333 non-obstructive azoospermia cases and 1141 healthy controls to identify variant classes with high likelihood of pathogenicity. To explore the functions of these candidate genes in spermatogenesis, we first knocked down these candidate genes individually in mouse spermatogonial stem cells (SSCs) using short interfering RNA oligonucleotides and then generated candidate genes knockout mice by CRISPR-Cas9 system. RESULTS Four low-frequency variants were identified in four genes (BCORL1, MAP7D3, ARMCX4 and H2BFWT) associated with male infertility. Functional studies of the mouse SSCs revealed that knocking down Bcorl1 or Mtap7d3 could inhibit SSCs self-renewal and knocking down Armcx4 could repress SSCs differentiation in vitro. Using CRISPR-Cas9 system, Bcorl1 and Mtap7d3 knockout mice were generated. Excitingly, Bcorl1 knockout mice were infertile with impaired spermatogenesis. Moreover, Bcorl1 knockout mice exhibited impaired sperm motility and sperm cells displayed abnormal mitochondrial structure. CONCLUSION Our data indicate that the X-linked genes are associated with male infertility and involved in regulating SSCs, which provides a new insight into the role of X-linked genes in spermatogenesis.
Collapse
Affiliation(s)
- Chuncheng Lu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yan Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yufeng Qin
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Durham, North Carolina, USA
| | - Qiaoqiao Xu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ran Zhou
- Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
| | - Yiqiang Cui
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yunfei Zhu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xin Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jintao Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiang Wei
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Min Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Bo Hang
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Jian-Hua Mao
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Antoine M Snijders
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Mingxi Liu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Epidemiology and Biostatistics and Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hongbing Shen
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Epidemiology and Biostatistics and Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zuomin Zhou
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xin Wu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
27
|
Expression profile of spermatogenesis associated genes in male germ cells during postnatal development in mice. JOURNAL OF ANIMAL REPRODUCTION AND BIOTECHNOLOGY 2020. [DOI: 10.12750/jarb.35.4.289] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
28
|
Kokkorakis N, Gaitanou M. Minibrain-related kinase/dual-specificity tyrosine-regulated kinase 1B implication in stem/cancer stem cells biology. World J Stem Cells 2020; 12:1553-1575. [PMID: 33505600 PMCID: PMC7789127 DOI: 10.4252/wjsc.v12.i12.1553] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/29/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinase 1B (DYRK1B), also known as minibrain-related kinase (MIRK) is one of the best functionally studied members of the DYRK kinase family. DYRKs comprise a family of protein kinases that are emerging modulators of signal transduction pathways, cell proliferation and differentiation, survival, and cell motility. DYRKs were found to participate in several signaling pathways critical for development and cell homeostasis. In this review, we focus on the DYRK1B protein kinase from a functional point of view concerning the signaling pathways through which DYRK1B exerts its cell type-dependent function in a positive or negative manner, in development and human diseases. In particular, we focus on the physiological role of DYRK1B in behavior of stem cells in myogenesis, adipogenesis, spermatogenesis and neurogenesis, as well as in its pathological implication in cancer and metabolic syndrome. Thus, understanding of the molecular mechanisms that regulate signaling pathways is of high importance. Recent studies have identified a close regulatory connection between DYRK1B and the hedgehog (HH) signaling pathway. Here, we aim to bring together what is known about the functional integration and cross-talk between DYRK1B and several signaling pathways, such as HH, RAS and PI3K/mTOR/AKT, as well as how this might affect cellular and molecular processes in development, physiology, and pathology. Thus, this review summarizes the major known functions of DYRK1B kinase, as well as the mechanisms by which DYRK1B exerts its functions in development and human diseases focusing on the homeostasis of stem and cancer stem cells.
Collapse
Affiliation(s)
- Nikolaos Kokkorakis
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Hellenic Pasteur Institute, Athens 11521, Greece
| | - Maria Gaitanou
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Hellenic Pasteur Institute, Athens 11521, Greece.
| |
Collapse
|
29
|
Gestational Exposure to Bisphenol A Affects Testicular Morphology, Germ Cell Associations, and Functions of Spermatogonial Stem Cells in Male Offspring. Int J Mol Sci 2020; 21:ijms21228644. [PMID: 33212759 PMCID: PMC7696188 DOI: 10.3390/ijms21228644] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/03/2020] [Accepted: 11/13/2020] [Indexed: 12/21/2022] Open
Abstract
Exposure to bisphenol A (BPA) in the gestational period damages the reproductive health of offspring; detailed evidence regarding BPA-induced damage in testicular germ cells of offspring is still limited. In this study, pregnant mice (F0) were gavaged with three BPA doses (50 μg, 5 mg, and 50 mg/kg body weight (bw)/day; tolerable daily intake (TDI), no-observed-adverse-effect-level (NOAEL), and lowest-observed-adverse-effect level (LOAEL), respectively) on embryonic days 7 to 14, followed by investigation of the transgenerational effects of such exposure in male offspring. We observed that the NOAEL- and LOAEL-exposed F1 offspring had abnormalities in anogenital distance, nipple retention, and pubertal onset (days), together with differences in seminiferous epithelial stages and testis morphology. These effects were eradicated in the next F2 and F3 generations. Moreover, there was an alteration in the ratio of germ cell population and the apoptosis rate in germ cells increased in F1 offspring at the LOAEL dose. However, the total number of spermatogonia remained unchanged. Finally, a reduction in the stemness properties of spermatogonial stem cells in F1 offspring was observed upon LOAEL exposure. Therefore, we provide evidence of BPA-induced disruption of physiology and functions in male germ cells during the gestational period. This may lead to several reproductive health issues and infertility in offspring.
Collapse
|
30
|
Effect of serum replacement on murine spermatogonial stem cell cryopreservation. Theriogenology 2020; 159:165-175. [PMID: 33157454 DOI: 10.1016/j.theriogenology.2020.10.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 01/13/2023]
Abstract
Cryopreservation of spermatogonial stem cells (SSCs) is a necessity to preserve the genetic information of valuable livestock herds and to produce transgenic animals. However, serum, a key component that allows efficient cryopreservation, has many limitations attributed to its undefined composition, inter-batch variations, and contamination potential. Therefore, we aimed to establish a method for serum-free cryopreservation of SSCs. To evaluate the cryopreservation efficiency of serum replacements, we assessed the recovery rate, relative proliferation potential, proliferation capacity, and apoptosis capacity. SSCs were characterized, and their functional activity was determined through immunofluorescence, RT-qPCR, and spermatogonial transplantation. The efficiency of each serum replacement was compared to that of the negative control (10% DMSO in DPBS) and positive control (10% DMSO and 40% FBS in DPBS). Our results indicated that cryopreservation with 5% human serum albumin (rHSA) exhibited a higher relative proliferation potential (274.0 ± 13.4%) than with DMSO control (100 ± 8.6%), with no significant difference from the 40% FBS (190.0 ± 20.1%). Moreover, early apoptosis also significantly decreased to a greater extent with 5% rHSA (5.1 ± 0.7%) than with DMSO control (12.9 ± 0.8%) and was at a level comparable to the 40% FBS (4.9 ± 0.8%). In addition, the SSCs cryopreserved with 5% rHSA exhibited normal self-renewal and differentiation abilities. In conclusion, 5% rHSA is a potential serum replacement for SSC cryopreservation, with properties comparable to that of serum. These results would contribute to the application of SSCs in improving livestock and in future clinical trials for human infertility treatment.
Collapse
|
31
|
McCann KL, Kavari SL, Burkholder AB, Phillips BT, Hall TMT. H/ACA snoRNA levels are regulated during stem cell differentiation. Nucleic Acids Res 2020; 48:8686-8703. [PMID: 32710630 DOI: 10.1093/nar/gkaa612] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 12/11/2022] Open
Abstract
H/ACA small nucleolar RNAs (snoRNAs) guide pseudouridylation as part of a small nucleolar ribonucleoprotein complex (snoRNP). Disruption of H/ACA snoRNA levels in stem cells impairs pluripotency, yet it remains unclear how H/ACA snoRNAs contribute to differentiation. To determine if H/ACA snoRNA levels are dynamic during differentiation, we comprehensively profiled H/ACA snoRNA abundance in multiple murine cell types and during differentiation in three cellular models, including mouse embryonic stem cells and mouse myoblasts. We determined that the profiles of H/ACA snoRNA abundance are cell-type specific, and we identified a subset of snoRNAs that are specifically regulated during differentiation. Additionally, we demonstrated that a decrease in Snora27 abundance upon differentiation corresponds to a decrease in pseudouridylation of its target site within the E-site transfer RNA (tRNA) binding region of the 28S ribosomal RNA (rRNA) in the large ribosomal subunit. Together, these data point toward a potential model in which H/ACA snoRNAs are specifically regulated during differentiation to alter pseudouridylation and fine tune ribosome function.
Collapse
Affiliation(s)
- Kathleen L McCann
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Sanam L Kavari
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Adam B Burkholder
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Bart T Phillips
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Traci M Tanaka Hall
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
32
|
Jung SE, Ahn JS, Kim YH, Oh HJ, Kim BJ, Ryu BY. Necrostatin-1 improves the cryopreservation efficiency of murine spermatogonial stem cells via suppression of necroptosis and apoptosis. Theriogenology 2020; 158:445-453. [PMID: 33049569 DOI: 10.1016/j.theriogenology.2020.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 08/19/2020] [Accepted: 10/03/2020] [Indexed: 12/21/2022]
Abstract
Cryopreservation of spermatogonial stem cells (SSCs) is important to preserve the lineages of valuable livestock and produce transgenic animals. Although interest in molecular-based cryopreservation methods have been increasing to improve their efficiency, the issue of necroptosis has not yet been considered. Therefore, the purpose of this study was to understand the role of necroptosis using necrostatin-1 (Nec-1), necroptosis inhibitor, in SSC cryopreservation, and to investigate the potential application of Nec-1 as a cryoprotectant. To determine the cryopreservation efficiency of Nec-1, we assessed recovery rate, proliferation potential, cellular membrane damage, RIP1 protein expression, apoptosis, and its mechanism. Stable characterization and functional activity of SSCs was determined via immunofluorescence, RT-qPCR, and in vivo transplantation of SSCs. Our results showed a higher proliferation potential in 50 μM Nec-1 (146.5 ± 16.8%) than in DMSO controls (100.0 ± 3.4%). Furthermore, the cryoprotective effects of Nec-1 were verified by a decrease in RIP1 expression (3.1 ± 0.2-fold vs. 1.3 ± 0.3-fold) and in early apoptosis (4.3 ± 0.8% vs. 2.6 ± 0.1%) compared to DMSO controls. Normal functional activity was observed in the SSCs after cryopreservation with 50 μM Nec-1. In conclusion, necroptosis could be a cause of cryoinjury, and their inhibitor may serve as potential effective cryoprotectant. This study will contribute to establish a molecular-based cryopreservation method, and thereby expanding the use of SSCs into the domestic livestock industry as well as for clinical applications.
Collapse
Affiliation(s)
- Sang-Eun Jung
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-Do, Republic of Korea
| | - Jin Seop Ahn
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-Do, Republic of Korea
| | - Yong-Hee Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-Do, Republic of Korea
| | - Hui-Jo Oh
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-Do, Republic of Korea
| | - Bang-Jin Kim
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Buom-Yong Ryu
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-Do, Republic of Korea.
| |
Collapse
|
33
|
Donor-derived spermatogenesis following stem cell transplantation in sterile NANOS2 knockout males. Proc Natl Acad Sci U S A 2020; 117:24195-24204. [PMID: 32929012 PMCID: PMC7533891 DOI: 10.1073/pnas.2010102117] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Spermatogonial stem cell transplantation (SSCT) is an experimental technique for transfer of germline between donor and recipient males that could be used as a tool for biomedical research, preservation of endangered species, and dissemination of desirable genetics in food animal populations. To fully realize these potentials, recipient males must be devoid of endogenous germline but possess normal testicular architecture and somatic cell function capable of supporting allogeneic donor stem cell engraftment and regeneration of spermatogenesis. Here we show that male mice, pigs, goats, and cattle harboring knockout alleles of the NANOS2 gene generated by CRISPR-Cas9 editing have testes that are germline ablated but otherwise structurally normal. In adult pigs and goats, SSCT with allogeneic donor stem cells led to sustained donor-derived spermatogenesis. With prepubertal mice, allogeneic SSCT resulted in attainment of natural fertility. Collectively, these advancements represent a major step toward realizing the enormous potential of surrogate sires as a tool for dissemination and regeneration of germplasm in all mammalian species.
Collapse
|
34
|
Karmakar PC, Ahn JS, Kim YH, Jung SE, Kim BJ, Lee HS, Kim SU, Rahman MS, Pang MG, Ryu BY. Paternal Exposure to Bisphenol-A Transgenerationally Impairs Testis Morphology, Germ Cell Associations, and Stemness Properties of Mouse Spermatogonial Stem Cells. Int J Mol Sci 2020; 21:ijms21155408. [PMID: 32751382 PMCID: PMC7432732 DOI: 10.3390/ijms21155408] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 12/29/2022] Open
Abstract
Bisphenol-A (BPA) exposure in an adult male can affect the reproductive system, which may also adversely affect the next generation. However, there is a lack of comprehensive data on the BPA-induced disruption of the association and functional characteristics of the testicular germ cells, which the present study sought to investigate. Adult male mice were administered BPA doses by gavage for six consecutive weeks and allowed to breed, producing generations F1-F4. Testis samples from each generation were evaluated for several parameters, including abnormal structure, alterations in germ cell proportions, apoptosis, and loss of functional properties of spermatogonial stem cells (SSCs). We observed that at the lowest-observed-adverse-effect level (LOAEL) dose, the testicular abnormalities and alterations in seminiferous epithelium staging persisted in F0-F2 generations, although a reduced total spermatogonia count was found only in F0. However, abnormalities in the proportions of germ cells were observed until F2. Exposure of the male mice (F0) to BPA alters the morphology of the testis along with the association of germ cells and stemness properties of SSCs, with the effects persisting up to F2. Therefore, we conclude that BPA induces physiological and functional disruption in male germ cells, which may lead to reproductive health issues in the next generation.
Collapse
Affiliation(s)
- Polash Chandra Karmakar
- Department of Animal Science and Technology and BET Research Institute, Chung-Ang University, Anseong 17546, Korea; (P.C.K.); (J.S.A.); (Y.-H.K.); (S.-E.J.); (M.S.R.); (M.-G.P.)
| | - Jin Seop Ahn
- Department of Animal Science and Technology and BET Research Institute, Chung-Ang University, Anseong 17546, Korea; (P.C.K.); (J.S.A.); (Y.-H.K.); (S.-E.J.); (M.S.R.); (M.-G.P.)
| | - Yong-Hee Kim
- Department of Animal Science and Technology and BET Research Institute, Chung-Ang University, Anseong 17546, Korea; (P.C.K.); (J.S.A.); (Y.-H.K.); (S.-E.J.); (M.S.R.); (M.-G.P.)
| | - Sang-Eun Jung
- Department of Animal Science and Technology and BET Research Institute, Chung-Ang University, Anseong 17546, Korea; (P.C.K.); (J.S.A.); (Y.-H.K.); (S.-E.J.); (M.S.R.); (M.-G.P.)
| | - Bang-Jin Kim
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Hee-Seok Lee
- Department of Food Science & Technology, Chung-Ang University, Anseong 17546, Korea;
| | - Sun-Uk Kim
- National Primate Research Center and Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang 28116, Korea;
| | - Md Saidur Rahman
- Department of Animal Science and Technology and BET Research Institute, Chung-Ang University, Anseong 17546, Korea; (P.C.K.); (J.S.A.); (Y.-H.K.); (S.-E.J.); (M.S.R.); (M.-G.P.)
| | - Myung-Geol Pang
- Department of Animal Science and Technology and BET Research Institute, Chung-Ang University, Anseong 17546, Korea; (P.C.K.); (J.S.A.); (Y.-H.K.); (S.-E.J.); (M.S.R.); (M.-G.P.)
| | - Buom-Yong Ryu
- Department of Animal Science and Technology and BET Research Institute, Chung-Ang University, Anseong 17546, Korea; (P.C.K.); (J.S.A.); (Y.-H.K.); (S.-E.J.); (M.S.R.); (M.-G.P.)
- Correspondence: ; Tel.: +82-31-670-4687; Fax: +82-31-670-0062
| |
Collapse
|
35
|
Lee AK, Klein J, Fon Tacer K, Lord T, Oatley MJ, Oatley JM, Porter SN, Pruett-Miller SM, Tikhonova EB, Karamyshev AL, Wang YD, Yang P, Korff A, Kim HJ, Taylor JP, Potts PR. Translational Repression of G3BP in Cancer and Germ Cells Suppresses Stress Granules and Enhances Stress Tolerance. Mol Cell 2020; 79:645-659.e9. [PMID: 32692974 DOI: 10.1016/j.molcel.2020.06.037] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/10/2020] [Accepted: 06/29/2020] [Indexed: 02/08/2023]
Abstract
Stress granules (SGs) are membrane-less ribonucleoprotein condensates that form in response to various stress stimuli via phase separation. SGs act as a protective mechanism to cope with acute stress, but persistent SGs have cytotoxic effects that are associated with several age-related diseases. Here, we demonstrate that the testis-specific protein, MAGE-B2, increases cellular stress tolerance by suppressing SG formation through translational inhibition of the key SG nucleator G3BP. MAGE-B2 reduces G3BP protein levels below the critical concentration for phase separation and suppresses SG initiation. Knockout of the MAGE-B2 mouse ortholog or overexpression of G3BP1 confers hypersensitivity of the male germline to heat stress in vivo. Thus, MAGE-B2 provides cytoprotection to maintain mammalian spermatogenesis, a highly thermosensitive process that must be preserved throughout reproductive life. These results demonstrate a mechanism that allows for tissue-specific resistance against stress and could aid in the development of male fertility therapies.
Collapse
Affiliation(s)
- Anna K Lee
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jonathon Klein
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Klementina Fon Tacer
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Tessa Lord
- Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Melissa J Oatley
- Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Jon M Oatley
- Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Shaina N Porter
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shondra M Pruett-Miller
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Elena B Tikhonova
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Andrey L Karamyshev
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Yong-Dong Wang
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Peiguo Yang
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ane Korff
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hong Joo Kim
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - J Paul Taylor
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Patrick Ryan Potts
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
36
|
Serra N, Velte EK, Niedenberger BA, Kirsanov O, Geyer CB. The mTORC1 component RPTOR is required for maintenance of the foundational spermatogonial stem cell pool in mice†. Biol Reprod 2020; 100:429-439. [PMID: 30202948 DOI: 10.1093/biolre/ioy198] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 08/06/2018] [Accepted: 09/07/2018] [Indexed: 01/15/2023] Open
Abstract
The self-renewal, proliferation, and differentiation of the spermatogonial populations must be finely coordinated in the mammalian testis, as dysregulation of these processes can lead to subfertility, infertility, or the formation of tumors. There are wide gaps in our understanding of how these spermatogonial populations are formed and maintained, and our laboratory has focused on identifying the molecular and cellular pathways that direct their development. Others and we have shown, using a combination of pharmacologic inhibitors and genetic models, that activation of mTOR complex 1 (mTORC1) is important for spermatogonial differentiation in vivo. Here, we extend those studies to directly test the germ cell-autonomous requirement for mTORC1 in spermatogonial differentiation. We created germ cell conditional knockout mice for "regulatory associated protein of MTOR, complex 1" (Rptor), which encodes an essential component of mTORC1. While germ cell KO mice were viable and healthy, they had smaller testes than littermate controls, and no sperm were present in their cauda epididymides. We found that an initial cohort of Rptor KO spermatogonia proliferated, differentiated, and entered meiosis (which they were unable to complete). However, no self-renewing spermatogonia were formed, and thus the entire germline was lost by adulthood, resulting in Sertoli cell-only testes. These results reveal the cell autonomous requirement for RPTOR in the formation or maintenance of the foundational self-renewing spermatogonial stem cell pool in the mouse testis and underscore complex roles for mTORC1 and its constituent proteins in male germ cell development.
Collapse
Affiliation(s)
- Nicholas Serra
- Department of Anatomy and Cell Biology, East Carolina University, Greenville, North Carolina, USA
| | - Ellen K Velte
- Department of Anatomy and Cell Biology, East Carolina University, Greenville, North Carolina, USA
| | - Bryan A Niedenberger
- Department of Anatomy and Cell Biology, East Carolina University, Greenville, North Carolina, USA
| | - Oleksander Kirsanov
- Department of Anatomy and Cell Biology, East Carolina University, Greenville, North Carolina, USA
| | - Christopher B Geyer
- Department of Anatomy and Cell Biology, East Carolina University, Greenville, North Carolina, USA.,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, USA
| |
Collapse
|
37
|
Hermann BP, Cheng K, Singh A, Roa-De La Cruz L, Mutoji KN, Chen IC, Gildersleeve H, Lehle JD, Mayo M, Westernströer B, Law NC, Oatley MJ, Velte EK, Niedenberger BA, Fritze D, Silber S, Geyer CB, Oatley JM, McCarrey JR. The Mammalian Spermatogenesis Single-Cell Transcriptome, from Spermatogonial Stem Cells to Spermatids. Cell Rep 2019; 25:1650-1667.e8. [PMID: 30404016 PMCID: PMC6384825 DOI: 10.1016/j.celrep.2018.10.026] [Citation(s) in RCA: 392] [Impact Index Per Article: 65.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 08/15/2018] [Accepted: 10/03/2018] [Indexed: 12/16/2022] Open
Abstract
Spermatogenesis is a complex and dynamic cellular differentiation process critical to male reproduction and sustained by spermatogonial stem cells (SSCs). Although patterns of gene expression have been described for aggregates of certain spermatogenic cell types, the full continuum of gene expression patterns underlying ongoing spermatogenesis in steady state was previously unclear. Here, we catalog single-cell transcriptomes for >62,000 individual spermatogenic cells from immature (postnatal day 6) and adult male mice and adult men. This allowed us to resolve SSC and progenitor spermatogonia, elucidate the full range of gene expression changes during male meiosis and spermiogenesis, and derive unique gene expression signatures for multiple mouse and human spermatogenic cell types and/or subtypes. These transcriptome datasets provide an information-rich resource for studies of SSCs, male meiosis, testicular cancer, male infertility, or contraceptive development, as well as a gene expression roadmap to be emulated in efforts to achieve spermatogenesis in vitro.
Collapse
Affiliation(s)
- Brian P Hermann
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA; Genomics Core, University of Texas at San Antonio, San Antonio, TX 78249, USA.
| | - Keren Cheng
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Anukriti Singh
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Lorena Roa-De La Cruz
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Kazadi N Mutoji
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - I-Chung Chen
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Heidi Gildersleeve
- Genomics Core, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Jake D Lehle
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Max Mayo
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Birgit Westernströer
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Nathan C Law
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99163, USA
| | - Melissa J Oatley
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99163, USA
| | - Ellen K Velte
- Department of Anatomy & Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, USA
| | - Bryan A Niedenberger
- Department of Anatomy & Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, USA
| | - Danielle Fritze
- The UT Transplant Center, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Sherman Silber
- The Infertility Center of St. Louis, Chesterfield, MO 63017, USA
| | - Christopher B Geyer
- Department of Anatomy & Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, USA; East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27834, USA
| | - Jon M Oatley
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99163, USA
| | - John R McCarrey
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA.
| |
Collapse
|
38
|
Zhang X, Xia Q, Wei R, Song H, Mi J, Lin Z, Yang Y, Sun Z, Zou K. Melatonin protects spermatogonia from the stress of chemotherapy and oxidation via eliminating reactive oxidative species. Free Radic Biol Med 2019; 137:74-86. [PMID: 30986493 DOI: 10.1016/j.freeradbiomed.2019.04.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/18/2019] [Accepted: 04/08/2019] [Indexed: 12/23/2022]
Abstract
Busulfan is a widely used chemotherapeutic drug for chronic myelogenous leukemia and bone marrow transplantation. As a cell cycle nonspecific alkylation agent, busulfan has a severe side effect on germ cells, especially on spermatogonia before meiosis. Studies have revealed that busulfan causes DNA strand crosslinks in spermatogonia and induces apoptosis, and many corresponding strategies have been developed to ameliorate the side effects. However, fertility maintenance after busulfan treatment is still a challenging project in the clinic. Here, we demonstrated that continuous injection of melatonin effectively alleviated germline cytotoxicity both in recipient mice and cultured spermatogonia, and busulfan/melatonin recipient mice produced normal litters. We further revealed that melatonin rescues spermatogonia from apoptosis by neutralizing reactive oxidative species (ROS) induced by busulfan and recovered the phosphorylation of ATM and p53 to normal levels, and as a result apoptosis in spermatogonial progenitor cells was avoided. This study reports that pineal gland hormone melatonin effectively protects spermatogonia from the stress of chemotherapy and oxidation and reveals the underlying molecular mechanisms, which will provide an important hint for fertility protection in clinic.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qin Xia
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Rui Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hongfei Song
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiaqi Mi
- Department of Cancer Biology, Beckman Research Institute, City of Hope, 91010, CA, USA
| | - Zhaoyu Lin
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, 210061, China
| | - Yang Yang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zijie Sun
- Department of Cancer Biology, Beckman Research Institute, City of Hope, 91010, CA, USA
| | - Kang Zou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
39
|
Fon Tacer K, Montoya MC, Oatley MJ, Lord T, Oatley JM, Klein J, Ravichandran R, Tillman H, Kim M, Connelly JP, Pruett-Miller SM, Bookout AL, Binshtock E, Kamiński MM, Potts PR. MAGE cancer-testis antigens protect the mammalian germline under environmental stress. SCIENCE ADVANCES 2019; 5:eaav4832. [PMID: 31149633 PMCID: PMC6541465 DOI: 10.1126/sciadv.aav4832] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 04/17/2019] [Indexed: 05/17/2023]
Abstract
Ensuring robust gamete production even in the face of environmental stress is of utmost importance for species survival, especially in mammals that have low reproductive rates. Here, we describe a family of genes called melanoma antigens (MAGEs) that evolved in eutherian mammals and are normally restricted to expression in the testis (http://MAGE.stjude.org) but are often aberrantly activated in cancer. Depletion of Mage-a genes disrupts spermatogonial stem cell maintenance and impairs repopulation efficiency in vivo. Exposure of Mage-a knockout mice to genotoxic stress or long-term starvation that mimics famine in nature causes defects in spermatogenesis, decreased testis weights, diminished sperm production, and reduced fertility. Last, human MAGE-As are activated in many cancers where they promote fuel switching and growth of cells. These results suggest that mammalian-specific MAGE genes have evolved to protect the male germline against environmental stress, ensure reproductive success under non-optimal conditions, and are hijacked by cancer cells.
Collapse
Affiliation(s)
- Klementina Fon Tacer
- Department of Cell & Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Marhiah C. Montoya
- Clinical & Translational Science Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Departments of Pediatrics, Microbiology and Immunology, Carver College of Medicine, University of Iowa, IA, USA
| | - Melissa J. Oatley
- Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Tessa Lord
- Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Jon M. Oatley
- Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Jonathon Klein
- Department of Cell & Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Ramya Ravichandran
- Department of Cell & Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Heather Tillman
- Veterinary Pathology Core, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - MinSoo Kim
- Departments of Internal Medicine and Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jon P. Connelly
- Department of Cell & Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | | | - Angie L. Bookout
- Department of Internal Medicine, Division of Hypothalamic Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Emily Binshtock
- Department of Cell & Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Marcin M. Kamiński
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Patrick Ryan Potts
- Department of Cell & Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
- Corresponding author.
| |
Collapse
|
40
|
Tu J, Zhang P, Shui Luk AC, Liao J, Chan WY, Qi H, Hoi-Hung AC, Lee TL. MicroRNA-26b promotes transition from Kit- to Kit+ mouse spermatogonia. Exp Cell Res 2018; 373:71-79. [DOI: 10.1016/j.yexcr.2018.09.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/07/2018] [Accepted: 09/24/2018] [Indexed: 12/22/2022]
|
41
|
Karmakar PC, Cho YJ, Kim YH, Jung SE, Jin JH, Kim BJ, Kwon WS, Kim YH, Pang MG, Ryu BY. Chemotherapeutic Drugs Alter Functional Properties and Proteome of Mouse Testicular Germ Cells In Vitro. Toxicol Sci 2018; 164:465-476. [DOI: 10.1093/toxsci/kfy098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Polash Chandra Karmakar
- Department of Animal Science & Technology, Chung-Ang University, Anseong, Gyeonggi-do 456-756, Republic of Korea
| | - Yeon-Jin Cho
- Department of Animal Science & Technology, Chung-Ang University, Anseong, Gyeonggi-do 456-756, Republic of Korea
| | - Yong-Hee Kim
- Department of Animal Science & Technology, Chung-Ang University, Anseong, Gyeonggi-do 456-756, Republic of Korea
| | - Sang-Eun Jung
- Department of Animal Science & Technology, Chung-Ang University, Anseong, Gyeonggi-do 456-756, Republic of Korea
| | - Ju-Hee Jin
- Department of Animal Science & Technology, Chung-Ang University, Anseong, Gyeonggi-do 456-756, Republic of Korea
| | - Bang-Jin Kim
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Woo-Sung Kwon
- Department of Animal Science & Technology, Chung-Ang University, Anseong, Gyeonggi-do 456-756, Republic of Korea
| | - Young-Hyun Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk-do, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Chungcheongnam-do, Republic of Korea
| | - Myung-Geol Pang
- Department of Animal Science & Technology, Chung-Ang University, Anseong, Gyeonggi-do 456-756, Republic of Korea
| | - Buom-Yong Ryu
- Department of Animal Science & Technology, Chung-Ang University, Anseong, Gyeonggi-do 456-756, Republic of Korea
| |
Collapse
|
42
|
Olejnik J, Suchowerska N, Herrid M, Jackson A, Jackson M, Andronicos NM, Hinch GN, Hill JR. Sensitivity of spermatogonia to irradiation varies with age in pre-pubertal ram lambs. Anim Reprod Sci 2018; 193:58-67. [PMID: 29636209 DOI: 10.1016/j.anireprosci.2018.03.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/23/2018] [Accepted: 03/29/2018] [Indexed: 01/15/2023]
Abstract
Although germ cells from donor rams transplanted into irradiated recipient testes have produced donor derived offspring, efficiency is low. Further optimization of recipient irradiation protocols will add precision to the depletion of recipient spermatogonia prior to germ cell transplant. Three irradiation doses (9,12,15 Gy) were administered to ram lambs aged 14 weeks (Group 1) and 20 weeks (Group 2), then testicular biopsies were collected 1, 2 and 3 months after irradiation. At 1 month after irradiation of Group 1, only the largest dose (15 Gy) reduced spermatogonia numbers below 10% of non-irradiated controls, whereas in Group 2 lambs, each irradiation dose reduced spermatogonia below 10% of controls. In both Groups, fewer differentiated germ cells were present in seminiferous tubules compared to controls. At 2 months after irradiation, spermatogonia numbers in both Groups increased more than sixfold to be similar to controls, whereas fewer differentiated germ cells were present in the tubules of both Groups. At 3 months in Group 1, each irradiation dose reduced spermatogonia numbers to <30% of controls and fewer tubules contained differentiated germ cells. Lesser expression of spermatogonial genes, VASA and UCHL-1, was observed in the 15 Gy group. In Group 2, only 12 Gy treated tubules contained fewer spermatogonia. Knowledge of these subtle differences between age groups in the effect of irradiation doses on spermatogonia or differentiated germ cell numbers and the duration of recovery of spermatogonia numbers after irradiation will aid the timing of germ cell transplants into prepubertal recipient lambs.
Collapse
Affiliation(s)
- J Olejnik
- CSIRO Food Futures National Research Flagship, Australia; CSIRO Animal, Food and Health Sciences, F. D. McMaster Laboratory, Armidale, NSW, 2350 Australia; University of New England, Armidale, NSW, 2350, Australia
| | - N Suchowerska
- School of Physics, University of Sydney, NSW, Australia; Faculty of Medicine, University of Sydney, Sydney, NSW, Australia
| | - M Herrid
- CSIRO Food Futures National Research Flagship, Australia
| | - A Jackson
- CSIRO Food Futures National Research Flagship, Australia
| | - M Jackson
- Faculty of Medicine, University of Sydney, Sydney, NSW, Australia
| | - N M Andronicos
- CSIRO Animal, Food and Health Sciences, F. D. McMaster Laboratory, Armidale, NSW, 2350 Australia; University of New England, Armidale, NSW, 2350, Australia
| | - G N Hinch
- University of New England, Armidale, NSW, 2350, Australia
| | - J R Hill
- CSIRO Food Futures National Research Flagship, Australia; University of Queensland, School of Veterinary Science, Gatton, QLD 4343, Queensland, Australia.
| |
Collapse
|
43
|
Testicular Architecture Is Critical for Mediation of Retinoic Acid Responsiveness by Undifferentiated Spermatogonial Subtypes in the Mouse. Stem Cell Reports 2018; 10:538-552. [PMID: 29398482 PMCID: PMC5830974 DOI: 10.1016/j.stemcr.2018.01.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/04/2018] [Accepted: 01/05/2018] [Indexed: 02/07/2023] Open
Abstract
Spermatogenesis requires retinoic acid (RA) induction of the undifferentiated to differentiating transition in transit amplifying (TA) progenitor spermatogonia, whereas continuity of the spermatogenic lineage relies on the RA response being suppressed in spermatogonial stem cells (SSCs). Here, we discovered that, in mouse testes, both spermatogonial populations possess intrinsic RA-response machinery and exhibit hallmarks of the differentiating transition following direct exposure to RA, including loss of SSC regenerative capacity. We determined that SSCs are only resistant to RA-driven differentiation when situated in the normal topological organization of the testis. Furthermore, we show that the soma is instrumental in “priming” TA progenitors for RA-induced differentiation through elevated RA receptor expression. Collectively, these findings indicate that SSCs and TA progenitor spermatogonia inhabit disparate niche microenvironments within seminiferous tubules that are critical for mediating extrinsic cues that drive fate decisions. Contrary to previous dogma, SSCs do express RARγ, as well as other RAR/RXR variants Following direct exposure, SSCs exhibit an RA signaling response SSCs are protected from RA by the niche microenvironment in the testis Signals from the soma prime progenitors for RA-driven differentiation
Collapse
|
44
|
Embryonic lethality and defective male germ cell development in mice lacking UTF1. Sci Rep 2017; 7:17259. [PMID: 29222434 PMCID: PMC5722945 DOI: 10.1038/s41598-017-17482-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 11/28/2017] [Indexed: 11/10/2022] Open
Abstract
The germ cell lineage is specified early in embryogenesis and undergoes complex developmental programs to generate gametes. Here, we conducted genetic studies to investigate the role of Utf1 (Undifferentiated embryonic cell transcription factor 1) in mouse germ cell development. Utf1 is expressed in pluripotent embryonic stem (ES) cells and regulates ES cell differentiation. In a proteomics screen, we identified UTF1 among 38 proteins including DNMT3L and DND1 that associate with chromatin in embryonic testes. We find that UTF1 is expressed in embryonic and newborn gonocytes and in a subset of early spermatogonia. Ubiquitous inactivation of Utf1 causes embryonic lethality in mice with a hybrid genetic background. Male mice with a germline-specific deletion of Utf1 resulting from Prdm1-Cre mediated recombination are born with significantly fewer gonocytes and exhibit defective spermatogenesis and reduced sperm count as young adults. These defects are ameliorated in older animals. These results demonstrate that UTF1 is required for embryonic development and regulates male germ cell development.
Collapse
|
45
|
Agrimson KS, Oatley MJ, Mitchell D, Oatley JM, Griswold MD, Hogarth CA. Retinoic acid deficiency leads to an increase in spermatogonial stem number in the neonatal mouse testis, but excess retinoic acid results in no change. Dev Biol 2017; 432:229-236. [PMID: 29037932 DOI: 10.1016/j.ydbio.2017.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 10/02/2017] [Accepted: 10/03/2017] [Indexed: 01/04/2023]
Abstract
The onset of spermatogenesis occurs in response to retinoic acid (RA), the active metabolite of vitamin A. However, whether RA plays any role during establishment of the spermatogonial stem cell (SSC) pool is unknown. Because designation of the SSC population and the onset of RA signaling in the testis that induces differentiation have similar timing, this study asked whether RA influenced SSC establishment. Whole mount immunofluorescence and flow cytometric analysis using the Id4-eGfp transgenic reporter mouse line revealed an enrichment for ID4-EGFP+ cells within the testis following inhibition of RA synthesis by WIN 18,446 treatment. Transplantation analyses confirmed a significant increase in the number of SSCs in testes from RA-deficient animals. Conversely, no difference in the ID4-EGFP+ population or change in SSC number were detected following exposure to an excess of RA. Collectively, reduced RA altered the number of SSCs present in the neonatal testis but precocious RA exposure in the neonatal testis did not, suggesting that RA deficiency causes a greater proportion of progenitor undifferentiated spermatogonia to retain their SSC state past the age when the pool is thought to be determined.
Collapse
Affiliation(s)
- Kellie S Agrimson
- School of Molecular Biosciences and the Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - Melissa J Oatley
- School of Molecular Biosciences and the Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - Debra Mitchell
- School of Molecular Biosciences and the Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - Jon M Oatley
- School of Molecular Biosciences and the Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - Michael D Griswold
- School of Molecular Biosciences and the Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - Cathryn A Hogarth
- School of Molecular Biosciences and the Center for Reproductive Biology, Washington State University, Pullman, WA, USA.
| |
Collapse
|
46
|
Karmakar PC, Kang HG, Kim YH, Jung SE, Rahman MS, Lee HS, Kim YH, Pang MG, Ryu BY. Bisphenol A Affects on the Functional Properties and Proteome of Testicular Germ Cells and Spermatogonial Stem Cells in vitro Culture Model. Sci Rep 2017; 7:11858. [PMID: 28928476 PMCID: PMC5605497 DOI: 10.1038/s41598-017-12195-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 09/05/2017] [Indexed: 12/28/2022] Open
Abstract
The endocrine disruptor bisphenol A (BPA) is well known for its adverse effect on male fertility. Growing evidence suggests that BPA may interact with testicular germ cells and cause infertility as a result of its estrogenic activity. Objective of current in vitro study was to investigate the proliferation, survivability and stemness properties of mouse testicular germ cells exposed to BPA, and to evaluate possible expression of cellular proteome. Our results showed that germ cell viability and proliferation were not affected by low concentrations (0.01, 0.1, 1, and 10 µM) although significant reduction observed at 100 µM BPA. Germ cell self-renewal and differentiation related marker proteins expression found unchanged at those concentrations. When BPA-exposed germ cells were transplanted into recipient testes, we observed fewer colonies at higher concentrations (10 and 100 µM). Additionally, a significant frequency of recombination failure during meiosis was observed in 10 µM BPA-exposed germ cell transplanted recipient. Moreover, experiment on continuous BPA-exposed and 100 µM BPA-recovered germ cells suggested that spermatogonial stem cells are more potential to survive in adverse environment. Finally, scrutinizing differentially expressed cellular proteins resulted from our proteomic analysis, we conclude that BPA exposure might be associated with several health risks and infertility.
Collapse
Affiliation(s)
- Polash Chandra Karmakar
- Department of Animal Science & Technology, Chung-Ang University, Anseong, Gyeonggi-do, Republic of Korea
| | - Hyun-Gu Kang
- Department of Animal Science & Technology, Chung-Ang University, Anseong, Gyeonggi-do, Republic of Korea
| | - Yong-Hee Kim
- Department of Animal Science & Technology, Chung-Ang University, Anseong, Gyeonggi-do, Republic of Korea
| | - Sang-Eun Jung
- Department of Animal Science & Technology, Chung-Ang University, Anseong, Gyeonggi-do, Republic of Korea
| | - Md Saidur Rahman
- Department of Animal Science & Technology, Chung-Ang University, Anseong, Gyeonggi-do, Republic of Korea
| | - Hee-Seok Lee
- Food Safety Risk Assessment Division, National Institute of Food & Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, Chungcheongbuk-do, Republic of Korea
| | - Young-Hyun Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk-do, Republic of Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Chungcheongnam-do, Republic of Korea
| | - Myung-Geol Pang
- Department of Animal Science & Technology, Chung-Ang University, Anseong, Gyeonggi-do, Republic of Korea
| | - Buom-Yong Ryu
- Department of Animal Science & Technology, Chung-Ang University, Anseong, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
47
|
Jung SE, Kim YH, Cho S, Kim BJ, Lee HS, Hwang S, Kim GB, Kim YH, Pang MG, Lee S, Ryu BY. A Phytochemical Approach to Promotion of Self-renewal in Murine Spermatogonial Stem Cell by Using Sedum Sarmentosum Extract. Sci Rep 2017; 7:11441. [PMID: 28900261 PMCID: PMC5595968 DOI: 10.1038/s41598-017-11790-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/25/2017] [Indexed: 01/15/2023] Open
Abstract
Spermatogonial stem cells (SSCs) are the basis of spermatogenesis, which is dependent on the ability to self-renew and differentiation. Controlling self-renewal and differentiation of SSCs could apply to treatment of disease such as male infertility. Recently, in the field of stem cell research, it was demonstrated that effective increase in stem cell activity can be achieved by using growth factors derived from plant extracts. In this study, our aim is to investigate components from natural plant to improve the self-renewal of SSCs. To find the components, germ cells were cultured with comprehensive natural plant extracts, and then the more pure fraction, and finally single compound at different concentrations. As a result, we found 5H-purin-6-amine at 1 µg/mL, originated from Sedum sarmentosum, was a very effective compound induced SSCs proliferation. Our data showed that germ cells cultured with 5H-purin-6-amine could maintain their stable characteristics. Furthermore, transplantation results demonstrated that 5H-purin-6-amine at 1 µg/mL increased the activity of SSCs, indicating the compound could increase true SSC concentration within germ cells to 1.96-fold. These findings would be contributed to improve further reproductive research and treat male infertility by using natural plant extracts.
Collapse
Affiliation(s)
- Sang-Eun Jung
- Department of Animal Science & Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Yong-Hee Kim
- Department of Animal Science & Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Sunghun Cho
- Department of Integrative Plant Science, Chung-Ang University, Anseong, Republic of Korea
| | - Bang-Jin Kim
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hee-Seok Lee
- Food Safety Risk Assessment Division, National Institute of Food and Drug Safety Evaluation, MFDS Korea, Chungcheongbuk-do, Republic of Korea
| | - Seongsoo Hwang
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Jeollabuk-do, Republic of Korea
| | - Geun-Bae Kim
- Department of Animal Science & Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Young-Hyun Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudangi-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do, Republic of Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Deajeon, Republic of Korea
| | - Myung-Geol Pang
- Department of Animal Science & Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Sanghyun Lee
- Department of Integrative Plant Science, Chung-Ang University, Anseong, Republic of Korea.
| | - Buom-Yong Ryu
- Department of Animal Science & Technology, Chung-Ang University, Anseong, Republic of Korea.
| |
Collapse
|
48
|
Gong X, Xie H, Li X, Wu J, Lin Y. Bisphenol A induced apoptosis and transcriptome differences of spermatogonial stem cells in vitro. Acta Biochim Biophys Sin (Shanghai) 2017; 49:780-791. [PMID: 28910977 DOI: 10.1093/abbs/gmx075] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Indexed: 12/27/2022] Open
Abstract
Bisphenol A (BPA) is widely used as an industrial plasticizer, which is also an endocrine disruptor and considered to have adverse effects on reproduction. In male mammals, the long-term production of billions of spermatozoa relies on the regulated proliferation and differentiation of spermatogonial stem cells (SSCs). However, little is known about the effects of BPA on the viability of SSCs. To investigate the influence of BPA exposure on SSCs in vitro, we isolated SSCs from mouse and successfully established in vitro propagation of SSCs. After BPA treatment, we found that BPA reduced the viability of SSCs and induced SSC apoptosis. For revealing the transcriptome differences of the BPA-treated SSCs, we performed high-throughput RNA sequencing and found that 860 genes were differentially expressed among 18,272 observed genes. The gene ontology (GO) terms, regulation of programmed cell death and apoptotic process, were enriched in the differentially expressed genes (DEGs). Among the cluster of DEGs associated with the kyoto encyclopedia of genes and genomes (KEGG) apoptosis pathway, activating transcription factor 4 (Atf4) and DNA damage inducible transcript 3 (Ddit3) genes were significantly up-regulated in BPA-treated SSCs, which were proved by qPCR. Taken together, these findings suggest that BPA can increase the mRNA expression of pro-apoptosis genes and reduce the viability of SSCs by inducing apoptosis.
Collapse
Affiliation(s)
- Xiaowen Gong
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hui Xie
- Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyong Li
- Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ji Wu
- Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Yi Lin
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
49
|
Helsel AR, Oatley MJ, Oatley JM. Glycolysis-Optimized Conditions Enhance Maintenance of Regenerative Integrity in Mouse Spermatogonial Stem Cells during Long-Term Culture. Stem Cell Reports 2017; 8:1430-1441. [PMID: 28392219 PMCID: PMC5425612 DOI: 10.1016/j.stemcr.2017.03.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 02/08/2023] Open
Abstract
The application of spermatogonial stem cell (SSC) transplantation for regenerating male fertility requires amplification of SSC number in vitro during which the integrity to re-establish spermatogenesis must be preserved. Conventional conditions supporting proliferation of SSCs from mouse pups have been the basis for developing methodology with adult human cells but are unrefined. We found that the integrity to regenerate spermatogenesis after transplantation declines with advancing time in primary cultures of pup SSCs and that the efficacy of deriving cultures from adult SSCs is limited with conventional conditions. To address these deficiencies, we optimized the culture environment to favor glycolysis as the primary bioenergetics process. In these conditions, regenerative integrity of pup and adult SSCs was significantly improved and the efficiency of establishing primary cultures was 100%. Collectively, these findings suggest that SSCs are primed for conditions favoring glycolytic activity, and matching culture environments to their bioenergetics is critical for maintaining functional integrity. Regenerative integrity of SSCs declines over time in conventional culture Glycolysis-optimized (GO) culture improves regenerative integrity of SSCs GO conditions enhance the long-term culture of SSCs from adult mice
Collapse
Affiliation(s)
- Aileen R Helsel
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Melissa J Oatley
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Jon M Oatley
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
50
|
Goodyear S, Brinster R. Culture and Expansion of Primary Undifferentiated Spermatogonial Stem Cells. Cold Spring Harb Protoc 2017; 2017:pdb.prot094193. [PMID: 28373493 DOI: 10.1101/pdb.prot094193] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This protocol describes a culture method for supporting the maintenance and expansion of a primary mouse undifferentiated spermatogonial population containing spermatogonial stem cells (SSCs). The doubling time for SSCs in culture is relatively slow. Once established, SSC lines are split 1:2 to 1:4 every 7 d. Therefore, the time required to generate sufficient SSCs for experimentation can be considerable and requires careful planning.
Collapse
|