1
|
Potential New Non-Invasive Therapy Using Artificial Oxygen Carriers for Pre-Eclampsia. J Funct Biomater 2017; 8:jfb8030032. [PMID: 28758949 PMCID: PMC5618283 DOI: 10.3390/jfb8030032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 07/16/2017] [Accepted: 07/18/2017] [Indexed: 01/10/2023] Open
Abstract
The molecular mechanisms of pre-eclampsia are being increasingly clarified in animals and humans. With the uncovering of these mechanisms, preventive therapy strategies using chronic infusion of adrenomedullin, vascular endothelial growth factor-121 (VEGF-121), losartan, and sildenafil have been proposed to block narrow spiral artery formation in the placenta by suppressing related possible factors for pre-eclampsia. However, although such preventive treatments have been partly successful, they have failed in ameliorating fetal growth restriction and carry the risk of possible side-effects of drugs on pregnant mothers. In this study, we attempted to develop a new symptomatic treatment for pre-eclampsia by directly rescuing placental ischemia with artificial oxygen carriers (hemoglobin vesicles: HbV) since previous data indicate that placental ischemia/hypoxia may alone be sufficient to lead to pre-eclampsia through up-regulation of sFlt-1, one of the main candidate molecules for the cause of pre-eclampsia. Using a rat model, the present study demonstrated that a simple treatment using hemoglobin vesicles for placental ischemia rescues placental and fetal hypoxia, leading to appropriate fetal growth. The present study is the first to demonstrate hemoglobin vesicles successfully decreasing maternal plasma levels of sFlt-1 and ameliorating fetal growth restriction in the pre-eclampsia rat model (p < 0.05, one-way ANOVA). In future, chronic infusion of hemoglobin vesicles could be a potential effective and noninvasive therapy for delaying or even alleviating the need for Caesarean sections in pre-eclampsia.
Collapse
|
2
|
Artificial oxygen carriers rescue placental hypoxia and improve fetal development in the rat pre-eclampsia model. Sci Rep 2015; 5:15271. [PMID: 26471339 PMCID: PMC4608007 DOI: 10.1038/srep15271] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/17/2015] [Indexed: 01/17/2023] Open
Abstract
Pre-eclampsia affects approximately 5% of all pregnant women and remains a major cause of maternal and fetal morbidity and mortality. The hypertension associated with pre-eclampsia develops during pregnancy and remits after delivery, suggesting that the placenta is the most likely origin of this disease. The pathophysiology involves insufficient trophoblast invasion, resulting in incomplete narrow placental spiral artery remodeling. Placental insufficiency, which limits the maternal-fetal exchange of gas and nutrients, leads to fetal intrauterine growth restriction. In this study, in our attempt to develop a new therapy for pre-eclampsia, we directly rescued placental and fetal hypoxia with nano-scale size artificial oxygen carriers (hemoglobin vesicles). The present study is the first to demonstrate that artificial oxygen carriers successfully treat placental hypoxia, decrease maternal plasma levels of anti-angiogenic proteins and ameliorate fetal growth restriction in the pre-eclampsia rat model.
Collapse
|
3
|
Jantzie LL, Corbett CJ, Firl DJ, Robinson S. Postnatal Erythropoietin Mitigates Impaired Cerebral Cortical Development Following Subplate Loss from Prenatal Hypoxia-Ischemia. Cereb Cortex 2015; 25:2683-95. [PMID: 24722771 PMCID: PMC4537428 DOI: 10.1093/cercor/bhu066] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Preterm birth impacts brain development and leads to chronic deficits including cognitive delay, behavioral problems, and epilepsy. Premature loss of the subplate, a transient subcortical layer that guides development of the cerebral cortex and axonal refinement, has been implicated in these neurological disorders. Subplate neurons influence postnatal upregulation of the potassium chloride co-transporter KCC2 and maturation of γ-amino-butyric acid A receptor (GABAAR) subunits. We hypothesized that prenatal transient systemic hypoxia-ischemia (TSHI) in Sprague-Dawley rats that mimic brain injury from extreme prematurity in humans would cause premature subplate loss and affect cortical layer IV development. Further, we predicted that the neuroprotective agent erythropoietin (EPO) could attenuate the injury. Prenatal TSHI induced subplate neuronal loss via apoptosis. TSHI impaired cortical layer IV postnatal upregulation of KCC2 and GABAAR subunits, and postnatal EPO treatment mitigated the loss (n ≥ 8). To specifically address how subplate loss affects cortical development, we used in vitro mechanical subplate ablation in slice cultures (n ≥ 3) and found EPO treatment attenuates KCC2 loss. Together, these results show that subplate loss contributes to impaired cerebral development, and EPO treatment diminishes the damage. Limitation of premature subplate loss and the resultant impaired cortical development may minimize cerebral deficits suffered by extremely preterm infants.
Collapse
MESH Headings
- Age Factors
- Animals
- Animals, Newborn
- Brain Injuries/drug therapy
- Brain Injuries/etiology
- Cell Death/drug effects
- Cerebral Cortex/drug effects
- Cerebral Cortex/growth & development
- Cerebral Cortex/pathology
- Disease Models, Animal
- Embryo, Mammalian
- Erythropoietin/therapeutic use
- Fetal Diseases/drug therapy
- Fetal Diseases/physiopathology
- Gene Expression Regulation, Developmental/drug effects
- Hypoxia-Ischemia, Brain/complications
- Hypoxia-Ischemia, Brain/pathology
- In Vitro Techniques
- Motor Activity/drug effects
- Motor Activity/physiology
- Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, GABA-A/metabolism
- Symporters/metabolism
- K Cl- Cotransporters
Collapse
Affiliation(s)
- Lauren L Jantzie
- Department of Neurosurgery, Kirby Center for Neurobiology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Christopher J Corbett
- Department of Neurosurgery, Kirby Center for Neurobiology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Daniel J Firl
- Department of Neurosurgery, Kirby Center for Neurobiology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Shenandoah Robinson
- Department of Neurosurgery, Kirby Center for Neurobiology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
4
|
Gavilanes AD, Strackx E, Kramer BW, Gantert M, Van den Hove D, Steinbusch H, Garnier Y, Cornips E, Steinbusch H, Zimmermann L, Vles J. Chorioamnionitis induced by intraamniotic lipopolysaccharide resulted in an interval-dependent increase in central nervous system injury in the fetal sheep. Am J Obstet Gynecol 2009; 200:437.e1-8. [PMID: 19217590 DOI: 10.1016/j.ajog.2008.12.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Revised: 07/20/2008] [Accepted: 12/04/2008] [Indexed: 11/25/2022]
Abstract
OBJECTIVE We quantified the impact of chorioamnionitis on both the white and gray matter structures of the preterm ovine central nervous system (CNS). STUDY DESIGN The CNS was studied at 125 days of gestation, either 2 or 14 days after the intraamniotic administration of 10 mg of lipopolysaccharide (LPS) (Escherichia coli) or saline. Apoptotic cells and cell types were analyzed in the brain, cerebellum, and spinal cord using flow cytometry. RESULTS Apoptosis and microglial activation increased in all regions with prolonged exposure to LPS-induced chorioamnionitis. Astrocytes were increased in the brain and cerebellum of LPS-exposed fetuses but not in the spinal cord. Mature oligodendrocytes decreased in the cerebral and cerebellar white matter, the cerebral cortex, caudate putamen, and hippocampus 14 days after LPS. Neurons in the cerebral cortex, hippocampus, and substantia nigra were reduced 14 days after LPS. CONCLUSION Fetal inflammation globally but differentially affected the CNS depending on the maturational stage of the brain region.
Collapse
|
5
|
Animal models of perinatal hypoxic-ischemic brain damage. Pediatr Neurol 2009; 40:156-67. [PMID: 19218028 DOI: 10.1016/j.pediatrneurol.2008.10.025] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 10/02/2008] [Accepted: 10/06/2008] [Indexed: 12/22/2022]
Abstract
Animal models are often presumably the first step in determining mechanisms underlying disease, and the approach and effectiveness of therapeutic interventions. Perinatal brain damage, however, evolves over months of gestation, during the rapid maturation of the fetal and newborn brain. Despite marked advances in our understanding of these processes and technologic advances providing an improved window on the timing and duration of injury, neonatal brain injury remains a "moving target" regarding our ability to "mimic" its processes in an animal model. Moreover, interfering with normal processes of development as part of a therapeutic intervention may do "more harm than good." Hence, controversy continues over which animal model can reflect human disease states. Numerous models have provided information regarding the pathophysiology of brain damage in term and preterm infants. Our challenges consist of identifying infants at greatest risk for permanent injury, identifying the timing of injury, and adapting therapies that provide more benefit than harm. A combination of appropriately suitable animal models to conduct these studies will bring us closer to understanding human perinatal damage and the means to treat it.
Collapse
|
6
|
Abstract
Neonatal hypoxic-ischemic encephalopathy, prematurity, sepsis-meningitis, and serious forms of complex congenital heart disease requiring infant heart surgery are just a few examples of disorders that share high mortality and morbidity rates. Newborn heart surgery represents a period of planned and deliberate ischemia-reperfusion injury, which is obliged to occur to cure or palliate complex forms of congenital heart disease. Advances in cardiothoracic surgical and anesthetic techniques, including cardiopulmonary bypass and deep hypothermic circulatory arrest, have substantially decreased mortality, expanding the horizon to address functional neurologic and cardiac outcomes in long-term survivors. Interest in the functional status of survivors now stretches beyond the newborn period to childhood, adolescence, and adulthood.
Collapse
Affiliation(s)
- Robert Ryan Clancy
- Department of Neurology, The University of Pennsylvania School of Medicine, PA, USA.
| |
Collapse
|
7
|
West T, Atzeva M, Holtzman DM. Pomegranate polyphenols and resveratrol protect the neonatal brain against hypoxic-ischemic injury. Dev Neurosci 2007; 29:363-72. [PMID: 17762204 PMCID: PMC3066259 DOI: 10.1159/000105477] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Accepted: 11/22/2006] [Indexed: 12/18/2022] Open
Abstract
A previous study from our lab has shown that the polyphenol-rich pomegranate juice can protect the neonatal mouse brain against hypoxic-ischemic (H-I) injury when given to mothers in their drinking water. To test the hypothesis that this protection is due to the polyphenols in the juice, we studied the effects of the pomegranate polyphenol extract in the same neonatal H-I model. To further explore the role of a specific polyphenol in neonatal H-I we investigated the effects of resveratrol. The neuroprotective effects of resveratrol have been demonstrated in adult models of stroke, but had not previously been examined in neonates. We show that pomegranate polyphenols and resveratrol reduce caspase-3 activation following neonatal H-I. Resveratrol reduced caspase-3 activation when given before the injury but not when given 3 h after the injury. In addition to preventing caspase-3 activation, resveratrol also reduced calpain activation. Finally, we show that resveratrol can protect against tissue loss measured at 7 days after the injury. These and other recent findings suggest that polyphenols should be further investigated as a potential treatment to decrease brain injury due to neonatal H-I.
Collapse
Affiliation(s)
- Tim West
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
8
|
Girard N, Confort-Gouny S, Schneider J, Barberet M, Chapon F, Viola A, Pineau S, Combaz X, Cozzone P. MR imaging of brain maturation. J Neuroradiol 2007; 34:290-310. [PMID: 17822767 DOI: 10.1016/j.neurad.2007.07.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Magnetic resonance imaging (MRI) is the imaging tool of choice to evaluate brain maturation and especially brain myelination. Magnetic resonance imaging also provides functional insight through diffusion images and proton spectroscopy. In this review the MRI techniques are analyzed for both pre- and postnatal periods. The origin of MR signal changes is also detailed in order to understand normal myelination evolution and the consequences on brain maturation of the different pathologies encountered prior and after birth. Because MRI is "blind" in terms of signal on conventional sequences after 2 years of age, a particular attention is given to diffusion images and proton spectroscopy of the developing brain.
Collapse
Affiliation(s)
- N Girard
- Department of Neuroradiology, hôpital de la Timone, université de la Méditerranée, Marseille, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Survivors of premature birth have a predilection for perinatal brain injury, especially to periventricular cerebral white matter. Periventricular white matter injury (PWMI) is now the most common cause of brain injury in preterm infants and the leading cause of chronic neurological morbidity. The spectrum of chronic PWMI includes focal cystic necrotic lesions (periventricular leukomalacia) and diffuse myelination disturbances. Recent neuroimaging studies support that the incidence of periventricular leukomalacia is declining, whereas focal or diffuse noncystic injury is emerging as the predominant lesion. In a significant number of infants, PWMI appears to be initiated by perturbations in cerebral blood flow that reflect anatomic and physiological immaturity of the vasculature. Ischemic cerebral white matter is susceptible to pronounced free radical-mediated injury that particularly targets immature stages of the oligodendrocyte lineage. Emerging experimental data supports that pronounced ischemia in the periventricular white matter is necessary but not sufficient to generate the initial injury that leads to PWMI. The developmental predilection for PWMI to occur during prematurity appears to be related to both the timing of appearance and regional distribution of susceptible oligodendrocyte progenitors. Injury to oligodendrocyte progenitors may contribute to the pathogenesis of PWMI by disrupting the maturation of myelin-forming oligodendrocytes. There has been substantial recent progress in the understanding of the cellular and molecular pathogenesis of PWMI. The oligodendrocyte progenitor is a key target for preventive strategies to reduce ischemic cerebral white matter injury in premature infants.
Collapse
Affiliation(s)
- Stephen A Back
- Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239-3098, USA.
| | | | | |
Collapse
|
10
|
Robinson S, Li Q, Dechant A, Cohen ML. Neonatal loss of gamma-aminobutyric acid pathway expression after human perinatal brain injury. J Neurosurg 2006; 104:396-408. [PMID: 16776375 PMCID: PMC1762128 DOI: 10.3171/ped.2006.104.6.396] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Perinatal brain injury leads to chronic neurological deficits in children. Damage to the premature brain produces white matter lesions (WMLs), but the impact on cortical development is less well defined. Gamma-aminobutyric acid(GABA)ergic neurons destined for the cerebral cortex migrate through the developing white matter and form the subplate during late gestation. The authors hypothesized that GABAergic neurons are vulnerable to perinatal systemic insults in premature infants, and that damage to these neurons contributes to impaired cortical development. METHODS An immunohistochemical analysis involving markers for oligodendrocytes, GABAergic neurons, axons, and apoptosis was performed on a consecutive series of 15 human neonatal telencephalon samples obtained postmortem from infants born at 25 to 32 weeks of gestation. The tissue samples were divided into two groups based on the presence or absence of WMLs by performing routine histological analyses. The expression of GABAergic neurons was compared between the two groups by using age-matched samples. Two-tailed t-tests were used for statistical analyses. Ten infants had WMLs and five did not. Significant losses of oligodendrocytes and axons and markedly increased apoptosis were appreciated in tissue samples from the infants with WMLs. Samples from infants with WMLs also showed significant losses of glutamic acid decarboxylase-67-positive cells and calretinin-positive cells, shorter neuropeptide Y-positive neurite lengths, and losses of cells expressing GABA(A)alpha1, GABA(B)R1, and N-acetylaspartate diethylamide NR1 receptors when these factors were compared with those in samples from infants without WMLs (all p < 0.02). CONCLUSIONS In addition to oligodendrocyte loss, axonal disruption, and excess apoptosis, a significant loss of telencephalon GABAergic neuron expression was found in neonatal brains with WMLs, compared with neonates' brains without WMLs. The loss of GABAergic subplate neurons in infants with WMLs may contribute to the pathogenesis of neurological deficits in children.
Collapse
Affiliation(s)
- Shenandoah Robinson
- Department of Neurosurgery, Division of Neuropathology, University Hospitals of Cleveland, Case Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.
| | | | | | | |
Collapse
|
11
|
Back SA, Riddle A, Hohimer AR. Role of instrumented fetal sheep preparations in defining the pathogenesis of human periventricular white-matter injury. J Child Neurol 2006; 21:582-9. [PMID: 16970848 DOI: 10.1177/08830738060210070101] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Periventricular white-matter injury is the major form of brain injury associated with prematurity and the leading cause of cerebral palsy in survivors of premature birth. Progress in understanding the pathogenesis of periventricular white-matter injury requires the development of animal models that are relevant to the unique physiology of the preterm human brain and that replicate the major neuropathologic features of human injury. The sheep is the most extensively studied true fetal preparation. The neurodevelopment of the preterm sheep fetus (0.65 gestation) is comparable to that of the preterm human between approximately 24 and 28 weeks. The size of the fetal sheep permits chronic instrumentation so that well-defined insults can be studied with reliable measurements of blood flow and metabolism in cerebral white-matter. We review here recent developments in the understanding of the role of cerebral hypoxia-ischemia and vulnerable oligodendrocyte progenitors in the pathogenesis of periventricular white-matter injury in the immature sheep fetus. We focus on recent developments in high-resolution spatially defined cerebral blood flow measurements in utero. We determined ovine white-matter maturation between 90 and 120 days' gestation, as defined by immunohistochemical localization of oligodendrocyte lineage-specific antibodies. There was considerable spatial and temporal heterogeneity in oligodendrocyte maturation in the immature periventricular white-matter. Oligodendrocyte maturation in the 90- to 105-day fetal sheep closely coincided with that of the preterm human during the high-risk period for white-matter injury. Hence, the immature state of the 90- to 105-day fetal periventricular white-matter is an optimal and dynamic developmental window to study the role of cellular-maturational factors in the pathogenesis of white-matter injury. We conclude with a review of the significant advantages of the instrumented fetal sheep to accelerate progress in the translation of preventive therapies for periventricular white-matter injury and cerebral palsy.
Collapse
Affiliation(s)
- Stephen A Back
- Department of Pediatrics, Oregon Health & Science University, Portland 97239-3098, USA.
| | | | | |
Collapse
|
12
|
Jette N, Coderre E, Nikolaeva MA, Enright PD, Iwata A, Smith DH, Jiang Q, Stys PK. Spatiotemporal distribution of spectrin breakdown products induced by anoxia in adult rat optic nerve in vitro. J Cereb Blood Flow Metab 2006; 26:777-86. [PMID: 16163297 DOI: 10.1038/sj.jcbfm.9600226] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hypoxic/ischemic and traumatic injury to central nervous system myelinated axons is heavily dependent on accumulation of Ca ions in the axoplasm, itself promoted by Na influx from the extracellular space. Given the high density of nodal Na channels, we hypothesized that nodes of Ranvier might be particularly vulnerable to Ca overload and subsequent damage, as this is the expected locus of maximal Na influx. Adult rat optic nerves were exposed to in vitro anoxia and analyzed immunohistochemically for the presence of spectrin breakdown. Cleavage of spectrin became detectable between 15 and 30 mins of anoxia, and increased homogeneously along the lengths of fibers; localized breakdown was not observed at nodes of Ranvier at any time point analyzed. Spectrin breakdown was also found in glial processes surrounding axons. Confocal imaging of axoplasmic Ca also revealed a gradual and nonlocalized increase as anoxia progressed, without evidence of Ca 'hot-spots' anywhere along the axons at any time between 0 and 30 mins of anoxic exposure in vitro. Calculations of Ca diffusion rates indicated that even if Ca entered or was released focally in axons, this ion would diffuse rapidly into the internodes and likely produce diffuse injury by activating Ca-dependent proteases. Western blot analysis for voltage-gated Na channel protein revealed that key functional proteins such as these are also degraded by anoxia/ischemia. Thus, proteolysis of structural and functional proteins will conspire to irreversibly injure central axons and render them nonfunctional, eventually leading to transection, degradation, and Wallerian degeneration.
Collapse
Affiliation(s)
- Nathalie Jette
- Ottawa Health Research Institute, Division of Neuroscience, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Kostovic I, Judas M. Prolonged coexistence of transient and permanent circuitry elements in the developing cerebral cortex of fetuses and preterm infants. Dev Med Child Neurol 2006; 48:388-93. [PMID: 16608549 DOI: 10.1017/s0012162206000831] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/26/2006] [Indexed: 01/26/2023]
Abstract
The aim of this paper is to evaluate correlative magnetic resonance imaging (MRI) and histological parameters of development of cortical afferents during pathfinding and target selection in transient fetal cerebral laminas in human fetuses and preterm infants. The transient fetal subplate zone, situated between the fetal white matter (i.e. intermediate zone) and the cortical plate, is the crucial laminar compartment for development of thalamocortical and corticocortical afferents. The prolonged coexistence of transient (endogenously active) and permanent (sensory-driven) circuitry within the transient fetal zones is a salient feature of the fetal and preterm cortex; this transient circuitry is the substrate of cerebral functions in preterm infants. Another transient aspect of organization of developing fibre pathways is the abundance of extracellular matrix and guidance molecules in periventricular crossroads of projection and corticocortical pathways. Both the subplate zone and periventricular crossroads are visible on MRI in vivo and in vitro. Hypoxic-ischaemic lesions of periventricular crossroads are the substrate for motor, sensory, and cognitive deficits after focal periventricular leukomalacia (PVL). Lesions of distal portions of the white matter and the subplate zone are the substrate for diffuse PVL. The neuronal elements in transient fetal zones form a developmental potential for plasticity after perinatal cerebral lesions.
Collapse
Affiliation(s)
- Ivica Kostovic
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.
| | | |
Collapse
|
14
|
Meng S, Qiao M, Scobie K, Tomanek B, Tuor UI. Evolution of magnetic resonance imaging changes associated with cerebral hypoxia-ischemia and a relatively selective white matter injury in neonatal rats. Pediatr Res 2006; 59:554-9. [PMID: 16549528 DOI: 10.1203/01.pdr.0000203099.40643.84] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We hypothesized that a combination of quantitative magnetic resonance imaging (MRI) sequences would detect a differential evolution of hypoxic-ischemic changes in white matter compared with gray matter in a recently developed model of unilateral mild cerebral hypoxia-ischemia in the 7-d-old rat. Using this model, which involved unilateral carotid artery occlusion and exposure to hypoxia for 45-50 min, maps of apparent diffusion coefficients of water (ADC), T1, T2, and cerebral blood flow (CBF) were acquired either before hypoxia-ischemia or at 1, 24, or 48 h and at 7 d post-hypoxia-ischemia followed by brain processing for histology. At 1 h post-hypoxia-ischemia, MRI changes in white matter ipsilateral to the hypoxia-ischemia were not as pronounced as those in gray matter. However, increases in T1, T2 and ADC and decreases in CBF within white matter enhanced over time, with changes being maximal at 48 h post-hypoxia-ischemia, whereas changes in the cortical gray matter normalized over this time. By 7 d post-hypoxia-ischemia, there were no differences in ADC, T1, T2, or CBF between hemispheres despite there being histologic changes in white matter within the hypoxic-ischemic hemisphere including increased glial proliferation and reactivity, reduced myelin basic protein, and increased cell death. The results demonstrate that increases in ADC and T2 observed subacutely in the days following hypoxia-ischemia are associated with rather selective white matter damage and suggest that diffuse white matter hyperintensities and increased ADC reported in infants are transient MRI changes post- hypoxia-ischemia.
Collapse
Affiliation(s)
- Shuzhen Meng
- Institute for Biodiagnostics, National Research Council of Canada, Calgary, Alberta, Canada T2N 4N1
| | | | | | | | | |
Collapse
|
15
|
Robinson S. Systemic prenatal insults disrupt telencephalon development: implications for potential interventions. Epilepsy Behav 2005; 7:345-63. [PMID: 16061421 PMCID: PMC1762129 DOI: 10.1016/j.yebeh.2005.06.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Accepted: 06/01/2005] [Indexed: 12/15/2022]
Abstract
Infants born prematurely are prone to chronic neurologic deficits including cerebral palsy, epilepsy, cognitive delay, behavioral problems, and neurosensory impairments. In affected children, imaging and neuropathological findings demonstrate significant damage to white matter. The extent of cortical damage has been less obvious. Advances in the understanding of telencephalon development provide insights into how systemic intrauterine insults affect the developing white matter, subplate, and cortex, and lead to multiple neurologic impairments. In addition to white matter oligodendrocytes and axons, other elements at risk for perinatal brain injury include subplate neurons, GABAergic neurons migrating through white matter and subplate, and afferents of maturing neurotransmitter systems. Common insults including hypoxia-ischemia and infection often affect the developing brain differently than the mature brain, and insults precipitate a cascade of damage to multiple neural lineages. Insights from development can identify potential targets for therapies to repair the damaged neonatal brain before it has matured.
Collapse
Affiliation(s)
- Shenandoah Robinson
- Pediatric Neurosurgery, Rainbow Babies and Children's Hospital, Case Research Institute, Case School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
16
|
Back SA, Luo NL, Mallinson RA, O'Malley JP, Wallen LD, Frei B, Morrow JD, Petito CK, Roberts CT, Murdoch GH, Montine TJ. Selective vulnerability of preterm white matter to oxidative damage defined by F2-isoprostanes. Ann Neurol 2005; 58:108-20. [PMID: 15984031 DOI: 10.1002/ana.20530] [Citation(s) in RCA: 193] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Periventricular white matter injury (PWMI) is the leading cause of cerebral palsy and chronic neurological disability in survivors of prematurity. Despite the large number of affected children, the pathogenetic mechanisms related to PWMI remain controversial. Through studies of 33 human autopsy brains, we determined that early PWMI was related to oxidative damage that particularly targeted the oligodendrocyte lineage, whereas other neuronal and glial cell types were markedly more resistant. F(2)-isoprostanes, an arachidinate metabolite/lipid peroxidation marker of oxidative damage, were significantly increased in early PWMI lesions but not in cerebral cortex. That deleterious lipid peroxidation accompanied early PWMI was supported by similar increases in F(2)-isoprostanes levels in the cerebral cortex from term infants with hypoxic-ischemic cortical injury. Detection of F(4)-neuroprostanes, a neuronal-specific oxidative damage marker, confirmed that neuroaxonal elements were resistant to injury in cerebral cortex and white matter. Significant protein nitration was not detected in PWMI lesions by 3-nitrotyrosine staining. Significant cellular degeneration was confirmed in early PWMI lesions by terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling and a marked depletion of oligodendrocyte progenitors of 71 +/- 8%. Hence, the predilection of preterm infants for PWMI is related to selective lipid peroxidation-mediated injury of cerebral white matter and targeted death of oligodendrocyte progenitors.
Collapse
Affiliation(s)
- Stephen A Back
- Department of Pediatrics, Oregon Health and Science University, Portland OR 97239-3098, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Loren DJ, Seeram NP, Schulman RN, Holtzman DM. Maternal dietary supplementation with pomegranate juice is neuroprotective in an animal model of neonatal hypoxic-ischemic brain injury. Pediatr Res 2005; 57:858-64. [PMID: 15774834 DOI: 10.1203/01.pdr.0000157722.07810.15] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Neonatal hypoxic-ischemic brain injury remains a significant cause of morbidity and mortality and lacks effective therapies for prevention and treatment. Recently, interest in the biology of polyphenol compounds has led to the discovery that dietary supplementation with foods rich in polyphenols (e.g. blueberries, green tea extract) provides neuroprotection in adult animal models of ischemia and Alzheimer's disease. We sought to determine whether protection of the neonatal brain against a hypoxic-ischemic insult could be attained through supplementation of the maternal diet with pomegranate juice, notable for its high polyphenol content. Mouse dams were provided ad libitum access to drinking water with pomegranate juice, at one of three doses, as well as plain water, sugar water, and vitamin C water controls during the last third of pregnancy and throughout the duration of litter suckling. At postnatal day 7, pups underwent unilateral carotid ligation followed by exposure to 8% oxygen for 45 min. Brain injury was assessed histologically after 1 wk (percentage of tissue area loss) and biochemically after 24 h (caspase-3 activity). Dietary supplementation with pomegranate juice resulted in markedly decreased brain tissue loss (>60%) in all three brain regions assessed, with the highest pomegranate juice dose having greatest significance (p < or = 0.0001). Pomegranate juice also diminished caspase-3 activation by 84% in the hippocampus and 64% in the cortex. Ellagic acid, a polyphenolic component in pomegranate juice, was detected in plasma from treated but not control pups. These results demonstrate that maternal dietary supplementation with pomegranate juice is neuroprotective for the neonatal brain.
Collapse
Affiliation(s)
- David J Loren
- Division of Neonatology, University of Washington, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
18
|
Fogliarini C, Chaumoitre K, Chapon F, Fernandez C, Lévrier O, Figarella-Branger D, Girard N. Assessment of cortical maturation with prenatal MRI. Part I: Normal cortical maturation. Eur Radiol 2005; 15:1671-85. [PMID: 15856237 DOI: 10.1007/s00330-005-2782-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Accepted: 04/07/2005] [Indexed: 01/02/2023]
Abstract
Cortical maturation, especially gyral formation, follows a temporospatial schedule and is a good marker of fetal maturation. Although ultrasonography is still the imaging method of choice to evaluate fetal anatomy, MRI has an increasingly important role in the detection of brain abnormalities, especially of cortical development. Knowledge of MRI techniques in utero with the advantages and disadvantages of some sequences is necessary, in order to try to optimize the different magnetic resonance sequences to be able to make an early diagnosis. The different steps of cortical maturation known from histology represent the background necessary for the understanding of maturation in order to be then able to evaluate brain maturation through neuroimaging. Illustrations of the normal cortical maturation are given for each step accessible to MRI for both the cerebral hemispheres and the posterior fossa.
Collapse
Affiliation(s)
- Céline Fogliarini
- Centre de Résonance Magnétique Biologique et Médicale, Faculté Timone, Marseille, France
| | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Approximately 10% of newborns are born prematurely. Of these children, more than 10% will sustain neurological injuries leading to significant learning disabilities, cerebral palsy, or mental retardation, with very low birth weight infants having an even higher incidence of brain injury. Whereas intraventricular hemorrhage was the most common form of serious neurological injury a decade ago, periventricular white matter injury (PWMI) is now the most common cause of brain injury in preterm infants. The spectrum of chronic PWMI includes focal cystic necrotic lesions (periventricular leukomalacia; PVL) and diffuse myelination disturbances. Recent neuroimaging studies support that the incidence of PVL is declining, whereas diffuse cerebral white matter injury is emerging as the predominant lesion. Factors that predispose to PVL include prematurity, hypoxia, ischemia, and inflammation. It is believed that injury to oligodendrocyte (OL) progenitors contributes to the pathogenesis of myelination disturbances in PWMI by disrupting the maturation of myelin-myelin-forming oligodendrocytes. Other potential mechanisms of injury include activation of microglia and axonal damage. Chemical mediators that may contribute to white matter injury include reactive oxygen (ROS) and nitrogen species (RNS), glutamate, cytokines, and adenosine. As our understanding of the pathogenesis of PWMI improves, it is anticipated that new strategies for directly preventing brain injury in premature infants will evolve.
Collapse
Affiliation(s)
- Stephen A Back
- Department of Pediatrics, Oregon Health Science University, Portland, OR, USA
| | | |
Collapse
|
20
|
Qiao M, Meng S, Scobie K, Foniok T, Tuor UI. Magnetic resonance imaging of differential gray versus white matter injury following a mild or moderate hypoxic-ischemic insult in neonatal rats. Neurosci Lett 2004; 368:332-6. [PMID: 15364422 DOI: 10.1016/j.neulet.2004.07.065] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2004] [Revised: 07/23/2004] [Accepted: 07/23/2004] [Indexed: 12/31/2022]
Abstract
Selective white matter injury in the pre-mature infants suggests it has a greater susceptibility to hypoxia-ischemia. To investigate whether white matter injury would predominate following a mild hypoxic-ischemic insult, 7-day-old rats underwent either mild or moderate hypoxia-ischemia and magnetic resonance imaging 24 h later. Mild and moderate hypoxia-ischemia were produced by unilateral carotid artery occlusion plus exposure to hypoxia for either 45-50 or 90 min at ambient temperatures of 34.5 or 35.5 degrees C, respectively. Following mild hypoxia-ischemia, there was a significant increase in T(1) and T(2) within periventricular white matter (e.g. corpus callosum) in the hemisphere ipsilateral to the occlusion compared to that contralaterally and less of an increase within gray matter (e.g. cortex and striatum). This corresponded to relatively selective white matter injury detected histologically. Following a moderate hypoxia-ischemia, both gray and white matter was severely injured with marked increases in T(1) and T(2) occurring in both white and gray matter regions ipsilateral to the hypoxia-ischemia. We conclude that a mild insult, consisting of a short duration of hypoxia-ischemia at a slightly lower body temperature than a moderate hypoxic-ischemic insult, produces enhanced injury in white matter and a relative sparing of gray matter.
Collapse
Affiliation(s)
- Min Qiao
- Institute for Biodiagnostics, National Research Council of Canada, B153, 3330 Hospital Dr. NW, Calgary, Alta., Canada T2N 4N1
| | | | | | | | | |
Collapse
|
21
|
Abstract
UNLABELLED Periventricular leucomalacia is a condition that causes lifelong disability and considerable economic burden. It occurs in premature infants of less than 32 weeks gestation due to their unique anatomical features. The white matter of these infants is poorly vascularised and contains oligodendrocyte progenitors (pre-oligodendrocytes), which are sensitive to the effects of ischaemia and infection. Only recently have newer imaging techniques identified both a diffuse and focal component of white matter damage. The most immature infants with diffuse injury develop white matter atrophy and ventriculomegaly; others with focal injury have cyst formation, resorption and gliosis. Since the original description by Virchow in 1867, much progress has been made in establishing the underlying cause of this condition. It is an ischaemia reperfusion injury of the white matter, free radicals being the final pathway to pre-oligodendrocyte destruction and impaired myelination. Contributory factors include hypotension, hypocarbia and infection. CONCLUSION new imaging and EEG techniques are likely to improve our ability to predict disability in this vulnerable group of infants. Research is needed into blocking the pathway to pre-oligodendrocyte destruction and the safe use of free radical scavengers.
Collapse
MESH Headings
- Chorioamnionitis/complications
- Female
- Humans
- Infant, Newborn
- Infant, Premature
- Infant, Premature, Diseases/etiology
- Infant, Premature, Diseases/pathology
- Infant, Premature, Diseases/physiopathology
- Infant, Premature, Diseases/prevention & control
- Leukomalacia, Periventricular/etiology
- Leukomalacia, Periventricular/pathology
- Leukomalacia, Periventricular/physiopathology
- Leukomalacia, Periventricular/prevention & control
- Magnetic Resonance Imaging
- Pregnancy
- Ultrasonography
Collapse
|
22
|
Derrick M, Luo NL, Bregman JC, Jilling T, Ji X, Fisher K, Gladson CL, Beardsley DJ, Murdoch G, Back SA, Tan S. Preterm fetal hypoxia-ischemia causes hypertonia and motor deficits in the neonatal rabbit: a model for human cerebral palsy? J Neurosci 2004; 24:24-34. [PMID: 14715934 PMCID: PMC6729589 DOI: 10.1523/jneurosci.2816-03.2004] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Prenatal hypoxia-ischemia to the developing brain has been strongly implicated in the subsequent development of the hypertonic motor deficits of cerebral palsy (CP) in premature and full-term infants who present with neonatal encephalopathy. Despite the enormous impact of CP, there is no animal model that reproduces the hypertonia and motor disturbances of this disorder. We report a rabbit model of in utero placental insufficiency, in which hypertonia is accompanied by marked abnormalities in motor control. Preterm fetuses (67-70% gestation) were subjected to sustained global hypoxia. The dams survived and gave spontaneous birth. At postnatal day 1, the pups that survived were subjected to a battery of neurobehavioral tests developed specifically for these animals, and the tests were videotaped and scored in a masked manner. Newborn pups of hypoxic groups displayed significant impairment in multiple tests of spontaneous locomotion, reflex motor activity, and the coordination of suck and swallow. Increased tone of the limbs at rest and with active flexion and extension were observed in the survivors of the preterm insult. Histopathological studies identified a distinct pattern of acute injury to subcortical motor pathways that involved the basal ganglia and thalamus. Persistent injury to the caudate putamen and thalamus at P1 was significantly correlated with hypertonic motor deficits in the hypoxic group. Antenatal hypoxia-ischemia at preterm gestation results in hypertonia and abnormalities in motor control. These findings provide a unique behavioral model to define mechanisms and sequelae of perinatal brain injury from antenatal hypoxia-ischemia.
Collapse
Affiliation(s)
- Matthew Derrick
- Department of Pediatrics, Northwestern University, and Evanston Northwestern Healthcare, Evanston, Illinois 60201, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Lee DR, Helps SC, Gibbins IL, Nilsson M, Sims NR. Losses of NG2 and NeuN immunoreactivity but not astrocytic markers during early reperfusion following severe focal cerebral ischemia. Brain Res 2003; 989:221-30. [PMID: 14556944 DOI: 10.1016/s0006-8993(03)03373-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The ability of glia to recover essential functions following a period of focal cerebral ischemia is likely to be one important factor influencing the severity of tissue damage that subsequently develops. In this study, we have compared changes in immunoreactivity of markers specific for astrocytes, NG2-positive glia and neurons in tissue subregions during early reperfusion following 3 h of middle cerebral artery occlusion to provide insights into possible differential susceptibility of these cell populations. Under the conditions used, infarction ultimately encompasses most of the perfusion territory of the occluded artery. Nonetheless, alterations in immunoreactivity during the first 3 h of recirculation were restricted to brain regions that had been subjected to severe ischemia. In the striatum, cellular immunoreactivity for NG2 and neuronal markers, NeuN and microtubule-associated protein 2, was greatly reduced by 1 h of reperfusion and declined further at 3 h. NG2 labeling of blood vessels in the striatum appeared post-ischemically, mimicking expression of this protein during development. Less severe changes were seen in the neuronal markers in overlying cerebral cortex. In contrast to the losses of other cellular proteins, immunoreactivity for the astrocytic marker, glial fibrillary acidic protein, was preserved in all tissue that had been subjected to severe ischemia and labeling of another astrocytic protein, glutamine synthetase, was increased by 3 h of reperfusion. These findings provide the first evidence of marked sensitivity of NG2-immunoreactivity to severe ischemia and suggest a greater initial resistance of astrocytes compared with neurons and NG2-positive glia to ischemia-reperfusion damage.
Collapse
Affiliation(s)
- Diane R Lee
- Centre for Neuroscience and Department of Medical Biochemistry, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia.
| | | | | | | | | |
Collapse
|
24
|
Cai Z, Pang Y, Lin S, Rhodes PG. Differential roles of tumor necrosis factor-alpha and interleukin-1 beta in lipopolysaccharide-induced brain injury in the neonatal rat. Brain Res 2003; 975:37-47. [PMID: 12763591 DOI: 10.1016/s0006-8993(03)02545-9] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Increasing data provide support for the hypothesis that inflammatory cytokines mediate inflammation-induced injury to developing white matter. In the present study, roles of tumor necrosis factor-alpha (TNFalpha) and interleukin-1 beta (IL-1beta) in mediating lipopolysaccharide (LPS)-induced brain injury were investigated by co-administration of LPS with IL-1 receptor antagonist (IL-1ra) or TNFalpha antibody in the 5-day-old rat brain. Intracerebral injection of LPS and other agents was performed in a stereotaxic apparatus at the location of 1.0 mm posterior and 1.0 mm lateral to the bregma, and 2.0 mm deep to the skull surface at the left hemisphere. Brain injury was examined in brain sections 3 and 11 days after LPS injection. LPS-induced inflammatory responses were evidenced by great increases in TNFalpha and IL-1beta concentrations in the neonatal rat brain 6 h after LPS injection. White matter rarefaction was observed in 71% (five out of seven) of the rat brains 3 days after LPS injection and bilateral ventricle dilation was found in 71% (five out of seven) of the P8 rat brains and in 100% of the P16 rat brains (four out of four). These alterations were not found in the control rat brains. No apparent histological changes in gray matter were observed in the LPS-injected rat brains. LPS injection also resulted in injuries to oligodendrocytes (OLs) and hypomyelination, as indicated by reduced immunostaining for O4 and myelin basic protein (MBP). Increased astrogliosis, as indicated by increased glial fibrillary acidic protein (GFAP) immunostaining, was also observed in the LPS-injected, but not the control rat brain. Co-administration of LPS with IL-1ra, but not with TNFalpha antibody, significantly attenuated LPS-induced white matter injury, as indicated by decreases in ventricle dilation, white matter rarefaction, GFAP positive staining and by improved O4 and MBP immunostaining. Co-administration of LPS with IL-1ra significantly reduced LPS-induced elevation of caspase-3 activity in the rat brain. While TNFalpha antibody had no effect on LPS-induced elevation of caspase-3 activity, co-administration of LPS with TNFalpha antibody partially, but significantly, decreased LPS-stimulated increase in IL-1beta in the neonatal rat brain. These data suggest that IL-1beta may play an important role in mediating LPS-induced brain injury and TNFalpha may have complicated, probably dual, effects in LPS-induced brain injury.
Collapse
Affiliation(s)
- Zhengwei Cai
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| | | | | | | |
Collapse
|
25
|
Duncan JR, Cock ML, Scheerlinck JPY, Westcott KT, McLean C, Harding R, Rees SM. White matter injury after repeated endotoxin exposure in the preterm ovine fetus. Pediatr Res 2002; 52:941-9. [PMID: 12438674 DOI: 10.1203/00006450-200212000-00021] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Intrauterine infection has been linked to neurologic injury in preterm infants. However, a reproducible model of white matter injury in the preterm fetus in a long gestation species that can be monitored in utero is currently unavailable. Thus, our objective was to determine the effects of bacterial endotoxin (lipopolysaccharide, LPS) on physiologic and inflammatory responses and brain structure in the preterm ovine fetus. At 0.7 of gestation, six catheterized fetuses received three to five intravenous injections of LPS (1 micro g/kg) over 5 d; seven fetuses served as controls. Fetal responses were monitored and brain tissue examined 10-11 d after the initial LPS injection. After LPS on d 1 and 2, fetuses became transiently hypoxemic and hypotensive and blood IL-6 levels were increased, but these responses were smaller or absent after subsequent LPS exposures. Neural injury was observed in all LPS-exposed fetuses, most prominently in the cerebral white matter. Injury ranged from diffuse subcortical damage to periventricular leukomalacia, and in the brainstem the cross-sectional area of the corticospinal tract was reduced by 30%. Thus, repeated exposure of the preterm ovine fetus to LPS causes neuropathology resembling that of cerebral palsy and provides a robust model for exploring the etiology, prevention, and treatment of white matter damage.
Collapse
Affiliation(s)
- Jhodie R Duncan
- Department of Anatomy and Cell Biology, University of Melbourne, Melbourne, Victoria, Australia.
| | | | | | | | | | | | | |
Collapse
|
26
|
Hüppi PS. Advances in postnatal neuroimaging: relevance to pathogenesis and treatment of brain injury. Clin Perinatol 2002; 29:827-56. [PMID: 12516748 DOI: 10.1016/s0095-5108(02)00049-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The human brain is susceptible to a wide variety of insults. The permanent residua of these abnormalities are represented in dysfunction of one or more areas of neurodevelopment. A full understanding of normal brain development, mechanisms of brain injury, and consequences for subsequent brain development is required to determine which infants are at risk for neurodevelopmental handicap, and to monitor the effects of new treatments and management regimens designed to prevent these disabilities. Advanced magnetic resonance techniques, such as quantitative morphometric magnetic resonance techniques, diffusion-weighted magnetic resonance techniques, and magnetic resonance spectroscopy applied to the study of early human brain development have given us a better understanding of the pathophysiologic mechanisms of brain injury and its effects on subsequent brain development. Magnetic resonance imaging has provided an invaluable tool for the study of the fetal and newborn brain in vivo.
Collapse
Affiliation(s)
- Petra S Hüppi
- Child Development Unit, Department of Pediatrics, Childrens Hospital, 6 rue Willy-Donze, University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
27
|
Rezaie P, Dean A. Periventricular leukomalacia, inflammation and white matter lesions within the developing nervous system. Neuropathology 2002; 22:106-32. [PMID: 12416551 DOI: 10.1046/j.1440-1789.2002.00438.x] [Citation(s) in RCA: 257] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Periventricular leukomalacia (PVL) occurring in premature infants, represents a major precursor for neurological and intellectual impairment, and cerebral palsy in later life. The disorder is characterized by multifocal areas of necrosis found deep in the cortical white matter, which are often symmetrical and occur adjacent to the lateral ventricles. There is no known cure for PVL. Factors predisposing to PVL include birth trauma, asphyxia and respiratory failure, cardiopulmonary defects, premature birth/low birthweight, associated immature cerebrovascular development and lack of appropriate autoregulation of cerebral blood flow in response to hypoxic-ischemic insults. The intrinsic vulnerability of oligodendrocyte precursors is considered as central to the pathogenesis of PVL. These cells are susceptible to a variety of injurious stimuli including free radicals and excitotoxicity induced by hypoxic-ischemic injury (resulting from cerebral hypoperfusion), lack of trophic stimuli, as well as secondary associated events involving microglial and astrocytic activation and the release of pro-inflammatory cytokines TNF-alpha and IL-6. It is yet unclear whether activated astrocytes and microglia act as principal participants in the development of PVL lesions, or whether they are representatives of an incidental pathological response directed towards repair of tissue injury in PVL. Nevertheless, the accumulated evidence points to a pathological contribution of microglia towards damage. The topography of lesions in PVL most likely reflects a combination of the relatively immature cerebrovasculature together with a failure in perfusion and/or hypoxia during the greatest period of vulnerability occurring around mid-to-late gestation. Mechanisms underlying the pathogenesis of PVL have so far been related to prenatal ischemic injury to the brain initiated within the third trimester, which result in global cognitive and developmental delay and motor disturbances. Over the past few years, several epidemiological and experimental studies have implicated intrauterine infection and chorioamnionitis as causative in the pathogenesis of PVL. In particular, recent investigations have shown that inflammatory responses in the fetus and neonate can contribute towards neonatal brain injury and development-related disabilities including cerebral palsy. This review presents current concepts on the pathogenesis of PVL and emphasizes the increasing evidence for an inflammatory pathogenic component to this disorder, either resulting from hypoxic-ischemic injury or from infection. These findings provide the basis for clinical approaches targeted at protecting the premature brain from inflammatory damage, which may prove beneficial for treating PVL, if identified early in pathogenesis.
Collapse
Affiliation(s)
- Payam Rezaie
- Department of Neuropathology, Institute of Psychiatry, King's College London, UK.
| | | |
Collapse
|