1
|
Cestonaro LV, Conte AM, Goldoni FC, Quintão NLM, Garcia SC, Santin JR, Arbo MD. In vitro immunotoxic evaluation of herbicides in RAW 264.7 cells. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2025; 88:433-446. [PMID: 39812396 DOI: 10.1080/15287394.2025.2450418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Weeds are a concern in agriculture and the use of herbicides constitutes an effective, efficient, and economical way to control their growth. Recent discoveries of herbicides are promising for the management of resistant weeds. However, there is a gap in the knowledge of the toxic effects of some herbicides previously reported on immune cells. The present study aimed to examine cellular immunotoxicity of three herbicides (clomazone, glyphosate, and sulfentrazone) after 96 hr incubation utilizing RAW 264.7 BALB/c mouse monocyte/macrophage-like cell line to elucidate the role of some toxicological pathways. Data demonstrated the herbicides clomazone, glyphosate, and sulfentrazone initiated a cytotoxic effect as evidenced by EC50 values of 429.2; 53.7; 866.6 mg/L, respectively. Clomazone and sulfentrazone, at all concentrations, induced excess production of reactive oxygen (ROS) and reactive nitrogen (RNS) free radicals. An immunosuppression was observed in RAW 264.7 cells after incubation with 50 or 100 mg/L glyphosate and 500 or 1000 mg/L sulfentrazone. In addition, all herbicides produced mitochondrial depolarization and decreased tumor necrosis factor-α (TNF-α) levels. This constitutes the first report of the effects of clomazone and sulfentrazone on RAW 264.7 cells, including reduced TNF-α levels, indicating the adverse influence of herbicides on the immune system.
Collapse
Affiliation(s)
- Larissa Vivan Cestonaro
- Laboratório de Toxicologia, Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Aline Mocellin Conte
- Laboratório de Toxicologia, Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Fernanda Capitanio Goldoni
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí - UNIVALI, Itajaí, SC, Brazil
| | - Nara Lins Meira Quintão
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí - UNIVALI, Itajaí, SC, Brazil
| | - Solange Cristina Garcia
- Laboratório de Toxicologia, Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - José Roberto Santin
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí - UNIVALI, Itajaí, SC, Brazil
| | - Marcelo Dutra Arbo
- Laboratório de Toxicologia, Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| |
Collapse
|
2
|
Hsu CY, Mustafa MA, Moath Omar T, Taher SG, Ubaid M, Gilmanova NS, Nasrat Abdulraheem M, Saadh MJ, Athab AH, Mirzaei R, Karampoor S. Gut instinct: harnessing the power of probiotics to tame pathogenic signaling pathways in ulcerative colitis. Front Med (Lausanne) 2024; 11:1396789. [PMID: 39323474 PMCID: PMC11422783 DOI: 10.3389/fmed.2024.1396789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/22/2024] [Indexed: 09/27/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease (IBD) marked by persistent inflammation of the mucosal lining of the large intestine, leading to debilitating symptoms and reduced quality of life. Emerging evidence suggests that an imbalance of the gut microbiota plays a crucial role in UC pathogenesis, and various signaling pathways are implicated in the dysregulated immune response. Probiotics are live microorganisms that confer health benefits to the host, have attracted significant attention for their potential to restore gut microbial balance and ameliorate inflammation in UC. Recent studies have elucidated the mechanisms by which probiotics modulate these signaling pathways, often by producing anti-inflammatory molecules and promoting regulatory immune cell function. For example, probiotics can inhibit the nuclear factor-κB (NF-κB) pathway by stabilizing Inhibitor of kappa B alpha (IκBα), dampening the production of proinflammatory cytokines. Similarly, probiotics can modulate the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway, suppressing the activation of STAT1 and STAT3 and thus reducing the inflammatory response. A better understanding of the underlying mechanisms of probiotics in modulating pathogenic signaling pathways in UC will pave the way for developing more effective probiotic-based therapies. In this review, we explore the mechanistic role of probiotics in the attenuation of pathogenic signaling pathways, including NF-κB, JAK/STAT, mitogen-activated protein kinases (MAPKs), Wnt/β-catenin, the nucleotide-binding domain (NOD)-, leucine-rich repeat (LRR)- and pyrin domain-containing protein 3 (NLRP3) inflammasome, Toll-like receptors (TLRs), interleukin-23 (IL-23)/IL-17 signaling pathway in UC.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, AZ, United States
| | - Mohammed Ahmed Mustafa
- Department of Medical Laboratory Technology, Imam Jaafar AL-Sadiq University, Baghdad, Iraq
- Department of Pathological Analyzes, College of Applied Sciences, University of Samarra, Samarra, Iraq
| | - Thabit Moath Omar
- Department of Medical Laboratory Technics, College of Health and Medical Technology, Alnoor University, Mosul, Iraq
| | - Sada Gh Taher
- Department of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Mohammed Ubaid
- Department of MTL, Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Nataliya S. Gilmanova
- Department of Prosthetic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | | | | | - Aya H. Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Chiu H, Chau Fang A, Chen YH, Koi RX, Yu KC, Hsieh LH, Shyu YM, Amer TA, Hsueh YJ, Tsao YT, Shen YJ, Wang YM, Chen HC, Lu YJ, Huang CC, Lu TT. Mechanistic and Kinetic Insights into Cellular Uptake of Biomimetic Dinitrosyl Iron Complexes and Intracellular Delivery of NO for Activation of Cytoprotective HO-1. JACS AU 2024; 4:1550-1569. [PMID: 38665642 PMCID: PMC11040670 DOI: 10.1021/jacsau.4c00064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/29/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024]
Abstract
Dinitrosyl iron unit (DNIU), [Fe(NO)2], is a natural metallocofactor for biological storage, delivery, and metabolism of nitric oxide (NO). In the attempt to gain a biomimetic insight into the natural DNIU under biological system, in this study, synthetic dinitrosyl iron complexes (DNICs) [(NO)2Fe(μ-SCH2CH2COOH)2Fe(NO)2] (DNIC-COOH) and [(NO)2Fe(μ-SCH2CH2COOCH3)2Fe(NO)2] (DNIC-COOMe) were employed to investigate the structure-reactivity relationship of mechanism and kinetics for cellular uptake of DNICs, intracellular delivery of NO, and activation of cytoprotective heme oxygenase (HO)-1. After rapid cellular uptake of dinuclear DNIC-COOMe through a thiol-mediated pathway (tmax = 0.5 h), intracellular assembly of mononuclear DNIC [(NO)2Fe(SR)(SCys)]n-/[(NO)2Fe(SR)(SCys-protein)]n- occurred, followed by O2-induced release of free NO (tmax = 1-2 h) or direct transfer of NO to soluble guanylate cyclase, which triggered the downstream HO-1. In contrast, steady kinetics for cellular uptake of DNIC-COOH via endocytosis (tmax = 2-8 h) and for intracellular release of NO (tmax = 4-6 h) reflected on the elevated activation of cytoprotective HO-1 (∼50-150-fold change at t = 3-10 h) and on the improved survival of DNIC-COOH-primed mesenchymal stem cell (MSC)/human corneal endothelial cell (HCEC) under stressed conditions. Consequently, this study unravels the bridging thiolate ligands in dinuclear DNIC-COOH/DNIC-COOMe as a switch to control the mechanism, kinetics, and efficacy for cellular uptake of DNICs, intracellular delivery of NO, and activation of cytoprotective HO-1, which poses an implication on enhanced survival of postengrafted MSC for advancing the MSC-based regenerative medicine.
Collapse
Affiliation(s)
- Han Chiu
- Institute
of Biomedical Engineering, National Tsing
Hua University, Hsinchu 30013 Taiwan
| | - Anyelina Chau Fang
- Institute
of Biomedical Engineering, National Tsing
Hua University, Hsinchu 30013 Taiwan
| | - Yi-Hong Chen
- Institute
of Biomedical Engineering, National Tsing
Hua University, Hsinchu 30013 Taiwan
| | - Ru Xin Koi
- Institute
of Biomedical Engineering, National Tsing
Hua University, Hsinchu 30013 Taiwan
| | - Kai-Ching Yu
- Institute
of Biomedical Engineering, National Tsing
Hua University, Hsinchu 30013 Taiwan
| | - Li-Hung Hsieh
- Institute
of Biomedical Engineering, National Tsing
Hua University, Hsinchu 30013 Taiwan
| | - Yueh-Ming Shyu
- Institute
of Biomedical Engineering, National Tsing
Hua University, Hsinchu 30013 Taiwan
| | - Tarik Abdelkareem
Mostafa Amer
- Department
of Biological Science and Technology, Institute of Molecular Medicine
and Bioengineering, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Yi-Jen Hsueh
- Department
of Ophthalmology and Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Yu-Ting Tsao
- Department
of Ophthalmology and Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Yang-Jin Shen
- College
of Medicine, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
- Department
of Neurosurgery, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Yun-Ming Wang
- Department
of Biological Science and Technology, Institute of Molecular Medicine
and Bioengineering, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Hung-Chi Chen
- Department
of Ophthalmology and Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- College
of Medicine, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - Yu-Jen Lu
- College
of Medicine, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
- Department
of Neurosurgery, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Chieh-Cheng Huang
- Institute
of Biomedical Engineering, National Tsing
Hua University, Hsinchu 30013 Taiwan
| | - Tsai-Te Lu
- Institute
of Biomedical Engineering, National Tsing
Hua University, Hsinchu 30013 Taiwan
- Department
of Chemistry, National Tsing Hua University, Hsinchu 30013 Taiwan
- Department
of Chemistry, Chung Yuan Christian University, Taoyuan 32023, Taiwan
| |
Collapse
|
4
|
Yin S, Niu L, Zhang J, Liu Y. Gardenia yellow pigment: Extraction methods, biological activities, current trends, and future prospects. Food Res Int 2024; 179:113981. [PMID: 38342530 DOI: 10.1016/j.foodres.2024.113981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 02/13/2024]
Abstract
Food coloring plays a vital role in influencing consumers' food choices, imparting vibrant and appealing colors to various food and beverage products. Synthetic food colorants have been the most commonly used coloring agents in the food industry. However, concerns about potential health issues related to synthetic colorants, coupled with increasing consumer demands for food safety and health, have led food manufacturers to explore natural alternatives. Natural pigments not only offer a wide range of colors to food products but also exhibit beneficial bioactive properties. Gardenia yellow pigment is a water-soluble natural pigment with various biological activities, widely present in gardenia fruits. Therefore, this paper aims to delve into Gardenia Yellow Pigment, highlighting its significance as a food colorant. Firstly, a thorough understanding and exploration of various methods for obtaining gardenia yellow pigment. Subsequently, the potential functionality of gardenia yellow pigment was elaborated, especially its excellent antioxidant and neuroprotective properties. Finally, the widespread application trend of gardenia yellow pigment in the food industry was explored, as well as the challenges faced by the future development of gardenia yellow pigment in the field of food and health. Some feasible solutions were proposed, providing valuable references and insights for researchers, food industry professionals, and policy makers.
Collapse
Affiliation(s)
- Shipeng Yin
- School of Food Science and Technology, Jiangnan University, Wuxi, China.
| | - Liqiong Niu
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Jian Zhang
- Future Food (Bai Ma) Research Institute, Nanjing, China
| | - Yuanfa Liu
- School of Food Science and Technology, Jiangnan University, Wuxi, China.
| |
Collapse
|
5
|
Majid MA, Ullah H, Alshehri AM, Tabassum R, Aleem A, Khan AUR, Batool Z, Nazir A, Bibi I. Development of novel polymer haemoglobin based particles as an antioxidant, antibacterial and an oxygen carrier agents. Sci Rep 2024; 14:3031. [PMID: 38321082 PMCID: PMC10847508 DOI: 10.1038/s41598-024-53548-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/01/2024] [Indexed: 02/08/2024] Open
Abstract
This innovative work aims to develop highly biocompatible and degradable nanoparticles by encapsulating haemoglobin (Hb) within poly-ε-caprolactone for novel biomedical applications. We used a modified double emulsion solvent evaporation method to fabricate the particles. A Scanning electron microscope (SEM) characterized them for surface morphology. Fourier Transform Infrared Spectroscopy (FTIR) and Ultraviolet-visible spectroscopies (UV-visible) elucidated preserved chemical and biological structure of encapsulated haemoglobin. The airproof equilibrium apparatus obtained the oxygen-carrying capacity and P50 values. The DPPH assay assessed free radical scavenging potential. The antibacterial properties were observed using four different bacterial strains by disk diffusion method. The MTT assay investigates the cytotoxic effects on mouse fibroblast cultured cell lines (L-929). The MTT assay showed that nanoparticles have no toxicity over large concentrations. The well-preserved structure of Hb within particles, no toxicity, high oxygen affinity, P50 value, and IC50 values open the area of new research, which may be used as artificial oxygen carriers, antioxidant, and antibacterial agents, potential therapeutic agents as well as drug carrier particles to treat the cancerous cells. The novelty of this work is the antioxidant and antibacterial properties of developed nanoparticles are not been reported yet. Results showed that the prepared particles have strong antioxidant and antibacterial potential.
Collapse
Affiliation(s)
- Muhammad Abdul Majid
- Biophotonics Imaging Techniques Laboratory, Institute of Physics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Hafeez Ullah
- Biophotonics Imaging Techniques Laboratory, Institute of Physics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan.
| | - Ali Mohammad Alshehri
- Department of Physics, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| | - Rukhsana Tabassum
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Abdul Aleem
- Biophotonics Imaging Techniques Laboratory, Institute of Physics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Asad Ur Rehman Khan
- Biophotonics Imaging Techniques Laboratory, Institute of Physics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Zahida Batool
- Biophotonics Imaging Techniques Laboratory, Institute of Physics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Aalia Nazir
- Biophotonics Imaging Techniques Laboratory, Institute of Physics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Ismat Bibi
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| |
Collapse
|
6
|
Ruan Y, Yuan PP, Li PY, Chen Y, Fu Y, Gao LY, Wei YX, Zheng YJ, Li SF, Feng WS, Zheng XK. Tingli Dazao Xiefei Decoction ameliorates asthma in vivo and in vitro from lung to intestine by modifying NO-CO metabolic disorder mediated inflammation, immune imbalance, cellular barrier damage, oxidative stress and intestinal bacterial disorders. JOURNAL OF ETHNOPHARMACOLOGY 2023; 313:116503. [PMID: 37116727 DOI: 10.1016/j.jep.2023.116503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/01/2023] [Accepted: 04/15/2023] [Indexed: 05/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Asthma is a chronic airway inflammatory disease. Current treatment of mainstream medications has significant side effects. There is growing evidence that the refractoriness of asthma is closely related to common changes in the lung and intestine. The lungs and intestines, as sites of frequent gas exchange in the body, are widely populated with gas signaling molecules NO and CO, which constitute NO-CO metabolism and may be relevant to the pathogenesis of asthma in the lung and intestine. The Chinese herbal formula Tingli Dazao Xiefei Decoction (TD) is commonly used in clinical practice to treat asthma with good efficacy, but there are few systematic evaluations of the efficacy of asthma on NO-CO metabolism, and the mode of action of its improving effect on the lung and intestine is unclear. AIM OF THE STUDY To investigate the effect of TD on the lung and intestine of asthmatic rats based on NO-CO metabolism. MATERIALS AND METHODS In vivo, we established a rat asthma model by intraperitoneal injection of sensitizing solution with OVA atomization, followed by intervention by gavage administration of TD. We simultaneously examined alterations in basal function, pathology, NO-CO metabolism, inflammation and immune cell homeostasis in the lungs and intestines of asthmatic rats, and detected changes in intestinal flora by macrogenome sequencing technology, with a view to multi-angle evaluation of the treatment effects of TD on asthmatic rats. In vitro, lung cells BEAS-2B and intestinal cells NCM-460 were used to establish a model of lung injury causing intestinal injury using LPS and co-culture chambers, and lung cells or intestinal cells TD-containing serum was administered to intervene. Changes in inflammatory, NO-CO metabolism-related, cell barrier-related and oxidative stress indicators were measured in lung cells and intestinal cells to evaluate TD on intestinal injury by way of amelioration and in-depth mechanism. RESULTS In vivo, our results showed significant basal functional impairment in the lung and intestine of asthmatic rats, and an inflammatory response, immune cell imbalance and intestinal flora disturbance elicited by NO-CO metabolic disorders were observed (P < 0.05 or 0.01). The administration of TD was shown to deliver a multidimensional amelioration of the impairment induced by NO-CO metabolic disorders (P < 0.05 or 0.01). In vitro, the results showed that LPS-induced lung cells BEAS-2B injury could cause NO-CO metabolic disorder-induced inflammatory response, cell permeability damage and oxidative stress damage in intestinal cells NCM-460 (P < 0.01). The ameliorative effect on intestinal cells NCM-460 could only be exerted when TD-containing serum interfered with lung cells BEAS-2B (P < 0.01), suggesting that the intestinal ameliorative effect of TD may be exerted indirectly through the lung. CONCLUSION TD can ameliorate NO-CO metabolism in the lung and thus achieve the indirectly amelioration of NO-CO metabolism in the intestine, ultimately achieving co-regulation of lung and intestinal inflammation, immune imbalance, cellular barrier damage, oxidative stress and intestinal bacterial disorders in asthma in vivo and in vitro. Targeting lung and intestinal NO-CO metabolic disorders in asthma may be a new therapeutic idea and strategy for asthma.
Collapse
Affiliation(s)
- Yuan Ruan
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450008, China.
| | - Pei-Pei Yuan
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450008, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, 450046, PR China.
| | - Pan-Ying Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450008, China.
| | - Yi Chen
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450008, China.
| | - Yang Fu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450008, China.
| | - Li-Yuan Gao
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450008, China.
| | - Ya-Xin Wei
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450008, China.
| | - Ya-Juan Zheng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450008, China.
| | - Sai-Fei Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450008, China.
| | - Wei-Sheng Feng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450008, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, 450046, PR China; Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of P. R., Zhengzhou, 450008, China.
| | - Xiao-Ke Zheng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450008, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, 450046, PR China; Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of P. R., Zhengzhou, 450008, China.
| |
Collapse
|
7
|
Li S, Sun W, Ouyang M, Yu B, Chen Y, Wang Y, Zhou D. Hemoglobin‐Related Biomaterials and their Applications. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Shaobing Li
- Department of Ultrasonic Diagnosis Department of Orthopedics Zhujiang Hospital Southern Medical University Guangzhou 510282 P.R. China
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Sciences Southern Medical University Guangzhou 510515 P.R. China
| | - Wei Sun
- Department of Ultrasonic Diagnosis Department of Orthopedics Zhujiang Hospital Southern Medical University Guangzhou 510282 P.R. China
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Sciences Southern Medical University Guangzhou 510515 P.R. China
| | - Min Ouyang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Sciences Southern Medical University Guangzhou 510515 P.R. China
| | - Bo Yu
- Department of Ultrasonic Diagnosis Department of Orthopedics Zhujiang Hospital Southern Medical University Guangzhou 510282 P.R. China
| | - Yan Chen
- Department of Ultrasonic Diagnosis Department of Orthopedics Zhujiang Hospital Southern Medical University Guangzhou 510282 P.R. China
| | - Yupeng Wang
- Department of Ultrasonic Diagnosis Department of Orthopedics Zhujiang Hospital Southern Medical University Guangzhou 510282 P.R. China
| | - Dongfang Zhou
- Department of Ultrasonic Diagnosis Department of Orthopedics Zhujiang Hospital Southern Medical University Guangzhou 510282 P.R. China
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Sciences Southern Medical University Guangzhou 510515 P.R. China
| |
Collapse
|
8
|
Qian H, Ye Z, Pi L, Ao J. Roles and current applications of S-nitrosoglutathione in anti-infective biomaterials. Mater Today Bio 2022; 16:100419. [PMID: 36105674 PMCID: PMC9465324 DOI: 10.1016/j.mtbio.2022.100419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022]
Abstract
Bacterial infections can compromise the physical and biological functionalities of humans and pose a huge economical and psychological burden on infected patients. Nitric oxide (NO) is a broad-spectrum antimicrobial agent, whose mechanism of action is not affected by bacterial resistance. S-nitrosoglutathione (GSNO), an endogenous donor and carrier of NO, has gained increasing attention because of its potent antibacterial activity and efficient biocompatibility. Significant breakthroughs have been made in the application of GSNO in biomaterials. This review is based on the existing evidence that comprehensively summarizes the progress of antimicrobial GSNO applications focusing on their anti-infective performance, underlying antibacterial mechanisms, and application in anti-infective biomaterials. We provide an accurate overview of the roles and applications of GSNO in antibacterial biomaterials and shed new light on the avenues for future studies.
Collapse
Key Words
- A.baumannii, Acinetobacter baumannii
- AgNPs, Silver nanoparticles
- Antibacterial property
- BMSCs, Bone marrow stem cells
- Bacterial resistance
- Biomaterials
- C.albicans, Candida albicans
- CS/GE, Chitosan/gelatin
- Cu, copper
- DMSO, Dimethyl sulfoxide
- DPA, Diethylenetriamine pentaacetic acid
- E. coli, Escherichia coli
- E.tenella, Eimeria tenella
- ECC, Extracorporeal circulation
- ECM, Experimental cerebral malaria
- GSNO, S-Nitrosoglutathione
- GSNOR, S-Nitrosoglutathione Reductase
- H.pylori, Helicobacter pylori
- HCC, Human cervical carcinoma
- HDFs, Human dermal fibroblasts
- HUVEC, Human umbilical vein endothelial cells
- ICR, Imprinted control region
- Infection
- K.Pneumonia, Klebsiella Pneumonia
- L.amazonensis, Leishmania amazonensis
- L.major, Leishmania major
- M.Tuberculosis, Mycobacterium tuberculosis
- M.smegmatis, Mycobacterium smegmatis
- MOF, Metal–organic framework
- MRPA, Multidrug-resistant Pseudomonas aeruginosa
- MRSA, Methicillin resistant Staphylococcus aureus
- N. gonorrhoeae, Neisseria gonorrhoeae
- N.meningitidis, Neisseria meningitidis
- NA, Not available
- NO-np, NO-releasing nanoparticulate platform
- NP, Nanoparticle
- P.aeruginosa, Pseudomonas aeruginosa
- P.berghei, Plasmodium berghei
- P.mirabilis, Proteus mirabilis
- PCL, Polycaprolactone
- PCVAD, Porcine circovirus-associated disease
- PDA-GSNO NPs, Polydopamine nanoparticles containing GSNO
- PDAM@Cu, polydopamine based copper coatings
- PEG, polyethylene glycol
- PHB, polyhydroxybutyrate
- PLA, polylactic acid
- PLGA, poly(lactic-co-glycolic acid)
- PTT, Photothermal therapy
- PVA, poly(vinyl alcohol)
- PVA/PEG, poly(vinyl alcohol)/poly(ethylene glycol)
- PVC, poly(vinyl chloride)
- S-nitrosoglutathione
- S. typhimurium, Salmonella typhimurium
- S.aureus, Staphylococcus aureus
- S.epidermidis, Staphylococcus epidermidis
- S.pneumoniae, Streptococcus pneumoniae
- SAKI, Septic acute kidney injury
- SCI, Spinal cord slices
- Se, Selenium
- Sp3, Specificity proteins 3
- TDC, Tunneled dialysis catheters
- TMOS, Tetramethylorthosilicate
- ZnO, Zinc oxide
- cftr, cystic fibrosis transmembrane conductance regulatory gene
- d, day
- h, hour
- min, minute
- pSiNPs, porous silicon nanoparticles
- w, week
Collapse
Affiliation(s)
- Hu Qian
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhimin Ye
- Department of Pathology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Lanping Pi
- Nursing Department, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jun Ao
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
9
|
Zhu Z, Chambers S, Zeng Y, Bhatia M. Gases in Sepsis: Novel Mediators and Therapeutic Targets. Int J Mol Sci 2022; 23:3669. [PMID: 35409029 PMCID: PMC8998565 DOI: 10.3390/ijms23073669] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
Sepsis, a potentially lethal condition resulting from failure to control the initial infection, is associated with a dysregulated host defense response to pathogens and their toxins. Sepsis remains a leading cause of morbidity, mortality and disability worldwide. The pathophysiology of sepsis is very complicated and is not yet fully understood. Worse still, the development of effective therapeutic agents is still an unmet need and a great challenge. Gases, including nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S), are small-molecule biological mediators that are endogenously produced, mainly by enzyme-catalyzed reactions. Accumulating evidence suggests that these gaseous mediators are widely involved in the pathophysiology of sepsis. Many sepsis-associated alterations, such as the elimination of invasive pathogens, the resolution of disorganized inflammation and the preservation of the function of multiple organs and systems, are shaped by them. Increasing attention has been paid to developing therapeutic approaches targeting these molecules for sepsis/septic shock, taking advantage of the multiple actions played by NO, CO and H2S. Several preliminary studies have identified promising therapeutic strategies for gaseous-mediator-based treatments for sepsis. In this review article, we summarize the state-of-the-art knowledge on the pathophysiology of sepsis; the metabolism and physiological function of NO, CO and H2S; the crosstalk among these gaseous mediators; and their crucial effects on the development and progression of sepsis. In addition, we also briefly discuss the prospect of developing therapeutic interventions targeting these gaseous mediators for sepsis.
Collapse
Affiliation(s)
- Zhixing Zhu
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand; (Z.Z.); (S.C.)
- Department of Internal Medicine (Pulmonary and Critical Care Medicine), The Second Clinical Medical School of Fujian Medical University, Quanzhou 362002, China;
| | - Stephen Chambers
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand; (Z.Z.); (S.C.)
| | - Yiming Zeng
- Department of Internal Medicine (Pulmonary and Critical Care Medicine), The Second Clinical Medical School of Fujian Medical University, Quanzhou 362002, China;
| | - Madhav Bhatia
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand; (Z.Z.); (S.C.)
| |
Collapse
|
10
|
Nikdoust F, Pazoki M, Mohammadtaghizadeh M, Aghaali MK, Amrovani M. Exosomes: Potential Player in Endothelial Dysfunction in Cardiovascular Disease. Cardiovasc Toxicol 2022; 22:225-235. [PMID: 34669097 PMCID: PMC8527819 DOI: 10.1007/s12012-021-09700-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/24/2021] [Indexed: 02/08/2023]
Abstract
Exosomes are spherical bilayer membrane vesicles with an average diameter of 40-100 nm. These particles perform a wide range of biological activities due to their contents, including proteins, nucleic acids, lipids, lncRNA, and miRNA. Exosomes are involved in inflammation induction, oxidative stress and apoptosis, which can be effective in endothelial dysfunction. Due to the induction of mentioned processes in the endothelial cells, the intercellular connections are destroyed, cell permeability increases and finally cell efficiency decreases and functional defects occur. Cardiovascular disease (CVDs) are of consequences of endothelial dysfunction. Thus by identifying the exosome signaling pathways, which induce inflammation, oxidative stress, and apoptosis, endothelial dysfunction and subsequently CVDs can be reduced; exosomes can be used for appropriate target therapy.
Collapse
Affiliation(s)
- Farahnaz Nikdoust
- Department of Cardiology, Shariati Hospital, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahboubeh Pazoki
- Department of Cardiology, Rasoul Akram General Hospital, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mahsa Karimzadeh Aghaali
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mehran Amrovani
- High Institute for Education and Research in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
11
|
Tanaka Y, Kumazoe M, Onda H, Fujimura Y, Tachibana H. Time-dependent increase of plasma cGMP concentration followed by oral EGCG administration in mice. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Lian S, Li S, Sah DK, Kim NH, Lakshmanan VK, Jung YD. Suppression of Urokinase-Type Plasminogen Activator Receptor by Docosahexaenoic Acid Mediated by Heme Oxygenase-1 in 12- O-Tetradecanoylphorbol-13-Acetate-Induced Human Endothelial Cells. Front Pharmacol 2021; 11:577302. [PMID: 33381031 PMCID: PMC7768974 DOI: 10.3389/fphar.2020.577302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/15/2020] [Indexed: 11/28/2022] Open
Abstract
Urokinase-type plasminogen activator receptor (uPAR) plays a crucial role in inflammation and tumor metastasis. Docosahexaenoic acid (DHA), a representative omega-3 polyunsaturated fatty acid, has been shown to exhibit anti-inflammatory and anti-tumor properties. However, the mechanism by which DHA negatively regulates uPAR expression is not yet understood. The aim of this study was to investigate the effect of DHA on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced uPAR expression and potential role of heme oxygenase-1 (HO-1) in DHA-induced inhibition of uPAR in human endothelial ECV304 cells. Results showed that TPA induced uPAR expression in a time dependent manner, while DHA inhibited uPAR expression in a concentration-dependent manner. Moreover, treatment with DHA induced HO-1 expression in a time- and concentration-dependent manner. In addition, DHA-induced inhibition of uPAR expression and cell invasion in TPA-stimulated cells was reversed by si-HO-1 RNA. Induction of HO-1 by ferric protoporphyrin IX (FePP) inhibited TPA-induced uPAR expression, and this effect was abolished by treatment with the HO-1 inhibitor tin protoporphyrin IX (SnPP). Additionally, carbon monoxide, an HO-1 product, attenuated TPA-induced uPAR expression and cell invasion. Collectively, these data suggest a novel role of DHA-induced HO-1 in reducing uPAR expression and cell invasion in human endothelial ECV304 cells.
Collapse
Affiliation(s)
- Sen Lian
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangdong, China
| | - Shinan Li
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju, Korea
| | - Dhiraj Kumar Sah
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju, Korea
| | - Nam Ho Kim
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju, Korea
| | - Vinoth-Kumar Lakshmanan
- Centre for Preclinical and Translational Medical Research (CPTMR), Central Research Facility (CRF), Faculty of Clinical Research, Sri Ramachandra Institute of Higher Education and Research, Chennai, India.,Thumbay Research Institute for Precision Medicine and Department of Biomedical Sciences, Gulf Medical University, Ajman, United Arab Emirates
| | - Young Do Jung
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
13
|
Xia Y, Chen Y, Wang G, Yang Y, Song X, Xiong Z, Zhang H, Lai P, Wang S, Ai L. Lactobacillus plantarum AR113 alleviates DSS-induced colitis by regulating the TLR4/MyD88/NF-κB pathway and gut microbiota composition. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103854] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
14
|
Carbon monoxide prevents TNF-α-induced eNOS downregulation by inhibiting NF-κB-responsive miR-155-5p biogenesis. Exp Mol Med 2017; 49:e403. [PMID: 29170479 PMCID: PMC5704195 DOI: 10.1038/emm.2017.193] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 05/24/2017] [Accepted: 05/28/2017] [Indexed: 12/22/2022] Open
Abstract
Heme oxygenase-1-derived carbon monoxide prevents inflammatory vascular disorders. To date, there is no clear evidence that HO-1/CO prevents endothelial dysfunction associated with the downregulation of endothelial NO synthesis in human endothelial cells stimulated with TNF-α. Here, we found that the CO-releasing compound CORM-2 prevented TNF-α-mediated decreases in eNOS expression and NO/cGMP production, without affecting eNOS promoter activity, by maintaining the functional activity of the eNOS mRNA 3′-untranslated region. By contrast, CORM-2 inhibited MIR155HG expression and miR-155-5p biogenesis in TNF-α-stimulated endothelial cells, resulting in recovery of the 3′-UTR activity of eNOS mRNA, a target of miR-155-5p. The beneficial effect of CORM-2 was blocked by an NF-κB inhibitor, a miR-155-5p mimic, a HO-1 inhibitor and siRNA against HO-1, indicating that CO rescues TNF-α-induced eNOS downregulation through NF-κB-responsive miR-155-5p expression via HO-1 induction; similar protective effects of ectopic HO-1 expression and bilirubin were observed in endothelial cells treated with TNF-α. Moreover, heme degradation products, except iron and N-acetylcysteine prevented H2O2-mediated miR-155-5p biogenesis and eNOS downregulation. These data demonstrate that CO prevents TNF-α-mediated eNOS downregulation by inhibiting redox-sensitive miR-155-5p biogenesis through a positive forward circuit between CO and HO-1 induction. This circuit may play an important preventive role in inflammatory endothelial dysfunction associated with human vascular diseases.
Collapse
|
15
|
Abstract
PDGFs and their receptors are critical regulators of numerous tissues and organs, including the eye. Extensive studies have shown that PDGFs and their receptors play critical roles in many ocular neovascular diseases, such as neovascular age-related macular degeneration, retinopathy of prematurity, and proliferative vitreoretinopathy. In addition, PDGFs and PDGFRs are also important players in ocular diseases involving the degeneration of retinal neuronal and vascular cells, such as glaucoma and retinitis pigmentosa. Due to their critical roles in the pathogenesis of many blinding ocular diseases, the PDGFs and PDGFRs have been considered as important target molecules for the treatment of eye diseases. PDGF-C and PDGF-D are relatively new members of the PDGF family and are potent angiogenic and survival factors. Recent studies have demonstrated their important roles in different types of eye diseases. Thus, modulating PDGF-C and PDGF-D activities may have therapeutic values for the treatment of ocular neovascular and degenerative diseases. This review mainly summarizes the recent advances on PDGF-C and PDGF-D biology in relationship to some major ocular diseases.
Collapse
Affiliation(s)
- Anil Kumar
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, 54 South Xianlie Road, Guangzhou 510060, Guangdong, PR China
| | - Xuri Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, 54 South Xianlie Road, Guangzhou 510060, Guangdong, PR China.
| |
Collapse
|
16
|
Li PY, Wang X, Stetler RA, Chen J, Yu WF. Anti-inflammatory signaling: the point of convergence for medical gases in neuroprotection against ischemic stroke. Med Gas Res 2016; 6:227-231. [PMID: 28217296 PMCID: PMC5223315 DOI: 10.4103/2045-9912.196906] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Recent studies suggest that a variety of medical gases confer neuroprotective effects against cerebral ischemia, extending function beyond their regular clinical applications. The mechanisms underlying ischemic neuroprotection afforded by medical gases have been intensively studied over the past two decades. A number of signaling pathways have been proposed, among which anti-inflammatory signaling has been proven to be critical. Pursuit of the role for anti-inflammatory signaling may shed new light on the translational application of medical gas-afforded neuroprotection.
Collapse
Affiliation(s)
- Pei-Ying Li
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Xin Wang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - R Anne Stetler
- Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jun Chen
- Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Wei-Feng Yu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
17
|
Fullerton JN, Gilroy DW. Resolution of inflammation: a new therapeutic frontier. Nat Rev Drug Discov 2016; 15:551-67. [PMID: 27020098 DOI: 10.1038/nrd.2016.39] [Citation(s) in RCA: 632] [Impact Index Per Article: 70.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Dysregulated inflammation is a central pathological process in diverse disease states. Traditionally, therapeutic approaches have sought to modulate the pro- or anti-inflammatory limbs of inflammation, with mixed success. However, insight into the pathways by which inflammation is resolved has highlighted novel opportunities to pharmacologically manipulate these processes - a strategy that might represent a complementary (and perhaps even superior) therapeutic approach. This Review discusses the state of the art in the biology of resolution of inflammation, highlighting the opportunities and challenges for translational research in this field.
Collapse
Affiliation(s)
- James N Fullerton
- Centre for Clinical Pharmacology and Therapeutics, Division of Medicine, 5 University Street, University College London, London WC1E 6JJ, UK
| | - Derek W Gilroy
- Centre for Clinical Pharmacology and Therapeutics, Division of Medicine, 5 University Street, University College London, London WC1E 6JJ, UK
| |
Collapse
|
18
|
Ni L, Wang Z, Yang G, Li T, Liu X, Liu C. Heme oxygenase-1 alleviates cigarette smoke-induced restenosis after vascular angioplasty by attenuating inflammation in rat model. Toxicol Lett 2016; 245:99-105. [PMID: 26809138 DOI: 10.1016/j.toxlet.2016.01.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 01/17/2016] [Accepted: 01/19/2016] [Indexed: 10/22/2022]
Abstract
Cigarette smoke is not only a profound independent risk factor of atherosclerosis, but also aggravates restenosis after vascular angioplasty. Heme oxygenase-1 (HO-1) is an endogenous antioxidant and cytoprotective enzyme. In this study, we investigated whether HO-1 upregulating by hemin, a potent HO-1 inducer, can protect against cigarette smoke-induced restenosis in rat's carotid arteries after balloon injury. Results showed that cigarette smoke exposure aggravated stenosis of the lumen, promoted infiltration of inflammatory cells, and induced expression of inflammatory cytokines and adhesion molecules after balloon-induced carotid artery injury. HO-1 upregulating by hemin treatment reduced these effects of cigarette smoke, whereas the beneficial effects were abolished in the presence of Zincprotoporphyrin IX, an HO-1 inhibitor. To conclude, hemin has potential therapeutic applications in the restenosis prevention after the smokers' vascular angioplasty.
Collapse
Affiliation(s)
- Leng Ni
- Department of Vascular Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, No. 1 ShuaiFuYuan, DongCheng District, Beijing 100730, China
| | - Zhanqi Wang
- Department of Vascular Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, No. 1 ShuaiFuYuan, DongCheng District, Beijing 100730, China
| | - Genhuan Yang
- Department of Vascular Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, No. 1 ShuaiFuYuan, DongCheng District, Beijing 100730, China
| | - Tianjia Li
- Department of Vascular Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, No. 1 ShuaiFuYuan, DongCheng District, Beijing 100730, China
| | - Xinnong Liu
- Department of Vascular Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, No. 1 ShuaiFuYuan, DongCheng District, Beijing 100730, China
| | - Changwei Liu
- Department of Vascular Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, No. 1 ShuaiFuYuan, DongCheng District, Beijing 100730, China.
| |
Collapse
|
19
|
4,7-Dimethoxy-5-methyl-1,3-benzodioxole from Antrodia camphorata inhibits LPS-induced inflammation via suppression of NF-κB and induction HO-1 in RAW264.7 cells. Int Immunopharmacol 2015; 31:186-94. [PMID: 26745712 DOI: 10.1016/j.intimp.2015.12.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 12/02/2015] [Accepted: 12/21/2015] [Indexed: 01/19/2023]
Abstract
Several benzenoid compounds have been isolated from Antrodia camphorata are known to have excellent anti-inflammatory activity. In this study, we investigated the anti-inflammatory potential of 4,7-dimethoxy-5-methyl-1,3-benzodioxole (DMB), one of the major benzenoid compounds isolated from the mycelia of A. camphorata. DMB significantly decreased the LPS-induced production of pro-inflammatory molecules, such as nitric oxide (NO), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) in RAW264.7 cells. In addition, DMB suppressed the protein levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in a dose dependent manner. Moreover, DMB significantly suppressed LPS-induced nuclear translocation of nuclear factor-κB (NF-κB), and this inhibition was found to be associated with decreases in the phosphorylation and degradation of its inhibitor, inhibitory κB-α (IκB-α). Moreover, we found that DMB markedly inhibited the protein expression level of Toll-like receptor 4 (TLR4). Furthermore, treatment with DMB significantly increased hemoxygenase-1 (HO-1) expression in RAW264.7 cells, which is further confirmed by hemin, a HO-1 enhancer, significantly attenuated the LPS-induced pro-inflammatory molecules and iNOS and TLR4 protein levels. Taken together, the present study suggests that DMB may have therapeutic potential for the treatment of inflammatory diseases.
Collapse
|
20
|
Kramkowski K, Leszczynska A, Buczko W. Pharmacological modulation of fibrinolytic response - In vivo and in vitro studies. Pharmacol Rep 2015; 67:695-703. [PMID: 26321270 DOI: 10.1016/j.pharep.2015.05.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 05/22/2015] [Accepted: 05/26/2015] [Indexed: 11/19/2022]
Abstract
Fibrinolysis is an action of converting plasminogen by its activators, like tissue- or urokinase-type plasminogen activators (t-PA, u-PA), to plasmin, which in turn cleaves fibrin, thereby causing clot dissolution and restoration of blood flow. Endothelial cells release t-PA, prostacyclin (PGI2) and nitric oxide (NO), the potent factors playing a crucial role in regulation of the fibrinolytic system. Since blood platelets can release not only prothrombotic, but also antifibrinolytic factors, like plasminogen activator inhibitor type-1 (PAI-1), they are involved in fibrynolysis regulation. Therefore agents enhancing fibrinolysis can be preferred pharmacologicals in many cardiovascular diseases. This review describes mechanisms by which major cardiovascular drugs (renin-angiotensin-aldosterone system inhibitors, statins, adrenergic receptors and calcium channel blockers, aspirin and 1-methylnicotinamide) influence fibrinolysis. The presented data indicate, that the influence of these drugs on endothelium-blood platelets interactions via NO/PGI2 pathway is fundamental for its antithrombotic and profibrinolytic action. We also described new approaches for intravital confocal real-time imaging as a tool useful to investigate mechanisms of thrombus formation and the effects of drugs affecting haemostasis and mechanisms of their action in the circulation.
Collapse
Affiliation(s)
- Karol Kramkowski
- Department of Biopharmacy, Medical University of Białystok, Białystok, Poland.
| | | | - Wlodzimierz Buczko
- Department of Pharmacodynamics, Medical University of Białystok, Białystok, Poland; Higher Vocational School, Suwałki, Poland
| |
Collapse
|
21
|
Huang SM, Lin C, Lin HY, Chiu CM, Fang CW, Liao KF, Chen DR, Yeh WL. Brain-derived neurotrophic factor regulates cell motility in human colon cancer. Endocr Relat Cancer 2015; 22:455-64. [PMID: 25876647 DOI: 10.1530/erc-15-0007] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/14/2015] [Indexed: 12/13/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is a potent neurotrophic factor that has been shown to affect cancer cell metastasis and migration. In the present study, we investigated the mechanisms of BDNF-induced cell migration in colon cancer cells. The migratory activities of two colon cancer cell lines, HCT116 and SW480, were found to be increased in the presence of human BDNF. Heme oxygenase-1 (HO)-1 is known to be involved in the development and progression of tumors. However, the molecular mechanisms that underlie HO-1 in the regulation of colon cancer cell migration remain unclear. Expression of HO-1 protein and mRNA increased in response to BDNF stimulation. The BDNF-induced increase in cell migration was antagonized by a HO-1 inhibitor and HO-1 siRNA. Furthermore, the expression of vascular endothelial growth factor (VEGF) also increased in response to BDNF stimulation, as did VEGF mRNA expression and transcriptional activity. The increase in BDNF-induced cancer cell migration was antagonized by a VEGF-neutralizing antibody. Moreover, transfection with HO-1 siRNA effectively reduced the increased VEGF expression induced by BDNF. The BDNF-induced cell migration was regulated by the ERK, p38, and Akt signaling pathways. Furthermore, BDNF-increased HO-1 and VEGF promoter transcriptional activity were inhibited by ERK, p38, and AKT pharmacological inhibitors and dominant-negative mutants in colon cancer cells. These results indicate that BDNF increases the migration of colon cancer cells by regulating VEGF/HO-1 activation through the ERK, p38, and PI3K/Akt signaling pathways. The results of this study may provide a relevant contribution to our understanding of the molecular mechanisms by which BDNF promotes colon cancer cell motility.
Collapse
Affiliation(s)
- Ssu-Ming Huang
- Department of Community MedicinePreventive Medicine CenterDivision of Colon and Rectal SurgeryDepartment of Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, TaiwanSchool of MedicineTzu Chi University, Hualien, TaiwanDepartment of PhysiologySchool of MedicineGraduate Institute of Neural and Cognitive SciencesChina Medical University, Taichung, TaiwanDepartment of Internal MedicineTaichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, TaiwanDepartment of Chinese MedicineGraduate Institute of Integrated Medicine, China Medical University, Taichung, TaiwanComprehensive Breast Cancer CenterDepartment of Cell and Tissue EngineeringChanghua Christian Hospital, Nanxiao St., Changhua City, Changhua County 500, Taiwan Department of Community MedicinePreventive Medicine CenterDivision of Colon and Rectal SurgeryDepartment of Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, TaiwanSchool of MedicineTzu Chi University, Hualien, TaiwanDepartment of PhysiologySchool of MedicineGraduate Institute of Neural and Cognitive SciencesChina Medical University, Taichung, TaiwanDepartment of Internal MedicineTaichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, TaiwanDepartment of Chinese MedicineGraduate Institute of Integrated Medicine, China Medical University, Taichung, TaiwanComprehensive Breast Cancer CenterDepartment of Cell and Tissue EngineeringChanghua Christian Hospital, Nanxiao St., Changhua City, Changhua County 500, Taiwan Department of Community MedicinePreventive Medicine CenterDivision of Colon and Rectal SurgeryDepartment of Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, TaiwanSchool of MedicineTzu Chi University, Hualien, TaiwanDepartment of PhysiologySchool of MedicineGraduate Institute of Neural and Cognitive SciencesChina Medical University, Taichung, TaiwanDepartment of Internal MedicineTaichung Tzu Chi Hospital, Buddhist Tzu Ch
| | - Chingju Lin
- Department of Community MedicinePreventive Medicine CenterDivision of Colon and Rectal SurgeryDepartment of Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, TaiwanSchool of MedicineTzu Chi University, Hualien, TaiwanDepartment of PhysiologySchool of MedicineGraduate Institute of Neural and Cognitive SciencesChina Medical University, Taichung, TaiwanDepartment of Internal MedicineTaichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, TaiwanDepartment of Chinese MedicineGraduate Institute of Integrated Medicine, China Medical University, Taichung, TaiwanComprehensive Breast Cancer CenterDepartment of Cell and Tissue EngineeringChanghua Christian Hospital, Nanxiao St., Changhua City, Changhua County 500, Taiwan
| | - Hsiao-Yun Lin
- Department of Community MedicinePreventive Medicine CenterDivision of Colon and Rectal SurgeryDepartment of Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, TaiwanSchool of MedicineTzu Chi University, Hualien, TaiwanDepartment of PhysiologySchool of MedicineGraduate Institute of Neural and Cognitive SciencesChina Medical University, Taichung, TaiwanDepartment of Internal MedicineTaichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, TaiwanDepartment of Chinese MedicineGraduate Institute of Integrated Medicine, China Medical University, Taichung, TaiwanComprehensive Breast Cancer CenterDepartment of Cell and Tissue EngineeringChanghua Christian Hospital, Nanxiao St., Changhua City, Changhua County 500, Taiwan
| | - Chien-Ming Chiu
- Department of Community MedicinePreventive Medicine CenterDivision of Colon and Rectal SurgeryDepartment of Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, TaiwanSchool of MedicineTzu Chi University, Hualien, TaiwanDepartment of PhysiologySchool of MedicineGraduate Institute of Neural and Cognitive SciencesChina Medical University, Taichung, TaiwanDepartment of Internal MedicineTaichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, TaiwanDepartment of Chinese MedicineGraduate Institute of Integrated Medicine, China Medical University, Taichung, TaiwanComprehensive Breast Cancer CenterDepartment of Cell and Tissue EngineeringChanghua Christian Hospital, Nanxiao St., Changhua City, Changhua County 500, Taiwan
| | - Chia-Wei Fang
- Department of Community MedicinePreventive Medicine CenterDivision of Colon and Rectal SurgeryDepartment of Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, TaiwanSchool of MedicineTzu Chi University, Hualien, TaiwanDepartment of PhysiologySchool of MedicineGraduate Institute of Neural and Cognitive SciencesChina Medical University, Taichung, TaiwanDepartment of Internal MedicineTaichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, TaiwanDepartment of Chinese MedicineGraduate Institute of Integrated Medicine, China Medical University, Taichung, TaiwanComprehensive Breast Cancer CenterDepartment of Cell and Tissue EngineeringChanghua Christian Hospital, Nanxiao St., Changhua City, Changhua County 500, Taiwan
| | - Kuan-Fu Liao
- Department of Community MedicinePreventive Medicine CenterDivision of Colon and Rectal SurgeryDepartment of Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, TaiwanSchool of MedicineTzu Chi University, Hualien, TaiwanDepartment of PhysiologySchool of MedicineGraduate Institute of Neural and Cognitive SciencesChina Medical University, Taichung, TaiwanDepartment of Internal MedicineTaichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, TaiwanDepartment of Chinese MedicineGraduate Institute of Integrated Medicine, China Medical University, Taichung, TaiwanComprehensive Breast Cancer CenterDepartment of Cell and Tissue EngineeringChanghua Christian Hospital, Nanxiao St., Changhua City, Changhua County 500, Taiwan Department of Community MedicinePreventive Medicine CenterDivision of Colon and Rectal SurgeryDepartment of Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, TaiwanSchool of MedicineTzu Chi University, Hualien, TaiwanDepartment of PhysiologySchool of MedicineGraduate Institute of Neural and Cognitive SciencesChina Medical University, Taichung, TaiwanDepartment of Internal MedicineTaichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, TaiwanDepartment of Chinese MedicineGraduate Institute of Integrated Medicine, China Medical University, Taichung, TaiwanComprehensive Breast Cancer CenterDepartment of Cell and Tissue EngineeringChanghua Christian Hospital, Nanxiao St., Changhua City, Changhua County 500, Taiwan Department of Community MedicinePreventive Medicine CenterDivision of Colon and Rectal SurgeryDepartment of Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, TaiwanSchool of MedicineTzu Chi University, Hualien, TaiwanDepartment of PhysiologySchool of MedicineGraduate Institute of Neural and Cognitive SciencesChina Medical University, Taichung, TaiwanDepartment of Internal MedicineTaichung Tzu Chi Hospital, Buddhist Tzu Ch
| | - Dar-Ren Chen
- Department of Community MedicinePreventive Medicine CenterDivision of Colon and Rectal SurgeryDepartment of Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, TaiwanSchool of MedicineTzu Chi University, Hualien, TaiwanDepartment of PhysiologySchool of MedicineGraduate Institute of Neural and Cognitive SciencesChina Medical University, Taichung, TaiwanDepartment of Internal MedicineTaichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, TaiwanDepartment of Chinese MedicineGraduate Institute of Integrated Medicine, China Medical University, Taichung, TaiwanComprehensive Breast Cancer CenterDepartment of Cell and Tissue EngineeringChanghua Christian Hospital, Nanxiao St., Changhua City, Changhua County 500, Taiwan
| | - Wei-Lan Yeh
- Department of Community MedicinePreventive Medicine CenterDivision of Colon and Rectal SurgeryDepartment of Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, TaiwanSchool of MedicineTzu Chi University, Hualien, TaiwanDepartment of PhysiologySchool of MedicineGraduate Institute of Neural and Cognitive SciencesChina Medical University, Taichung, TaiwanDepartment of Internal MedicineTaichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, TaiwanDepartment of Chinese MedicineGraduate Institute of Integrated Medicine, China Medical University, Taichung, TaiwanComprehensive Breast Cancer CenterDepartment of Cell and Tissue EngineeringChanghua Christian Hospital, Nanxiao St., Changhua City, Changhua County 500, Taiwan
| |
Collapse
|
22
|
Ataxia telangiectasia mutated inhibits oxidative stress-induced apoptosis by regulating heme oxygenase-1 expression. Int J Biochem Cell Biol 2015; 60:147-56. [DOI: 10.1016/j.biocel.2015.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 12/03/2014] [Accepted: 01/05/2015] [Indexed: 11/21/2022]
|
23
|
Highly efficient conversion of superoxide to oxygen using hydrophilic carbon clusters. Proc Natl Acad Sci U S A 2015; 112:2343-8. [PMID: 25675492 DOI: 10.1073/pnas.1417047112] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many diseases are associated with oxidative stress, which occurs when the production of reactive oxygen species (ROS) overwhelms the scavenging ability of an organism. Here, we evaluated the carbon nanoparticle antioxidant properties of poly(ethylene glycolated) hydrophilic carbon clusters (PEG-HCCs) by electron paramagnetic resonance (EPR) spectroscopy, oxygen electrode, and spectrophotometric assays. These carbon nanoparticles have 1 equivalent of stable radical and showed superoxide (O2 (•-)) dismutase-like properties yet were inert to nitric oxide (NO(•)) as well as peroxynitrite (ONOO(-)). Thus, PEG-HCCs can act as selective antioxidants that do not require regeneration by enzymes. Our steady-state kinetic assay using KO2 and direct freeze-trap EPR to follow its decay removed the rate-limiting substrate provision, thus enabling determination of the remarkable intrinsic turnover numbers of O2 (•-) to O2 by PEG-HCCs at >20,000 s(-1). The major products of this catalytic turnover are O2 and H2O2, making the PEG-HCCs a biomimetic superoxide dismutase.
Collapse
|
24
|
Lee HS, Lee GS, Kim SH, Kim HK, Suk DH, Lee DS. Anti-oxidizing effect of the dichloromethane and hexane fractions from Orostachys japonicus in LPS-stimulated RAW 264.7 cells via upregulation of Nrf2 expression and activation of MAPK signaling pathway. BMB Rep 2014; 47:98-103. [PMID: 24219867 PMCID: PMC4163900 DOI: 10.5483/bmbrep.2014.47.2.088] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Revised: 05/14/2013] [Accepted: 06/13/2013] [Indexed: 11/20/2022] Open
Abstract
Orostachys japonicus shows various biological activities. However, the molecular mechanisms remain unknown in LPS-stimulated macrophages. Here, we investigated the anti-oxidizing effect of the dichloromethane (DCM) and hexane fractions from O. japonicus (OJD and OJH) against oxidative stress in RAW 264.7 cells stimulated by LPS. OJD and OJH significantly increased the expression of heme oxygenase-1 (HO-1) in a dose- and time-dependent manner. Additionally, it was found that the expression of HO-1 was stimulated by Nrf2 activated via degradation of Keap1. ERK and p38 inhibitors repressed HO-1 induced by OJD and OJH in LPS-stimulated cells, respectively. In conclusion, these results suggest that OJD and OJH may block oxidative damage stimulated by LPS, via increasing the expression of HO-1 and Nrf2, and MAPK signaling pathway.
Collapse
Affiliation(s)
- Hyeong-Seon Lee
- Departments of Smart Foods and Drugs, Inje University, Gimhae 621-749, Korea; Biomedical Laboratory Science, Inje University, Gimhae 621-749, Korea
| | - Gyeong-Seon Lee
- Departments of Smart Foods and Drugs, Inje University, Gimhae 621-749, Korea; Biomedical Laboratory Science, Inje University, Gimhae 621-749, Korea
| | - Seon-Hee Kim
- Departments of Smart Foods and Drugs, Inje University, Gimhae 621-749, Korea; Biomedical Laboratory Science, Inje University, Gimhae 621-749, Korea
| | - Hyun-Kyung Kim
- Department of Biomedical Laboratory Science, College of Natural Science, Gimcheon University, Gimcheon 740-704, Korea
| | - Dong-Hee Suk
- Departments of Smart Foods and Drugs, Inje University, Gimhae 621-749, Korea; Biomedical Laboratory Science, Inje University, Gimhae 621-749, Korea; Department of Laboratory Medicine, Inje University Busan Paik Hospital, Busan 614-735, Korea
| | - Dong-Seok Lee
- Departments of Smart Foods and Drugs, Inje University, Gimhae 621-749, Korea; Biomedical Laboratory Science, Inje University, Gimhae 621-749, Korea
| |
Collapse
|
25
|
Yin H, Fang J, Liao L, Maeda H, Su Q. Upregulation of heme oxygenase-1 in colorectal cancer patients with increased circulation carbon monoxide levels, potentially affects chemotherapeutic sensitivity. BMC Cancer 2014; 14:436. [PMID: 24927633 PMCID: PMC4075569 DOI: 10.1186/1471-2407-14-436] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 06/06/2014] [Indexed: 12/20/2022] Open
Abstract
Background Heme oxygenase-1 (HO-1) and its major product carbon monoxide (CO) are known to be involved in the development and progression of many tumors. The present study was to elucidate the expression and function of HO-1 in colorectal cancer (CRC), specially focusing on the circulation CO levels in CRC patients and the possible roles of HO-1 in chemoresistance of colon cancer cells. Methods One hundred and eighteen patients received resection for colorectal cancer and polyps at China Medical University Sheng Jing Hospital, were collected in this study. HO-1 expression in CRC tissues was analyzed by immnuohistochemical staining; circulation CO levels as carboxyhemoglobin (COHb) in CRC patients were analyzed by an ABL800 FLEX blood gas analyzer. HO-1 expression in murine colon cells C26 and human colon cancer cells HT29 and DLD1 under HO-1 inducer hemin and anticancer drug pirarubicin (THP) treatment was examined by RT-PCR, and the cell viability after each treatment was investigated by MTT assay. Data were analyzed by student’s t-test or one-way ANOVA followed by Bonferroni t-test or Fisher's exact test. Results HO-1 expression in tumor tissues of CRC (61.0%) was significantly higher than in normal colorectal tissues and polyps tissues (29.7%, P < 0.01); well-differentiated CRC seemed to express more HO-1 (81.5%) than moderately/poorly-differentiated cancers (59.5%, P < 0.05). However, the nuclear HO-1 expression is apparently higher in moderately/poorly differentiated CRC than well-differentiated CRC probably suggesting a new mechanism of function involved in HO-1 in cancer. In parallel with HO-1 expression, circulation CO levels in CRC patients also significantly accelerated. Moreover, HO-1 expression/induction also related to the chemosensitivity of colon cells; HO inhibitor zinc protoporphyrin significantly increased cytotoxicities of THP (i.e., 2.6 – 5.3 folds compared to cells without zinc protoporphyrin treatment). Conclusions These findings strongly suggested HO-1/COHb is a useful diagnostic and prognostic indicator for CRC, and inhibition of HO-1 may be a option to enhance the chemotherapeutic effects of conventional anticancer drugs toward CRC.
Collapse
Affiliation(s)
| | | | | | | | - Qi Su
- Department of General Surgery, Sheng Jing Hospital, China Medical University, Shenyang City, Liaoning Province 110004, P, R, China.
| |
Collapse
|
26
|
Su MW, Chang SS, Chen CH, Huang CC, Chang SW, Tsai YC, Lam CF. Preconditioning renoprotective effect of isoflurane in a rat model of virtual renal transplant. J Surg Res 2014; 189:135-42. [PMID: 24674838 DOI: 10.1016/j.jss.2014.02.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 02/18/2014] [Accepted: 02/20/2014] [Indexed: 11/25/2022]
Abstract
BACKGROUND The development of warm-cold ischemia-reperfusion (IR) injury of the kidney grafts is inevitable during renal transplantation. However, there is currently no definite renoprotective strategy available in the protection of the graft tissue. In the present study, we compared the renal protection of preconditioning isoflurane with N-acetylcysteine (NAC) in a novel rat model of warm-cold renal IR injury. MATERIALS AND METHODS Adult Sprague-Dawley rats were randomly assigned to receive inhaled isoflurane (1.5% for 2 h), NAC (1 g/kg, intra-arterial injection) or placebo before the induction of brief warm ischemia (10 min) followed by cold ischemia (45 min) periods. Plasma levels of creatinine and tissue inflammatory reaction in the kidney were analyzed 72 h after reperfusion. RESULTS Elevated plasma level of creatinine and urea indicated the development of acute renal injury secondary to IR injury. The creatinine levels were reduced in animals pretreated with inhaled isoflurane and NAC, and the level was more significantly decreased in the isoflurane-treated group. Preconditioning with volatile isoflurane also significantly suppressed the tissue myeloperoxidase activity and expression of the inducible nitric oxide synthase. Immunostaining confirmed that myeloperoxidase expression was most significantly attenuated in the glomerulus and peritubular capillaries of rats pre-exposed to isoflurane. CONCLUSIONS We present the first study demonstrating that the administration of volatile isoflurane before induction of experimental warm-cold renal IR injury provides preconditioning renoprotective effect, which is superior to the treatment with NAC. The beneficial renoprotective effect of isoflurane is most likely mediated by attenuation of proinflammatory reaction in the injured kidney.
Collapse
Affiliation(s)
- Min-Wen Su
- Department of Anesthesiology, National Cheng Kung University College of Medicine and Hospital, Tainan, Taiwan
| | - Shen-Shin Chang
- Department of Surgery, National Cheng Kung University College of Medicine and Hospital, Tainan, Taiwan
| | - Chung-Hao Chen
- Department of Anesthesiology, National Cheng Kung University College of Medicine and Hospital, Tainan, Taiwan
| | - Chien-Chi Huang
- Department of Anesthesiology, National Cheng Kung University College of Medicine and Hospital, Tainan, Taiwan
| | - Shih-Wei Chang
- Department of Anesthesiology, National Cheng Kung University College of Medicine and Hospital, Tainan, Taiwan
| | - Yu-Chuan Tsai
- Department of Anesthesiology, National Cheng Kung University College of Medicine and Hospital, Tainan, Taiwan
| | - Chen-Fuh Lam
- Department of Anesthesiology, National Cheng Kung University College of Medicine and Hospital, Tainan, Taiwan; Department of Anesthesiology, Buddhist Tzu-Chi General Hospital and Tzu-Chi University School of Medicine, Hualien, Taiwan.
| |
Collapse
|
27
|
Skodje KM, Kwon MY, Chung SW, Kim E. Coordination-triggered NO release from a dinitrosyl iron complex leads to anti-inflammatory activity. Chem Sci 2014. [DOI: 10.1039/c3sc53319k] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The appropriate control of redox and coordination chemistry of dinitrosyl iron complexes enables them to become anti-inflammatory agents.
Collapse
Affiliation(s)
| | - Min-Young Kwon
- Department of Biological Sciences
- University of Ulsan 93 Daehak-ro
- Ulsan 680-749, Korea
| | - Su Wol Chung
- Department of Biological Sciences
- University of Ulsan 93 Daehak-ro
- Ulsan 680-749, Korea
| | - Eunsuk Kim
- Department of Chemistry
- Brown University
- Providence, USA
| |
Collapse
|
28
|
Zhai Z, Gomez-Mejiba SE, Ramirez DC. The nitrone spin trap 5,5-dimethyl-1-pyrroline N-oxide affects stress response and fate of lipopolysaccharide-primed RAW 264.7 macrophage cells. Inflammation 2013; 36:346-54. [PMID: 23053730 DOI: 10.1007/s10753-012-9552-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The nitrone spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO) is commonly used to study free radicals. Due to its free radical trapping properties, DMPO is thought to reduce free radial-mediated oxidative damage and other related cellular responses. The purpose of this study was to assess the effect of DMPO on lipopolysaccharide (LPS)-induced inflammation, endoplasmic reticulum (ER) stress, and apoptosis in RAW 264.7 cells. The results showed that DMPO at 50 mM inhibited inducible nitric oxide synthase expression when added shortly after LPS treatment (≤3 h). Interestingly, DMPO increased anti-inflammatory heme oxygenase-1 (HO-1) expression and reversed LPS-induced decrease in HO-1 expression. LPS could increase cellular ER stress as indicated by C/EBP homologous protein (CHOP) induction; DMPO reduced LPS effect on CHOP expression. Unexpectedly, DMPO had a synergistic effect with LPS on increased caspase-3 activity. Overall, DMPO harbors multiple modulating effects but may induce apoptosis in LPS-stressed cells when given at 50 mM, an effective dose for its anti-inflammatory activity in vitro. Our data provide clues for further understanding of the nitrone spin trap with therapeutic potential.
Collapse
Affiliation(s)
- Zili Zhai
- Department of Medicine, Section of Gastroenterology, The University of Chicago, Chicago, IL 60637, USA.
| | | | | |
Collapse
|
29
|
Chao CY, Lii CK, Hsu YT, Lu CY, Liu KL, Li CC, Chen HW. Induction of heme oxygenase-1 and inhibition of TPA-induced matrix metalloproteinase-9 expression by andrographolide in MCF-7 human breast cancer cells. Carcinogenesis 2013; 34:1843-51. [PMID: 23615401 DOI: 10.1093/carcin/bgt131] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Matrix metalloproteinase-9 (MMP-9) plays a critical role in cancer metastasis. Andrographolide (AP) is a diterpene lactone in the leaves and stem of Andrographis paniculata (Burm. f) Ness that has been reported to possess anticancer activity. In this study, we investigated the effect of AP on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced MMP-9 expression and invasion in MCF-7 breast cancer cells and the possible mechanisms involved. The results showed that AP dose-dependently inhibited TPA-induced MMP-9 protein expression, enzyme activity, migration and invasion. In addition, AP significantly induced heme oxygenase-1 (HO-1) messenger RNA (mRNA) and protein expression. Transfection with HO-1 small interfering RNA knocked down the HO-1 expression and reversed the inhibition of MMP-9 expression by AP. HO-1 end products, such as carbon monoxide, free iron and bilirubin, suppressed the TPA-induced MMP-9 mRNA and protein expression, enzyme activity, migration and invasion in MCF-7 cells. Furthermore, TPA-induced extracellular signal-regulated kinase (ERK) 1/2 and Akt phosphorylation and the DNA binding activity of activator protein-1 (AP-1) and nuclear factor-kappa B (NF-κB) were attenuated by pretreatment with AP and HO-1 end products. In conclusion, these results suggest that AP inhibits TPA-induced cell migration and invasion by reducing MMP-9 activation, which is mediated mainly by inhibition of the ERK1/2 and phosphatidylinositol 3-kinase/Akt signaling pathways and subsequent AP-1 and NF-κB transactivation. Additionally, induction of HO-1 expression is at least partially involved in the inhibition of TPA-induced MMP-9 activation and cell migration in MCF-7 cells by AP.
Collapse
Affiliation(s)
- Che-Yi Chao
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 413, Taiwan
| | | | | | | | | | | | | |
Collapse
|
30
|
Lu DY, Yeh WL, Huang SM, Tang CH, Lin HY, Chou SJ. Osteopontin increases heme oxygenase-1 expression and subsequently induces cell migration and invasion in glioma cells. Neuro Oncol 2012; 14:1367-78. [PMID: 23074199 DOI: 10.1093/neuonc/nos262] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Malignant gliomas are associated with high morbidity and mortality because they are highly invasive into surrounding brain tissue, making complete surgical resection impossible. Osteopontin is abundantly expressed in the brain and is involved in cell adhesion, migration, and invasion. The aim of the present study was to investigate the mechanisms of glioma cell migration. Migration and invasion activity were determined by transwell and wound-healing assays. Gene and protein expressions were analyzed by reverse transcription-PCR, real time-PCR, and Western blotting. Nrf2-DNA binding activity was determined by electrophoretic mobility shift assay. Establishment of migration-prone sublines were performed to select highly migratory glioma. An intracranial xenograft mouse model was used for the in vivo study. Application of recombinant human osteopontin enhanced the migration of glioma cells. Expression of heme oxygenase (HO)-1 mRNA and protein also increased in response to osteopontin stimulation. Osteopontin-induced increase in cell migration was antagonized by HO-1 inhibitor or HO-1 small interfering (si)RNA. Osteopontin-mediated HO-1 expression was reduced by treatment with MEK/ERK and phosphatidylinositol 3-kinase/Akt inhibitors, as well as siRNA against Nrf2. Furthermore, osteopontin stimulated Nrf2 accumulation in the nucleus and increased Nrf2-DNA binding activity. In migration-prone sublines, cells with greater migration ability had higher osteopontin and HO-1 expression, and zinc protoporphyrin IX treatment could effectively reduce the enhanced migration ability. In an intracranial xenograft mouse model, transplantation of migration-prone subline cells exhibited higher cell migration than parental tumor cells. These results indicate that osteopontin activates Nrf2 signaling, resulting in enhanced HO-1 expression and cell migration in glioma cells.
Collapse
Affiliation(s)
- Dah-Yuu Lu
- Graduate Institute of Neural and Cognitive Sciences, China Medical University, Taichung, Taiwan.
| | | | | | | | | | | |
Collapse
|
31
|
Health and cellular impacts of air pollutants: from cytoprotection to cytotoxicity. Biochem Res Int 2012; 2012:493894. [PMID: 22550588 PMCID: PMC3328890 DOI: 10.1155/2012/493894] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 01/17/2012] [Accepted: 01/18/2012] [Indexed: 12/11/2022] Open
Abstract
Air pollution as one of the ravages of our modern societies is primarily linked to urban centers, industrial activities, or road traffic. These atmospheric pollutants have been incriminated in deleterious health effects by numerous epidemiological and in vitro studies. Environmental air pollutants are a heterogeneous mixture of particles suspended into a liquid and gaseous phase which trigger the disruption of redox homeostasis—known under the term of cellular oxidative stress—in relation with the establishment of inflammation and cell death via necrosis, apoptosis, or autophagy. Activation or repression of the apoptotic process as an adaptative response to xenobiotics might lead to either acute or chronic toxicity. The purpose of this paper is to highlight the central role of oxidative stress induced by air pollutants and to focus on the subsequent cellular impacts ranging from cytoprotection to cytotoxicity by decreasing or stimulating apoptosis, respectively.
Collapse
|
32
|
Kondratyuk TP, Park EJ, Yu R, van Breemen RB, Asolkar RN, Murphy BT, Fenical W, Pezzuto JM. Novel marine phenazines as potential cancer chemopreventive and anti-inflammatory agents. Mar Drugs 2012; 10:451-464. [PMID: 22412812 PMCID: PMC3297008 DOI: 10.3390/md10020451] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 02/08/2012] [Accepted: 02/13/2012] [Indexed: 02/07/2023] Open
Abstract
Two new (1 and 2) and one known phenazine derivative (lavanducyanin, 3) were isolated and identified from the fermentation broth of a marine-derived Streptomyces sp. (strain CNS284). In mammalian cell culture studies, compounds 1, 2 and 3 inhibited TNF-α-induced NFκB activity (IC50 values of 4.1, 24.2, and 16.3 μM, respectively) and LPS-induced nitric oxide production (IC50 values of >48.6, 15.1, and 8.0 μM, respectively). PGE2 production was blocked with greater efficacy (IC50 values of 7.5, 0.89, and 0.63 μM, respectively), possibly due to inhibition of cyclooxygenases in addition to the expression of COX-2. Treatment of cultured HL-60 cells led to dose-dependent accumulation in the subG1 compartment of the cell cycle, as a result of apoptosis. These data provide greater insight on the biological potential of phenazine derivatives, and some guidance on how various substituents may alter potential anti-inflammatory and anti-cancer effects.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/chemistry
- Anti-Inflammatory Agents, Non-Steroidal/isolation & purification
- Anti-Inflammatory Agents, Non-Steroidal/metabolism
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Antibiotics, Antineoplastic/chemistry
- Antibiotics, Antineoplastic/isolation & purification
- Antibiotics, Antineoplastic/metabolism
- Antibiotics, Antineoplastic/pharmacology
- Anticarcinogenic Agents/chemistry
- Anticarcinogenic Agents/isolation & purification
- Anticarcinogenic Agents/metabolism
- Anticarcinogenic Agents/pharmacology
- Apoptosis/drug effects
- Aquatic Organisms/metabolism
- Cell Line, Transformed
- Drug Discovery
- Fermentation
- G1 Phase/drug effects
- Gene Expression Regulation, Enzymologic/drug effects
- HL-60 Cells
- Humans
- Inhibitory Concentration 50
- Leukemia, Promyelocytic, Acute/drug therapy
- Macrophages/drug effects
- Macrophages/immunology
- Macrophages/metabolism
- Mice
- Phenazines/chemistry
- Phenazines/isolation & purification
- Phenazines/metabolism
- Phenazines/pharmacology
- Streptomyces/metabolism
Collapse
Affiliation(s)
- Tamara P. Kondratyuk
- College of Pharmacy, University of Hawaii at Hilo, 34 Rainbow Drive, Hilo, HI 96720, USA; (T.P.K.); (E.-J.P.)
| | - Eun-Jung Park
- College of Pharmacy, University of Hawaii at Hilo, 34 Rainbow Drive, Hilo, HI 96720, USA; (T.P.K.); (E.-J.P.)
| | - Rui Yu
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA; (R.Y.); (R.B.B.); (B.T.M.)
| | - Richard B. van Breemen
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA; (R.Y.); (R.B.B.); (B.T.M.)
| | - Ratnakar N. Asolkar
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California-San Diego, La Jolla, CA 92093, USA; (R.N.A.); (W.F.)
| | - Brian T. Murphy
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA; (R.Y.); (R.B.B.); (B.T.M.)
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California-San Diego, La Jolla, CA 92093, USA; (R.N.A.); (W.F.)
| | - William Fenical
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California-San Diego, La Jolla, CA 92093, USA; (R.N.A.); (W.F.)
| | - John M. Pezzuto
- College of Pharmacy, University of Hawaii at Hilo, 34 Rainbow Drive, Hilo, HI 96720, USA; (T.P.K.); (E.-J.P.)
- Author to whom correspondence should be addressed; ; Tel.: +1-808-933-2909; Fax: +1-808-933-2981
| |
Collapse
|
33
|
Zhu J, Piao RL, Gao RP. Toll-like receptor 4 signaling pathway and pancreatitis. Shijie Huaren Xiaohua Zazhi 2012; 20:271-275. [DOI: 10.11569/wcjd.v20.i4.271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The pathogenesis of pancreatitis has long been a hot topic in basic and clinical research but is still not fully clarified. Toll-like receptor 4 (TLR4) recognizes the lipopolysaccharide (LPS) of Gram-negative bacteria and stimulates the synthesis and release of inflammatory cytokines through activation of the NF-κB signaling pathway, which ultimately results in inflammatory responses that involve multiple organs. Animal and clinical studies have shown that the TLR4 signal pathway plays an important role in the development of tissue injury during acute pancreatitis (AP) and up-regulation of TLR4 and the TLR4 signaling pathway contributes to the development of multiple organ dysfunction syndrome (MODS) associated with severe acute pancreatitis (SAP) by increasing proinflammatory cytokines. Therefore, further studies are required to clarify the role of the TLR 4 signaling pathway in the pathogenesis of pancreatitis to explore novel methods for treating this disease.
Collapse
|
34
|
Gullotta F, di Masi A, Coletta M, Ascenzi P. CO metabolism, sensing, and signaling. Biofactors 2012; 38:1-13. [PMID: 22213392 DOI: 10.1002/biof.192] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 10/19/2011] [Indexed: 12/16/2022]
Abstract
CO is a colorless and odorless gas produced by the incomplete combustion of hydrocarbons, both of natural and anthropogenic origin. Several microorganisms, including aerobic and anaerobic bacteria and anaerobic archaea, use exogenous CO as a source of carbon and energy for growth. On the other hand, eukaryotic organisms use endogenous CO, produced during heme degradation, as a neurotransmitter and as a signal molecule. CO sensors act as signal transducers by coupling a "regulatory" heme-binding domain to a "functional" signal transmitter. Although high CO concentrations inhibit generally heme-protein actions, low CO levels can influence several signaling pathways, including those regulated by soluble guanylate cyclase and/or mitogen-activated protein kinases. This review summarizes recent insights into CO metabolism, sensing, and signaling.
Collapse
Affiliation(s)
- Francesca Gullotta
- Department of Experimental Medicine and Biochemical Sciences, University of Roma Tor Vergata, Via Montpellier 1, I-00133 Roma, Italy
| | | | | | | |
Collapse
|
35
|
Jeong JB, Hong SC, Jeong HJ, Koo JS. Anti-inflammatory effect of 2-methoxy-4-vinylphenol via the suppression of NF-κB and MAPK activation, and acetylation of histone H3. Arch Pharm Res 2011; 34:2109-16. [PMID: 22210037 DOI: 10.1007/s12272-011-1214-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Revised: 05/24/2011] [Accepted: 06/14/2011] [Indexed: 11/28/2022]
Abstract
Although inflammation acts as host defense mechanism against infection or injury and is primarily a self limiting process, inadequate resolution of inflammatory responses leads to various chronic disorders. This work aimed to elucidate the anti-inflammatory effects of 2-methoxy-4-vinylphenol (2M4VP) isolated from pine needles in LPS-stimulated RAW264.7 cells. Some key pro-inflammatory mediators including nitric oxide (NO), prostaglandins (PGE(2)), inducible NO synthase (iNOS), and cyclooxygenase-2 (COX-2) were studied by sandwich ELISA and western blot. In addition, suppression of NF-κB and MAPK activation, and histone acetylation was studied by western blot analysis and immunostaining. 2M4VP dosedependently inhibited NO and PGE(2) production and also blocked LPS-induced iNOS and COX-2 expression. In addition, 2M4VP potently inhibited the translocation of NF-κB p65 into the nucleus by IκB degradation following IκB-α phosphorylation and the phosphorylation of MAPKs such as p38, ERK1/2, and JNK. Also, 2M4VP inhibited hyper-acetylation of histone H3 (Lys9/Lys14) induced by LPS. Taken together, our results suggest that 2M4VP, a naturally occurring phenolic compound, exert potent anti-inflammatory effects by inhibiting LPS-induced NO, PGE(2), iNOS, and COX-2 in RAW264.7 cells. These effects are mediated by suppression of NF-κB and MAPK activation and histone acetylation.
Collapse
Affiliation(s)
- Jin Boo Jeong
- Medicinal Plant Resources Major, Andong National University, Andong, 760749, Korea.
| | | | | | | |
Collapse
|
36
|
Endothelial activation and dysregulation in malaria: a potential target for novel therapeutics. Curr Opin Hematol 2011; 18:177-85. [PMID: 21423010 DOI: 10.1097/moh.0b013e328345a4cf] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
PURPOSE OF REVIEW Despite parenteral artesunate therapy, the fatality rate of cerebral malaria remains high. Adjunctive therapy targeting the underlying pathophysiology of cerebral malaria may further improve the clinical outcome. Endothelial activation and dysfunction is a central process in the pathogenesis of cerebral malaria. An improved understanding of how endothelium is perturbed in cerebral malaria may yield novel strategies to diagnose and intervene. Here, we discuss recent findings on the key molecular mediators of endothelial activation/dysregulation in cerebral malaria, and innovative endothelial-based experimental approaches to improve detection and treatment. RECENT FINDINGS Biomarkers of endothelial activation [e.g., angiopoietin (Ang)-1, Ang-2, and a soluble form of the Ang-receptor (soluble Tie-2)] have been shown to be reliable predictors of malarial disease severity and mortality, and may improve clinical triage and management. Moreover, they may represent novel therapeutic targets to improve clinical outcome. Restoring bioavailable nitric oxide by administration of inhaled nitric oxide or its substrate, L-arginine, may rescue endothelial function, decrease Ang-2, and improve disease outcome in cerebral malaria. SUMMARY Interventions targeting the Ang-Tie-2 axis to promote endothelial quiescence, including agents to improve endothelial nitric oxide, represent potential adjunctive therapies for cerebral malaria.
Collapse
|
37
|
Takabe W, Warabi E, Noguchi N. Anti-atherogenic effect of laminar shear stress via Nrf2 activation. Antioxid Redox Signal 2011; 15:1415-26. [PMID: 21126170 DOI: 10.1089/ars.2010.3433] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fluid shear stress plays a critical role in the regulation of vascular biology and its pathology, such as atherosclerosis, via modulation of redox balance. Both pro-atherogenic (either oscillatory or turbulent, nonunidirectional) shear stress and anti-atherogenic (either steady or pulsatile, unidirectional laminar) shear stress stimulate production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) that are involved in signal transduction of gene expression. Nonunidirectional shear stress induces pro-atherogenic genes encoding adhesion molecules and chemokines in a manner dependent on production of both superoxide and nitric oxide. Steady or pulsatile laminar shear stress induces expression of genes encoding cytoprotective enzymes for glutathione biosynthesis and detoxification, which are regulated by the transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2). We show that pulsatile laminar shear stress (PLSS)-induced expression of adhesion molecules and chemokines was enhanced in human umbilical vein endothelial cells (HUVEC) treated with Nrf2 siRNA and arterial endothelial cells isolated from Nrf2 knockout mice. Hence, we propose the hypothesis that PLSS maintains the endothelium in an anti-atherogenic state via intracellular antioxidant levels increased as a result of Nrf2 activation, thereby preventing excess ROS/RNS production required for pro-atherogenic gene expression.
Collapse
Affiliation(s)
- Wakako Takabe
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | | | | |
Collapse
|
38
|
Ishizuka M, Abe F, Sano Y, Takahashi K, Inoue K, Nakajima M, Kohda T, Komatsu N, Ogura SI, Tanaka T. Novel development of 5-aminolevurinic acid (ALA) in cancer diagnoses and therapy. Int Immunopharmacol 2011; 11:358-65. [PMID: 21144919 DOI: 10.1016/j.intimp.2010.11.029] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Revised: 11/21/2010] [Accepted: 11/22/2010] [Indexed: 12/13/2022]
Abstract
Early detection and intervention are needed for optimal outcomes in cancer therapy. Improvements in diagnostic technology, including endoscopy, photodynamic diagnosis (PDD), and photodynamic therapy (PDT), have allowed substantial progress in the treatment of cancer. 5-Aminolevulinic acid (ALA) is a natural, delta amino acid biosynthesized by animal and plant mitochondria. ALA is a precursor of porphyrin, heme, and bile pigments, and it is metabolized into protoporphyrin IX (PpIX) in the course of heme synthesis. PpIX preferentially accumulates in tumor cells resulting in a red fluorescence following irradiation with violet light and the formation of singlet oxygen. This reaction, utilized to diagnose and treat cancer, is termed ALA-induced PDD and PDT. In this review, the biological significance of heme metabolites, the mechanism of PpIX accumulation in tumor cells, and the therapeutic potential of ALA-induced PDT alone and combined with hyperthermia and immunotherapy are discussed.
Collapse
Affiliation(s)
- Masahiro Ishizuka
- SBI ALApromo Co, LTD Roppongi 1-6-1, Minato-ku, Tokyo 106-6019, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Polynitroxylated pegylated hemoglobin: a novel neuroprotective hemoglobin for acute volume-limited fluid resuscitation after combined traumatic brain injury and hemorrhagic hypotension in mice. Crit Care Med 2011; 39:494-505. [PMID: 21169820 DOI: 10.1097/ccm.0b013e318206b1fa] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Resuscitation of hemorrhagic hypotension after traumatic brain injury is challenging. A hemoglobin-based oxygen carrier may offer advantages. The novel therapeutic hemoglobin-based oxygen carrier, polynitroxylated pegylated hemoglobin (PNPH), may represent a neuroprotective hemoglobin-based oxygen carrier for traumatic brain injury resuscitation. HYPOTHESES 1) PNPH is a unique non-neurotoxic hemoglobin-based oxygen carrier in neuronal culture and is neuroprotective in in vitro neuronal injury models. 2) Resuscitation with PNPH would require less volume to restore mean arterial blood pressure than lactated Ringer's or Hextend and confer neuroprotection in a mouse model of traumatic brain injury plus hemorrhagic hypotension. DESIGN Prospective randomized, controlled experimental study. SETTING University center. MEASUREMENTS AND MAIN RESULTS In rat primary cortical neuron cultures, control bovine hemoglobin was neurotoxic (lactate dehydrogenase release; 3-[4,5-dimethylthiazol-2-yl-]-2,5-diphenyltetrazolium bromide assay) at concentrations from 12.5 to 0.625 μM, whereas polyethylene glycol-conjugated hemoglobin showed intermediate toxicity. PNPH was not neurotoxic (p<.05 vs. bovine hemoglobin and polyethylene glycol hemoglobin; all concentrations). PNPH conferred neuroprotection in in vitro neuronal injury (glutamate/glycine exposure and neuronal stretch), as assessed via lactate dehydrogenase and 3-[4,5-dimethylthiazol-2-yl-]-2,5-diphenyltetrazolium bromide (all p<.05 vs. control). C57BL6 mice received controlled cortical impact followed by hemorrhagic hypotension (2 mL/100 g, mean arterial blood pressure ∼35-40 mm Hg) for 90 min. Mice were resuscitated (mean arterial blood pressure>50 mm Hg for 30 min) with lactated Ringer's, Hextend, or PNPH, and then shed blood was reinfused. Mean arterial blood pressures, resuscitation volumes, blood gasses, glucose, and lactate were recorded. Brain sections at 7 days were examined via hematoxylin and eosin and Fluoro-Jade C (identifying dying neurons) staining in CA1 and CA3 hippocampus. Resuscitation with PNPH or Hextend required less volume than lactated Ringer's (both p<.05). PNPH but not Hextend improved mean arterial blood pressure vs. lactated Ringer's (p<.05). Mice resuscitated with PNPH had fewer Fluoro-Jade C positive neurons in CA1 vs. Hextend and lactated Ringer's, and CA3 vs. Hextend (p<.05). CONCLUSIONS PNPH is a novel neuroprotective hemoglobin-based oxygen carrier in vitro and in vivo that may offer unique advantages for traumatic brain injury resuscitation.
Collapse
|
40
|
Mazurek B, Amarjargal N, Haupt H, Fuchs J, Olze H, Machulik A, Gross J. Expression of genes implicated in oxidative stress in the cochlea of newborn rats. Hear Res 2011; 277:54-60. [PMID: 21447374 DOI: 10.1016/j.heares.2011.03.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 03/16/2011] [Accepted: 03/17/2011] [Indexed: 01/03/2023]
Abstract
Oxidative stress is an important mechanism inducing ototoxicity-, age- and noise-induced hearing loss. To better understand this phenomenon, we examined cochlear tissues for the expression of following genes involved directly or indirectly in the oxidative stress response: glyceraldehyde-3-phosphate dehydrogenase (Gapdh); solute carrier family-2 (facilitated glucose transporter), member-1 (Slc2a1); heme oxygenase-1 (Hmox1); heme oxygenase-2 (Hmox2); inducible nitric oxide synthase-2 (Nos2); transferrin (Tf); transferrin receptor (Tfrc); glutathione S-transferase A3 (Gsta3) and metallothionein-1a (Mt1a). Cochlear tissues were dissected from the p3-p5 Wistar rats, divided into the organ of Corti (OC), modiolus (MOD) and stria vascularis together with spiral ligament (SV + SL) and processed immediately or cultured under normoxic conditions or a short-term, mild hypoxia followed by re-oxygenation. After 24 h, explants were collected and total RNA isolated, transcribed and amplified in the real time RT-PCR. We found all genes listed above expressed in the freshly isolated cochlear tissues. In the OC and MOD, Slc2a1, Tf, and Mt1a were expressed on a lower level than in the SV + SL. In the OC, Hmox1 was expressed on a lower level than in the MOD and SV + SL. Hypoxic and normoxic cultures increased the transcript number of Gapdh, Slc2a1 and Hmox1 in all cochlear tissues. The expression of Nos2, Tf, Gsta3 and Mt1a increased in a tissue-specific manner. In the SV + SL, Mt1a expression decreased after normoxic and hypoxic conditions. Taken together, using real time RT-PCR, our results imply that oxidative stress may be an important component of cochlear injury during the developing period. In spite of the immaturity of the tissue, a differential response of antioxidant enzymes/proteins with respect to the pathway, the expression levels and regions was observed.
Collapse
Affiliation(s)
- Birgit Mazurek
- Molecular Biology Research Laboratory, Department of Otorhinolaryngology CCM, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
41
|
Law CSL, Leung PY, Ng PKS, Kou CYC, Au KKW, Zhou J, Tsui SKW. The involvement of N-G,N-G-dimethyarginine dimethylhydrolase 1 in the proliferative effect of Astragali radix on cardiac cells. JOURNAL OF ETHNOPHARMACOLOGY 2011; 134:130-135. [PMID: 21130852 DOI: 10.1016/j.jep.2010.11.072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 11/25/2010] [Accepted: 11/27/2010] [Indexed: 05/30/2023]
Abstract
AIM OF THE STUDY Astragali radix (AR) is a widely used traditional medicine in oriental countries for treating various diseases including cardiovascular disease (CVD). We investigated the effects of AR extracts on rat cardiomyocytes and H9C2 cardiac cells as well as identified many target genes that mediate the effect of AR. MATERIALS AND METHODS The effect of AR extracts on cell proliferation was assessed and cDNA microarray technique was used to analyse the differential gene expressions upon AR treatment in cardiac cells. One of the selected target genes was over-expressed to elucidate its role in cell proliferation. RESULTS AR was shown to promote the proliferation of neonatal rat cardiomyocytes and H9C2 cells. Results of cDNA microarray hybridization showed that N-G,N-G-dimethylarginine dimethylaminohydrolase 1 (DDAH1) gene was up-regulated in AR-treated H9C2 cells and the results were further confirmed by reverse transcription polymerase chain reaction. Over-expression of DDAH1 gene in H9C2 cells significantly enhances the cell proliferation. Moreover, a drastic drop of DDAH1 expression in rat ventricular myocardium was observed from day 3 to day 5 after birth, which is the critical transition of cardiomyocytes from hyperplastic to hypertrophic growth. CONCLUSIONS AR promotes cardiac cell proliferation and up-regulates the DDAH1, an enzyme that metabolized the endogenous nitric oxide (NO) synthase inhibitor. The effect of AR on the metabolism of NO deserves future investigation.
Collapse
Affiliation(s)
- Cindy S L Law
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | | | | | | | | | | | | |
Collapse
|
42
|
Yang SP, Wang JY, Guo JS. Alterations in plasma carbon monoxide levels and alveolar permeability in cirrhotic rats. Shijie Huaren Xiaohua Zazhi 2011; 19:281-283. [DOI: 10.11569/wcjd.v19.i3.281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To examine possible alterations in plasma carbon monoxide (CO) levels and alveolar permeability in rats with carbon tetrachloride-induced cirrhosis.
METHODS: Liver cirrhosis was induced in rats by subcutaneous administration of carbon tetrachloride. Mean arterial pressure (MAP, kPa), heart rate (HR, b/min), and portal pressure (PP, cm/H2O) were monitored by using an indwelling catheter. Plasma CO levels were determined by Chalmers method, and alveolar permeability was measured using the Evens blue extravasation technique.
RESULTS: Typical features of cirrhosis were histologically observed in carbon tetrachloride-treated rats. Compared with normal control rats, cirrhotic rats presented a significant increase in portal pressure (16.67 cmH2O ± 0.63 cmH2O vs 8.82 cmH2O ± 0.29 cmH2O; P < 0.01), plasma CO levels (18.69 μmol/L ± 1.86 μmol/L vs 10.27 μmol/L ± 1.21 μmol/L; P < 0.01), and Evens blue extravasation (36.57 μg/g ± 1.69 μg/g vs 29.83 μg/g ± 2.34 μg/g; P < 0.01), but a significant decrease in mean arterial pressure (15.92 kPa ± 0.74 kPa vs 18.93 kPa ± 0.71 kPa; P < 0.01).
CONCLUSION: Activation of the HO-CO system and increased alveolar permeability may be important causes of development of hepatopulmonary syndrome in patients with cirrhosis.
Collapse
|
43
|
A novel role of thrombopoietin as a physiological modulator of coronary flow. ACTA ACUST UNITED AC 2011; 167:5-8. [PMID: 21237210 DOI: 10.1016/j.regpep.2010.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 11/19/2010] [Accepted: 12/29/2010] [Indexed: 11/24/2022]
Abstract
Thrombopoietin (TPO) is known for its ability to stimulate platelet production. However, little is currently known whether TPO plays a physiological function in the heart. The potential vasodilatory role of TPO was tested on the isolated rat heart. The expression of TPO receptor (c-mpl) and the TPO-dependent eNOS phosphorylation (P(Ser1179)) were studied on Cardiac-derived normal Human Micro Vascular Endothelial Cells (HMVEC-C) by Western blot analysis. While TPO (10-200 pg/mL) did not modify coronary flow (CF) under basal conditions, it reduced the coronary constriction caused by endothelin-1 (ET-1; 10nM) in a dose-dependent manner. This effect was blocked by both Wortmannin (100 nM) and L-NAME (100 nM); on HMVEC-C, TPO induced eNOS phosphorylation through a Wortmannin sensitive mechanism. Taken together, our data suggest a potential role of TPO as a physiological regulator of CF. By acting on specific receptors present on endothelial cells, TPO may induce PI3K/Akt-dependent eNOS phosphorylation and NO release.
Collapse
|
44
|
Abstract
Preeclampsia is one of the leading causes of obstetric morbidity and mortality. The placenta has a crucial role in the development of preeclampsia. Despite intensive researches the cause of disorder is still unknown. Insufficient NO synthesis may have a key role in pathogenesis. Endothelial NO synthesis (eNOS) is the primary isoenzyme expressed in human placenta, its known disturbances are discussed. Deficiency of substrate (arginine), cofactor (tetrahydrobiopterin, BH4) and calcium can decrease the NO synthesis. Serum levels of free fatty acids (FFA), asymmetric dimethylarginine, reactive oxygen species and glucose may increase in preeclamptic pregnancy. These substances decrease NO production by different ways. The reduced affinity of eNOS to the cofactor BH4 may lead to insufficient NO, but increased superoxide production in preeclamptic placentas. Polymorphisms of eNOS gene (D298E, -786T→C) were associated with preeclamptic complications (not adequately documented). Data suggest that smoking has protective role against preeclampsia. The mechanism is not clear, even the actions of smoking on eNOS are ambivalent. The expression of eNOS is decreased, while the phosphorylation of the activator Ser1177 and also the deactivator Thr495 are increased by cigarette smoke. The oxidative stress directly decreases NO levels. Smoking lowers serum FFA levels, thus the activity of eNOS may be increased. CO produced during smoking mimics the effect of NO and can compensate its absence partially.
Collapse
Affiliation(s)
- Zoltán Kukor
- Semmelweis Egyetem, Általános Orvostudományi Kar Orvosi Vegytani Molekuláris Biológiai és Patobiokémiai Intézet, Tűzoltó u. 37-47, Budapest.
| | | |
Collapse
|
45
|
Calabrese V, Cornelius C, Dinkova-Kostova AT, Calabrese EJ, Mattson MP. Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders. Antioxid Redox Signal 2010; 13:1763-811. [PMID: 20446769 PMCID: PMC2966482 DOI: 10.1089/ars.2009.3074] [Citation(s) in RCA: 632] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 04/27/2010] [Accepted: 05/01/2010] [Indexed: 12/22/2022]
Abstract
Despite the capacity of chaperones and other homeostatic components to restore folding equilibrium, cells appear poorly adapted for chronic oxidative stress that increases in cancer and in metabolic and neurodegenerative diseases. Modulation of endogenous cellular defense mechanisms represents an innovative approach to therapeutic intervention in diseases causing chronic tissue damage, such as in neurodegeneration. This article introduces the concept of hormesis and its applications to the field of neuroprotection. It is argued that the hormetic dose response provides the central underpinning of neuroprotective responses, providing a framework for explaining the common quantitative features of their dose-response relationships, their mechanistic foundations, and their relationship to the concept of biological plasticity, as well as providing a key insight for improving the accuracy of the therapeutic dose of pharmaceutical agents within the highly heterogeneous human population. This article describes in mechanistic detail how hormetic dose responses are mediated for endogenous cellular defense pathways, including sirtuin and Nrf2 and related pathways that integrate adaptive stress responses in the prevention of neurodegenerative diseases. Particular attention is given to the emerging role of nitric oxide, carbon monoxide, and hydrogen sulfide gases in hormetic-based neuroprotection and their relationship to membrane radical dynamics and mitochondrial redox signaling.
Collapse
|
46
|
Ding B, Gibbs PEM, Brookes PS, Maines MD. The coordinated increased expression of biliverdin reductase and heme oxygenase-2 promotes cardiomyocyte survival: a reductase-based peptide counters β-adrenergic receptor ligand-mediated cardiac dysfunction. FASEB J 2010; 25:301-13. [PMID: 20876213 DOI: 10.1096/fj.10-166454] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
HO-2 oxidizes heme to CO and biliverdin; the latter is reduced to bilirubin by biliverdin reductase (BVR). In addition, HO-2 is a redox-sensitive K/Ca(2)-associated protein, and BVR is an S/T/Y kinase. The two enzymes are components of cellular defense mechanisms. This is the first reporting of regulation of HO-2 by BVR and that their coordinated increase in isolated myocytes and intact heart protects against cardiotoxicity of β-adrenergic receptor activation by isoproterenol (ISO). The induction of BVR mRNA, protein, and activity and HO-2 protein was maintained for ≥ 96 h; increase in HO-1 was modest and transient. In isolated cardiomyocytes, experiments with cycloheximide, proteasome inhibitor MG-132, and siBVR suggested BVR-mediated stabilization of HO-2. In both models, activation of BVR offered protection against the ligand's stimulation of apoptosis. Two human BVR-based peptides known to inhibit and activate the reductase, KKRILHC(281) and KYCCSRK(296), respectively, were tested in the intact heart. Perfusion of the heart with the inhibitory peptide blocked ISO-mediated BVR activation and augmented apoptosis; conversely, perfusion with the activating peptide inhibited apoptosis. At the functional level, peptide-mediated inhibition of BVR was accompanied by dysfunction of the left ventricle and decrease in HO-2 protein levels. Perfusion of the organ with the activating peptide preserved the left ventricular contractile function and was accompanied by increased levels of HO-2 protein. Finding that BVR and HO-2 levels, myocyte apoptosis, and contractile function of the heart can be modulated by small human BVR-based peptides offers a promising therapeutic approach for treatment of cardiac dysfunctions.
Collapse
Affiliation(s)
- Bo Ding
- University of Rochester School of Medicine and Dentistry, Department of Biochemistry and Biophysics, Rochester, NY 14642, USA
| | | | | | | |
Collapse
|
47
|
Lin LC, Ho FM, Yen SJ, Wu PY, Hung LF, Huang WJ, Liang YC. Carbon monoxide induces cyclooxygenase-2 expression through MAPKs and PKG in phagocytes. Int Immunopharmacol 2010; 10:1520-5. [PMID: 20840837 DOI: 10.1016/j.intimp.2010.08.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2010] [Revised: 08/05/2010] [Accepted: 08/31/2010] [Indexed: 01/08/2023]
Abstract
Many biological functions of heme oxygenase (HO) have been attributed to its enzymatic byproduct carbon monoxide (CO). CO has been demonstrated to play an important role in down-regulation of pro-inflammatory cytokines, but few studies have investigated the effects of CO on the cyclooxygenase-2 (COX-2) expression in macrophage. Here, we assessed the induction of COX-2 by CO in macrophage with or without lipopolysaccharide (LPS) stimulation. Tricarbonyldichloro ruthenium (II) dimmer (CORM-2) is a well known CO-releasing molecule, and exhibits anti-inflammatory activity in several cell types. In this study, both CORM-2 and CO gas were used to investigate the induction of COX-2 and the underlying molecular mechanisms in macrophage. Western blot and RT-PCR analysis demonstrated that CORM-2 and CO gas (500 ppm) significantly inhibited the protein and mRNA expression of iNOS in LPS-activated macrophages. In contrast, CORM-2 and CO gas up-regulated COX-2 expression and prostaglandin E₂ (PGE₂) production in the macrophage with or without LPS. CORM-2 time-dependently induced the phosphorylation of Akt and MAPKs, and the induction of COX-2 could be blocked by Akt, PKG, and MAPKs inhibitors. Indomethacin was used to decrease CORM-2-induced PGE₂ production by inhibiting COX-2 enzyme activity. Indomethacin was unable to reverse the decrease of iNOS, but it could restore the IL-1β expression and decrease the IL-10 expression in CORM-2-treated cells. The results suggest that CO induced COX-2 expression and PGE₂ production through activating the Akt, PKG, and MAPK pathways, and CO-induced PGE₂ may modulate inflammation during macrophage activation by suppressing IL-1β expression and inducing IL-10 production.
Collapse
Affiliation(s)
- Li-Ching Lin
- Department of Radiation Oncology, Chi-Mei Foundation Medical Center, Taiwan
| | | | | | | | | | | | | |
Collapse
|
48
|
Kobayashi Y. The regulatory role of nitric oxide in proinflammatory cytokine expression during the induction and resolution of inflammation. J Leukoc Biol 2010; 88:1157-62. [DOI: 10.1189/jlb.0310149] [Citation(s) in RCA: 206] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
49
|
Wong CO, Sukumar P, Beech DJ, Yao X. Nitric oxide lacks direct effect on TRPC5 channels but suppresses endogenous TRPC5-containing channels in endothelial cells. Pflugers Arch 2010; 460:121-30. [PMID: 20390293 PMCID: PMC3622007 DOI: 10.1007/s00424-010-0823-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 03/07/2010] [Accepted: 03/09/2010] [Indexed: 01/02/2023]
Abstract
TRPC5 is a member of the canonical transient receptor potential (TRPC) family of proteins that forms cationic channels either through homomultimeric assembly or heteromultimeric coordination with other TRPC proteins. It is expressed in a variety of cells including central neurones and endothelial cells and has susceptibility to stimulation by multiple factors. Here we investigated if TRPC5 is sensitive to nitric oxide. Mouse TRPC5 or human TRPC5 was over-expressed in HEK293 cells, and TRPC5 activity was determined by measuring the cytosolic Ca2+ concentration with an indicator dye or by recording membrane current under voltage clamp. TRPC5 activity could be evoked by carbachol acting at muscarinic receptors, lanthanum, or a reducing agent. However, S-nitroso-N-acetylpenicillamine (SNAP) and diethylamine NONOate (DEA-NONOate) failed to stimulate or inhibit TRPC5 at concentrations that generated nitric oxide, caused vasorelaxation, or suppressed activity of TRPC6 via protein kinase G. At high concentrations, SNAP (but not DEA-NONOate) occasionally stimulated TRPC5 but the effect was confounded by background TRPC5-independent Ca2+ signals. Endogenous Ca2+-entry in bovine aortic endothelial cells (BAECs) was suppressed by SNAP; TRPC5 blocking antibody or dominant-negative mutant TRPC5 suppressed this Ca2+ entry and occluded the effect of SNAP. The data suggest that nitric oxide is not a direct modulator of homomeric TRPC5 channels but may inhibit endogenous BAEC channels that contain TRPC5.
Collapse
Affiliation(s)
- Ching-On Wong
- />Li Ka Shing Insitute of Health Sciences and School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong People’s Republic of China
| | - Piruthivi Sukumar
- />Institute of Membrane and Systems Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT UK
| | - David J. Beech
- />Institute of Membrane and Systems Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT UK
| | - Xiaoqiang Yao
- />Li Ka Shing Insitute of Health Sciences and School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong People’s Republic of China
| |
Collapse
|
50
|
Abstract
Because the mechanism underlying the development of acute pancreatitis (AP) has not yet been fully clarified, it has been a hot but difficult topic in basic and clinical research for a long time. Currently, the dominant hypothesis for the pathogenesis of AP is that it is a disease of self-digestive acute chemical inflammation induced by trypsin activation. As proteins to trigger the inflammatory response cascade, Toll-like receptors (TLRs), especially TLR4, provide a new clue for studying the pathogenesis of AP from the source. Some studies have found that when TLR4 is activated by certain factors, it can amplify an inflammatory effect and aggravate the body's inflammatory response through a series of signal transduction. Toll-like receptor 4 may play an important role in the synthesis and release of proinflammatory cytokines, and the up-regulation of the TLR4 gene may be related with the development and progression of multiple organ injury during AP. As the "gate" of inflammatory response, TLR4 may be closely associated with the development and progression of multiple organ injury during AP. Understanding the roles of TLR4 in AP will help to further clarify the pathogenesis of AP and to search a new target for the treatment of AP.
Collapse
|