1
|
Matsumura M, Fujihara H, Maita K, Miyakawa M, Sakai Y, Nakayama R, Ito Y, Hasebe M, Kawaguchi K, Hamada Y. Combinatorial Effects of Cisplatin and PARP Inhibitor Olaparib on Survival, Intestinal Integrity, and Microbiome Modulation in Murine Model. Int J Mol Sci 2025; 26:1191. [PMID: 39940959 PMCID: PMC11818058 DOI: 10.3390/ijms26031191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/25/2025] [Accepted: 01/26/2025] [Indexed: 02/16/2025] Open
Abstract
This study investigated the effects of the poly (ADP-ribose) polymerase (PARP) inhibitor Olaparib, alone and in combination with cisplatin, on intestinal integrity, survival, and microbiome composition using a murine model. Statistical analyses were conducted using one-way analysis of variance with Bonferroni correction for multiple comparisons, considering p-values of <0.05 as statistically significant. Microbiome profiling was performed using Qiime 2 software. Histopathological and microbiome analyses revealed Olaparib's protective effects on intestinal integrity, mitigating cisplatin-induced damage. The single administration of cisplatin caused significant histological damage, biochemical disruptions, and dysbiosis, characterized by an increase in pro-inflammatory microbiome, such as Clostridium_sensu_stricto_1, and a decrease in beneficial short-chain fatty acid (SCFA)-producing microbiome. Conversely, the single administration of Olaparib was associated with an increase in SCFA-producing microbiome, such as Lachnospiraceae NK4A136, and exhibited minimal toxicity. The combination administration showed complicated outcomes, as follows: reduced cisplatin-induced cytotoxicity and increased SCFA-producing microbiome ratios, yet the long-term effects revealed reduced survival rates in the cisplatin group and sustained weight gain suppression. These findings emphasize Olaparib's potential in enhancing intestinal barrier integrity, reducing inflammation, and positively modulating microbiome diversity. However, the entangled pharmacodynamic interactions in the combination administration underscore the need for further investigation. The study highlights the potential of microbiome-targeted interventions in improving therapeutic outcomes for both cancer treatment and inflammatory bowel disease management.
Collapse
Affiliation(s)
- Mitsuki Matsumura
- Department of Oral and Maxillofacial Surgery, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Kanagawa, Japan; (M.M.)
| | - Hisako Fujihara
- Department of Oral and Maxillofacial Surgery, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Kanagawa, Japan; (M.M.)
- Department of Oral Hygiene, Tsurumi Junior College, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Kanagawa, Japan
| | - Kanna Maita
- Department of Oral and Maxillofacial Surgery, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Kanagawa, Japan; (M.M.)
| | - Moeko Miyakawa
- Department of Oral and Maxillofacial Surgery, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Kanagawa, Japan; (M.M.)
| | - Yushi Sakai
- Department of Oral and Maxillofacial Surgery, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Kanagawa, Japan; (M.M.)
| | - Ryoko Nakayama
- Department of Pathology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Kanagawa, Japan
| | - Yumi Ito
- Department of Diagnostic Pathology, Tsurumi University Dental Hospital, Yokohama 230-8501, Kanagawa, Japan
| | - Mitsuhiko Hasebe
- Department of Oral and Maxillofacial Surgery, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Kanagawa, Japan; (M.M.)
| | - Koji Kawaguchi
- Department of Oral and Maxillofacial Surgery, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Kanagawa, Japan; (M.M.)
| | - Yoshiki Hamada
- Department of Oral and Maxillofacial Surgery, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Kanagawa, Japan; (M.M.)
| |
Collapse
|
2
|
Tian X, Qin Z, Zhao Y, Wen J, Lan T, Zhang L, Wang F, Qin D, Yu K, Zhao A, Hu Z, Yao Y, Ni Z, Sun Q, De Smet I, Peng H, Xin M. Stress granule-associated TaMBF1c confers thermotolerance through regulating specific mRNA translation in wheat (Triticum aestivum). THE NEW PHYTOLOGIST 2022; 233:1719-1731. [PMID: 34787921 PMCID: PMC9300156 DOI: 10.1111/nph.17865] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/07/2021] [Indexed: 05/19/2023]
Abstract
Heat stress is a major limiting factor for global wheat production and causes dramatic yield loss worldwide. The TaMBF1c gene is upregulated in response to heat stress in wheat. Understanding the molecular mechanisms associated with heat stress responses will pave the way to improve wheat thermotolerance. Through CRISPR/Cas9-based gene editing, polysome profiling coupled with RNA-sequencing analysis, and protein-protein interactions, we show that TaMBF1c conferred heat response via regulating a specific gene translation in wheat. The results showed that TaMBF1c is evolutionarily conserved in diploid, tetraploid and hexaploid wheat species, and its knockdown and knockout lines show increased heat sensitivity. TaMBF1c is colocalized with the stress granule complex and interacts with TaG3BP. TaMBF1c affects the translation efficiency of a subset of heat responsive genes, which are significantly enriched in the 'sequence-specific DNA binding' term. Moreover, gene expression network analysis demonstrated that TaMBF1c is closely associated with the translation of heat shock proteins. Our findings reveal a contribution of TaMBF1c in regulating the heat stress response via the translation process, and provide a new target for improving heat tolerance in wheat breeding programs.
Collapse
Affiliation(s)
- Xuejun Tian
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE)Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijing100193China
| | - Zhen Qin
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE)Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijing100193China
| | - Yue Zhao
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE)Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijing100193China
| | - Jingjing Wen
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE)Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijing100193China
| | - Tianyu Lan
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE)Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijing100193China
| | - Liyuan Zhang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE)Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijing100193China
| | - Fei Wang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE)Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijing100193China
| | - Dandan Qin
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE)Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijing100193China
| | - Kuohai Yu
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE)Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijing100193China
| | - Aiju Zhao
- Hebei Academy of Agriculture and Forest SciencesShijiazhuang050035China
| | - Zhaorong Hu
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE)Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijing100193China
| | - Yingyin Yao
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE)Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijing100193China
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE)Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijing100193China
| | - Qixin Sun
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE)Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijing100193China
| | - Ive De Smet
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentB‐9052Belgium
- VIB Center for Plant Systems BiologyGhentB‐9052Belgium
| | - Huiru Peng
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE)Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijing100193China
| | - Mingming Xin
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE)Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijing100193China
| |
Collapse
|
3
|
Meng S, Alanazi R, Ji D, Bandura J, Luo ZW, Fleig A, Feng ZP, Sun HS. Role of TRPM7 kinase in cancer. Cell Calcium 2021; 96:102400. [PMID: 33784560 DOI: 10.1016/j.ceca.2021.102400] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/18/2021] [Accepted: 03/20/2021] [Indexed: 01/09/2023]
Abstract
Cancer is the second leading cause of death worldwide and accounted for an estimated 9.6 million deaths, or 1 in 6 deaths, in 2018. Despite recent advances in cancer prevention, diagnosis, and treatment strategies, the burden of this disease continues to grow with each year, with dire physical, emotional, and economic consequences for all levels of society. Classic characteristics of cancer include rapid, uncontrolled cell proliferation and spread of cancerous cells to other parts of the body, a process known as metastasis. Transient receptor potential melastatin 7 (TRPM7), a Ca2+- and Mg2+-permeable nonselective divalent cation channel defined by the atypical presence of an α-kinase within its C-terminal domain, has been implicated, due to its modulation of Ca2+ and Mg2+ influx, in a wide variety of physiological and pathological processes, including cancer. TRPM7 is overexpressed in several cancer types and has been shown to variably increase cellular proliferation, migration, and invasion of tumour cells. However, the relative contribution of TRPM7 kinase domain activity to cancer as opposed to ion flux through its channel pore remains an area of active discovery. In this review, we describe the specific role of the TRPM7 kinase domain in cancer processes as well as mechanisms of regulation and inhibition of the kinase domain.
Collapse
Affiliation(s)
- Selena Meng
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada; Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada
| | - Rahmah Alanazi
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada; Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada
| | - Delphine Ji
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada; Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada
| | - Julia Bandura
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada
| | - Zheng-Wei Luo
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada; Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada
| | - Andrea Fleig
- Center for Biomedical Research at The Queen's Medical Center and John A. Burns School of Medicine and Cancer Center at the University of Hawaii, Honolulu, HI, 96720, USA
| | - Zhong-Ping Feng
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada.
| | - Hong-Shuo Sun
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada; Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada; Department of Pharmacology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada; Leslie Dan Faculty of Pharmacy, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada.
| |
Collapse
|
4
|
Kerr J. Early Growth Response Gene Upregulation in Epstein-Barr Virus (EBV)-Associated Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). Biomolecules 2020; 10:biom10111484. [PMID: 33114612 PMCID: PMC7692278 DOI: 10.3390/biom10111484] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 02/06/2023] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a chronic multisystem disease exhibiting a variety of symptoms and affecting multiple systems. Psychological stress and virus infection are important. Virus infection may trigger the onset, and psychological stress may reactivate latent viruses, for example, Epstein-Barr virus (EBV). It has recently been reported that EBV induced gene 2 (EBI2) was upregulated in blood in a subset of ME/CFS patients. The purpose of this study was to determine whether the pattern of expression of early growth response (EGR) genes, important in EBV infection and which have also been found to be upregulated in blood of ME/CFS patients, paralleled that of EBI2. EGR gene upregulation was found to be closely associated with that of EBI2 in ME/CFS, providing further evidence in support of ongoing EBV reactivation in a subset of ME/CFS patients. EGR1, EGR2, and EGR3 are part of the cellular immediate early gene response and are important in EBV transcription, reactivation, and B lymphocyte transformation. EGR1 is a regulator of immune function, and is important in vascular homeostasis, psychological stress, connective tissue disease, mitochondrial function, all of which are relevant to ME/CFS. EGR2 and EGR3 are negative regulators of T lymphocytes and are important in systemic autoimmunity.
Collapse
Affiliation(s)
- Jonathan Kerr
- Department of Microbiology, Norfolk & Norwich University Hospital (NNUH), Colney Lane, Norwich, Norfolk NR4 7UY, UK
| |
Collapse
|
5
|
MNase Profiling of Promoter Chromatin in Salmonella typhimurium-Stimulated GM12878 Cells Reveals Dynamic and Response-Specific Nucleosome Architecture. G3-GENES GENOMES GENETICS 2020; 10:2171-2178. [PMID: 32404364 PMCID: PMC7341138 DOI: 10.1534/g3.120.401266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The nucleosome is the primary unit of chromatin structure and commonly imputed as a regulator of nuclear events, although the exact mechanisms remain unclear. Recent studies have shown that certain nucleosomes can have different sensitivities to micrococcal nuclease (MNase) digestion, resulting in the release of populations of nucleosomes dependent on the concentration of MNase. Mapping MNase sensitivity of nucleosomes at transcription start sites genome-wide reveals an important functional nucleosome organization that correlates with gene expression levels and transcription factor binding. In order to understand nucleosome distribution and sensitivity dynamics during a robust genome response, we mapped nucleosome position and sensitivity using multiple concentrations of MNase. We used the innate immune response as a model system to understand chromatin-mediated regulation. Herein we demonstrate that stimulation of a human lymphoblastoid cell line (GM12878) with heat-killed Salmonella typhimurium (HKST) results in changes in nucleosome sensitivity to MNase. We show that the HKST response alters the sensitivity of -1 nucleosomes at highly expressed promoters. Finally, we correlate the increased sensitivity with response-specific transcription factor binding. These results indicate that nucleosome sensitivity dynamics reflect the cellular response to HKST and pave the way for further studies that will deepen our understanding of the specificity of genome response.
Collapse
|
6
|
Inhibition of TRPM7 blocks MRTF/SRF-dependent transcriptional and tumorigenic activity. Oncogene 2019; 39:2328-2344. [PMID: 31844251 DOI: 10.1038/s41388-019-1140-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 11/24/2019] [Accepted: 11/29/2019] [Indexed: 12/13/2022]
Abstract
Myocardin-related transcription factors A and B (MRTFs) are coactivators of Serum Response Factor (SRF) that mediates the expression of genes involved in cell proliferation, migration and differentiation. There is mounting evidence that MRTFs and SRF represent promising targets for hepatocellular carcinoma (HCC) growth. Since MRTF-A nuclear localization is a prerequisite for its transcriptional activity and oncogenic properties, we searched for pharmacologically active compounds able to redistribute MRTF-A to the cytoplasm. We identified NS8593, a negative gating modulator of the transient receptor potential cation channel TRPM7, as a novel inhibitor of MRTF-A nuclear localization and transcriptional activity. Using a pharmacological approach and targeted genome editing, we investigated the functional contribution of TRPM7, a unique ion channel containing a serine-threonine kinase domain, to MRTF transcriptional and tumorigenic activity. We found that TRPM7 function regulates RhoA activity and subsequently actin polymerization, MRTF-A-Filamin A complex formation and MRTF-A/SRF target gene expression. Mechanistically, TRPM7 signaling relies on TRPM7 channel-mediated Mg2+ influx and phosphorylation of RhoA by TRPM7 kinase. Pharmacological blockade of TRPM7 results in oncogene-induced senescence of hepatocellular carcinoma (HCC) cells in vitro and in vivo in HCC xenografts. Hence, inhibition of the TRPM7/MRTF axis emerges as a promising strategy to curb HCC growth.
Collapse
|
7
|
Tesi A, de Pretis S, Furlan M, Filipuzzi M, Morelli MJ, Andronache A, Doni M, Verrecchia A, Pelizzola M, Amati B, Sabò A. An early Myc-dependent transcriptional program orchestrates cell growth during B-cell activation. EMBO Rep 2019; 20:e47987. [PMID: 31334602 PMCID: PMC6726900 DOI: 10.15252/embr.201947987] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 06/18/2019] [Accepted: 06/27/2019] [Indexed: 12/18/2022] Open
Abstract
Upon activation, lymphocytes exit quiescence and undergo substantial increases in cell size, accompanied by activation of energy-producing and anabolic pathways, widespread chromatin decompaction, and elevated transcriptional activity. These changes depend upon prior induction of the Myc transcription factor, but how Myc controls them remains unclear. We addressed this issue by profiling the response to LPS stimulation in wild-type and c-myc-deleted primary mouse B-cells. Myc is rapidly induced, becomes detectable on virtually all active promoters and enhancers, but has no direct impact on global transcriptional activity. Instead, Myc contributes to the swift up- and down-regulation of several hundred genes, including many known regulators of the aforementioned cellular processes. Myc-activated promoters are enriched for E-box consensus motifs, bind Myc at the highest levels, and show enhanced RNA Polymerase II recruitment, the opposite being true at down-regulated loci. Remarkably, the Myc-dependent signature identified in activated B-cells is also enriched in Myc-driven B-cell lymphomas: hence, besides modulation of new cancer-specific programs, the oncogenic action of Myc may largely rely on sustained deregulation of its normal physiological targets.
Collapse
Affiliation(s)
- Alessandra Tesi
- Center for Genomic Science of IIT@SEMMFondazione Istituto Italiano di Tecnologia (IIT)MilanItaly
| | - Stefano de Pretis
- Center for Genomic Science of IIT@SEMMFondazione Istituto Italiano di Tecnologia (IIT)MilanItaly
| | - Mattia Furlan
- Center for Genomic Science of IIT@SEMMFondazione Istituto Italiano di Tecnologia (IIT)MilanItaly
| | - Marco Filipuzzi
- Department of Experimental OncologyEuropean Institute of Oncology (IEO)‐IRCCSMilanItaly
| | - Marco J Morelli
- Center for Genomic Science of IIT@SEMMFondazione Istituto Italiano di Tecnologia (IIT)MilanItaly
- Present address:
Center for Translational Genomics and BioinformaticsIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Adrian Andronache
- Center for Genomic Science of IIT@SEMMFondazione Istituto Italiano di Tecnologia (IIT)MilanItaly
- Present address:
Experimental Therapeutics Program of IFOM ‐ The FIRC Institute of Molecular OncologyMilanItaly
| | - Mirko Doni
- Department of Experimental OncologyEuropean Institute of Oncology (IEO)‐IRCCSMilanItaly
| | - Alessandro Verrecchia
- Department of Experimental OncologyEuropean Institute of Oncology (IEO)‐IRCCSMilanItaly
| | - Mattia Pelizzola
- Center for Genomic Science of IIT@SEMMFondazione Istituto Italiano di Tecnologia (IIT)MilanItaly
| | - Bruno Amati
- Department of Experimental OncologyEuropean Institute of Oncology (IEO)‐IRCCSMilanItaly
| | - Arianna Sabò
- Department of Experimental OncologyEuropean Institute of Oncology (IEO)‐IRCCSMilanItaly
| |
Collapse
|
8
|
Wu TH, Shi L, Lowe AW, Nicolls MR, Kao PN. Inducible expression of immediate early genes is regulated through dynamic chromatin association by NF45/ILF2 and NF90/NF110/ILF3. PLoS One 2019; 14:e0216042. [PMID: 31022259 PMCID: PMC6483252 DOI: 10.1371/journal.pone.0216042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 04/14/2019] [Indexed: 12/11/2022] Open
Abstract
Immediate early gene (IEG) transcription is rapidly activated by diverse stimuli. This transcriptional regulation is assumed to involve constitutively expressed nuclear factors that are targets of signaling cascades initiated at the cell membrane. NF45 (encoded by ILF2) and its heterodimeric partner NF90/NF110 (encoded by ILF3) are chromatin-interacting proteins that are constitutively expressed and localized predominantly in the nucleus. Previously, NF90/NF110 chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) in K562 erythroleukemia cells revealed its enriched association with chromatin at active promoters and strong enhancers. NF90/NF110 specifically occupied the promoters of IEGs. Here, ChIP in serum-starved HEK293 cells demonstrated that NF45 and NF90/NF110 pre-exist and specifically occupy the promoters of IEG transcription factors EGR1, FOS and JUN. Cellular stimulation with phorbol myristyl acetate increased NF90/NF110 chromatin association, while decreasing NF45 chromatin association at promoters of EGR1, FOS and JUN. In HEK293 cells stably transfected with doxycycline-inducible shRNA vectors targeting NF90/NF110 or NF45, doxycycline-mediated knockdown of NF90/NF110 or NF45 attenuated the inducible expression of EGR1, FOS, and JUN at the levels of transcription, RNA and protein. Dynamic chromatin association of NF45 and NF90/NF110 at IEG promoters are observed upon stimulation, and NF45 and NF90/NF110 contribute to inducible transcription of IEGs. NF45 and NF90/NF110 operate as chromatin regulators of the immediate early response.
Collapse
Affiliation(s)
- Ting-Hsuan Wu
- Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- Biomedical Informatics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Lingfang Shi
- Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Anson W. Lowe
- Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Mark R. Nicolls
- Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Peter N. Kao
- Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
9
|
The mighty fibroblast and its utility in scleroderma research. JOURNAL OF SCLERODERMA AND RELATED DISORDERS 2017; 2:69-134. [PMID: 29270465 DOI: 10.5301/jsrd.5000240] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fibroblasts are the effector cells of fibrosis characteristic of systemic sclerosis (SSc, scleroderma) and other fibrosing conditions. The excess production of extracellular matrix (ECM) proteins is the hallmark of fibrosis in different organs, such as skin and lung. Experiments designed to assess the pro-fibrotic capacity of factors, their signaling pathways, and potential inhibitors of their effects that are conducted in fibroblasts have paved the way for planning clinical trials in SSc. As such, fibroblasts have proven to be valuable tools in the search for effective anti-fibrotic therapies for fibrosis. Herein we highlight the characteristics of fibroblasts, their role in the etiology of fibrosis, utility in experimental assays, and contribution to drug development and clinical trials in SSc.
Collapse
|
10
|
Kirkconnell KS, Magnuson B, Paulsen MT, Lu B, Bedi K, Ljungman M. Gene length as a biological timer to establish temporal transcriptional regulation. Cell Cycle 2017; 16:259-270. [PMID: 28055303 DOI: 10.1080/15384101.2016.1234550] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Transcriptional timing is inherently influenced by gene length, thus providing a mechanism for temporal regulation of gene expression. While gene size has been shown to be important for the expression timing of specific genes during early development, whether it plays a role in the timing of other global gene expression programs has not been extensively explored. Here, we investigate the role of gene length during the early transcriptional response of human fibroblasts to serum stimulation. Using the nascent sequencing techniques Bru-seq and BruUV-seq, we identified immediate genome-wide transcriptional changes following serum stimulation that were linked to rapid activation of enhancer elements. We identified 873 significantly induced and 209 significantly repressed genes. Variations in gene size allowed for a large group of genes to be simultaneously activated but produce full-length RNAs at different times. The median length of the group of serum-induced genes was significantly larger than the median length of all expressed genes, housekeeping genes, and serum-repressed genes. These gene length relationships were also observed in corresponding mouse orthologs, suggesting that relative gene size is evolutionarily conserved. The sizes of transcription factor and microRNA genes immediately induced after serum stimulation varied dramatically, setting up a cascade mechanism for temporal expression arising from a single activation event. The retention and expansion of large intronic sequences during evolution have likely played important roles in fine-tuning the temporal expression of target genes in various cellular response programs.
Collapse
Affiliation(s)
- Killeen S Kirkconnell
- a Department of Radiation Oncology , University of Michigan Comprehensive Cancer Center, Translational Oncology Program, and Center for RNA Biomedicine, University of Michigan , Ann Arbor , MI , USA.,b Department of Human Genetics , University of Michigan Medical School , Ann Arbor , MI , USA
| | - Brian Magnuson
- a Department of Radiation Oncology , University of Michigan Comprehensive Cancer Center, Translational Oncology Program, and Center for RNA Biomedicine, University of Michigan , Ann Arbor , MI , USA.,c Department of Environmental Health Sciences , School of Public Health, University of Michigan , Ann Arbor , MI , USA
| | - Michelle T Paulsen
- a Department of Radiation Oncology , University of Michigan Comprehensive Cancer Center, Translational Oncology Program, and Center for RNA Biomedicine, University of Michigan , Ann Arbor , MI , USA
| | - Brian Lu
- a Department of Radiation Oncology , University of Michigan Comprehensive Cancer Center, Translational Oncology Program, and Center for RNA Biomedicine, University of Michigan , Ann Arbor , MI , USA
| | - Karan Bedi
- a Department of Radiation Oncology , University of Michigan Comprehensive Cancer Center, Translational Oncology Program, and Center for RNA Biomedicine, University of Michigan , Ann Arbor , MI , USA
| | - Mats Ljungman
- a Department of Radiation Oncology , University of Michigan Comprehensive Cancer Center, Translational Oncology Program, and Center for RNA Biomedicine, University of Michigan , Ann Arbor , MI , USA.,c Department of Environmental Health Sciences , School of Public Health, University of Michigan , Ann Arbor , MI , USA
| |
Collapse
|
11
|
Gleyzer N, Scarpulla RC. Concerted Action of PGC-1-related Coactivator (PRC) and c-MYC in the Stress Response to Mitochondrial Dysfunction. J Biol Chem 2016; 291:25529-25541. [PMID: 27789709 DOI: 10.1074/jbc.m116.719682] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 10/13/2016] [Indexed: 12/19/2022] Open
Abstract
PGC-1-related coactivator (PRC) has a dual function in growth-regulated mitochondrial biogenesis and as a sensor of metabolic stress. PRC induction by mitochondrial inhibitors, intracellular ROS, or topoisomerase I inhibition orchestrates an inflammatory program associated with the adaptation to cellular stress. Activation of this program is accompanied by the coordinate expression of c-MYC, which is linked kinetically to that of PRC in response to multiple stress inducers. Here, we show that the c-MYC inhibitor 10058-F4 blocks the induction of c-MYC, PRC, and representative PRC-dependent stress genes by the respiratory chain uncoupler, carbonyl cyanide m-chlorophenyl hydrazine (CCCP). This result, confirmed by the suppression of PRC induction by c-MYC siRNA silencing, demonstrates a requirement for c-MYC in orchestrating the stress program. PRC steady-state expression was markedly increased upon mutation of two GSK-3 serine phosphorylation sites within the carboxyl-terminal domain. The negative control of PRC expression by GSK-3 was consistent with the phosphor-inactivation of GSK-3β by CCCP and by the induction of PRC by the GSK-3 inhibitor AZD2858. Unlike PRC, which was induced post-translationally through increased protein half-life, c-MYC was induced predominantly at the mRNA level. Moreover, suppression of Akt activation by the Akt inhibitor MK-2206 blocked the CCCP induction of PRC, c-MYC, and representative PRC stress genes, demonstrating a requirement for Akt signaling. MK-2206 also inhibited the phosphor-inactivation of GSK-3β by CCCP, a result consistent with the ability of Akt to phosphorylate, and thereby suppress GSK-3 activity. Thus, PRC and c-MYC can act in concert through Akt-GSK-3 signaling to reprogram gene expression in response to mitochondrial stress.
Collapse
Affiliation(s)
- Natalie Gleyzer
- From the Department of Cell and Molecular Biology, Northwestern Medical School, Chicago, Illinois 60611
| | - Richard C Scarpulla
- From the Department of Cell and Molecular Biology, Northwestern Medical School, Chicago, Illinois 60611
| |
Collapse
|
12
|
Abstract
Background: Apligraf is a bioengineered skin product composed of neonatal fibroblasts and keratinocytes. The FDA has approved Apligraf for the treatment of chronic venous ulcers and diabetic ulcers. Objective: We review the development of bioengineered skin, examine the cellular activities of various growth factors that may facilitate wound healing, and discuss the results of clinical trials with a particular construct, Apligraf, as proof of principle. Conclusion: Bioengineered skin acts as a “smart” delivery system for growth factors and other stimulatory substances. Not only does it present a novel treatment for chronic and diabetic ulcers, but it could also be considered for application to other types of acute wounds.
Collapse
Affiliation(s)
- John T. Shen
- Department of Dermatology, Roger Williams Medical Center, Providence, Rhode Island
| | - Vincent Falanga
- Department of Dermatology, Roger Williams Medical Center, Providence, Rhode Island
- Department of Dermatology and Biochemistry, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
13
|
Bahrami S, Drabløs F. Gene regulation in the immediate-early response process. Adv Biol Regul 2016; 62:37-49. [PMID: 27220739 DOI: 10.1016/j.jbior.2016.05.001] [Citation(s) in RCA: 281] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 05/03/2016] [Indexed: 05/13/2023]
Abstract
Immediate-early genes (IEGs) can be activated and transcribed within minutes after stimulation, without the need for de novo protein synthesis, and they are stimulated in response to both cell-extrinsic and cell-intrinsic signals. Extracellular signals are transduced from the cell surface, through receptors activating a chain of proteins in the cell, in particular extracellular-signal-regulated kinases (ERKs), mitogen-activated protein kinases (MAPKs) and members of the RhoA-actin pathway. These communicate through a signaling cascade by adding phosphate groups to neighboring proteins, and this will eventually activate and translocate TFs to the nucleus and thereby induce gene expression. The gene activation also involves proximal and distal enhancers that interact with promoters to simulate gene expression. The immediate-early genes have essential biological roles, in particular in stress response, like the immune system, and in differentiation. Therefore they also have important roles in various diseases, including cancer development. In this paper we summarize some recent advances on key aspects of the activation and regulation of immediate-early genes.
Collapse
Affiliation(s)
- Shahram Bahrami
- Department of Cancer Research and Molecular Medicine, NTNU - Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; St. Olavs Hospital, Trondheim University Hospital, NO-7006 Trondheim, Norway.
| | - Finn Drabløs
- Department of Cancer Research and Molecular Medicine, NTNU - Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
| |
Collapse
|
14
|
Kirkconnell KS, Paulsen MT, Magnuson B, Bedi K, Ljungman M. Capturing the dynamic nascent transcriptome during acute cellular responses: The serum response. Biol Open 2016; 5:837-47. [PMID: 27230646 PMCID: PMC4920201 DOI: 10.1242/bio.019323] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Dynamic regulation of gene expression via signal transduction pathways is of fundamental importance during many biological processes such as cell state transitioning, cell cycle progression and stress responses. In this study we used serum stimulation as a cell response paradigm to apply the nascent RNA Bru-seq technique in order to capture early dynamic changes in the nascent transcriptome. Our data provides an unprecedented view of the dynamics of genome-wide transcription during the first two hours of serum stimulation in human fibroblasts. While some genes showed sustained induction or repression, other genes showed transient or delayed responses. Surprisingly, the dynamic patterns of induction and suppression of response genes showed a high degree of similarity, suggesting that these opposite outcomes are triggered by a common set of signals. As expected, early response genes such as those encoding components of the AP-1 transcription factor and those involved in the circadian clock were immediately but transiently induced. Surprisingly, transcription of important DNA damage response genes and histone genes were rapidly repressed. We also show that RNA polymerase II accelerates as it transcribes large genes and this was independent of whether the gene was induced or not. These results provide a unique genome-wide depiction of dynamic patterns of transcription of serum response genes and demonstrate the utility of Bru-seq to comprehensively capture rapid and dynamic changes of the nascent transcriptome.
Collapse
Affiliation(s)
- Killeen S Kirkconnell
- Department of Radiation Oncology, University of Michigan Comprehensive Cancer Center, and Translational Oncology Program, University of Michigan, Ann Arbor, MI 48109, USA Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Michelle T Paulsen
- Department of Radiation Oncology, University of Michigan Comprehensive Cancer Center, and Translational Oncology Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Brian Magnuson
- Department of Radiation Oncology, University of Michigan Comprehensive Cancer Center, and Translational Oncology Program, University of Michigan, Ann Arbor, MI 48109, USA Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Karan Bedi
- Department of Radiation Oncology, University of Michigan Comprehensive Cancer Center, and Translational Oncology Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mats Ljungman
- Department of Radiation Oncology, University of Michigan Comprehensive Cancer Center, and Translational Oncology Program, University of Michigan, Ann Arbor, MI 48109, USA Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
15
|
Hah N, Kraus WL. Hormone-regulated transcriptomes: lessons learned from estrogen signaling pathways in breast cancer cells. Mol Cell Endocrinol 2014; 382:652-664. [PMID: 23810978 PMCID: PMC3844033 DOI: 10.1016/j.mce.2013.06.021] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 06/15/2013] [Accepted: 06/17/2013] [Indexed: 12/21/2022]
Abstract
Recent rapid advances in next generation sequencing technologies have expanded our understanding of steroid hormone signaling to a genome-wide level. In this review, we discuss the use of a novel genomic approach, global nuclear run-on coupled with massively parallel sequencing (GRO-seq), to explore new facets of the steroid hormone-regulated transcriptome, especially estrogen responses in breast cancer cells. GRO-seq is a high throughput sequencing method adapted from conventional nuclear run-on methodologies, which is used to obtain a map of the position and orientation of all transcriptionally engaged RNA polymerases across the genome with extremely high spatial resolution. GRO-seq, which is an excellent tool for examining transcriptional responses to extracellular stimuli, has been used to comprehensively assay the effects of estrogen signaling on the transcriptome of ERα-positive MCF-7 human breast cancer cells. These studies have revealed new details about estrogen-dependent transcriptional regulation, including effects on transcription by all three RNA polymerases, complex transcriptional dynamics in response to estrogen signaling, and identification novel, unannotated non-coding RNAs. Collectively, these studies have been useful in discerning the molecular logic of the estrogen-regulated mitogenic response.
Collapse
Affiliation(s)
- Nasun Hah
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, United States.
| | - W Lee Kraus
- The Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States; Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| |
Collapse
|
16
|
Scarpulla RC, Vega RB, Kelly DP. Transcriptional integration of mitochondrial biogenesis. Trends Endocrinol Metab 2012; 23:459-66. [PMID: 22817841 PMCID: PMC3580164 DOI: 10.1016/j.tem.2012.06.006] [Citation(s) in RCA: 621] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 06/15/2012] [Accepted: 06/19/2012] [Indexed: 02/06/2023]
Abstract
Gene regulatory factors encoded by the nuclear genome are essential for mitochondrial biogenesis and function. Some of these factors act exclusively within the mitochondria to regulate the control of mitochondrial transcription, translation, and other functions. Others govern the expression of nuclear genes required for mitochondrial metabolism and organelle biogenesis. The peroxisome proliferator-activated receptor γ coactivator-1 (PGC-1) family of transcriptional coactivators play a major role in transducing and integrating physiological signals governing metabolism, differentiation, and cell growth to the transcriptional machinery controlling mitochondrial functional capacity. Thus, the PGC-1 coactivators serve as a central component of the transcriptional regulatory circuitry that coordinately controls the energy-generating functions of mitochondria in accordance with the metabolic demands imposed by changing physiological conditions, senescence, and disease.
Collapse
Affiliation(s)
- Richard C Scarpulla
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, IL 60611, USA
| | | | | |
Collapse
|
17
|
Li R, Guo W, Gu J, Zhang MQ, Wang X. Chromatin state and microRNA determine different gene expression dynamics responsive to TNF stimulation. Genomics 2012; 100:297-302. [PMID: 22824656 DOI: 10.1016/j.ygeno.2012.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 07/03/2012] [Accepted: 07/12/2012] [Indexed: 10/28/2022]
Abstract
Gene expression is a dynamic process, and what factors influence gene expression changes upon external stimulus have not been clearly understood. We studied gene expression profiles in human umbilical vein endothelial cells (HUVEC) after the Tumor Necrosis Factor (TNF) stimulus, and found that: the promoters of fast-response up-regulated genes were enriched with several "active" chromatin markers like H3K27ac and H3K4me3, and also preferentially bound by Pol II and c-Myc; the core-promoter regions of slow-response up-regulated genes were frequently occupied by nucleosomes; down-regulated genes were more intensively regulated by microRNAs. Moreover, the Gene Ontology and motif analysis of the promoter regions revealed that gene clusters with different response behaviors had different functions and were regulated by different sets of transcription factors. Our observations suggested that the different gene expression patterns upon external stimulus were regulated by a combination of multi-layer regulators.
Collapse
Affiliation(s)
- Ruijuan Li
- MOE Key Laboratory of Bioinformatics and Bioinformatics Div, TNLIST/Department of Automation, Tsinghua University, Beijing 100084, China
| | | | | | | | | |
Collapse
|
18
|
Negative regulation of Odd-skipped related 2 by TGF-beta achieves the induction of cellular migration and the arrest of cell cycle. Biochem Biophys Res Commun 2012; 421:696-700. [PMID: 22542937 DOI: 10.1016/j.bbrc.2012.04.064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 04/13/2012] [Indexed: 11/24/2022]
Abstract
The transcription factor Odd-skipped related 2 (Osr2) functions in craniofacial and limb developments in mammals. We previously found that Osr2 gene expression is regulated by intracellular transcription factors such as Runx2, and C/EBP, whereas it remains unclear if extracellular factors would functionally regulate the Osr2 expression. In this study, we showed that TGF-β down-regulated the Osr2 expression, which is involved in regulation of cellular migration and cell cycle. Furthermore, the down-regulation was found to be mediated by Smad3/Smad4 and p38/ATF2 signaling molecules. The Osr2 promoter was shown to possess Smad3/4 binding element and ATF2 binding element between -647 and -64 of promoter. TGF-β induced cellular migration in C3H10T1/2 cells and arrested cell cycle at G1 phase in NMuMG-Fucci cells. In contrast, the Osr2 reduced the migration and also stimulated the cell-cycle progression. These results suggest that Osr2 is involved in TGF-β regulating cell migration and cell cycle via a Smad3-ATF2 transcriptional complex mediating pathway.
Collapse
|
19
|
Transcriptional repression of Cdc25B by IER5 inhibits the proliferation of leukemic progenitor cells through NF-YB and p300 in acute myeloid leukemia. PLoS One 2011; 6:e28011. [PMID: 22132193 PMCID: PMC3223216 DOI: 10.1371/journal.pone.0028011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 10/29/2011] [Indexed: 11/23/2022] Open
Abstract
The immediately-early response gene 5 (IER5) has been reported to be induced by γ-ray irradiation and to play a role in the induction of cell death caused by radiation. We previously identified IER5 as one of the 2,3,4-tribromo-3-methyl-1-phenylphospholane 1-oxide (TMPP)-induced transcriptional responses in AML cells, using microarrays that encompassed the entire human genome. However, the biochemical pathway and mechanisms of IER5 function in regulation of the cell cycle remain unclear. In this study, we investigated the involvement of IER5 in the cell cycle and in cell proliferation of acute myeloid leukemia (AML) cells. We found that the over-expression of IER5 in AML cell lines and in AML-derived ALDHhi (High Aldehyde Dehydrogenase activity)/CD34+ cells inhibited their proliferation compared to control cells, through induction of G2/M cell cycle arrest and a decrease in Cdc25B expression. Moreover, the over-expression of IER5 reduced colony formation of AML-derived ALDHhi/CD34+ cells due to a decrease in Cdc25B expression. In addition, over-expression of Cdc25B restored TMPP inhibitory effects on colony formation in IER5-suppressed AML-derived ALDHhi/CD34+ cells. Furthermore, the IER5 reduced Cdc25B mRNA expression through direct binding to Cdc25B promoter and mediated its transcriptional attenuation through NF-YB and p300 transcriptinal factors. In summary, we found that transcriptional repression mediated by IER5 regulates Cdc25B expression levels via the release of NF-YB and p300 in AML-derived ALDHhi/CD34+ cells, resulting in inhibition of AML progenitor cell proliferation through modulation of cell cycle. Thus, the induction of IER5 expression represents an attractive target for AML therapy.
Collapse
|
20
|
Chan ZSH, Kasabov N, Collins L. A HYBRID GENETIC ALGORITHM AND EXPECTATION MAXIMIZATION METHOD FOR GLOBAL GENE TRAJECTORY CLUSTERING. J Bioinform Comput Biol 2011; 3:1227-42. [PMID: 16278956 DOI: 10.1142/s0219720005001478] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Revised: 12/21/2004] [Accepted: 12/24/2004] [Indexed: 11/18/2022]
Abstract
Clustering time-course gene expression data (gene trajectories) is an important step towards solving the complex problem of gene regulatory network modeling and discovery as it significantly reduces the dimensionality of the gene space required for analysis. Traditional clustering methods that perform hill-climbing from randomly initialized cluster centers are prone to produce inconsistent and sub-optimal cluster solutions over different runs. This paper introduces a novel method that hybridizes genetic algorithm (GA) and expectation maximization algorithms (EM) for clustering gene trajectories with the mixtures of multiple linear regression models (MLRs), with the objective of improving the global optimality and consistency of the clustering performance. The proposed method is applied to cluster the human fibroblasts and the yeast time-course gene expression data based on their trajectory similarities. It outperforms the standard EM method significantly in terms of both clustering accuracy and consistency. The biological implications of the improved clustering performance are demonstrated.
Collapse
Affiliation(s)
- Zeke S H Chan
- Knowledge Engineering and Discovery Research Institute (KEDRI), Auckland University of Technology, Auckland, New Zealand.
| | | | | |
Collapse
|
21
|
Scarpulla RC. Nucleus-encoded regulators of mitochondrial function: integration of respiratory chain expression, nutrient sensing and metabolic stress. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1819:1088-97. [PMID: 22080153 DOI: 10.1016/j.bbagrm.2011.10.011] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 10/28/2011] [Indexed: 12/23/2022]
Abstract
Nucleus-encoded regulatory factors are major contributors to mitochondrial biogenesis and function. Several act within the organelle to regulate mitochondrial transcription and translation while others direct the expression of nuclear genes encoding the respiratory chain and other oxidative functions. Loss-of-function studies for many of these factors reveal a wide spectrum of phenotypes. These range from embryonic lethality and severe respiratory chain deficiency to relatively mild mitochondrial defects seen only under conditions of physiological stress. The PGC-1 family of regulated coactivators (PGC-1α, PGC-1β and PRC) plays an important integrative role through their interactions with transcription factors (NRF-1, NRF-2, ERRα, CREB, YY1 and others) that control respiratory gene expression. In addition, recent evidence suggests that PGC-1 coactivators may balance the cellular response to oxidant stress by promoting a pro-oxidant environment or by orchestrating an inflammatory response to severe metabolic stress. These pathways may serve as essential links between the energy generating functions of mitochondria and the cellular REDOX environment associated with longevity, senescence and disease. This article is part of a Special Issue entitled: Mitochondrial Gene Expression.
Collapse
Affiliation(s)
- Richard C Scarpulla
- Department of Cell and Molecular Biology, Northwestern Medical School, Chicago, IL 60611, USA.
| |
Collapse
|
22
|
Gleyzer N, Scarpulla RC. PGC-1-related coactivator (PRC), a sensor of metabolic stress, orchestrates a redox-sensitive program of inflammatory gene expression. J Biol Chem 2011; 286:39715-25. [PMID: 21937425 DOI: 10.1074/jbc.m111.291575] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
PGC-1-related coactivator (PRC) is a growth-regulated transcriptional cofactor that activates many nuclear genes specifying mitochondrial respiratory function. Stable PRC silencing in U2OS cells results in a complex phenotype typical of mitochondrial dysfunction including abundant abnormal mitochondria, reduced respiratory subunit expression, diminished respiratory enzymes and ATP levels, and elevated lactate production. The PRC response to metabolic stress was investigated by subjecting cells to metabolic insults including treatment with the uncoupler carbonyl cyanide 3-chlorophenylhydrazone (CCCP), expression of a dominant negative allele of nuclear respiratory factor 1 (NRF-1), and glucose deprivation. These treatments led to constitutively elevated PRC protein levels, a departure from its normal transient expression upon the initiation of cell growth. A microarray screen identified 45 genes that require PRC for their induction by CCCP. A subset of these genes specific to inflammation and cell stress was also induced by dominant negative NRF-1 and by glucose deprivation, suggesting that diverse metabolic insults converge on the same PRC-dependent inflammatory program. The PRC-dependent inflammatory response was inhibited by N-acetylcysteine, suggesting that PRC may contribute to the inflammatory microenvironment linked to oxidant signaling. The induction of this PRC-dependent program may be an early event in adaptations linked to cancer and degenerative diseases.
Collapse
Affiliation(s)
- Natalie Gleyzer
- Department of Cell and Molecular Biology, Northwestern Medical School, Chicago, Illinois 0611, USA
| | | |
Collapse
|
23
|
Perna D, Fagà G, Verrecchia A, Gorski MM, Barozzi I, Narang V, Khng J, Lim KC, Sung WK, Sanges R, Stupka E, Oskarsson T, Trumpp A, Wei CL, Müller H, Amati B. Genome-wide mapping of Myc binding and gene regulation in serum-stimulated fibroblasts. Oncogene 2011; 31:1695-709. [PMID: 21860422 PMCID: PMC3324106 DOI: 10.1038/onc.2011.359] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The transition from quiescence to proliferation is a key regulatory step that can be induced by serum stimulation in cultured fibroblasts. The transcription factor Myc is directly induced by serum mitogens and drives a secondary gene expression program that remains largely unknown. Using mRNA profiling, we identify close to 300 Myc-dependent serum response (MDSR) genes, which are induced by serum in a Myc-dependent manner in mouse fibroblasts. Mapping of genomic Myc-binding sites by ChIP-seq technology revealed that most MDSR genes were directly targeted by Myc, but represented a minor fraction (5.5%) of all Myc-bound promoters (which were 22.4% of all promoters). Other target loci were either induced by serum in a Myc-independent manner, were not significantly regulated or were negatively regulated. MDSR gene products were involved in a variety of processes, including nucleotide biosynthesis, ribosome biogenesis, DNA replication and RNA control. Of the 29 MDSR genes targeted by RNA interference, three showed a requirement for cell-cycle entry upon serum stimulation and 11 for long-term proliferation and/or survival. Hence, proper coordination of key regulatory and biosynthetic pathways following mitogenic stimulation relies upon the concerted regulation of multiple Myc-dependent genes.
Collapse
Affiliation(s)
- D Perna
- Department of Experimental Oncology, European Institute of Oncology, IFOM-IEO Campus, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Scarpulla RC. Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1813:1269-78. [PMID: 20933024 PMCID: PMC3035754 DOI: 10.1016/j.bbamcr.2010.09.019] [Citation(s) in RCA: 921] [Impact Index Per Article: 65.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 09/14/2010] [Accepted: 09/27/2010] [Indexed: 12/23/2022]
Abstract
The PGC-1 family of regulated coactivators, consisting of PGC-1α, PGC-1β and PRC, plays a central role in a regulatory network governing the transcriptional control of mitochondrial biogenesis and respiratory function. These coactivators target multiple transcription factors including NRF-1, NRF-2 and the orphan nuclear hormone receptor, ERRα, among others. In addition, they themselves are the targets of coactivator and co-repressor complexes that regulate gene expression through chromatin remodeling. The expression of PGC-1 family members is modulated by extracellular signals controlling metabolism, differentiation or cell growth and in some cases their activities are known to be regulated by post-translational modification by the energy sensors, AMPK and SIRT1. Recent gene knockout and silencing studies of many members of the PGC-1 network have revealed phenotypes of wide ranging severity suggestive of complex compensatory interactions or broadly integrative functions that are not exclusive to mitochondrial biogenesis. The results point to a central role for the PGC-1 family in integrating mitochondrial biogenesis and energy production with many diverse cellular functions. This article is part of a Special Issue entitled: Mitochondria and Cardioprotection.
Collapse
Affiliation(s)
- Richard C Scarpulla
- Department of Cell and Molecular Biology, Northwestern Medical School, 303 East Chicago Avenue, Chicago, IL 60611, USA.
| |
Collapse
|
25
|
Prokaryotic expression, purification, and production of polyclonal antibody against novel human serum inhibited related protein I (SI1). Protein J 2010; 29:75-80. [PMID: 20087636 DOI: 10.1007/s10930-009-9224-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
A novel serum inhibited related gene (SI1) has been cloned in our lab by using mRNA differential display analysis of U251 cells in the presence or absence of serum, the expression of SI1 was dramatically inhibited by the addition of serum to serum starved cells. Previous reports suggested the potential significance of SI1 in regulating the cell cycle. In this study, the plasmid construction, protein expression and purification, as well as the generation of anti-SI1 polyclonal antibody are described. A full-length cDNA of Si1 was inserted in a prokaryotic expression plasmid pET28-b(+) and efficiently expressed in E. coli Rosetta (DE3) strain after induction by isopropyl-b-D: -thiogalactoside. The expressed 6His-tagged SI1 fusion protein was purified by Ni(+) affinity column and then used to immunize Balb/C mice, and the anti-SI1 polyclonal antibody was purified by protein A column. To determine the sensitivity and specificity of the antibody against SI1, a cell lysate of pEGFP-N2-SI1 plasmid transiently transfected Hela cell was identified by anti-GFP monoclonal antibody and anti-SI1 polyclonal antibody. Both the GFP-SI1 fusion protein and endogenous SI1 protein in Hela cell can be recognized by the anti-SI1 polyclonal antibody. The anti-SI1 polyclonal antibody will provide a useful tool for further characterization of SI1.
Collapse
|
26
|
Ding KK, Shang ZF, Hao C, Xu QZ, Shen JJ, Yang CJ, Xie YH, Qiao C, Wang Y, Xu LL, Zhou PK. Induced expression of the IER5 gene by gamma-ray irradiation and its involvement in cell cycle checkpoint control and survival. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2009; 48:205-213. [PMID: 19238419 DOI: 10.1007/s00411-009-0213-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Accepted: 02/02/2009] [Indexed: 05/27/2023]
Abstract
The immediate-early response gene 5 (IER5) was previously shown, using microarray analysis, to be upregulated by ionizing radiation. Here we further characterized the dose- and time-dependency of radiation-induced expression of IER5 at doses from 0.5 to 15 Gy by quantitative real-time PCR analyses in HeLa cells and human lymphoblastoid AHH-1 cells. A radiation-induced increase in the IER5 mRNA level was evident 2 h after irradiation with 2 Gy in both cell lines. In AHH-1 cells the expression reached a peak at 4 h and then quickly returned to the control level, while in HeLa cells the expression only remained increased for a short period of time at around 2 h after irradiation before returning to the control. After high-dose irradiation (10 Gy), the induction of the IER5 expression was lower and delayed in AHH-1 cells as compared with 2-Gy irradiated cells. In HeLa cells, at this dose, two peaks of increased expression were observed 2 h and 12-24 h post-irradiation, respectively. RNA interference technology was employed to silence the IER5 gene in HeLa cells. siRNA-mediated suppression of IER5 resulted in an increased proliferation of HeLa cells. Cell growth and survival analyses demonstrated that suppression of IER5 significantly increased the radioresistance of HeLa cells to radiation doses of up to 6 Gy, but barely affected the sensitivity of cells at 8 Gy. Moreover, suppression of IER5 potentiated radiation-induced arrest at the G2-M transition and led to an increase in the fraction of S phase cells. Taken together, we propose that the early radiation-induced expression of IER5 affects the radiosensitivity via disturbing radiation-induced cell cycle checkpoints.
Collapse
Affiliation(s)
- Ku-Ke Ding
- Biomedical Engineering School, Capital Medical University, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Scarpulla RC. Nuclear control of respiratory chain expression by nuclear respiratory factors and PGC-1-related coactivator. Ann N Y Acad Sci 2009; 1147:321-34. [PMID: 19076454 DOI: 10.1196/annals.1427.006] [Citation(s) in RCA: 278] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Expression of the respiratory apparatus depends on both nuclear and mitochondrial genes. Although these genes are sequestered in distinct cellular organelles, their transcription relies on nucleus-encoded factors. Certain of these factors are directed to the mitochondria, where they sponsor the bi-directional transcription of mitochondrial DNA. Others act on nuclear genes that encode the majority of the respiratory subunits and many other gene products required for the assembly and function of the respiratory chain. The nuclear respiratory factors, NRF-1 and NRF-2, contribute to the expression of respiratory subunits and mitochondrial transcription factors and thus have been implicated in nucleo-mitochondrial interactions. In addition, coactivators of the PGC-1 family serve as mediators between the environment and the transcriptional machinery governing mitochondrial biogenesis. One family member, peroxisome proliferator-activated receptor gamma coactivator PGC-1-related coactivator (PRC), is an immediate early gene product that is rapidly induced by mitogenic signals in the absence of de novo protein synthesis. Like other PGC-1 family members, PRC binds NRF-1 and activates NRF-1 target genes. In addition, PRC complexes with NRF-2 and HCF-1 (host cell factor-1) in the activation of NRF-2-dependent promoters. HCF-1 functions in cell-cycle progression and has been identified as an NRF-2 coactivator. The association of these factors with PRC is suggestive of a role for the complex in cell growth. Finally, shRNA-mediated knock down of PRC expression results in a complex phenotype that includes the inhibition of respiratory growth on galactose and the loss of respiratory complexes. Thus, PRC may help integrate the expression of the respiratory apparatus with the cell proliferative program.
Collapse
Affiliation(s)
- Richard C Scarpulla
- Department of Cell and Molecular Biology, Northwestern Medical School, Chicago, IL 60611, USA.
| |
Collapse
|
28
|
Vercauteren K, Gleyzer N, Scarpulla RC. PGC-1-related coactivator complexes with HCF-1 and NRF-2beta in mediating NRF-2(GABP)-dependent respiratory gene expression. J Biol Chem 2008; 283:12102-11. [PMID: 18343819 DOI: 10.1074/jbc.m710150200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The PGC-1 family of regulated coactivators (PGC-1alpha, PGC-1beta, and PRC) plays an important role in directing respiratory gene expression in response to environmental signals. Here, we show that PRC and PGC-1alpha differ in their interactions with nuclear hormone receptors but are highly similar in their direct binding to several nuclear transcription factors implicated in the expression of the respiratory chain. Surprisingly, neither coactivator binds NRF-2(GABP), a multisubunit transcriptional activator associated with the expression of many respiratory genes. However, the NRF-2 subunits and PRC are co-immunoprecipitated from cell extracts indicating that the two proteins exist in a complex in vivo. Several lines of evidence indicate that HCF-1 (host cell factor 1), a major chromatin component, mediates the association between PRC and NRF-2. Both PRC and NRF-2beta bind HCF-1 in vitro, and the molecular determinants required for the interactions of each with HCF-1 are also required for PRC trans-activation through promoter-bound NRF-2. These determinants include a consensus HCF-1 binding site on PRC and the NRF-2 activation domain. In addition, PRC and NRF-2beta can complex with HCF-1 in vivo, and all three associate with NRF-2-dependent nuclear genes that direct the expression of the mitochondrial transcription factors, TFB1M and TFB2M. Finally, short hairpin RNA-mediated knock down of PRC protein levels leads to reduced expression of TFB2M mRNA and mitochondrial transcripts for cytochrome oxidase II (COXII) and cytochrome b. These changes in gene expression coincide with a marked reduction in cytochrome oxidase activity. The results are consistent with a pathway whereby PRC regulates NRF-2-dependent genes through a multiprotein complex involving HCF-1.
Collapse
Affiliation(s)
- Kristel Vercauteren
- Department of Cell and Molecular Biology, Northwestern Medical School, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|
29
|
Kim J, Lee JH, Iyer VR. Global identification of Myc target genes reveals its direct role in mitochondrial biogenesis and its E-box usage in vivo. PLoS One 2008; 3:e1798. [PMID: 18335064 PMCID: PMC2258436 DOI: 10.1371/journal.pone.0001798] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Accepted: 02/12/2008] [Indexed: 01/16/2023] Open
Abstract
The Myc oncoprotein is a transcription factor involved in a variety of human cancers. Overexpression of Myc is associated with malignant transformation. In normal cells, Myc is induced by mitotic signals, and in turn, it regulates the expression of downstream target genes. Although diverse roles of Myc have been predicted from many previous studies, detailed functions of Myc targets are still unclear. By combining chromatin immunoprecipitation (ChIP) and promoter microarrays, we identified a total of 1469 Myc direct target genes, the majority of which are novel, in HeLa cells and human primary fibroblasts. We observed dramatic changes of Myc occupancy at its target promoters in foreskin fibroblasts in response to serum stimulation. Among the targets of Myc, 107 were nuclear encoded genes involved in mitochondrial biogenesis. Genes with important roles in mitochondrial replication and biogenesis, such as POLG, POLG2, and NRF1 were identified as direct targets of Myc, confirming a direct role for Myc in regulating mitochondrial biogenesis. Analysis of target promoter sequences revealed a strong preference for Myc occupancy at promoters containing one of several described consensus sequences, CACGTG, in vivo. This study thus sheds light on the transcriptional regulatory networks mediated by Myc in vivo.
Collapse
Affiliation(s)
- Jonghwan Kim
- Section of Molecular Genetics and Microbiology, Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Ji-hoon Lee
- Section of Molecular Genetics and Microbiology, Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Vishwanath R. Iyer
- Section of Molecular Genetics and Microbiology, Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
30
|
Kim SH, Ha HJ, Ko YK, Yoon SJ, Rhee JM, Kim MS, Lee HB, Khang G. Correlation of proliferation, morphology and biological responses of fibroblasts on LDPE with different surface wettability. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2007; 18:609-22. [PMID: 17550662 DOI: 10.1163/156856207780852514] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In order to find a correlation between cell adhesion, growth and biological response with different wettability, NIH/3T3 fibroblast cells were cultured on plasma-treated low-density polyethylene (LDPE) film generated with radio frequency. Different surface wettabilities (water contact angle 90-40 degrees ) were created by varying the duration of plasma treatment between 0 and 15 s, respectively. Growth and proliferation rate of cells on LDPE surfaces was evaluated by MTT assay, and cell morphology, by means of spreading and adhesion, was characterized by scanning electron microscopy (SEM). The expression of particular genes in cells contacted on films with different wettability was analyzed by RT-PCR. Using the MTT assay, we confirmed that the amount of cell adhesion was higher on surface of film with a water contact angle of 60 degrees than with other water contact angle. Also, the proliferation rate of cells was highest with a water contact angle of 60 degrees . It was confirmed by SEM that the morphology of cells adhered with a water contact angle of 50-60 degrees was more flattened and activated than on other surfaces. Furthermore, c-fos mRNA in cells showed maximum expression on the film with contact angle range of 50-60 degrees and c-myc mRNA expressed highly on the film with a contact angle of 50 degrees . Finally, p53 gene expression increased as wettability increase. These results indicate that a water contact angle of the polymer surfaces of 50-60 degrees was suitable for cell adhesion and growth, as well as biological responses, and the surface properties play an important role for the morphology of adhesion, growth and differentiation of cells.
Collapse
Affiliation(s)
- Soon Hee Kim
- BK-21 Polymer BIN Fusion Research Team, Chonbuk National University, 664-14 Dukjin, Jeonju 561-756, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Wang KR, Nemoto T, Yokota Y. RFX1 mediates the serum-induced immediate early response of Id2 gene expression. J Biol Chem 2007; 282:26167-77. [PMID: 17630394 DOI: 10.1074/jbc.m703448200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Id2, a negative regulator of basic helix-loop-helix transcription factors, is involved in regulating cell differentiation and proliferation. To obtain insight into the role of Id2 in cell cycle control, we investigated the mechanisms underlying the immediate early response of Id2 expression to serum stimulation in NIH3T3 cells. Luciferase reporter analysis with deletion and point mutants demonstrated the serum response element of Id2 (Id2-SRE) to be a consensus binding site for RFX1 (regulatory factor for X-box 1) present 3.0 kb upstream of the transcription initiation site of Id2. Gel shift and chromatin immunoprecipitation assays confirmed the binding of RFX1 to Id2-SRE in vitro and in vivo, respectively. In both assays, RFX1 binding was observed not only in serum-stimulated cells, but also in serum-starved cells. Knockdown of RFX1 by RNA interference disturbed the immediate early response of Id2 expression in cells and abrogated the Id2-SRE-mediated induction of luciferase activity by serum. These alterations were rescued by the introduction of RNA interference-resistant RFX1 into cells. On the other hand, in the Id2-SRE-mediated reporter assay, RFX1 with an N-terminal deletion abrogated the serum response, whereas RFX1 with a C-terminal deletion enhanced the reporter activity in serum-starved cells. Furthermore, HDAC1 was recruited to Id2-SRE in serum-starved cells. These results demonstrate that RFX1 mediates the immediate early response of the Id2 gene by serum stimulation and suggest that the function of RFX1 is regulated intramolecularly in its suppression in growth-arrested cells. Our results unveil a novel transcriptional control of immediate early gene expression.
Collapse
Affiliation(s)
- Kui-Rong Wang
- Division of Molecular Genetics, Department of Biochemistry and Bioinformative Sciences, University of Fukui, Fukui, Japan
| | | | | |
Collapse
|
32
|
Tullai JW, Schaffer ME, Mullenbrock S, Sholder G, Kasif S, Cooper GM. Immediate-early and delayed primary response genes are distinct in function and genomic architecture. J Biol Chem 2007; 282:23981-95. [PMID: 17575275 PMCID: PMC2039722 DOI: 10.1074/jbc.m702044200] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transcriptional program induced by growth factor stimulation is classically described in two stages as follows: the rapid protein synthesis-independent induction of immediate-early genes, followed by the subsequent protein synthesis-dependent induction of secondary response genes. In this study, we obtained a comprehensive view of this transcriptional program. As expected, we identified both rapid and delayed gene inductions. Surprisingly, however, a large fraction of genes induced with delayed kinetics did not require protein synthesis and therefore represented delayed primary rather than secondary response genes. Of 133 genes induced within 4 h of growth factor stimulation, 49 (37%) were immediate-early genes, 58 (44%) were delayed primary response genes, and 26 (19%) were secondary response genes. Comparison of immediate-early and delayed primary response genes revealed functional and regulatory differences. Whereas many immediate-early genes encoded transcription factors, transcriptional regulators were not prevalent among the delayed primary response genes. The lag in induction of delayed primary response compared with immediate-early mRNAs was because of delays in both transcription initiation and subsequent stages of elongation and processing. Consistent with increased abundance of RNA polymerase II at their promoters, immediate-early genes were characterized by over-representation of transcription factor binding sites and high affinity TATA boxes. Immediate-early genes also had short primary transcripts with few exons, whereas delayed primary response genes more closely resembled other genes in the genome. These findings suggest that genomic features of immediate-early genes, in contrast to the delayed primary response genes, are selected for rapid induction, consistent with their regulatory functions.
Collapse
Affiliation(s)
- John W Tullai
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
| | | | | | | | | | | |
Collapse
|
33
|
Pereira CT, Herndon DN, Rocker R, Jeschke MG. Liposomal gene transfer of keratinocyte growth factor improves wound healing by altering growth factor and collagen expression. J Surg Res 2007; 139:222-8. [PMID: 17292422 DOI: 10.1016/j.jss.2006.09.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Revised: 08/29/2006] [Accepted: 09/06/2006] [Indexed: 11/21/2022]
Abstract
BACKGROUND Growth factors affect the complex cascade of wound healing; however, interaction between different growth factors during dermal and epidermal regeneration are still not entirely defined. In the present study, we thought to determine the interaction between keratinocyte growth factor (KGF) administered as liposomal cDNA with other dermal and epidermal growth factors and collagen synthesis in an acute wound. MATERIALS AND METHODS Rats received an acute wound and were divided into two groups to receive weekly subcutaneous injections of liposomes plus the Lac-Z gene (0.22 microg, vehicle), or liposomes plus the KGF cDNA (2.2 microg) and Lac-Z gene (0.22 microg). Histological and immunohistochemical techniques were used to determine growth factor, collagen expression, and dermal and epidermal structure. RESULTS KGF cDNA increased insulin-like growth factor-I (IGF-I), insulin-like growth factor binding protein-3 (IGFBP-3), and fibroblast growth factor (FGF), decreased transforming growth factor-beta (TGF-beta), while it had no effect on platelet-derived growth factor (PDGF) levels in the wound. KGF cDNA significantly increased collagen Type IV at both the wound edge as well as the wound bed, while it had no effect on collagen Type I and III. KGF cDNA increased re-epithelialization, improved dermal regeneration, and increased neovascularization. CONCLUSIONS Exogenous administered KGF cDNA causes increases in IGF-I, IGF-BP3, FGF, and collagen IV and decreases TGF-beta concentration. KGF gene transfer accelerates wound healing without causing an increase in collagen I or III.
Collapse
Affiliation(s)
- Clifford T Pereira
- Shriners Hospitals for Children, University of Texas Medical Branch, Galveston, Texas 77550, USA
| | | | | | | |
Collapse
|
34
|
Vercauteren K, Pasko RA, Gleyzer N, Marino VM, Scarpulla RC. PGC-1-related coactivator: immediate early expression and characterization of a CREB/NRF-1 binding domain associated with cytochrome c promoter occupancy and respiratory growth. Mol Cell Biol 2006; 26:7409-19. [PMID: 16908542 PMCID: PMC1636882 DOI: 10.1128/mcb.00585-06] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
PGC-1-related coactivator (PRC) was initially characterized as a transcriptional coactivator that shares structural and functional features with PGC-1alpha. Both coactivators interact with nuclear respiratory factor 1 (NRF-1) and activate NRF-1 target genes required for respiratory chain expression. Here, we establish that PRC belongs to the class of immediate early genes that are rapidly induced in the transition from quiescence to proliferative growth. As observed for other members of this class, the rapid serum induction of PRC mRNA does not require de novo protein synthesis and inhibition of protein synthesis stabilizes PRC mRNA, leading to its superinduction. Previous work indicated that PRC activation of cytochrome c expression occurs through cis-acting elements that bind both NRF-1 and CREB. Here, we demonstrate that, like NRF-1, CREB binds PRC in vitro and exists in a complex with PRC in cell extracts. Both CREB and NRF-1 bind the same sites on PRC, and the interaction with CREB requires the CREB b-Zip DNA binding domain. Moreover, a CREB/NRF-1 interaction domain on PRC is required for its trans activation of the cytochrome c promoter and a PRC subfragment containing this domain inhibits respiratory growth on galactose when expressed in trans from a lentivirus vector. Finally, PRC associates with the cytochrome c promoter in vivo and its occupancy of the promoter is markedly elevated in response to serum induction of quiescent fibroblasts. The results establish that PRC is an immediate early gene product that can target key transcription factors as an early event in the program of cellular proliferation.
Collapse
Affiliation(s)
- Kristel Vercauteren
- Department of Cell and Molecular Biology, Northwestern University Medical School, 303 East Chicago Avenue, Chicago, IL 60611, USA
| | | | | | | | | |
Collapse
|
35
|
Thuwajit C, Thuwajit P, Uchida K, Daorueang D, Kaewkes S, Wongkham S, Miwa M. Gene expression profiling defined pathways correlated with fibroblast cell proliferation induced by Opisthorchis viverrini excretory/secretory product. World J Gastroenterol 2006; 12:3585-92. [PMID: 16773716 PMCID: PMC4087575 DOI: 10.3748/wjg.v12.i22.3585] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the mechanism of fibroblast cell proliferation stimulated by the Opisthorchis viverrini excretory/secretory (ES) product.
METHODS: NIH-3T3, mouse fibroblast cells were treated with O. viverrini ES product by non-contact co-cultured with the adult parasites. Total RNA from NIH-3T3 treated and untreated with O. viverrini was extracted, reverse transcribed and hybridized with the mouse 15K complementary DNA (cDNA) array. The result was analyzed by ArrayVision version 5 and GeneSpring version 5 softwares. After normalization, the ratios of gene expression of parasite treated to untreated NIH-3T3 cells of 2-and more-fold upregulated was defined as the differentially expressed genes. The expression levels of the signal transduction genes were validated by semi-quantitative SYBR-based real-time RT-PCR.
RESULTS: Among a total of 15 000 genes/ESTs, 239 genes with established cell proliferation-related function were 2 fold-and more-up-regulated by O. viverrini ES product compared to those in cells without exposure to the parasitic product. These genes were classified into groups including energy and metabolism, signal transduction, protein synthesis and translation, matrix and structural protein, transcription control, cell cycle and DNA replication. Moreover, the expressions of serine-threonine kinase receptor, receptor tyrosine kinase and collagen production-related genes were up-regulated by O. viverrini ES product. The expression level of signal transduction genes; pkC, pdgfrα, jak 1, eps 8, tgfβ 1i4, strap and h ras measured by real-time RT-PCR confirmed their expression levels to those obtained from cDNA array. However, only the up-regulated expression of pkC, eps 8 and tgfβ 1i4 which are the downstream signaling molecules of either epidermal growth factor (EGF) or transforming growth factor-β (TGF-β) showed statistical significance (P < 0.05).
CONCLUSION: O. viverrini ES product stimulates the significant changes of gene expression in several functional categories and these mainly include transcripts related to cell proliferation. The TGF-β and EGF signal transduction pathways are indicated as the possible pathways of O. viverrini-driven cell proliferation.
Collapse
Affiliation(s)
- Chanitra Thuwajit
- Department of Biochemistry, Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | | | | | | | | | | | | |
Collapse
|
36
|
Chen Y, Zhou G, Yu M, He Y, Tang W, Lai J, He J, Liu W, Tan D. Cloning and functional analysis of human mTERFL encoding a novel mitochondrial transcription termination factor-like protein. Biochem Biophys Res Commun 2005; 337:1112-8. [PMID: 16226716 DOI: 10.1016/j.bbrc.2005.09.164] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Accepted: 09/26/2005] [Indexed: 10/25/2022]
Abstract
Serum plays an important role in the regulation of cell cycle and cell growth. To identify novel serum-inhibitory factors and study their roles in cell cycle regulation, we performed mRNA differential display analysis of U251 cells in the presence or absence of serum and cloned a novel gene encoding the human mitochondrial transcription termination factor-like protein (mTERFL). The full-length mTERFL cDNA has been isolated and the genomic structure determined. The mTERFL gene consists of three exons and encodes 385 amino acids with 52% sequence similarity to the human mitochondrial transcription termination factor (mTERF). However, mTERFL and mTERF have an opposite expression pattern in response to serum. The expression of mTERFL is dramatically inhibited by the addition of serum in serum-starved cells while the mTERF is rather induced. Northern blot analysis detected three mTERFL transcripts of 1.7, 3.2, and 3.5kb. Besides the 3.2kb transcript that is unique to skeletal muscle, other two transcripts express predominant in heart, liver, pancreas, and skeletal muscle. Expression of the GFP-mTERFL fusion protein in HeLa cells localized it to the mitochondria. Furthermore, ectopic expression of mTERFL suppresses cell growth and arrests cells in the G1 stage demonstrated by MTT and flow cytometry analysis. Collectively, our data suggest that mTERFL is a novel mTERF family member and a serum-inhibitory factor probably participating in the regulation of cell growth through the modulation of mitochondrial transcription.
Collapse
Affiliation(s)
- Yao Chen
- The Laboratory of Biochemistry and Molecular Biology, School of Life Science, Yunnan University, Kunming 650091, China
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Di Toro R, Baiula M, Spampinato S. Expression of the repressor element-1 silencing transcription factor (REST) is influenced by insulin-like growth factor-I in differentiating human neuroblastoma cells. Eur J Neurosci 2005; 21:46-58. [PMID: 15654842 DOI: 10.1111/j.1460-9568.2004.03828.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The repressor element-1 (RE-1) silencing transcription factor (REST) interacts with an RE-1 cis element and represses the transcription of neuron-specific genes in neuronal progenitors but is down-regulated in post-mitotic neurons. We report that REST expression is modified, in a time-dependent manner, in SH-SY5Y neuroblastoma cells exposed to insulin-like growth factor I (IGF-I), a polypeptide hormone affecting various aspects of neuronal induction and maturation. REST is increased in cells treated with IGF-I for 2 days and then declines in 5-day-treated cells concomitant with a progressive neurite extension. To investigate any role played by REST in neurodifferentiation by IGF-I, we employed an antisense oligonucleotide (AS-ODN) complementary to REST mRNA. In AS-ODN-treated cells, the effects elicited by IGF-I on cell proliferation are not influenced whereas a marked decrease of REST significantly increases neurite elongation without any gross perturbation of neurogenesis. Synapsin I and betaIII-tubulin gene promoters contain an RE-1 motif and their transcription is repressed by REST; both of them are increased in cells exposed to IGF-I for 5 days and further elevated by AS-ODN treatment. A parallel increase of growth cone-associated protein 43, a protein chosen as a neuronal marker not directly regulated by REST, is also observed. Therefore, REST is elevated during early steps of neural induction by IGF-I and could contribute to down-regulate genes not yet required by the differentiation program while it declines later for the acquisition of neural phenotypes. These results suggest a model in which differentiating neuroblastoma cells determine their extent of neurite outgrowth on the basis of REST disappearance.
Collapse
Affiliation(s)
- Rosanna Di Toro
- Department of Pharmacology, University of Bologna, Irnerio 48, 40126 Bologna, Italy
| | | | | |
Collapse
|
38
|
Schlosser I, Hölzel M, Hoffmann R, Burtscher H, Kohlhuber F, Schuhmacher M, Chapman R, Weidle UH, Eick D. Dissection of transcriptional programmes in response to serum and c-Myc in a human B-cell line. Oncogene 2005; 24:520-4. [PMID: 15516975 DOI: 10.1038/sj.onc.1208198] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Proliferation of higher eukaryotic cells is triggered by the proto-oncogene c-myc (myc), which is induced downstream of a large number of growth factor receptors. Myc, a basic helix-loop-helix leucine zipper transcription factor, transmits growth signals by up- and downregulation of target genes. The importance of Myc in growth control is well established. However, the number of growth control genes requiring Myc as an essential factor for regulation after mitogenic stimulation of cells is not yet clear. Here, we have studied the transcriptional programme of a human B-cell line, P493-6, in response to Myc and serum. P493-6 cells do not express the endogenous myc, nor is it induced by serum stimulation. Proliferation of the cells is dependent upon both the expression of a tetracycline-regulated myc gene and serum stimulation. Using DNA microarrays, expression profiling was performed following stimulation of cells with serum, with Myc, or with both. We observed serum regulation of >1000 genes. A number of these genes were synergistically or antagonistically regulated by Myc. Moreover, we identified >300 Myc-regulated genes that were almost unresponsive to serum. Gene ontology analysis revealed that a high proportion of Myc target genes are involved in ribosome biogenesis and tRNA metabolism. The data support our current notion that Myc is essential for the regulation of a large number of growth-related genes in B cells, and cannot be replaced by other serum-induced factors.
Collapse
Affiliation(s)
- Isabel Schlosser
- GSF Research Centre, Institute of Clinical Molecular Biology and Tumour Genetics, Marchioninistr. 25, D-81377 Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Winkles JA, Alberts GF. Differential regulation of polo-like kinase 1, 2, 3, and 4 gene expression in mammalian cells and tissues. Oncogene 2005; 24:260-6. [PMID: 15640841 DOI: 10.1038/sj.onc.1208219] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The four mammalian polo-like kinase (Plk) family members are critical regulators of cell cycle progression, mitosis, cytokinesis, and the DNA damage response. Research conducted to date has primarily investigated the expression patterns, structural features, substrates, and subcellular distribution of these important serine-threonine kinases. Here, we review the published data describing the regulation of Plk1, 2, 3, or 4 gene expression either during mammalian cell cycle progression or in tissue samples. These studies have demonstrated that the Plk family genes are differentially expressed following growth factor stimulation of quiescent fibroblasts. Furthermore, although Plk1 and Plk2 mRNA and protein levels are coordinately regulated during cell cycle progression, this is not the case for Plk3. In addition, the Plk1, 2 and 4 proteins have relatively short intracellular half-lives, but Plk3 is very stable. The Plk family genes are also differentially regulated in stressed cells; for example, when DNA-damaging agents are added to cycling cells, Plk1 expression decreases, but Plk2 and Plk3 expression increases. Finally, Plk1, 2, 3, and 4 are expressed to varying degrees in different human tissue types and it has been reported that Plk1 expression is increased and Plk3 expression is decreased in tumor specimens. These results indicate that the differential regulation of Plk family member gene expression is one cellular strategy for controlling Plk activity in mammalian cells.
Collapse
Affiliation(s)
- Jeffrey A Winkles
- Department of Surgery, University of Maryland Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | |
Collapse
|
40
|
Ramsborg CG, Windgassen D, Fallon JK, Paredes CJ, Papoutsakis ET. Molecular insights into the pleiotropic effects of plasma on ex vivo-expanded T cells using DNA-microarray analysis. Exp Hematol 2004; 32:970-90. [PMID: 15504553 DOI: 10.1016/j.exphem.2004.07.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2004] [Revised: 06/15/2004] [Accepted: 07/13/2004] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Immunotherapy with ex vivo-expanded T cells depends on a large supply of biologically active cells. Understanding the effects of culture parameters is essential for improving cell expansion and efficacy. We used DNA-microarray and flow-cytometric analysis coupled with functional assays to investigate mechanistic aspects of plasma supplementation in ex vivo T-cell expansion. METHODS The effect of plasma supplementation on 18 primary T-cell cultures over a 15-day expansion was investigated. Transcriptional analysis of 5 samples was done with time points every 2 to 3 days throughout the 15-day expansion. Quantitative RT-PCR analysis was used to confirm selected microarray data. The expression of granzyme A and vimentin were analyzed using intracellular flow cytometry. T-cell functionality was assessed using a mixed leukocyte reaction (MLR). RESULTS We show that the increased expansion of plasma-supplemented cultures of primary human T cells is mostly due to increased cell survival. T cells from plasma-supplemented cultures show higher expression of immunoglobulin genes, integrins, and genes of cytotoxic granules, suggesting a possible enhanced immune function. This was confirmed using a mixed leukocyte reaction and intracellular granzyme-A measurements. A distinct gene expression pattern was correlated to viability differences between plasma-supplemented and serum-free cultures. Ontological analysis of genes in this pattern suggests that the decreased viability of serum-free cultures correlates with higher expression of actin-cytoskeleton and lipid-metabolism genes. Vimentin was found to be expressed higher in serum-free cultures. CONCLUSIONS These results indicate that the observed decreased cytotoxicity of T cells cultured in serum-free media may be due to increased oxidative stress and cytoskeleton degradation.
Collapse
Affiliation(s)
- Christopher G Ramsborg
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| | | | | | | | | |
Collapse
|
41
|
Selvaraj A, Prywes R. Expression profiling of serum inducible genes identifies a subset of SRF target genes that are MKL dependent. BMC Mol Biol 2004; 5:13. [PMID: 15329155 PMCID: PMC516031 DOI: 10.1186/1471-2199-5-13] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2004] [Accepted: 08/25/2004] [Indexed: 11/25/2022] Open
Abstract
Background Serum Response Factor (SRF) is a transcription factor that is required for the expression of many genes including immediate early genes, cytoskeletal genes, and muscle-specific genes. SRF is activated in response to extra-cellular signals by its association with a diverse set of co-activators in different cell types. In the case of the ubiquitously expressed immediate early genes, the two sets of SRF binding proteins that regulate its activity are the TCF family of proteins that include Elk1, SAP1 and SAP2 and the myocardin-related MKL family of proteins that include MKL1 and MKL2 (also known as MAL, MRTF-A and -B and BSAC). In response to serum or growth factors these two classes of co-activators are activated by different upstream signal transduction pathways. However, it is not clear how they differentially activate SRF target genes. Results In order to identify the serum-inducible SRF target genes that are specifically dependent on the MKL pathway, we have performed microarray experiments using a cell line that expresses dominant negative MKL1. This approach was used to identify SRF target genes whose activation is MKL-dependent. Twenty-eight of 150 serum-inducible genes were found to be MKL-dependent. The promoters of the serum-inducible genes were analyzed for SRF binding sites and other common regulatory elements. Putative SRF binding sites were found at a higher rate than in a mouse promoter database but were only identified in 12% of the serum-inducible promoters analyzed. Additional partial matches to the consensus SRF binding site were found at a higher than expected rate in the MKL-dependent gene promoters. The analysis for other common regulatory elements is discussed. Conclusions These results suggest that a subset of immediate early and SRF target genes are activated by the Rho-MKL pathway. MKL may also contribute to the induction of other SRF target genes however its role is not essential, possibly due to other activation mechanisms such as MAPK phosphorylation of TCFs.
Collapse
Affiliation(s)
- Ahalya Selvaraj
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Ron Prywes
- Department of Biological Sciences, Columbia University, New York, New York, USA
| |
Collapse
|
42
|
Birker-Robaczewska M, Boukhadra C, Studer R, Mueller C, Binkert C, Nayler O. The expression of urotensin II receptor (U2R) is up-regulated by interferon-gamma. J Recept Signal Transduct Res 2004; 23:289-305. [PMID: 14753294 DOI: 10.1081/rrs-120026972] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Urotensin-II (U-II) was identified as the natural ligand of the G protein-coupled receptor GPR14, which has been correspondingly renamed Urotensin-II receptor (U2R). The tissue distribution of U2R and the pharmacological effects of U-II suggest a novel neurohormonal system with potent cardiovascular effects. We here report the human rhabdomyosarcoma cell line TE-671 as the first natural and endogenous source of functional U2R in an immortalized cell line. In TE-671 cells, U-II stimulated extracellular signal regulated kinase phosphorylation and increased c-fos mRNA expression. Furthermore, we demonstrate that the expression of U2R mRNA and functional U-II high affinity binding sites are serum-responsive and that they are specifically up-regulated by interferon gamma (IFNgamma). We propose that IFNgamma contributes to the previously observed increase of U2R density in the heart tissue of congestive heart failure (CHF) patients and we suggest that U2R up-regulation, as a consequence of an inflammatory response, could lead to a clinical worsening of this disease.
Collapse
|
43
|
Malcolm T, Ettehadieh E, Sadowski I. Mitogen-responsive expression of RhoB is regulated by RNA stability. Oncogene 2003; 22:6142-50. [PMID: 13679852 DOI: 10.1038/sj.onc.1206638] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The small GTPase-encoding gene RhoB is strongly induced as part of the immediate early response of serum-stimulated fibroblasts. In this report, we have characterized the mechanism for growth factor responsiveness of RhoB in Rat-2 fibroblasts. By Northern blotting and ribonuclease protection, we observed low or barely detectable levels of RhoB mRNA in quiescent cells, but expression was transiently induced in response to serum stimulation, such that the mRNA peaked within 30 min and then declined over the next hour. Analysis of the rat promoter revealed cis-elements conserved with the mouse and human genes, including a pair of CEBP sites near the transcriptional start site. However, in contrast to the analysis of RNA, RhoB promoter fusions were constitutively expressed in quiescent cells in transient transfections, and were unaffected by serum. Similarly, stable RhoB promoter integrants were highly expressed in quiescent cells, and growth factor caused a slight decrease in activity. This indicates that growth factor-inducible RhoB expression cannot be mediated by transcriptional activation. We then examined decay of the RhoB mRNA and found that serum caused significant stabilization. Additionally, fusion of the 3' RhoB untranslated region (UTR) to a constitutively expressed reporter gene caused serum and growth factor as well as DNA damage-inducible expression. These observations are consistent with the view that RhoB mRNA is produced constitutively but its abundance is controlled in response to growth factors, and other signals including DNA damage, by stabilization through elements within the 3' UTR.
Collapse
Affiliation(s)
- Tom Malcolm
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2146 Health Sciences Mall, Vancouver, B.C., Canada V6 T 1Z3
| | | | | |
Collapse
|
44
|
Jin JF, Yuan LD, Liu L, Zhao ZJ, Xie W. Preparation and characterization of polyclonal antibodies against ARL-1 protein. World J Gastroenterol 2003; 9:1455-9. [PMID: 12854140 PMCID: PMC4615481 DOI: 10.3748/wjg.v9.i7.1455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To prepare and characterize polyclonal antibodies against aldose reductase-like (ARL-1) protein.
METHODS: ARL-1 gene was inserted into the E. coli expression vector pGEX-4T-1(His)6C and vector pQE-30. Recombinant ARL-1 proteins named ARL-(His)6 and ARL-GST were expressed. They were purified by affinity chromatography. Sera from domestic rabbits immunized with ARL-(His)6 were purified by CNBr-activated sepharose 4B coupled ARL-GST. Polyclonal antibodies were detected by Western blotting.
RESULTS: Recombinant proteins of ARL-(His)6 with molecular weight of 35.7 KD and ARL-GST with molecular weight of 60.8 KD were highly expressed. The expression levels of ARL-GST and ARL-(His)6 were 15.1% and 27.7% among total bacteria proteins, respectively. They were soluble, predominantly in supernatant. After purification by non-denatured way, SDS-PAGE showed one band. In the course of polyclonal antibodies purification, only one elution peak could be seen. Western blotting showed positive signals in the two purified proteins and the bacteria transformed with pGEX-4T-1(His)6 C-ARL and pQE-30-ARL individually.
CONCLUSION: Polyclonal antibodies are purified and highly specific against ARL-1 protein. ARL-GST and ARL-(His)6 are highly expressed and purified.
Collapse
Affiliation(s)
- Jun-Fei Jin
- Genetics Research Center, Medical School, Southeast University, Nanjing 210009, Jiangsu Province, China.
| | | | | | | | | |
Collapse
|
45
|
Kolpakova E, Rusten TE, Olsnes S. Characterization and tissue expression of acidic fibroblast growth factor binding protein homologue in Drosophila melanogaster. Gene 2003; 310:185-91. [PMID: 12801646 DOI: 10.1016/s0378-1119(03)00550-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We have earlier reported a Drosophila protein, which aligned significantly with the amino acid sequence of the human acidic fibroblast growth factor intracellular binding protein (FIBP). In attempts to further elucidate the function of FIBP and its putative role in fibroblast growth factor (FGF) signaling we have cloned and characterized FIBP from Drosophila melanogaster (DrFIBP). Using comparative sequence analysis of Drosophila and human FIBP genes we demonstrate a remarkable conservation of their structural architecture suggesting that FIBP from vertebrates and insects are genuine homologues. Reverse transcriptase polymerase chain reaction analysis of FIBP mRNA from Drosophila revealed differential splicing by intron retention resulting in the production of three distinct FIBP transcripts. The retention of the intronic sequences introduces termination codons within the mature FIBP mRNA leading to premature termination of translation. Analysis of FIBP mRNA distribution in the fruit fly suggests that DrFIBP, like its mammalian homologue, is an abundant protein whose expression is maintained during embryonic, larval and adult stages. The spatial expression pattern investigated by whole mount embryo immunostaining reveals expression of FIBP in the developing tracheal system and in ventral midline cells, two known sites of FGF signaling in the fruit fly.
Collapse
MESH Headings
- Alternative Splicing
- Animals
- Blotting, Northern
- Carrier Proteins/genetics
- DNA/chemistry
- DNA/genetics
- DNA/isolation & purification
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- Drosophila Proteins/genetics
- Drosophila Proteins/metabolism
- Drosophila melanogaster/embryology
- Drosophila melanogaster/genetics
- Drosophila melanogaster/growth & development
- Embryo, Nonmammalian/metabolism
- Embryonic Development
- Exons
- Gene Expression Regulation, Developmental
- Genes, Insect/genetics
- Immunohistochemistry
- Intracellular Signaling Peptides and Proteins
- Introns
- Molecular Sequence Data
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Elona Kolpakova
- Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, N-0310, Oslo, Norway
| | | | | |
Collapse
|
46
|
Fernandez PC, Frank SR, Wang L, Schroeder M, Liu S, Greene J, Cocito A, Amati B. Genomic targets of the human c-Myc protein. Genes Dev 2003; 17:1115-29. [PMID: 12695333 PMCID: PMC196049 DOI: 10.1101/gad.1067003] [Citation(s) in RCA: 753] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The transcription factor Myc is induced by mitogenic signals and regulates downstream cellular responses. If overexpressed, Myc promotes malignant transformation. Myc modulates expression of diverse genes in experimental systems, but few are proven direct targets. Here, we present a large-scale screen for genomic Myc-binding sites in live human cells. We used bioinformatics to select consensus DNA elements (CACGTG or E-boxes) situated in the 5' regulatory region of genes and measured Myc binding to those sequences in vivo by quantitative chromatin immunoprecipitation. Strikingly, most promoter-associated E-boxes showed selective recovery with Myc, unlike non-E-box promoters or E-boxes in bulk genomic DNA. Promoter E-boxes were distributed in two groups bound by Myc at distinct frequencies. The high-affinity group included an estimated 11% of all cellular loci, was highly conserved among different cells, and was bound independently of Myc expression levels. Overexpressed Myc associated at increased frequency with low-affinity targets and, at extreme levels, also with other sequences, suggesting that some binding was not sequence-specific. The strongest DNA-sequence parameter defining high-affinity targets was the location of E-boxes within CpG islands, correlating with an open, preacetylated state of chromatin. Myc further enhanced histone acetylation, with or without accompanying induction of mRNA expression. Our findings point to a high regulatory and biological diversity among Myc-target genes.
Collapse
|
47
|
Wu MH, Yung BYM. UV stimulation of nucleophosmin/B23 expression is an immediate-early gene response induced by damaged DNA. J Biol Chem 2002; 277:48234-40. [PMID: 12374805 DOI: 10.1074/jbc.m206550200] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nucleophosmin/B23 (NPM/B23), a nucleolar protein, was rapidly up-regulated after UV irradiation (at 254 nm; 30 J/m(2)) in NIH 3T3 cells and HeLa/S3 cells. Levels of NPM/B23 mRNA peaked 45-60 min after UV treatment and returned to baseline by 12 h. Transcription inhibitor actinomycin D (5 microg/ml) prevented the UV-induced increase of NPM/B23 mRNA, suggesting that UV induction of NPM/B23 was mediated at the transcriptional level. Moreover, UV-induced NPM/B23 expression was super-induced by cycloheximide (20 microg/ml), which was characteristic of immediate-early gene response. The transcriptional activation of NPM/B23 by UV was also confirmed by NPM/B23 promoter activity assay. Thymine dinucleotide, mimicking the effects of UV-induced DNA damage, was able to trigger NPM/B23 expression in the absence of genomic DNA damage. UV-induced activation of NPM/B23 promoter could not be blocked by UV-inducible pathway inhibitors, such as those of growth factor tyrosine kinase, mitogen-activated protein kinase, AP-1, NF-kappaB, and DNA-dependent kinase. Our results indicate that UV stimulation of NPM/B23 expression may be mediated through a novel UV-inducible pathway and is an immediate-early gene response induced by damaged DNA. Induction of immediate-early gene is an initial step in the regulation of cellular and genomic responses to external stimuli. Our results thus provide important evidence for an involvement of NPM/B23 in the acute response of mammalian cells to environmental stress.
Collapse
Affiliation(s)
- Ming H Wu
- Graduate Institute of Pharmacology, National Yang Ming University, Taipei 112, Taiwan, Republic of China
| | | |
Collapse
|
48
|
Guo Y, Hsu DK, Feng SL, Richards CM, Winkles JA. Polypeptide growth factors and phorbol ester induce progressive ankylosis (ank) gene expression in murine and human fibroblasts. J Cell Biochem 2002; 84:27-38. [PMID: 11746513 DOI: 10.1002/jcb.1263] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Polypeptide growth factors promote cellular proliferation by binding to specific plasma membrane-anchored receptors. This interaction triggers the phosphorylation of signal transducing molecules and the transcriptional activation of numerous genes. We have used a differential display approach to identify fibroblast growth factor (FGF)-1-inducible genes in murine NIH 3T3 fibroblasts. Here we report that one of these genes encodes ank, a type IIIa transmembrane protein reported to function in cells as an inorganic pyrophosphate transporter. FGF-1 induction of ank mRNA expression is first detectable at 2 h after growth factor addition and is dependent on de novo RNA and protein synthesis. Ank gene expression is also upregulated after treating quiescent fibroblasts with several other mitogenic agents (e.g., calf serum or platelet-derived growth factor-BB) or the tumor promoter phorbol 12-myristate 13-acetate. Furthermore, in comparison to parental NIH 3T3 cells, oncogene-transformed NIH 3T3 cells constitutively express elevated levels of ank mRNA. FGF-1 also increases ank gene expression in non-immortalized human embryonic lung fibroblasts. Finally, the murine and human ank genes are expressed in vivo in a tissue-specific manner, with highest levels of mRNA expression found in brain, heart, and skeletal muscle. These results indicate that ank is a growth factor-regulated delayed-early response gene in mammalian cells, and we propose that increased ank expression during cell cycle progression may be necessary to maintain proper intracellular pyrophosphate levels during conditions of high cellular metabolic activity.
Collapse
Affiliation(s)
- Y Guo
- Department of Vascular Biology, Holland Laboratory, American Red Cross, Rockville, Maryland 20855, USA
| | | | | | | | | |
Collapse
|
49
|
Frank SR, Schroeder M, Fernandez P, Taubert S, Amati B. Binding of c-Myc to chromatin mediates mitogen-induced acetylation of histone H4 and gene activation. Genes Dev 2001; 15:2069-82. [PMID: 11511539 PMCID: PMC312758 DOI: 10.1101/gad.906601] [Citation(s) in RCA: 414] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The Myc protein binds DNA and activates transcription by mechanisms that are still unclear. We used chromatin immunoprecipitation (ChIP) to evaluate Myc-dependent changes in histone acetylation at seven target loci. Upon serum stimulation of Rat1 fibroblasts, Myc associated with chromatin, histone H4 became locally hyperacetylated, and gene expression was induced. These responses were lost or severely impaired in Myc-deficient cells, but were restored by adenoviral delivery of Myc simultaneous with mitogenic stimulation. When targeted to chromatin in the absence of mitogens, Myc directly induced H4 acetylation. In addition, Myc recruited TRRAP to chromatin, consistent with a role for this cofactor in histone acetylation. Finally, unlike serum, Myc alone was very inefficient in inducing expression of most target genes. Myc therefore governs a step, most likely H4 acetylation, that is required but not sufficient for transcriptional activation. We propose that Myc acts as a permissive factor, allowing additional signals to activate target promoters.
Collapse
Affiliation(s)
- S R Frank
- Department of Oncology, DNAX Research Institute, Palo Alto, California 94304, USA
| | | | | | | | | |
Collapse
|
50
|
Sweeney C, Fambrough D, Huard C, Diamonti AJ, Lander ES, Cantley LC, Carraway KL. Growth factor-specific signaling pathway stimulation and gene expression mediated by ErbB receptors. J Biol Chem 2001; 276:22685-98. [PMID: 11297548 DOI: 10.1074/jbc.m100602200] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanisms by which receptor tyrosine kinases (RTKs) utilize intracellular signaling pathways to direct gene expression and cellular response remain unclear. A current question is whether different RTKs within a single cell target similar or different sets of genes. In this study we have used the ErbB receptor network to explore the relationship between RTK activation and gene expression. We profiled growth factor-stimulated signaling pathway usage and broad gene expression patterns in two human mammary tumor cell lines expressing different complements of ErbB receptors. Although the growth factors epidermal growth factor (EGF) and neuregulin (NRG) 1 similarly stimulated Erk1/2 in MDA-MB-361 cells, EGF acting through an EGF receptor/ErbB2 heterodimer preferentially stimulated protein kinase C, and NRG1beta acting through an ErbB2/ErbB3 heterodimer preferentially stimulated Akt. The two growth factors regulated partially overlapping yet distinct sets of genes in these cells. In MDA-MB-453 cells, NRG1beta acting through an ErbB2/ErbB3 heterodimer stimulated prolonged signaling of all pathways examined relative to NRG2beta acting through the same heterodimeric receptor species. Surprisingly, NRG1beta and NRG2beta also regulated partially overlapping but distinct sets of genes in these cells. These results demonstrate that the activation of different RTKs, or activation of the same RTKs with different ligands, can lead to distinct profiles of gene regulation within a single cell type. Our observations also suggest that the identity and kinetics of signaling pathway usage by RTKs may play a role in the selection of regulated genes.
Collapse
Affiliation(s)
- C Sweeney
- Department of Cell Biology, Harvard Medical School and Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA.
| | | | | | | | | | | | | |
Collapse
|