1
|
The Blessed Union of Glycobiology and Immunology: A Marriage That Worked. MEDICINES (BASEL, SWITZERLAND) 2023; 10:medicines10020015. [PMID: 36827215 PMCID: PMC9967969 DOI: 10.3390/medicines10020015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/03/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
In this article, we discuss the main aspects regarding the recognition of cell surface glycoconjugates and the immunomodulation of responses against the progression of certain pathologies, such as cancer and infectious diseases. In the first part, we talk about different aspects of glycoconjugates and delve deeper into the importance of N-glycans in cancer immunotherapy. Then, we describe two important lectin families that have been very well studied in the last 20 years. Examples include the sialic acid-binding immunoglobulin (Ig)-like lectins (siglecs), and galectins. Finally, we discuss a topic that needs to be better addressed in the field of glycoimmunology: the impact of oncofetal antigens on the cells of the immune system. New findings in this area are of great importance for advancement, especially in the field of oncology, since it is already known that cellular interactions mediated by carbohydrate-carbohydrate and/or carbohydrate proteins are able to modulate the progression of different types of cancer in events that compromise the functionality of the immune responses.
Collapse
|
2
|
Giotta Lucifero A, Luzzi S. Emerging immune-based technologies for high-grade gliomas. Expert Rev Anticancer Ther 2022; 22:957-980. [PMID: 35924820 DOI: 10.1080/14737140.2022.2110072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The selection of a tailored and successful strategy for high-grade gliomas (HGGs) treatment is still a concern. The abundance of aberrant mutations within the heterogenic genetic landscape of glioblastoma strongly influences cell expansion, proliferation, and therapeutic resistance. Identification of immune evasion pathways opens the way to novel immune-based strategies. This review intends to explore the emerging immunotherapies for HGGs. The immunosuppressive mechanisms related to the tumor microenvironment and future perspectives to overcome glioma immunity barriers are also debated. AREAS COVERED An extensive literature review was performed on the PubMed/Medline and ClinicalTrials.gov databases. Only highly relevant articles in English and published in the last 20 years were selected. Data about immunotherapies coming from preclinical and clinical trials were summarized. EXPERT OPINION The overall level of evidence about the efficacy and safety of immunotherapies for HGGs is noteworthy. Monoclonal antibodies have been approved as second-line treatment, while peptide vaccines, viral gene strategies, and adoptive technologies proved to boost a vivid antitumor immunization. Malignant brain tumor-treating fields are ever-changing in the upcoming years. Constant refinements and development of new routes of drug administration will permit to design of novel immune-based treatment algorithms thus improving the overall survival.
Collapse
Affiliation(s)
- Alice Giotta Lucifero
- Neurosurgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Sabino Luzzi
- Neurosurgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy.,Neurosurgery Unit, Department of Surgical Sciences, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
3
|
Yaseen H, Butenko S, Polishuk-Zotkin I, Schif-Zuck S, Pérez-Sáez JM, Rabinovich GA, Ariel A. Galectin-1 Facilitates Macrophage Reprogramming and Resolution of Inflammation Through IFN-β. Front Pharmacol 2020; 11:901. [PMID: 32625094 PMCID: PMC7311768 DOI: 10.3389/fphar.2020.00901] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 06/02/2020] [Indexed: 12/15/2022] Open
Abstract
During the resolution of acute inflammation, macrophages undergo reprogramming from pro-inflammatory, to anti-inflammatory/reparative, and eventually to pro-resolving macrophages. Galectin-1 (Gal-1) is a bona fide pro-resolving lectin while interferon β (IFN-β) was recently shown to facilitate macrophage reprogramming and resolution of inflammation. In this study, we found Gal-1null mice exhibit a hyperinflammatory phenotype during the resolution of zymosan A-induced peritonitis but not during the early inflammatory response. This phenotype was characterized by reduced macrophage numbers, increased secretion of pro-inflammatory cytokines, such as interleukin-12 (IL-12), and reduced secretion of anti-inflammatory cytokines, such as interleukin-10 (IL-10). In addition, we found a delayed expression of the pro-resolving enzyme 12/15-lipoxygenase in macrophages and heightened levels of the inflammatory protease proteinase-3 (PR3) in peritoneal fluids from Gal-1null mice. Moreover, we observed sex-dependent differences in the inflammatory profile of Gal-1null mice. Notably, we found that IFN-β levels were reduced in resolution-phase exudates from Gal-1null mice. Administration of IFN-β in vivo or ex vivo treatment was able to rescue, at least in part, the hyperinflammatory profile of Gal-1null mice. In particular, IFN-β recovered a subset of F4/80+GR-1+ macrophages, restored IL-12 and IL-10 secretion from macrophages to WT values and diminished abnormal peritoneal PR3 levels in Gal-1null mice. In conclusion, our results revealed a new Gal-1-IFN-β axis that facilitates the resolution of inflammation and might restrain uncontrolled inflammatory disorders.
Collapse
Affiliation(s)
- Hiba Yaseen
- Departments of Biology and Human Biology, University of Haifa, Haifa, Israel
| | - Sergei Butenko
- Departments of Biology and Human Biology, University of Haifa, Haifa, Israel
| | | | - Sagie Schif-Zuck
- Departments of Biology and Human Biology, University of Haifa, Haifa, Israel
| | - Juan Manuel Pérez-Sáez
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Gabriel Adrian Rabinovich
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.,Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Amiram Ariel
- Departments of Biology and Human Biology, University of Haifa, Haifa, Israel
| |
Collapse
|
4
|
Compagno D, Tiraboschi C, Garcia JD, Rondón Y, Corapi E, Velazquez C, Laderach DJ. Galectins as Checkpoints of the Immune System in Cancers, Their Clinical Relevance, and Implication in Clinical Trials. Biomolecules 2020; 10:biom10050750. [PMID: 32408492 PMCID: PMC7277089 DOI: 10.3390/biom10050750] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/30/2020] [Accepted: 05/03/2020] [Indexed: 12/14/2022] Open
Abstract
Galectins are small proteins with pleiotropic functions, which depend on both their lectin (glycan recognition) and non-lectin (recognition of other biomolecules besides glycans) interactions. Currently, 15 members of this family have been described in mammals, each with its structural and ligand recognition particularities. The galectin/ligand interaction translates into a plethora of biological functions that are particular for each cell/tissue type. In this sense, the cells of the immune system are highly sensitive to the action of these small and essential proteins. While galectins play central roles in tumor progression, they are also excellent negative regulators (checkpoints) of the immune cell functions, participating in the creation of a microenvironment that promotes tumor escape. This review aims to give an updated view on how galectins control the tumor’s immune attack depending on the tumor microenvironment, because determining which galectins are essential and the role they play will help to develop future clinical trials and benefit patients with incurable cancer.
Collapse
Affiliation(s)
- Daniel Compagno
- Molecular and Functional Glyco-Oncology Laboratory, IQUIBICEN-CONICET-UBA, Ciudad Autónoma de Buenos Aires C1428EGA, Argentina; (C.T.); (J.D.G.); (Y.R.); (E.C.); (C.V.)
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires C1428EGA, Argentina
- Correspondence: or (D.C.); (D.J.L.)
| | - Carolina Tiraboschi
- Molecular and Functional Glyco-Oncology Laboratory, IQUIBICEN-CONICET-UBA, Ciudad Autónoma de Buenos Aires C1428EGA, Argentina; (C.T.); (J.D.G.); (Y.R.); (E.C.); (C.V.)
| | - José Daniel Garcia
- Molecular and Functional Glyco-Oncology Laboratory, IQUIBICEN-CONICET-UBA, Ciudad Autónoma de Buenos Aires C1428EGA, Argentina; (C.T.); (J.D.G.); (Y.R.); (E.C.); (C.V.)
| | - Yorfer Rondón
- Molecular and Functional Glyco-Oncology Laboratory, IQUIBICEN-CONICET-UBA, Ciudad Autónoma de Buenos Aires C1428EGA, Argentina; (C.T.); (J.D.G.); (Y.R.); (E.C.); (C.V.)
| | - Enrique Corapi
- Molecular and Functional Glyco-Oncology Laboratory, IQUIBICEN-CONICET-UBA, Ciudad Autónoma de Buenos Aires C1428EGA, Argentina; (C.T.); (J.D.G.); (Y.R.); (E.C.); (C.V.)
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires C1428EGA, Argentina
| | - Carla Velazquez
- Molecular and Functional Glyco-Oncology Laboratory, IQUIBICEN-CONICET-UBA, Ciudad Autónoma de Buenos Aires C1428EGA, Argentina; (C.T.); (J.D.G.); (Y.R.); (E.C.); (C.V.)
- Facultad de Biotecnología y Biología Molecular, Facultad de Farmacia, Universidad Nacional de la Plata, La Plata 1900, Provincia de Buenos Aires, Argentina
| | - Diego José Laderach
- Molecular and Functional Glyco-Oncology Laboratory, IQUIBICEN-CONICET-UBA, Ciudad Autónoma de Buenos Aires C1428EGA, Argentina; (C.T.); (J.D.G.); (Y.R.); (E.C.); (C.V.)
- Departamento de Ciencias Básicas, Universidad Nacional de Lujan, Lujan 6700, Provincia de Buenos Aires, Argentina
- Correspondence: or (D.C.); (D.J.L.)
| |
Collapse
|
5
|
Nazimek K, Bryniarski K. Approaches to inducing antigen-specific immune tolerance in allergy and autoimmunity: Focus on antigen-presenting cells and extracellular vesicles. Scand J Immunol 2020; 91:e12881. [PMID: 32243636 DOI: 10.1111/sji.12881] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/19/2020] [Accepted: 03/24/2020] [Indexed: 12/11/2022]
Abstract
Increasing prevalence of allergic and autoimmune diseases urges clinicians and researchers to search for new and efficient treatments. Strategies that activate antigen-specific immune tolerance and simultaneously maintain immune reactivity to all other antigens deserve special attention. Accordingly, antigen-presenting cells (APCs) seem to be the best suited for orchestrating these mechanisms by directing T cell immune responses towards a tolerant subtype. Recent advances in understanding cell-to-cell communication via extracellular vesicles (EVs) make the latter promising candidates for reprogramming APCs towards a tolerant phenotype, and for mediating tolerogenic APC function. Thus, comprehensive studies have been undertaken to describe the interactions of APCs and EVs naturally occurring during immune tolerance induction, as well as to develop EV-based manoeuvres enabling the induction of immune tolerance in an antigen-specific manner. In this review, we summarize the findings of relevant studies, with a special emphasis on future perspectives on their translation to clinical practice.
Collapse
Affiliation(s)
- Katarzyna Nazimek
- Jagiellonian University Medical College, Department of Immunology, Krakow, Poland
| | - Krzysztof Bryniarski
- Jagiellonian University Medical College, Department of Immunology, Krakow, Poland
| |
Collapse
|
6
|
Ding AS, Routkevitch D, Jackson C, Lim M. Targeting Myeloid Cells in Combination Treatments for Glioma and Other Tumors. Front Immunol 2019; 10:1715. [PMID: 31396227 PMCID: PMC6664066 DOI: 10.3389/fimmu.2019.01715] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/09/2019] [Indexed: 02/06/2023] Open
Abstract
Myeloid cells constitute a significant part of the immune system in the context of cancer, exhibiting both immunostimulatory effects, through their role as antigen presenting cells, and immunosuppressive effects, through their polarization to myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages. While they are rarely sufficient to generate potent anti-tumor effects on their own, myeloid cells have the ability to interact with a variety of immune populations to aid in mounting an appropriate anti-tumor immune response. Therefore, myeloid therapies have gained momentum as a potential adjunct to current therapies such as immune checkpoint inhibitors (ICIs), dendritic cell vaccines, oncolytic viruses, and traditional chemoradiation to enhance therapeutic response. In this review, we outline critical pathways involved in the recruitment of the myeloid population to the tumor microenvironment and in their polarization to immunostimulatory or immunosuppressive phenotypes. We also emphasize existing strategies of modulating myeloid recruitment and polarization to improve anti-tumor immune responses. We then summarize current preclinical and clinical studies that highlight treatment outcomes of combining myeloid targeted therapies with other immune-based and traditional therapies. Despite promising results from reports of limited clinical trials thus far, there remain challenges in optimally harnessing the myeloid compartment as an adjunct to enhancing anti-tumor immune responses. Further large Phase II and ultimately Phase III clinical trials are needed to elucidate the treatment benefit of combination therapies in the fight against cancer.
Collapse
Affiliation(s)
| | | | | | - Michael Lim
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, MD, United States
| |
Collapse
|
7
|
Andrade FEC, Covre JL, Ramos L, Hazarbassanov RM, Santos MSD, Campos M, Gomes JÁP, Gil CD. Evaluation of galectin-1 and galectin-3 as prospective biomarkers in keratoconus. Br J Ophthalmol 2018; 102:700-707. [DOI: 10.1136/bjophthalmol-2017-311495] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/12/2018] [Accepted: 01/27/2018] [Indexed: 01/13/2023]
Abstract
AimsTo evaluate the expression of β-galactoside-binding proteins galectin (Gal)-1 and Gal-3 in patients with keratoconus (KC) and postcorneal collagen cross-linking (CXL) treatment in vitro.MethodsTear fluid, cornea samples and conjunctival impression cytology specimens from control and KC patients were used to evaluate Gal-1 and Gal-3 expressions. Primary keratocytes were isolated by collagenase digestion from surgically removed corneas of five normal or KC human corneal buttons and cultured in Dulbecco’s modified eagle medium/Ham’s F12 medium supplemented with 2% fetal bovine serum. These cells were evaluated under two experimental conditions: control and submitted to the application of ultraviolet A light and riboflavin 0.1% (CXL) for 30 min.ResultsPatients with KC displayed increased levels of Gal-1 and Gal-3 in conjunctival epithelial cells compared with control. Furthermore, KC corneas were associated with intense expression of Gal-1 in the stroma, released by keratocytes. Ultrastructural analysis of keratocytes showed a marked increase of endogenous Gal-3 levels, but not Gal-1, in KC. In vitro, CXL induced significant release of Gal-1 in keratocyte supernatants (116±18 ng/mL, P<0.05) and decreased inflammatory biomarkers as interleukin (IL)-6, IL-8, matrix metalloproteinase (MMP)-2 and MMP-9. Gal-3 levels were not detected in the keratocyte supernatants.ConclusionGal-1 and Gal-3 represent new interesting KC biomarkers as revealed by their different expression patterns in KC and control corneal samples. CXL has an immunosuppressive effect on keratocytes by reducing the release of cytokines and MMPs and increased expression of anti-inflammatory protein Gal-1.
Collapse
|
8
|
Acar S, Paketçi A, Küme T, Tuhan H, Gürsoy Çalan Ö, Demir K, Böber E, Abacı A. Serum galectin-1 levels are positively correlated with body fat and negatively with fasting glucose in obese children. Peptides 2017; 95:51-56. [PMID: 28728946 DOI: 10.1016/j.peptides.2017.07.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/08/2017] [Accepted: 07/13/2017] [Indexed: 01/03/2023]
Abstract
Galectin-1, a recently identified peptide, is primarily released from the adipose tissue. Although galectin-1 was shown to have an anti-inflammatory effect, its specific function is not clearly understood. We aimed to evaluate the relationship of serum galectin-1 levels with clinical and laboratory parameters in childhood obesity. A total of 45 obese children (mean age: 12.1±3.1years) and 35 normal-weight children (mean age: 11.8±2.2years) were enrolled. Clinical [body mass index (BMI), waist circumference (WC), percentage of body fat and blood pressure] and biochemical [glucose, insulin, lipids, galectin-1, high-sensitive C-reactive protein (hsCRP) and leptin levels] parameters were assessed. Serum galectin-1, hsCRP and leptin levels were significantly higher in obese children than those in normal-weight children (12.4 vs 10.2ng/mL, p<0.001; 3.28 vs 0.63mg/L, p<0.001; 8.3 vs 1.2ng/mL, p<0.001, respectively). In obese children, galectin-1 levels correlated negatively with fasting glucose (r=-0.346, p=0.020) and positively with fat mass (r=0.326, p=0.026) and WC standard deviation score (SDS) (r=0.451, p=0.002). The multivariate regression analysis demonstrated that serum galectin-1 levels were significantly associated with fasting glucose and WC SDS. This study showed that obese children had significantly higher galectin-1 levels in proportion to fat mass in obese cases than those in healthy children, which may be interpreted as a compensatory increase in an attempt to improve glucose metabolism.
Collapse
Affiliation(s)
- Sezer Acar
- Division of Pediatric Endocrinology, Dokuz Eylul University School of Medicine, Izmir, Turkey
| | - Ahu Paketçi
- Division of Pediatric Endocrinology, Dokuz Eylul University School of Medicine, Izmir, Turkey
| | - Tuncay Küme
- Department of Biochemistry, Dokuz Eylul University School of Medicine, Izmir, Turkey
| | - Hale Tuhan
- Division of Pediatric Endocrinology, Dokuz Eylul University School of Medicine, Izmir, Turkey
| | - Özlem Gürsoy Çalan
- Department of Biochemistry, Dokuz Eylul University School of Medicine, Izmir, Turkey
| | - Korcan Demir
- Division of Pediatric Endocrinology, Dokuz Eylul University School of Medicine, Izmir, Turkey
| | - Ece Böber
- Division of Pediatric Endocrinology, Dokuz Eylul University School of Medicine, Izmir, Turkey
| | - Ayhan Abacı
- Division of Pediatric Endocrinology, Dokuz Eylul University School of Medicine, Izmir, Turkey.
| |
Collapse
|
9
|
Gao J, Wang X, Wang Y, Han F, Cai W, Zhao B, Li Y, Han S, Wu X, Hu D. Murine Sertoli cells promote the development of tolerogenic dendritic cells: a pivotal role of galectin-1. Immunology 2016; 148:253-65. [PMID: 26878424 DOI: 10.1111/imm.12598] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 01/29/2016] [Accepted: 02/04/2016] [Indexed: 12/11/2022] Open
Abstract
Sertoli cells (SCs) possess inherent immunosuppressive properties and are major contributors to the immunoprivileged status of mammalian testis. SCs have been reported to inhibit the activation of B cells, T cells and natural killer cells but not dendritic cells (DCs). Herein, we present evidence that co-culture with SCs results in a persistent state of DC immaturity characterized by down-regulation of the surface molecules I-A/E, CD80, CD83, CD86, CCR7 and CD11c, as well as reduced production of pro-inflammatory cytokines. SC-conditioned DCs (SC-DCs) displayed low immunogenicity and enhanced immunoregulatory functions, including the inhibition of T-cell proliferation and the promotion of Foxp3(+) regulatory T-cell development. Mechanistically, the activation of p38, extracellular signal-regulated kinase 1/2, and signal transducer and activator of transcription 3 was suppressed in SC-DCs. More importantly, we demonstrate that galectin-1 secreted by SCs plays a pivotal role in the differentiation of functionally tolerogenic SC-DCs. These findings further support the role of SCs in maintaining the immunoprivileged environment of the testis and provide a novel approach to derive tolerogenic DCs, which may lead to alternative therapeutic strategies for the treatment of immunopathogenic diseases.
Collapse
Affiliation(s)
- Jianxin Gao
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xujie Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yunchuan Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Fu Han
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Weixia Cai
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Bin Zhao
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yan Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shichao Han
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xue Wu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Dahai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
10
|
Kunk PR, Bauer TW, Slingluff CL, Rahma OE. From bench to bedside a comprehensive review of pancreatic cancer immunotherapy. J Immunother Cancer 2016; 4:14. [PMID: 26981244 PMCID: PMC4791889 DOI: 10.1186/s40425-016-0119-z] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/16/2016] [Indexed: 02/07/2023] Open
Abstract
The incidence of pancreatic cancer has been increasing while its 5-year survival rate has not changed in decades. In the era of personalized medicine, immunotherapy has emerged as a promising treatment modality in a variety of malignancies, including pancreatic cancer. This review will discuss the unique pancreatic tumor microenvironment, including the cells and receptors that transform the pancreas from its normal architecture into a complex mix of suppressor immune cells and dense extracellular matrix that allows for the unrestricted growth of cancer cells. Next, we will highlight the recently completed immunotherapy clinical trials in pancreatic cancer. Finally, we will explore the on-going immunotherapy clinical trials and future directions of this engaging and changing field.
Collapse
Affiliation(s)
- Paul R Kunk
- Department of Medicine, Division of Hematology-Oncology, University of Virginia Health System, UVA Box 800716, Charlottesville, VA 22908 USA
| | - Todd W Bauer
- Department of Surgery, Division of Hepatobiliary Surgery, University of Virginia Health System, Charlottesville, VA USA
| | - Craig L Slingluff
- Department of Surgery, Division of Surgical Oncology, University of Virginia Health System, Charlottesville, VA USA
| | - Osama E Rahma
- Department of Medicine, Division of Hematology-Oncology, University of Virginia Health System, UVA Box 800716, Charlottesville, VA 22908 USA
| |
Collapse
|
11
|
Re-wiring regulatory cell networks in immunity by galectin-glycan interactions. FEBS Lett 2015; 589:3407-18. [PMID: 26352298 DOI: 10.1016/j.febslet.2015.08.037] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 08/27/2015] [Accepted: 08/28/2015] [Indexed: 01/01/2023]
Abstract
Programs that control immune cell homeostasis are orchestrated through the coordinated action of a number of regulatory cell populations, including regulatory T cells, regulatory B cells, myeloid-derived suppressor cells, alternatively-activated macrophages and tolerogenic dendritic cells. These regulatory cell populations can prevent harmful inflammation following completion of protective responses and thwart the development of autoimmune pathology. However, they also have a detrimental role in cancer by favoring escape from immune surveillance. One of the hallmarks of regulatory cells is their remarkable plasticity as they can be positively or negatively modulated by a plethora of cytokines, growth factors and co-stimulatory signals that tailor their differentiation, stability and survival. Here we focus on the emerging roles of galectins, a family of highly conserved glycan-binding proteins in regulating the fate and function of regulatory immune cell populations, both of lymphoid and myeloid origins. Given the broad distribution of circulating and tissue-specific galectins, understanding the relevance of lectin-glycan interactions in shaping regulatory cell compartments will contribute to the design of novel therapeutic strategies aimed at modulating their function in a broad range of immunological disorders.
Collapse
|
12
|
Labrie M, Vladoiu MC, Grosset AA, Gaboury L, St-Pierre Y. Expression and functions of galectin-7 in ovarian cancer. Oncotarget 2015; 5:7705-21. [PMID: 25277199 PMCID: PMC4202155 DOI: 10.18632/oncotarget.2299] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
There is a critical need to develop effective new strategies for diagnosis and treatment of ovarian cancer. In the present work, we investigated the expression of galectin-7 (gal-7) in epithelial ovarian cancer (EOC) cells and studied its functional relevance. Immunohistochemical analysis of gal-7 expression in tissue microarrays showed that while gal-7 was not detected in normal ovarian tissues, positive cytoplasmic staining of gal-7 was detected in epithelial cells in all EOC histological subtypes but was more frequent in high grade tumors and metastatic samples. Gal-7 expression correlated with a significant difference in the overall survival of patients with ovarian serous cystadenocarcinoma. Furthermore, using human EOC cell lines, we found that gal-7 expression was induced by mutant p53. Mechanistically, Matrigel invasion assays and live cell imaging showed that gal-7 increased the invasive behavior of ovarian cancer cells by inducing MMP-9 and increasing cell motility. EOC cells can also secrete gal-7. Recombinant human gal-7 kills Jurkat T cells and human peripheral T cells, suggesting that gal-7 also has immunosuppressive properties. Taken together, our study validates the clinical significance of gal-7 overexpression in ovarian cancer and provides a rationale for targeting gal-7 to improve the outcome of patients with this disease.
Collapse
Affiliation(s)
| | | | | | - Louis Gaboury
- Institute for Research in Immunology and Cancer, P.O. Box 6128, Downtown Station, Montréal, Québec, Canada
| | | |
Collapse
|
13
|
Abstract
During the past decade, a better understanding of the cellular and molecular mechanisms underlying tumor immunity has provided the appropriate framework for the development of therapeutic strategies for cancer immunotherapy. Under this complex scenario, galectins have emerged as promising molecular targets for cancer therapy responsible of creating immunosuppressive microenvironments at sites of tumor growth and metastasis. Galectins, expressed in tumor, stromal, and endothelial cells, contribute to thwart the development of immune responses by favoring the expansion of T regulatory cells and contributing to their immunosuppressive activity, driving the differentiation of tolerogenic dendritic cells, limiting T cell viability, and maintaining T cell anergy. The emerging data promise a future scenario in which the selective blockade of individual members of the galectin family, either alone or in combination with other therapeutic regimens, will contribute to halt tumor progression by counteracting tumor-immune escape. Here we describe a selection of methods used to investigate the role of galectin-1 in tumor-immune escape.
Collapse
|
14
|
Targeted inhibition of galectin 1 by thiodigalactoside dramatically reduces body weight gain in diet-induced obese rats. Int J Obes (Lond) 2015. [DOI: 10.1038/ijo.2015.74] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Lowenstein PR, Baker GJ, Castro MG. Cracking the glioma-NK inhibitory code: toward successful innate immunotherapy. Oncoimmunology 2014; 3:e965573. [PMID: 25941594 DOI: 10.4161/21624011.2014.965573] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 09/10/2014] [Indexed: 01/10/2023] Open
Abstract
Natural killer (NK) cells eradicate galectin-deficient malignant gliomas without the necessity for T cell cooperation. This phenomenon was discovered as a consequence of reducing glioma-derived galectin-1. We propose that stimulation of endogenous antitumor NK cell activity may be achieved by reducing potent tumor-derived NK cell inhibitors, such as galectin-1, and that such agents be tested in the clinic to treatbrain tumors.
Collapse
Affiliation(s)
- Pedro R Lowenstein
- Departments of Neurosurgery and Cell and Developmental Biology; and Immunology; Cancer Biology; and Neuroscience Training Programs; The University of Michigan Medical School ; Ann Arbor, MI, USA
| | - Gregory J Baker
- Departments of Neurosurgery and Cell and Developmental Biology; and Immunology; Cancer Biology; and Neuroscience Training Programs; The University of Michigan Medical School ; Ann Arbor, MI, USA
| | - Maria G Castro
- Departments of Neurosurgery and Cell and Developmental Biology; and Immunology; Cancer Biology; and Neuroscience Training Programs; The University of Michigan Medical School ; Ann Arbor, MI, USA
| |
Collapse
|
16
|
Wachsmann MB, Pop LM, Vitetta ES. Pancreatic ductal adenocarcinoma: a review of immunologic aspects. J Investig Med 2014. [PMID: 22406516 DOI: 10.231/jim.0b013e31824a4d79] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
With the continued failures of both early diagnosis and treatment options for pancreatic cancer, it is now time to comprehensively evaluate the role of the immune system on the development and progression of pancreatic cancer. It is important to develop strategies that harness the molecules and cells of the immune system to treat this disease. This review will focus primarily on the role of immune cells in the development and progression of pancreatic ductal adenocarcinoma and to evaluate what is known about the interaction of immune cells with the tumor microenvironment and their role in tumor growth and metastasis. We will conclude with a brief discussion of therapy for pancreatic cancer and the potential role for immunotherapy. We hypothesize that the role of the immune system in tumor development and progression is tissue specific. Our hope is that better understanding of this process will lead to better treatments for this devastating disease.
Collapse
Affiliation(s)
- Megan B Wachsmann
- Masters Program in Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | |
Collapse
|
17
|
Amedei A, Niccolai E, Prisco D. Pancreatic cancer: role of the immune system in cancer progression and vaccine-based immunotherapy. Hum Vaccin Immunother 2014; 10:3354-3368. [PMID: 25483688 PMCID: PMC4514060 DOI: 10.4161/hv.34392] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 07/25/2014] [Accepted: 08/08/2014] [Indexed: 12/18/2022] Open
Abstract
Pancreatic cancer (PC) is the 5th leading cause of cancer related death in the developed world with more than 260,000 deaths annually worldwide and with a dismal 5-year survival. Surgery is the only potential hope of cure for PC, but, unfortunately, only 20% PC patients is resectable at the time of diagnosis. Therapeutic research efforts have mainly focused on improvements in radio/ chemo treatments and to date, there are only a few chemotherapeutic agents that have shown to be effective against PC, including gemcitabine with or without abraxane as well as a combination of 5-FU, leucovorin, oxaliplatin and irinotecan (the so-called FOLFIRINOX regimen). The survival of patients treated with these regimens is marginal and hence we are in urgent need of novel therapeutic approaches to treat pancreatic cancer. The success of immunotherapeutic strategies in other cancers and various evidences that pancreatic adenocarcinoma elicits antitumor immune responses, suggest that immunotherapies can be a promising alternative treatment modality for this deadly disease. PC immunotherapy treatments include passive immunotherapeutic approaches, such as the use of effector cells generated in vitro, and active immunotherapeutic strategies, which goal is to stimulate an antitumor response in vivo, by means of vaccination. In this review, we describe the immune suppressive mechanisms of pancreatic cancer and discuss recent preclinical and clinical efforts toward PC immunotherapy, including passive approaches, such as the use of antibodies and active strategies (vaccination), with a special mention of most recent treatment with CRS-207 and GVAX.
Collapse
Key Words
- APC, Antigen Presenting Cells
- CEA, carcinoembryonic antigen
- CTL, Cytotoxic CD8 T cells
- DCs, Dendritic Cells
- ENO1, a-Enolasi
- IDO, Indoleamine 2,3-dioxygenase
- MUC1, Mucin-1
- NK, Natural Killer
- PC, pancreatic cancer
- Th, T helper
- Tregs, Regulatory T cells
- clinical trials
- immune response
- immunotherapy
- mAbs, monoclonal antibodies
- pancreatic cancer
- vaccine
Collapse
Affiliation(s)
- Amedeo Amedei
- Department of Experimental and Clinical Internal Medicine; University of Florence; Florence, Italy
- Department of Biomedicine; Azienda Ospedaliera Universitaria Careggi (AOUC); Florence, Italy
| | - Elena Niccolai
- Department of Experimental and Clinical Internal Medicine; University of Florence; Florence, Italy
| | - Domenico Prisco
- Department of Experimental and Clinical Internal Medicine; University of Florence; Florence, Italy
- Department of Biomedicine; Azienda Ospedaliera Universitaria Careggi (AOUC); Florence, Italy
| |
Collapse
|
18
|
Sideras K, Braat H, Kwekkeboom J, van Eijck CH, Peppelenbosch MP, Sleijfer S, Bruno M. Role of the immune system in pancreatic cancer progression and immune modulating treatment strategies. Cancer Treat Rev 2013; 40:513-22. [PMID: 24315741 DOI: 10.1016/j.ctrv.2013.11.005] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 11/08/2013] [Accepted: 11/12/2013] [Indexed: 12/11/2022]
Abstract
Traditional chemotherapeutics have largely failed to date to produce significant improvements in pancreatic cancer survival. One of the reasons for the resilience of pancreatic cancer towards intensive treatment is that the cancer is capable of high jacking the immune system: during disease progression the immune system is converted from a system that attacks tumor cells into a support structure for the cancer, exerting trophic actions on the cancer cells. This turn-around of immune system action is achieved through mobilization and activation of regulatory T cells, myeloid derived suppressor cells, tumor-associated macrophages and fibroblasts, all of which suppress CD8 T cells and NK cells. This immune suppression occurs both through the expression of tolerance-inducing cell surface molecules, such as PD-L1, as well as through the production of "tolerogenic" cytokines, such as IL-10 and TGF-β. Based on the accumulating insight into the importance of the immune system for the outcome of pancreatic cancer patients multiple new immunotherapeutic approaches against pancreatic cancer are being currently tested in clinical trials. In this review we give an overview of both the immune escaping mechanisms of pancreatic cancer as well as the new immune related therapeutic strategies currently being tested in pancreatic cancer clinical trials.
Collapse
Affiliation(s)
- K Sideras
- Erasmus University Medical Center, Department of Gastroenterology and Hepatology, NA-0621's, Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands.
| | - H Braat
- Erasmus University Medical Center, Department of Gastroenterology and Hepatology, Hs-510's, Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands.
| | - J Kwekkeboom
- Erasmus University Medical Center, Laboratory of Gastroenterology and Hepatology, NA-1009's, Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands.
| | - C H van Eijck
- Erasmus University Medical Center, Department of Surgery, Room H-818k's Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands.
| | - M P Peppelenbosch
- Erasmus University Medical Center, Laboratory of Gastroenterology and Hepatology, Na-1007's, Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands.
| | - S Sleijfer
- Erasmus University Medical Center, Department of Oncology, He-116's Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands.
| | - M Bruno
- Erasmus University Medical Center, Department of Gastroenterology and Hepatology, H-358's, Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands.
| |
Collapse
|
19
|
Dendritic cell-based approaches for therapeutic immune regulation in solid-organ transplantation. J Transplant 2013; 2013:761429. [PMID: 24307940 PMCID: PMC3824554 DOI: 10.1155/2013/761429] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 09/16/2013] [Indexed: 12/18/2022] Open
Abstract
To avoid immune rejection, allograft recipients require drug-based immunosuppression, which has significant toxicity. An emerging approach is adoptive transfer of immunoregulatory cells. While mature dendritic cells (DCs) present donor antigen to the immune system, triggering rejection, regulatory DCs interact with regulatory T cells to promote immune tolerance. Intravenous injection of immature DCs of either donor or host origin at the time of transplantation have prolonged allograft survival in solid-organ transplant models. DCs can be treated with pharmacological agents before injection, which may attenuate their maturation in vivo. Recent data suggest that injected immunosuppressive DCs may inhibit allograft rejection, not by themselves, but through conventional DCs of the host. Genetically engineered DCs have also been tested. Two clinical trials in type-1 diabetes and rheumatoid arthritis have been carried out, and other trials, including one trial in kidney transplantation, are in progress or are imminent.
Collapse
|
20
|
Rhodes DH, Pini M, Castellanos KJ, Montero-Melendez T, Cooper D, Perretti M, Fantuzzi G. Adipose tissue-specific modulation of galectin expression in lean and obese mice: evidence for regulatory function. Obesity (Silver Spring) 2013; 21:310-9. [PMID: 23401338 PMCID: PMC3610793 DOI: 10.1002/oby.20016] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 06/11/2012] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Galectins (Gal) exert many activities, including regulation of inflammation and adipogenesis. We evaluated modulation of Gal-1, -3, -9 and -12 in visceral (VAT) and subcutaneous (SAT) adipose tissue in mice. DESIGN AND METHODS We used two mouse models of obesity, high-fat diet induced obesity (DIO) and ob/ob mice. We also evaluated the response of Gal-1 KO mice to DIO. RESULTS Both age and diet modulated expression of galectins, with DIO mice having higher serum Gal-1 and Gal-3 versus lean mice after 13-17 weeks of high-fat diet. In DIO mice there was a progressive increase in expression of Gal-1 and Gal-9 in SAT, whereas Gal-3 increased in both VAT and SAT. Expression of Gal-12 declined over time in VAT of DIO mice, similar to adiponectin. Obesity lead to increased production of Gal-1 in adipocytes, whereas the increased Gal-3 and Gal-9 of obesity mostly derived from the stromovascular fraction. Expression of Gal-12 was restricted to adipocytes. There was increased production of Gal-3 and Gal-9, but not Gal-1, in CD11c(-) and CD11c(+) macrophages from VAT of DIO versus lean mice. Expression of Gal-1, -3 and -12 in VAT and SAT of ob/ob mice followed a trend comparable to DIO mice. Rosiglitazone reduced serum Gal-1, but not Gal-3 and modulated expression of Gal-3 in VAT and Gal-9 and Gal-12 in SAT of DIO mice. High-fat feeding lead to increased adiposity in Gal-1 KO versus WT mice, with loss of correlation between leptin and adiposity and no alterations in glucose and insulin levels. CONCLUSIONS Obesity leads to differential modulation of Gal-1, 3, 9 and 12 in VAT and SAT, with Gal-1 acting as a modulator of adiposity.
Collapse
Affiliation(s)
- Davina H. Rhodes
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, USA
| | - Maria Pini
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, USA
| | - Karla J. Castellanos
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, USA
| | - Trinidad Montero-Melendez
- The William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, UK
| | - Dianne Cooper
- The William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, UK
| | - Mauro Perretti
- The William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, UK
| | - Giamila Fantuzzi
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
21
|
Liverani E, Rico MC, Garcia AE, Kilpatrick LE, Kunapuli SP. Prasugrel metabolites inhibit neutrophil functions. J Pharmacol Exp Ther 2013; 344:231-43. [PMID: 23097214 PMCID: PMC3533408 DOI: 10.1124/jpet.112.195883] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 10/23/2012] [Indexed: 12/13/2022] Open
Abstract
Clopidogrel and prasugrel belong to a thienopyridine class of oral antiplatelet drugs that, after having been metabolized in the liver, can inhibit platelet function by irreversibly antagonizing the P2Y(12) receptor. Furthermore, thienopyridines influence numerous inflammatory conditions, but their effects on neutrophils have not been evaluated, despite the important role of these cells in inflammation. Therefore, we investigated the effect of prasugrel metabolites on neutrophils to further clarify the role of thienopyridines in inflammation. Interestingly, a prasugrel metabolite mixture, produced in vitro using rat liver microsomes, significantly inhibited N-formyl-methionyl-leucyl-phenylalanine (fMLP)- and platelet-activating factor (PAF)-induced neutrophil activation. More specifically, prasugrel metabolites inhibited neutrophil transmigration, CD16 surface expression, and neutrophil-platelet aggregation. Moreover, prasugrel metabolite pretreatment also significantly decreased fMLP- or PAF-induced extracellular-signal-regulated kinase phosphorylation as well as calcium mobilization. To determine the target of prasugrel in neutrophils, the role of both P2Y(12) and P2Y(13) receptors was studied using specific reversible antagonists, AR-C69931MX and MRS2211, respectively. Neither antagonist had any direct effect on the agonist-induced neutrophil functional responses. Our findings indicate that prasugrel metabolites may directly target neutrophils and inhibit their activation, suggesting a possible explanation for their anti-inflammatory effects previously observed. However, these metabolites do not act through either the P2Y(12) or P2Y(13) receptor in neutrophils.
Collapse
Affiliation(s)
- Elisabetta Liverani
- Sol Sherry Thrombosis Research Center, Temple University, MRB, 3420 N. Broad Street, Philadelphia, PA 19140, USA.
| | | | | | | | | |
Collapse
|
22
|
GÁL P, VASILENKO T, KOVÁČ I, KOSTELNÍKOVÁ M, JAKUBČO J, SZABO P, DVOŘÁNKOVÁ B, SABOL F, GABIUS HJ, SMETANA Jr. K. Atropa Belladonna L. Water Extract: Modulator of Extracellular Matrix Formation in Vitro and in Vivo. Physiol Res 2012; 61:241-50. [DOI: 10.33549/physiolres.932223] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Previously, we found that treatment of cutaneous wounds with Atropa belladonna L. (AB) revealed shortened process of acute inflammation as well as increased tensile strength and collagen deposition in healing skin wounds (Gál et al. 2009). To better understand AB effect on skin wound healing male Sprague-Dawley rats were submitted to one round full thickness skin wound on the back. In two experimental groups two different concentrations of AB extract were daily applied whereas the control group remained untreated. For histological evaluation samples were removed on day 21 after surgery and stained for wide spectrum cytokeratin, collagen III, fibronectin, galectin-1, and vimentin. In addition, in the in vitro study different concentration of AB extract were used to evaluate differences in HaCaT keratinocytes proliferation and differentiation by detection of Ki67 and keratin-19 expressions. Furthermore, to assess ECM formation of human dermal fibroblasts on the in vitro level fibronectin and galectin-1 were visualized. Our study showed that AB induces fibronectin and galectin-1 rich ECM formation in vitro and in vivo. In addition, the proliferation of keratinocytes was also increased. In conclusion, AB is an effective modulator of skin wound healing. Nevertheless, further research is needed to find optimal therapeutic concentration and exact underlying mechanism of action.
Collapse
Affiliation(s)
- P. GÁL
- Department for Biomedical Research, East-Slovak Institute of Cardiovascular Diseases, Košice, Slovak Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Tang D, Yuan Z, Xue X, Lu Z, Zhang Y, Wang H, Chen M, An Y, Wei J, Zhu Y, Miao Y, Jiang K. High expression of Galectin-1 in pancreatic stellate cells plays a role in the development and maintenance of an immunosuppressive microenvironment in pancreatic cancer. Int J Cancer 2012; 130:2337-2348. [PMID: 21780106 DOI: 10.1002/ijc.26290] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 06/28/2011] [Indexed: 02/05/2023]
Abstract
Galectin-1 is implicated in making tumor cells immune privileged, in part by regulating the survival of infiltrating T cells. Galectin-1 is strongly expressed in activated pancreatic stellate cells (PSCs); however, whether this is linked to tumor cell immune escape in pancreatic cancer is unknown. Galectin-1 was knocked down in PSCs isolated from pancreatic tissues using small interfering RNA (siRNA), or overexpressed using recombinant lentiviruses, and the PSCs were cocultured with T cells. CD3(+) , CD4(+) and CD8(+) T cell apoptosis was detected by flow cytometry; T cell IL-2, IL-4, IL-5 and INF-γ production levels were quantified using ELISA. Immunohistochemical analysis showed increased numbers of PSCs expressed Galectin-1 (p < 0.01) and pancreatic cancers had increased CD3(+) T cell densities (p < 0.01) compared to normal pancreas or chronic pancreatitis samples. In coculture experiments, PSCs that overexpressed Galectin-1 induced apoptosis of CD4(+) T cells (p < 0.01) and CD8(+) T cells (p < 0.05) significantly, compared to normal PSCs. Knockdown of Galectin-1 in PSCs increased CD4(+) T cell (p < 0.01) and CD8(+) T cell viability (p < 0.05). Supernatants from T cells cocultured with PSCs that overexpressed Galectin-1 contained significantly increased levels of Th2 cytokines (IL-4 and IL-5, p < 0.01) and decreased Th1 cytokines (IL-2 and INF-γ, p < 0.01). However, the knockdown of PSC Galectin-1 had the opposite effect on Th1 and Th2 cytokine secretion. Our study suggests that the overexpression of Galectin-1 in PSCs induced T cell apoptosis and Th2 cytokine secretion, which may regulate PSC-dependent immunoprivilege in the pancreatic cancer microenvironment. Galectin-1 may provide a novel candidate target for pancreatic cancer immunotherapy.
Collapse
Affiliation(s)
- Dong Tang
- Department of General Surgery, Nanjing Medical University, Nanjing, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Unlike their protein "roommates" and their nucleic acid "cousins," carbohydrates remain an enigmatic arm of biology. The central reason for the difficulty in fully understanding how carbohydrate structure and biological function are tied is the nontemplate nature of their synthesis and the resulting heterogeneity. The goal of this collection of expert reviews is to highlight what is known about how carbohydrates and their binding partners-the microbial (non-self), tumor (altered-self), and host (self)-cooperate within the immune system, while also identifying areas of opportunity to those willing to take up the challenge of understanding more about how carbohydrates influence immune responses. In the end, these reviews will serve as specific examples of how carbohydrates are as integral to biology as are proteins, nucleic acids, and lipids. Here, we attempt to summarize general concepts on glycans and glycan-binding proteins (mainly C-type lectins, siglecs, and galectins) and their contributions to the biology of immune responses in physiologic and pathologic settings.
Collapse
Affiliation(s)
- Gabriel A. Rabinovich
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
- Laboratorio de Glicómica Funcional, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428 Ciudad de Buenos Aires, Argentina
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, VU University Medical Centre, Amsterdam, the Netherlands
| | - Brian A. Cobb
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| |
Collapse
|
25
|
Abstract
With the continued failures of both early diagnosis and treatment options for pancreatic cancer, it is now time to comprehensively evaluate the role of the immune system on the development and progression of pancreatic cancer. It is important to develop strategies that harness the molecules and cells of the immune system to treat this disease. This review will focus primarily on the role of immune cells in the development and progression of pancreatic ductal adenocarcinoma and to evaluate what is known about the interaction of immune cells with the tumor microenvironment and their role in tumor growth and metastasis. We will conclude with a brief discussion of therapy for pancreatic cancer and the potential role for immunotherapy. We hypothesize that the role of the immune system in tumor development and progression is tissue specific. Our hope is that better understanding of this process will lead to better treatments for this devastating disease.
Collapse
Affiliation(s)
- Megan B. Wachsmann
- Masters Program in Clinical Sciences, University of Texas Southwestern Medical Center at Dallas, 6000 Harry Hines Blvd, Dallas, Texas 75390-8576, USA
| | - Laurentiu M. Pop
- The Cancer Immunobiology Center, University of Texas Southwestern Medical Center at Dallas, 6000 Harry Hines Blvd, Dallas, Texas 75390-8576, USA
| | - Ellen S. Vitetta
- The Cancer Immunobiology Center, University of Texas Southwestern Medical Center at Dallas, 6000 Harry Hines Blvd, Dallas, Texas 75390-8576, USA
- The Departments of Microbiology and Immunology, University of Texas Southwestern Medical Center at Dallas, 6000 Harry Hines Blvd, Dallas, Texas 75390-8576, USA
| |
Collapse
|
26
|
Peng W. Intravenous immunoglobulin treatment on anti-GM1 antibodies associated neuropathies inhibits cholera toxin and galectin-1 binding to ganglioside GM1. Immunol Lett 2012; 143:146-51. [DOI: 10.1016/j.imlet.2012.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Revised: 12/30/2011] [Accepted: 01/13/2012] [Indexed: 12/17/2022]
|
27
|
Abstract
PURPOSE OF REVIEW Galectins, a family of evolutionarily conserved glycan-binding proteins, are involved in the regulation of multiple cellular processes (e.g. immunity, apoptosis, cellular signaling, development, angiogenesis and cellular growth) and diseases (e.g. chronic inflammation, autoimmunity, cancer, infection). We discuss here how galectins contribute to the development of specialized microenvironmental niches during hematopoiesis. RECENT FINDINGS An expanding set of data strengthens a role of galectins in hematopoietic differentiation, particularly by setting specific interactions between hematopoietic and stromal cells: galectin-5 is found in reticulocytes and erythroblastic islands suggesting a major role during erythropoiesis; galectin-1 and 3 are involved in thymocyte apoptosis, signaling and intrathymic migration; galectin-1 plays critical roles in pre-BII cells development. Moreover, expression of galectins-1 and 10 are differentially expressed during T-regulatory cell development. Various galectins (3, 4, 5, 9) have been reported to be regulated during myelopoiesis and traffic into intracellular compartments, dictating the cellular distribution of specific glycoproteins and glycosphingolipids. SUMMARY The abundance of galectins in both extracellular and intracellular compartments, their multifunctional properties and ability to form supramolecular signaling complexes with specific glycoconjugates, make these glycan-binding proteins excellent candidates to mediate interactions between hematopoietic cells and the stromal microenvironment. Their secretion by one of the cellular partners can modulate adhesive properties by cross-linking specific glycoconjugates present on stromal or hematopoietic cells, by favoring the formation of synapses or by creating glycoprotein lattices on the surface of different cell types. Their divergent specificities and affinities for various glycoproteins contribute to the multiplicity of their cellular interactions.
Collapse
|
28
|
Klyosov AA, Traber PG. Galectins in Disease and Potential Therapeutic Approaches. ACS SYMPOSIUM SERIES 2012. [DOI: 10.1021/bk-2012-1115.ch001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Anatole A. Klyosov
- Galectin Therapeutics, Inc., 4960 Peachtree Industrial Blvd., Suite 240, Norcross, Georgia 30071
| | - Peter G. Traber
- Galectin Therapeutics, Inc., 4960 Peachtree Industrial Blvd., Suite 240, Norcross, Georgia 30071
| |
Collapse
|
29
|
Verschuere T, De Vleeschouwer S, Lefranc F, Kiss R, Van Gool SW. Galectin-1 and immunotherapy for brain cancer. Expert Rev Neurother 2011; 11:533-43. [PMID: 21469926 DOI: 10.1586/ern.11.40] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The prognosis of patients diagnosed with high-grade glioma continues to be dismal in spite of multimodal treatment. Active specific immunotherapy by means of dendritic cell vaccination is considered to be a new promising concept that aims at generating an anti-tumoral immune response. However, it is now widely accepted that the success of immunotherapeutic strategies to promote tumor regression will rely not only on enhancing the effector arm of the immune response but also on downregulation of the counteracting tolerogenic signals. In this article, we summarize evidence that galectin-1, an evolutionarily conserved glycan-binding protein that is abundantly expressed in high-grade glioma, is an important player in glioma-mediated immune escape.
Collapse
Affiliation(s)
- Tina Verschuere
- Laboratory of Experimental Immunology, Catholic University Leuven, Leuven, Belgium
| | | | | | | | | |
Collapse
|
30
|
Lefranc F, Mathieu V, Kiss R. Galectin-1-mediated biochemical controls of melanoma and glioma aggressive behavior. World J Biol Chem 2011; 2:193-201. [PMID: 21949569 PMCID: PMC3178756 DOI: 10.4331/wjbc.v2.i9.193] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 08/23/2011] [Accepted: 08/30/2011] [Indexed: 02/06/2023] Open
Abstract
Gliomas and melanomas are associated with dismal prognosis because of their marked intrinsic resistance to proapoptotic stimuli, such as conventional chemotherapy and radiotherapy, as well as their ability to escape immune cell attacks. In addition, gliomas and melanomas display pronounced neoangiogenesis. Galectin-1 is a hypoxia-sensitive protein, which is abundantly secreted by glioma and melanoma cells, which displays marked proangiogenic effects. It also provides immune tolerogenic environments to melanoma and glioma cells through the killing of activated T cells that attack these tumor cells. Galectin-1 protects glioma and melanoma cells against cytotoxic insults (including chemotherapy and radiotherapy) through a direct role in the unfolded protein response. Altogether, these facts clearly point to galectin-1 as an important target to be combated in gliomas and melanomas in order to: (1) weaken the defenses of these two types of cancers against radiotherapy, chemotherapy and immunotherapy/vaccine therapy; and (2) reinforce antiangiogenic therapies. In the present article, we review the biochemical and molecular biology-related pathways controlled by galectin-1, which are actually beneficial for melanoma and glioma cells, and therefore detrimental for melanoma and glioma patients.
Collapse
Affiliation(s)
- Florence Lefranc
- Florence Lefranc, Véronique Mathieu, Robert Kiss, Laboratory of Toxicology, Faculty of Pharmacy, Université Libre de Bruxelles, Brussels 1050, Belgium
| | | | | |
Collapse
|
31
|
Guardia CMA, Gauto DF, Di Lella S, Rabinovich GA, Martí MA, Estrin DA. An integrated computational analysis of the structure, dynamics, and ligand binding interactions of the human galectin network. J Chem Inf Model 2011; 51:1918-30. [PMID: 21702482 DOI: 10.1021/ci200180h] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Galectins, a family of evolutionarily conserved animal lectins, have been shown to modulate signaling processes leading to inflammation, apoptosis, immunoregulation, and angiogenesis through their ability to interact with poly-N-acetyllactosamine-enriched glycoconjugates. To date 16 human galectin carbohydrate recognition domains have been established by sequence analysis and found to be expressed in several tissues. Given the divergent functions of these lectins, it is of vital importance to understand common and differential features in order to search for specific inhibitors of individual members of the human galectin family. In this work we performed an integrated computational analysis of all individual members of the human galectin family. In the first place, we have built homology-based models for galectin-4 and -12 N-terminus, placental protein 13 (PP13) and PP13-like protein for which no experimental structural information is available. We have then performed classical molecular dynamics simulations of the whole 15 members family in free and ligand-bound states to analyze protein and protein-ligand interaction dynamics. Our results show that all galectins adopt the same fold, and the carbohydrate recognition domains are very similar with structural differences located in specific loops. These differences are reflected in the dynamics characteristics, where mobility differences translate into entropy values which significantly influence their ligand affinity. Thus, ligand selectivity appears to be modulated by subtle differences in the monosaccharide binding sites. Taken together, our results may contribute to the understanding, at a molecular level, of the structural and dynamical determinants that distinguish individual human galectins.
Collapse
Affiliation(s)
- Carlos M A Guardia
- Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE-CONICET, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, C1428EHA Ciudad de Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
32
|
Mascanfroni ID, Cerliani JP, Dergan-Dylon S, Croci DO, Ilarregui JM, Rabinovich GA. Endogenous lectins shape the function of dendritic cells and tailor adaptive immunity: Mechanisms and biomedical applications. Int Immunopharmacol 2011; 11:833-41. [DOI: 10.1016/j.intimp.2011.01.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 01/14/2011] [Indexed: 11/27/2022]
|
33
|
Du C, Wang Y. The immunoregulatory mechanisms of carcinoma for its survival and development. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2011; 30:12. [PMID: 21255410 PMCID: PMC3031251 DOI: 10.1186/1756-9966-30-12] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 01/21/2011] [Indexed: 12/24/2022]
Abstract
The immune system in patients detects and eliminates tumor cells, but tumors still progress persistently. The mechanisms by which tumor cells survive under the pressure of immune surveillance are not fully understood. This review is to present the evidence from clinical studies, showing a significant correlation of clinicopathological features of carcinoma with: (1) the loss of classical human leukocyte antigen class I, (2) the up-regulation of non-classical human leukocyte antigen class I, pro-apoptotic Fas ligand and receptor-binding cancer antigen expressed on SiSo cells I, and (3) the formation of immunosuppressive microenvironment by up-regulation of transforming growth factor-beta, Galectin-1, inhibitory ligand B7s, indoleamine 2,3-dioxygenase and arginase, as well as by recruitment of tumor-induced myeloid-derived suppressor cells and regulatory T cells. All of these factors may together protect carcinoma cells from the immune-cytotoxicity.
Collapse
Affiliation(s)
- Caigan Du
- Department of Urologic Sciences, University of British Columbia, Vancouver, Canada.
| | | |
Collapse
|
34
|
Cerliani JP, Stowell SR, Mascanfroni ID, Arthur CM, Cummings RD, Rabinovich GA. Expanding the universe of cytokines and pattern recognition receptors: galectins and glycans in innate immunity. J Clin Immunol 2010; 31:10-21. [PMID: 21184154 DOI: 10.1007/s10875-010-9494-2] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 12/03/2010] [Indexed: 12/31/2022]
Abstract
Effective immunity relies on the recognition of pathogens and tumors by innate immune cells through diverse pattern recognition receptors (PRRs) that lead to initiation of signaling processes and secretion of pro- and anti-inflammatory cytokines. Galectins, a family of endogenous lectins widely expressed in infected and neoplastic tissues have emerged as part of the portfolio of soluble mediators and pattern recognition receptors responsible for eliciting and controlling innate immunity. These highly conserved glycan-binding proteins can control immune cell processes through binding to specific glycan structures on pathogens and tumors or by acting intracellularly via modulation of selective signaling pathways. Recent findings demonstrate that various galectin family members influence the fate and physiology of different innate immune cells including polymorphonuclear neutrophils, mast cells, macrophages, and dendritic cells. Moreover, several pathogens may actually utilize galectins as a mechanism of host invasion. In this review, we aim to highlight and integrate recent discoveries that have led to our current understanding of the role of galectins in host-pathogen interactions and innate immunity. Challenges for the future will embrace the rational manipulation of galectin-glycan interactions to instruct and shape innate immunity during microbial infections, inflammation, and cancer.
Collapse
Affiliation(s)
- Juan P Cerliani
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, 1428 Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|