1
|
Hypoxia: Uncharged tRNA to the Rescue! Curr Biol 2021; 31:R25-R27. [PMID: 33434482 DOI: 10.1016/j.cub.2020.10.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new study has identified genes that protect Caenorhabditis elegans from hypoxic stress. Genomic approaches and whole-organism proteomics reveal a regulatory interaction between a threonyl-tRNA synthetase and ribosome biogenesis that modulates global translation and hypoxic sensitivity.
Collapse
|
2
|
Fröhlich D, Suchowerska AK, Voss C, He R, Wolvetang E, von Jonquieres G, Simons C, Fath T, Housley GD, Klugmann M. Expression Pattern of the Aspartyl-tRNA Synthetase DARS in the Human Brain. Front Mol Neurosci 2018; 11:81. [PMID: 29615866 PMCID: PMC5869200 DOI: 10.3389/fnmol.2018.00081] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 03/01/2018] [Indexed: 12/21/2022] Open
Abstract
Translation of mRNA into protein is an evolutionarily conserved, fundamental process of life. A prerequisite for translation is the accurate charging of tRNAs with their cognate amino acids, a reaction catalyzed by specific aminoacyl-tRNA synthetases. One of these enzymes is the aspartyl-tRNA synthetase DARS, which pairs aspartate with its corresponding tRNA. Missense mutations of the gene encoding DARS result in the leukodystrophy hypomyelination with brainstem and spinal cord involvement and leg spasticity (HBSL) with a distinct pattern of hypomyelination, motor abnormalities, and cognitive impairment. A thorough understanding of the DARS expression domains in the central nervous system is essential for the development of targeted therapies to treat HBSL. Here, we analyzed endogenous DARS expression on the mRNA and protein level in different brain regions and cell types of human post mortem brain tissue as well as in human stem cell derived neurons, oligodendrocytes, and astrocytes. DARS expression is significantly enriched in the cerebellum, a region affected in HBSL patients and important for motor control. Although obligatorily expressed in all cells, DARS shows a distinct expression pattern with enrichment in neurons but only low abundance in oligodendrocytes, astrocytes, and microglia. Our results reveal little homogeneity across the different cell types, largely matching previously published data in the murine brain. This human gene expression study will significantly contribute to the understanding of DARS gene function and HBSL pathology and will be instrumental for future development of animal models and targeted therapies. In particular, we anticipate high benefit from a gene replacement approach in neurons of HBSL mouse models, given the abundant endogenous DARS expression in this lineage cell.
Collapse
Affiliation(s)
- Dominik Fröhlich
- Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Alexandra K Suchowerska
- Neurodegenerative and Repair Unit, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Carola Voss
- Stem Cell Engineering Group, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Ruojie He
- Stem Cell Engineering Group, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia.,Department of Neurology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ernst Wolvetang
- Stem Cell Engineering Group, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Georg von Jonquieres
- Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Cas Simons
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Thomas Fath
- Neurodegenerative and Repair Unit, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Gary D Housley
- Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Matthias Klugmann
- Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
3
|
Sun L, Yang Q, Wang P, Liu D, Liang W, Lin S, Yuan S. The influence of YS-1 on the Dll4-Notch1 signaling pathway. Acta Biochim Biophys Sin (Shanghai) 2013; 46:56-64. [PMID: 24274976 DOI: 10.1093/abbs/gmt125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In this study, we investigated the role and molecular mechanism of p43 and YS-1 (recombinant human p43 protein) in Dll4-Notch1 signaling pathway. Active, small interfering RNA and recombinant plasmid targeting of p43 protein were used to infect human umbilical vein endothelial cells (HUVECs). Three-dimensional sprouting model, endothelial cell migration assay, and sprouting and tube formation assay were used to deduce the function of p43 and YS-1 in angiogenesis. Semi-quantitative reverse transcription-polymerase chain reaction and western blot analysis were performed to detect the efficiency of p43 in Dll4-Notch1 signaling in HUVECs. It was found that silencing and overexpression of p43 could upregulate Dll4-Notch and stimulate angiogenesis. p43 plays a complex role in angiogenesis. When the concentration is under 100 nM, it promotes angiogenesis; instead, when the concentration is over 100 nM, it inhibits angiogenesis. In this study, we found that the expression level of p43 was under 60 nM. However, recombinant human p43 protein, YS-1, inhibited endothelial cell sprouting, and 500 μg/ml of YS-1 attenuated the activation of Dll4-Notch1 signaling. These results suggested that YS-1 could directly inhibit angiogenesis through Dll4-Notch1 signal transduction pathway, while p43 plays a modulating role in this signaling pathway.
Collapse
Affiliation(s)
- Li Sun
- National Nanjing New Drug Screening Center, China Pharmaceutical University, Nanjing 210009, China
| | | | | | | | | | | | | |
Collapse
|
4
|
Koehler C, Round A, Simader H, Suck D, Svergun D. Quaternary structure of the yeast Arc1p-aminoacyl-tRNA synthetase complex in solution and its compaction upon binding of tRNAs. Nucleic Acids Res 2013; 41:667-76. [PMID: 23161686 PMCID: PMC3592460 DOI: 10.1093/nar/gks1072] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 10/08/2012] [Accepted: 10/13/2012] [Indexed: 11/16/2022] Open
Abstract
In the yeast Saccharomyces cerevisiae, the aminoacyl-tRNA synthetases (aaRS) GluRS and MetRS form a complex with the auxiliary protein cofactor Arc1p. The latter binds the N-terminal domains of both synthetases increasing their affinity for the transfer-RNA (tRNA) substrates tRNA(Met) and tRNA(Glu). Until now, structural information was available only on the enzymatic domains of the individual aaRSs but not on their complexes with associated cofactors. We have analysed the yeast Arc1p-complexes in solution by small-angle X-ray scattering (SAXS). The ternary complex of MetRS and GluRS with Arc1p, displays a peculiar extended star-like shape, implying possible flexibility of the complex. We reconstituted in vitro a pentameric complex and demonstrated by electrophoretic mobility shift assay that the complex is active and contains tRNA(Met) and tRNA(Glu), in addition to the three protein partners. SAXS reveals that binding of the tRNAs leads to a dramatic compaction of the pentameric complex compared to the ternary one. A hybrid low-resolution model of the pentameric complex is constructed rationalizing the compaction effect by the interactions of negatively charged tRNA backbones with the positively charged tRNA-binding domains of the synthetases.
Collapse
MESH Headings
- Electrophoretic Mobility Shift Assay
- Glutamate-tRNA Ligase/chemistry
- Glutamate-tRNA Ligase/metabolism
- Methionine-tRNA Ligase/chemistry
- Methionine-tRNA Ligase/metabolism
- Models, Molecular
- Protein Structure, Tertiary
- RNA, Transfer, Glu/chemistry
- RNA, Transfer, Glu/metabolism
- RNA, Transfer, Met/chemistry
- RNA, Transfer, Met/metabolism
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/metabolism
- Saccharomyces cerevisiae/enzymology
- Saccharomyces cerevisiae Proteins/chemistry
- Saccharomyces cerevisiae Proteins/metabolism
- Scattering, Small Angle
- X-Ray Diffraction
Collapse
Affiliation(s)
- Christine Koehler
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, 69117, Germany, EMBL UVHCI, Grenoble, Cedex 9, 38042, France, Proteros Biostructure, Martinsried-München, 82152 and EMBL Outstation Hamburg, c/o/DESY, European Molecular Biology Laboratory, Hamburg, 22603, Germany
| | - Adam Round
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, 69117, Germany, EMBL UVHCI, Grenoble, Cedex 9, 38042, France, Proteros Biostructure, Martinsried-München, 82152 and EMBL Outstation Hamburg, c/o/DESY, European Molecular Biology Laboratory, Hamburg, 22603, Germany
| | - Hannes Simader
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, 69117, Germany, EMBL UVHCI, Grenoble, Cedex 9, 38042, France, Proteros Biostructure, Martinsried-München, 82152 and EMBL Outstation Hamburg, c/o/DESY, European Molecular Biology Laboratory, Hamburg, 22603, Germany
| | - Dietrich Suck
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, 69117, Germany, EMBL UVHCI, Grenoble, Cedex 9, 38042, France, Proteros Biostructure, Martinsried-München, 82152 and EMBL Outstation Hamburg, c/o/DESY, European Molecular Biology Laboratory, Hamburg, 22603, Germany
| | - Dmitri Svergun
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, 69117, Germany, EMBL UVHCI, Grenoble, Cedex 9, 38042, France, Proteros Biostructure, Martinsried-München, 82152 and EMBL Outstation Hamburg, c/o/DESY, European Molecular Biology Laboratory, Hamburg, 22603, Germany
| |
Collapse
|
5
|
Smirnova EV, Lakunina VA, Tarassov I, Krasheninnikov IA, Kamenski PA. Noncanonical functions of aminoacyl-tRNA synthetases. BIOCHEMISTRY (MOSCOW) 2012; 77:15-25. [PMID: 22339629 DOI: 10.1134/s0006297912010026] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Aminoacyl-tRNA synthetases, together with their main function of covalent binding of an amino acid to a corresponding tRNA, also perform many other functions. They take part in regulation of gene transcription, apoptosis, translation, and RNA splicing. Some of them function as cytokines or catalyze different reactions in living cells. Noncanonical functions can be mediated by additional domains of these proteins. On the other hand, some of the noncanonical functions are directly associated with the active center of the aminoacylation reaction. In this review we summarize recent data on the noncanonical functions of aminoacyl-tRNA synthetases and on the mechanisms of their action.
Collapse
Affiliation(s)
- E V Smirnova
- Department of Molecular Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | | | | | | |
Collapse
|
6
|
Herzog W, Müller K, Huisken J, Stainier DYR. Genetic evidence for a noncanonical function of seryl-tRNA synthetase in vascular development. Circ Res 2009; 104:1260-6. [PMID: 19423847 DOI: 10.1161/circresaha.108.191718] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In a recent genetic screen, we identified mutations in genes important for vascular development and maintenance in zebrafish (Jin et al. Dev Biol. 2007;307:29-42). Mutations [corrected] at the adrasteia (adr) locus cause a pronounced dilatation of the aortic arch vessels as well as aberrant patterning of the hindbrain capillaries and, to a lesser extent, intersomitic vessels. This dilatation of the aortic arch vessels does not appear to be caused by increased cell proliferation but is dependent on vascular endothelial growth factor (Vegf) signaling. By positional cloning, we isolated seryl-tRNA synthetase (sars) as the gene affected by the adr mutations. Small interfering RNA knockdown experiments in human umbilical vein endothelial cell cultures indicate that SARS also regulates endothelial sprouting. These analyses of zebrafish and human endothelial cells reveal a new noncanonical function of Sars in endothelial development.
Collapse
Affiliation(s)
- Wiebke Herzog
- Department of Biochemistry and Biophysics and the Cardiovascular Research Institute, Programs in Developmental Biology, Genetics, and Human Genetics, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | | | | |
Collapse
|
7
|
The life in science. Mol Biol 2008. [DOI: 10.1134/s0026893308050026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Simader H, Hothorn M, Köhler C, Basquin J, Simos G, Suck D. Structural basis of yeast aminoacyl-tRNA synthetase complex formation revealed by crystal structures of two binary sub-complexes. Nucleic Acids Res 2006; 34:3968-79. [PMID: 16914447 PMCID: PMC1557820 DOI: 10.1093/nar/gkl560] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The yeast aminoacyl-tRNA synthetase (aaRS) complex is formed by the methionyl- and glutamyl-tRNA synthetases (MetRS and GluRS, respectively) and the tRNA aminoacylation cofactor Arc1p. It is considered an evolutionary intermediate between prokaryotic aaRS and the multi- aaRS complex found in higher eukaryotes. While a wealth of structural information is available on the enzymatic domains of single aaRS, insight into complex formation between eukaryotic aaRS and associated protein cofactors is missing. Here we report crystal structures of the binary complexes between the interacting domains of Arc1p and MetRS as well as those of Arc1p and GluRS at resolutions of 2.2 and 2.05 Å, respectively. The data provide a complete structural model for ternary complex formation between the interacting domains of MetRS, GluRS and Arc1p. The structures reveal that all three domains adopt a glutathione S-transferase (GST)-like fold and that simultaneous interaction of Arc1p with GluRS and MetRS is mediated by the use of a novel interface in addition to a classical GST dimerization interaction. The results demonstrate a novel role for this fold as a heteromerization domain specific to eukaryotic aaRS, associated proteins and protein translation elongation factors.
Collapse
Affiliation(s)
| | | | | | | | - George Simos
- Department of Medicine, University of Thessaly22 Papakiriazi Street, Larissa, 41222, Greece
| | - Dietrich Suck
- To whom correspondence should be addressed. Tel: 0049 6221 387307; Fax: 0049 6221 387306;
| |
Collapse
|
9
|
Campiglio M, Bianchi F, Andriani F, Sozzi G, Tagliabue E, Ménard S, Roz L. Diadenosines as FHIT-ness instructors. J Cell Physiol 2006; 208:274-81. [PMID: 16547961 DOI: 10.1002/jcp.20633] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
FHIT is a tumor suppressor gene that is frequently inactivated in human cancer. Although the Fhit protein is known to hydrolyze diadenosine triphosphate (Ap(3)A), this hydrolase activity is not required for Fhit-mediated oncosuppression. Indeed, the molecular mechanisms and the regulatory elements of Fhit oncosuppression are largely unknown. Here, we review physiological and pathological aspects of Fhit in the context of the Ap(n)A family of signaling molecules, as well as the involvement of Fhit in apoptosis and the cell cycle in cancer models. We also discuss recent findings of novel Fhit interactions that may lead to new hypotheses about biochemical mechanisms underlying the oncosuppressor activity of this gene.
Collapse
Affiliation(s)
- Manuela Campiglio
- Department of Experimental Oncology, Molecular Biology Unit, Istituto Nazionale Tumori, Milan, Italy.
| | | | | | | | | | | | | |
Collapse
|
10
|
Kim E, Kim SH, Kim S, Kim TS. The Novel Cytokine p43 Induces IL-12 Production in Macrophages via NF-κB Activation, Leading to Enhanced IFN-γ Production in CD4+ T Cells. THE JOURNAL OF IMMUNOLOGY 2005; 176:256-64. [PMID: 16365417 DOI: 10.4049/jimmunol.176.1.256] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Recently, we determined that p43, an auxiliary factor of mammalian multiaminoacyl-tRNA synthetases, is secreted, and functions as a novel pleiotropic cytokine. In this study, we have attempted to characterize the effects of p43 on the generation of IL-12 in mouse macrophages. p43 was determined to induce significant IL-12 production from mouse macrophages in a dose-dependent manner. The stimulatory effect of p43 on the activation of IL-12p40 promoter was mapped to a region harboring an NF-kappaB binding site. The nuclear extracts from the p43-stimulated macrophages exhibited profound NF-kappaB DNA-binding activity, as determined by the EMSA. In addition, the p43-stimulated IL-12 induction and NF-kappaB DNA-binding activity were significantly suppressed by caffeic acid phenethyl ester and BAY11-7082, both inhibitors of NF-kappaB activation, indicating that p43 induced the production of IL-12 in macrophages mainly via the activation of NF-kappaB. Importantly, p43 increased the level of IFN-gamma production in the Ag-primed lymph node cells, but had no effect on IL-4 levels. The addition of a neutralizing anti-IL-12p40 mAb to the cell cultures resulted in a decrease of the production of p43-enhanced IFN-gamma by the keyhole limpet hemocyanin-primed lymph node cells. Furthermore, coincubation with p43-pretreated macrophages enhanced the production of IFN-gamma by the keyhole limpet hemocyanin-primed CD4+ T cells, thereby indicating that p43 may enhance IFN-gamma expression in CD4+ T cells via the induction of IL-12 production in macrophages. These results indicate that p43 may play an essential role in the development of the Th1 immune responses associated with cancer immunotherapy and protective immunity against intracellular pathogens.
Collapse
Affiliation(s)
- Eugene Kim
- School of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | | | | | | |
Collapse
|
11
|
Jiang S, Wolfe CL, Warrington JA, Norcum MT. Three-dimensional reconstruction of the valyl-tRNA synthetase/elongation factor-1H complex and localization of the delta subunit. FEBS Lett 2005; 579:6049-54. [PMID: 16229838 DOI: 10.1016/j.febslet.2005.09.062] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Revised: 09/20/2005] [Accepted: 09/26/2005] [Indexed: 01/06/2023]
Abstract
Eukaryotic valyl-tRNA synthetase (ValRS) and the heavy form of elongation factor 1 (EF-1H) are isolated as a stable high molecular mass complex that catalyzes consecutive steps in protein biosynthesis--aminoacylation of tRNA and its transfer to elongation factor. Herein is the first three-dimensional structure of the particle as calculated from electron microscopic images of negatively stained samples of the human ValRS/EF-1H complex. The ca. 12 x 8 nm particle has two distinct domains and each appears to have twofold symmetry. Bound antibodies place two delta subunits near the particle's center. These data support a dimeric head-to-head arrangement of particle components.
Collapse
Affiliation(s)
- Shoulei Jiang
- Department of Biochemistry, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | | | | | | |
Collapse
|
12
|
Wolfson A, Knight R. Occurrence of the aminoacyl-tRNA synthetases in high-molecular weight complexes correlates with the size of substrate amino acids. FEBS Lett 2005; 579:3467-72. [PMID: 15963508 DOI: 10.1016/j.febslet.2005.05.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Revised: 05/06/2005] [Accepted: 05/11/2005] [Indexed: 11/16/2022]
Abstract
One of the distinctive and mysterious features of mammalian aminoacyl-tRNA synthetases (AARSs) is the existence of stable high-molecular weight complexes containing 10 out of 20 AARSs. The composition and structure of these complexes are conserved among multicellular animals. No specific function associated with these structures has been found, and there is no evident rationale for a particular separation of AARSs in "complex-bound" and "free" forms. We have demonstrated a strong association between the occurrence of AARSs in the complexes and the volume of their substrate amino acids. The significance of this association is discussed in terms of the structural organization of translation in the living cell.
Collapse
Affiliation(s)
- Alexey Wolfson
- Department of Chemistry and Biochemistry, University of Colorado, UCB 215, Boulder, CO 80309, USA.
| | | |
Collapse
|
13
|
Lee SW, Cho BH, Park SG, Kim S. Aminoacyl-tRNA synthetase complexes: beyond translation. J Cell Sci 2005; 117:3725-34. [PMID: 15286174 DOI: 10.1242/jcs.01342] [Citation(s) in RCA: 194] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although aminoacyl-tRNA synthetases (ARSs) are housekeeping enzymes essential for protein synthesis, they can play non-catalytic roles in diverse biological processes. Some ARSs are capable of forming complexes with each other and additional proteins. This characteristic is most pronounced in mammals, which produce a macromolecular complex comprising nine different ARSs and three additional factors: p43, p38 and p18. We have been aware of the existence of this complex for a long time, but its structure and function have not been well understood. The only apparent distinction between the complex-forming ARSs and those that do not form complexes is their ability to interact with the three non-enzymatic factors. These factors are required not only for the catalytic activity and stability of the associated ARSs, such as isoleucyl-, methionyl-, and arginyl-tRNA synthetase, but also for diverse signal transduction pathways. They may thus have joined the ARS community to coordinate protein synthesis with other biological processes.
Collapse
Affiliation(s)
- Sang Won Lee
- National Creative Research Initiatives Center for ARS Network, College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | | | | | | |
Collapse
|
14
|
Kise Y, Lee SW, Park SG, Fukai S, Sengoku T, Ishii R, Yokoyama S, Kim S, Nureki O. A short peptide insertion crucial for angiostatic activity of human tryptophanyl-tRNA synthetase. Nat Struct Mol Biol 2004; 11:149-56. [PMID: 14730354 DOI: 10.1038/nsmb722] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2003] [Accepted: 12/15/2003] [Indexed: 11/08/2022]
Abstract
Human tryptophanyl-tRNA synthetase (TrpRS) is secreted into the extracellular region of vascular endothelial cells. The splice variant form (mini TrpRS) functions in vascular endothelial cell apoptosis as an angiostatic cytokine. In contrast, the closely related human tyrosyl-tRNA synthetase (TyrRS) functions as an angiogenic cytokine in its truncated form (mini TyrRS). Here, we determined the crystal structure of human mini TrpRS at a resolution of 2.3 A and compared the structure with those of prokaryotic TrpRS and human mini TyrRS. Deletion of the tRNA anticodon-binding (TAB) domain insertion, consisting of eight residues in the human TrpRS, abolished the enzyme's apoptotic activity for endothelial cells, whereas its translational catalysis and cell-binding activities remained unchanged. Thus, we have identified the inserted peptide motif that activates the angiostatic signaling.
Collapse
Affiliation(s)
- Yoshiaki Kise
- Department of Biophysics and Biochemistry, Graduate School of Science, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Yu Y, Liu Y, Shen N, Xu X, Xu F, Jia J, Jin Y, Arnold E, Ding J. Crystal structure of human tryptophanyl-tRNA synthetase catalytic fragment: insights into substrate recognition, tRNA binding, and angiogenesis activity. J Biol Chem 2003; 279:8378-88. [PMID: 14660560 DOI: 10.1074/jbc.m311284200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human tryptophanyl-tRNA synthetase (hTrpRS) produces a full-length and three N terminus-truncated forms through alternative splicing and proteolysis. The shortest fragment that contains the aminoacylation catalytic fragment (T2-hTrpRS) exhibits the most potent angiostatic activity. We report here the crystal structure of T2-hTrpRS at 2.5 A resolution, which was solved using the multi-wavelength anomalous diffraction method. T2-hTrpRS shares a very low sequence homology of 22% with Bacillus stearothermophilus TrpRS (bTrpRS); however, their overall structures are strikingly similar. Structural comparison of T2-hTrpRS with bTrpRS reveals substantial structural differences in the substrate-binding pocket and at the entrance to the pocket that play important roles in substrate binding and tRNA binding. T2-hTrpRS has a wide opening to the active site and adopts a compact conformation similar to the closed conformation of bTrpRS. These results suggest that mammalian and bacterial TrpRSs might use different mechanisms to recognize the substrate. Modeling studies indicate that tRNA binds with the dimeric enzyme and interacts primarily with the connective polypeptide 1 of hTrpRS via its acceptor arm and the alpha-helical domain of hTrpRS via its anticodon loop. Our results also suggest that the angiostatic activity is likely located at the alpha-helical domain, which resembles the short chain cytokines.
Collapse
Affiliation(s)
- Yadong Yu
- Key Laboratory of Proteomics and State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Ahn HC, Kim S, Lee BJ. Solution structure and p43 binding of the p38 leucine zipper motif: coiled-coil interactions mediate the association between p38 and p43. FEBS Lett 2003; 542:119-24. [PMID: 12729910 DOI: 10.1016/s0014-5793(03)00362-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
p38, which has been suggested to be a scaffold protein for the assembly of a macromolecular tRNA synthetase complex, contains a leucine zipper-like motif. To understand the importance of the leucine zipper-like motif of p38 (p38LZ) in macromolecular assembly, the p38LZ solution structure was investigated by circular dichroism and nuclear magnetic resonance spectroscopy. The solution structure of p38LZ showed an amphipathic alpha-helical structure and characteristics similar to a coiled-coil motif. The protein-protein interaction mediated by p38LZ was examined by an in vitro binding assay. The p43 protein, another non-synthetase component of the complex, could bind to p38LZ via its N-terminal domain, which is also predicted to have a potential coiled-coil motif. Thus, we propose that the p38-p43 complex would be formed by coiled-coil interactions, and the formation of the binary complex would facilitate the macromolecular assembly of aminoacyl-tRNA synthetases.
Collapse
Affiliation(s)
- Hee Chul Ahn
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-74, South Korea
| | | | | |
Collapse
|
17
|
Shepel PN, Holden CP, Geiger JD. Ryanodine receptor modulation by diadenosine polyphosphates in synaptosomal and microsomal preparations of rat brain. Eur J Pharmacol 2003; 467:67-71. [PMID: 12706456 DOI: 10.1016/s0014-2999(03)01593-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Diadenosine polyphosphates (Ap(n)As) are transmitter-like substances that act intracellularly via unclear mechanisms. Here we tested hypotheses that diadenosine tetraphosphate (Ap(4)A) modulates ryanodine binding in microsomal and synaptosomal fractions of rat brain, and that Ap(4)A affects modulation of ryanodine binding by divalent cations and caffeine. Using [3H]ryanodine-binding assays, we showed that Ap(4)A produced significant and concentration-dependent increases in [3H]ryanodine binding in microsomes and these actions were reduced by Mg(2+) and potentiated by caffeine. In synaptosomal subfractions, effects of Ap(4)A on [3H]ryanodine binding were most profound in subfractions enriched in synaptic vesicle-associated protein synaptophysin. These results suggest that Ap(n)As and ryanodine receptors are well placed to modulate Ca(2+)-dependent synaptic processes.
Collapse
Affiliation(s)
- P Nickolas Shepel
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada R2H 2A6
| | | | | |
Collapse
|
18
|
Park SG, Kang YS, Ahn YH, Lee SH, Kim KR, Kim KW, Koh GY, Ko YG, Kim S. Dose-dependent biphasic activity of tRNA synthetase-associating factor, p43, in angiogenesis. J Biol Chem 2002; 277:45243-8. [PMID: 12237313 DOI: 10.1074/jbc.m207934200] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian aminoacyl tRNA synthetases form a macromolecular protein complex with three non-enzymatic cofactors. Among these factors, p43 is also secreted to work as a cytokine on endothelial as well as immune cells. Here we investigated the activity of p43 in angiogenesis and determined the related mediators. It promoted the migration of endothelial cells at low dose but induced their apoptosis at high dose. p43 at low concentration activated extracellular signal-regulating kinase, which resulted in the induction and activation of matrix metalloproteinase 9. In contrast, p43 at high concentration activated Jun N-terminal kinase, which mediated apoptosis of endothelial cells. These results suggest that p43 is a novel cytokine playing a dose-dependent biphasic role in angiogenesis.
Collapse
Affiliation(s)
- Sang Gyu Park
- National Creative Research Initiatives Center for ARS Network, College of Pharmacy, Seoul National University, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Affiliation(s)
- George Simos
- Biochemie-Zentrum Heidelberg (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
20
|
Sang Lee J, Gyu Park S, Park H, Seol W, Lee S, Kim S. Interaction network of human aminoacyl-tRNA synthetases and subunits of elongation factor 1 complex. Biochem Biophys Res Commun 2002; 291:158-64. [PMID: 11829477 DOI: 10.1006/bbrc.2002.6398] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aminoacyl-tRNA synthetases (ARSs) ligate amino acids to their cognate tRNAs. It has been suggested that mammalian ARSs are linked to the EF-1 complex for efficient channeling of aminoacyl tRNAs to ribosome. Here we systemically investigated possible interactions between human ARSs and the subunits of EF-1 (alpha, beta, gamma, and delta) using a yeast two-hybrid assay. Among the 80 tested pairs, leucyl- and histidyl-tRNA synthetases were found to make strong and specific interaction with the EF-1gamma and beta while glu-proly-, glutaminyl-, alanyl-, aspartyl-, lysyl-, phenylalanyl-, glycyl-, and tryptophanyl-tRNA synthetases showed moderate interactions with the different EF-1 subunits. The interactions of leucyl- and histidyl-tRNA synthetase with the EF-1 complex were confirmed by immunoprecipitation and in vitro pull-down experiments. Interestingly, the aminoacylation activities of these two enzymes, but not other ARSs, were stimulated by the cofactor of EF-1, GTP. These data suggest that a systematic interaction network may exist between mammalian ARSs and EF-1 subunits probably to enhance the efficiency of in vivo protein synthesis.
Collapse
Affiliation(s)
- Jong Sang Lee
- National Creative Research Initiatives Center for ARS Network, College of Pharmacy, Seoul National University, Shinlim-Dong, Kwanak-Ku, Seoul, 157-742, Korea
| | | | | | | | | | | |
Collapse
|
21
|
Norcum MT, Boisset N. Three-dimensional architecture of the eukaryotic multisynthetase complex determined from negatively stained and cryoelectron micrographs. FEBS Lett 2002; 512:298-302. [PMID: 11852099 DOI: 10.1016/s0014-5793(02)02262-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study provides the first description of the three-dimensional architecture of the multienzyme complex of aminoacyl-tRNA synthetases. Reconstructions were calculated from electron microscopic images of negatively stained and frozen hydrated samples using three independent angular assignment methods. In all cases, volumes show an asymmetric triangular arrangement of protein domains around a deep central cavity. The structures have openings or indentations on most sides. Maximum dimensions are ca. 19x16x10 nm. The central cavity is 4 nm in diameter and extends two-thirds of the length of the particle.
Collapse
Affiliation(s)
- Mona T Norcum
- Department of Biochemistry, The University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA.
| | | |
Collapse
|
22
|
Galani K, Großhans H, Deinert K, Hurt EC, Simos G. The intracellular location of two aminoacyl-tRNA synthetases depends on complex formation with Arc1p. EMBO J 2001; 20:6889-98. [PMID: 11726524 PMCID: PMC125769 DOI: 10.1093/emboj/20.23.6889] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In yeast, two aminoacyl-tRNA synthetases, MetRS and GluRS, are associated with Arc1p. We have studied the mechanism of this complex formation and found that the non-catalytic N-terminally appended domains of MetRS and GluRS are necessary and sufficient for binding to Arc1p. Similarly, it is the N-terminal domain of Arc1p that contains distinct but overlapping binding sites for MetRS and GluRS. Localization of Arc1p, MetRS and GluRS in living cells using green fluorescent protein showed that these three proteins are cytoplasmic and largely excluded from the nucleus. However, when their assembly into a complex is inhibited, significant amounts of MetRS, GluRS and Arc1p can enter the nucleus. We suggest that the organization of aminoacyl-tRNA synthetases into a multimeric complex not only affects catalysis, but is also a means of segregating the tRNA- aminoacylation machinery mainly to the cytoplasmic compartment.
Collapse
Affiliation(s)
| | - Helge Großhans
- Biochemie-Zentrum Heidelberg (BZH), Im Neuenheimer Feld 328, D-69120 Heidelberg, Germany
Present address: MCDB Department, KBT 940 Yale University, PO Box 208103, 266 Whitney Avenue, New Haven, CT 06520, USA Present address: Laboratory of Biochemistry, School of Medicine, University of Thessaly, 22 Papakiriazi str., 41222 Larissa, Greece Corresponding author e-mail:
| | | | | | - George Simos
- Biochemie-Zentrum Heidelberg (BZH), Im Neuenheimer Feld 328, D-69120 Heidelberg, Germany
Present address: MCDB Department, KBT 940 Yale University, PO Box 208103, 266 Whitney Avenue, New Haven, CT 06520, USA Present address: Laboratory of Biochemistry, School of Medicine, University of Thessaly, 22 Papakiriazi str., 41222 Larissa, Greece Corresponding author e-mail:
| |
Collapse
|
23
|
Abstract
The FHIT gene encodes a diadenosine hydrolase and may be involved in growth control pathways of the cell. Studies on protein-protein interactions, cell lines, including tumourigenicity tests, and knockout mice suggest that the Fhit protein is involved in cell proliferation and apoptosis, and might act as a tumour suppressor. In several different cancers, including breast cancer, alterations in the FHIT gene have been detected in high frequency. The most common alterations are: deletions, DNA hypermethylation, abnormal transcripts and reduced expression at RNA and protein level. The FHIT gene is located at the FRA 3B fragile site at chromosome 3p 14.2, and alterations in the FHIT gene and Fhit protein have been found associated with genome instability, particularly in BRCA 2 mutated breast tumours. This paper will focus on some of the functional aspects of the Fhit protein with respect to tumour pathogenesis and on aberrations detected in breast cancer.
Collapse
Affiliation(s)
- S Ingvarsson
- Institute for Experimental Pathology, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
24
|
Deinert K, Fasiolo F, Hurt EC, Simos G. Arc1p organizes the yeast aminoacyl-tRNA synthetase complex and stabilizes its interaction with the cognate tRNAs. J Biol Chem 2001; 276:6000-8. [PMID: 11069915 DOI: 10.1074/jbc.m008682200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic aminoacyl-tRNA synthetases, in contrast to their prokaryotic counterparts, are often part of high molecular weight complexes. In yeast, two enzymes, the methionyl- and glutamyl-tRNA synthetases associate in vivo with the tRNA-binding protein Arc1p. To study the assembly and function of this complex, we have reconstituted it in vitro from individually purified recombinant proteins. Our results show that Arc1p can readily bind to either or both of the two enzymes, mediating the formation of the respective binary or ternary complexes. Under competition conditions, Arc1p alone exhibits broad specificity and interacts with a defined set of tRNA species. Nevertheless, the in vitro reconstituted Arc1p-containing enzyme complexes can bind only to their cognate tRNAs and tighter than the corresponding monomeric enzymes. These results demonstrate that the organization of aminoacyl-tRNA synthetases with general tRNA-binding proteins into multimeric complexes can stimulate their catalytic efficiency and, therefore, offer a significant advantage to the eukaryotic cell.
Collapse
Affiliation(s)
- K Deinert
- Biochemie-Zentrum Heidelberg (BZH), University of Heidelberg, Im Neuenheimer Feld 328, D-69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
25
|
Ko YG, Kim EY, Kim T, Park H, Park HS, Choi EJ, Kim S. Glutamine-dependent antiapoptotic interaction of human glutaminyl-tRNA synthetase with apoptosis signal-regulating kinase 1. J Biol Chem 2001; 276:6030-6. [PMID: 11096076 DOI: 10.1074/jbc.m006189200] [Citation(s) in RCA: 154] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Glutamine has been known to be an apoptosis suppressor, since it blocks apoptosis induced by heat shock, irradiation, and c-Myc overexpression. Here, we demonstrated that HeLa cells were susceptible to Fas-mediated apoptosis under the condition of glutamine deprivation. Fas ligation activated apoptosis signal-regulating kinase 1 (ASK1) and c-Jun N-terminal kinase (JNK; also known as stress-activated protein kinase (SAPK)) in Gln-deprived cells but not in normal cells, suggesting that Gln might be involved in the activity control of ASK1 and JNK/SAPK. As one of the possible mechanisms for the suppressive effect of Gln on ASK1, we investigated the molecular interaction between human glutaminyl-tRNA synthetase (QRS) and ASK1 and found the Gln-dependent association of the two molecules. While their association was enhanced by the elevation of Gln concentration, they were dissociated by Fas ligation within 5 min. The association involved the catalytic domains of the two enzymes. The ASK1 activity was inhibited by the interaction with QRS as determined by in vitro kinase and transcription assays. Finally, we have shown that QRS inhibited the cell death induced by ASK1, and this antiapoptotic function of QRS was weakened by the deprivation of Gln. Thus, the antiapoptotic interaction of QRS with ASK1 is controlled positively by the cellular concentration of Gln and negatively by Fas ligation. The results of this work provide one possible explanation for the working mechanism of the antiapoptotic activity of Gln and suggest a novel function of mammalian ARSs.
Collapse
Affiliation(s)
- Y G Ko
- National Creative Research Initiatives Center for ARS Network, Sung Kyun Kwan University, Suwon, Kyunggido 440-746, Korea
| | | | | | | | | | | | | |
Collapse
|
26
|
Hammamieh R, Yang DC. Magnesium ion-mediated binding to tRNA by an amino-terminal peptide of a class II tRNA synthetase. J Biol Chem 2001; 276:428-33. [PMID: 11035022 DOI: 10.1074/jbc.m007570200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aspartyl-tRNA synthetase is a class II tRNA synthetase and occurs in a multisynthetase complex in mammalian cells. Human Asp-tRNA synthetase contains a short 32-residue amino-terminal extension that can control the release of charged tRNA and its direct transfer to elongation factor 1 alpha; however, whether the extension binds to tRNA directly or interacts with the synthetase active site is not known. Full-length human AspRS, but not amino-terminal 32 residue-deleted, fully active AspRS, was found to bind to noncognate tRNA(fMet) in the presence of Mg(2+). Synthetic amino-terminal peptides bound similarly to tRNA(fMet), whereas little or no binding of polynucleotides, poly(dA-dT), or polyphosphate to the peptides was found. The apparent binding constants to tRNA by the peptide increased with increasing concentrations of Mg(2+), suggesting Mg(2+) mediates the binding as a new mode of RNA.peptide interactions. The binding of tRNA(fMet) to amino-terminal peptides was also observed using fluorescence-labeled tRNAs and circular dichroism. These results suggest that a small peptide can bind to tRNA selectively and that evolution of class II tRNA synthetases may involve structural changes of amino-terminal extensions for enhanced selective binding of tRNA.
Collapse
Affiliation(s)
- R Hammamieh
- Department of Chemistry, Georgetown University, Washington, DC 20057, USA
| | | |
Collapse
|
27
|
Robinson JC, Kerjan P, Mirande M. Macromolecular assemblage of aminoacyl-tRNA synthetases: quantitative analysis of protein-protein interactions and mechanism of complex assembly. J Mol Biol 2000; 304:983-94. [PMID: 11124041 DOI: 10.1006/jmbi.2000.4242] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The structure of the mammalian multi-synthetase complex was investigated in vitro using qualitative and quantitative approaches. This macromolecular assemblage comprises the bifunctional glutamyl-prolyl-tRNA synthetase, the seven monospecific isoleucyl, leucyl, methionyl, glutaminyl, lysyl, arginyl and aspartyl-tRNA synthetases, and the three auxiliary p43, p38 and p18 proteins. The scaffold p38 protein was expressed in Escherichia coli and purified to homogeneity as a His-tagged protein. The different components of the complex were shown to associate in vitro with p38 immobilized on Ni(2+)-coated plates. Interactions between peripheral enzymes and p38 are referred to as central interactions, as opposed to lateral interactions between peripheral enzymes. Kinetic parameters of the interactions were determined by the means of a biosensor-based approach. The two dimeric proteins LysRS and AspRS were found to tightly bind to p38, with a K(d) value of 0.3 and 4.7 nM, respectively. These interactions involved the catalytic core of the enzymes. By contrast, binding of ArgRS or GlnRS to p38 was much weaker (>5 microM). ArgRS and p43, two peripheral components, were shown to interact with moderate affinity (K(d)=93 nM). Since all the components of the complex are tightly associated within this particle, lateral interactions were believed to contribute to the stabilization of this assemblage. Using an in vitro binding assay, concomitant association of several components of the complex on immobilized p38 could be demonstrated, and revealed the involvement of synergistic effects for association of weakly interacting proteins. Taking into account the possible synergy between central and lateral contributions, a sub-complex containing p38, p43, ArgRS and GlnRS was reconstituted in vitro. These data provide compelling evidence for an ordered and concerted mechanism of complex assembly.
Collapse
Affiliation(s)
- J C Robinson
- Laboratoire d'Enzymologie et Biochimie Structurales, UPR 9063 du Centre National de la Recherche Scientifique, 1 Avenue de la Terrasse, Gif-sur-Yvette, 91190, France
| | | | | |
Collapse
|
28
|
Nathanson L, Deutscher MP. Active aminoacyl-tRNA synthetases are present in nuclei as a high molecular weight multienzyme complex. J Biol Chem 2000; 275:31559-62. [PMID: 10930398 DOI: 10.1074/jbc.c000385200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent studies suggest that aminoacylation of tRNA may play an important role in the transport of these molecules from the nucleus to the cytoplasm. However, there is almost no information regarding the status of active aminoacyl-tRNA synthetases within the nuclei of eukaryotic cells. Here we show that at least 13 active aminoacyl-tRNA synthetases are present in purified nuclei of both Chinese hamster ovary and rabbit kidney cells, although their steady-state levels represent only a small percentage of those found in the cytoplasm. Most interestingly, all the nuclear aminoacyl-tRNA synthetases examined can be isolated as part of a multienzyme complex that is more stable, and consequently larger, than the comparable complex isolated from the cytoplasm. These data directly demonstrate the presence of active aminoacyl-tRNA synthetases in mammalian cell nuclei. Moreover, their unexpected structural organization raises important questions about the functional significance of these multienzyme complexes and whether they might play a more direct role in nuclear to cytoplasmic transport of tRNAs.
Collapse
Affiliation(s)
- L Nathanson
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, Miami, Florida 33136, USA
| | | |
Collapse
|
29
|
Kim JE, Kim KH, Lee SW, Seol W, Shiba K, Kim S. An elongation factor-associating domain is inserted into human cysteinyl-tRNA synthetase by alternative splicing. Nucleic Acids Res 2000; 28:2866-72. [PMID: 10908348 PMCID: PMC102683 DOI: 10.1093/nar/28.15.2866] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The amino acid sequence of human cytoplasmic cysteinyl-tRNA synthetase (CRS) was examined by analyzing sequences of genomic and expressed sequence tag fragments. From theses analyses, a few interesting possibilities were suggested for the structure of human CRS. First, different isoforms of CRS may result from alternative splicing. Second, the largest one would comprise 831 amino acids. Third, a new exon was identified encoding an 83 amino acid domain that is homologous to parts of elongation factor-1 subunits as well as other proteins involved in protein synthesis. Northern blot analysis showed three different mRNAs for CRS (of approximately 3.0, 2.7 and 2.0 kb) from human testis while only the 2.7 kb mRNA was commonly detected in other tissues. Expression of the exon 2-containing transcript in testis was confirmed by RT-PCR and northern blotting. CRS containing the exon 2-encoded peptide retained catalytic activity comparable to that lacking this peptide. This peptide was responsible for the specific interaction of CRS with elongation factor-1gamma.
Collapse
Affiliation(s)
- J E Kim
- National Creative Research Initiatives Center for ARS Network, Sung Kyun Kwan University, 300 Chunchun-Dong, Changan-Ku, Suwon-Si, Kyunggi-Do 440-746, Korea
| | | | | | | | | | | |
Collapse
|
30
|
Kim T, Park SG, Kim JE, Seol W, Ko YG, Kim S. Catalytic peptide of human glutaminyl-tRNA synthetase is essential for its assembly to the aminoacyl-tRNA synthetase complex. J Biol Chem 2000; 275:21768-72. [PMID: 10801842 DOI: 10.1074/jbc.m002404200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human glutaminyl-tRNA synthetase (QRS) is one of several mammalian aminoacyl-tRNA synthetases (ARSs) that form a macromolecular protein complex. To understand the mechanism of QRS targeting to the multi-ARS complex, we analyzed both exogenous and endogenous QRSs by immunoprecipitation after overexpression of various Myc-tagged QRS mutants in human embryonic kidney 293 cells. Whereas a deletion mutant containing only the catalytic domain (QRS-C) was targeted to the multi-ARS complex, a mutant QRS containing only the N-terminal appended domain (QRS-N) was not. Deletion mapping showed that the ATP-binding Rossman fold was necessary for targeting of QRS to the multi-ARS complex. Furthermore, exogenous Myc-tagged QRS-C was co-immunoprecipitated with endogenous QRS. Since glutaminylation of tRNA was dramatically increased in cells transfected with the full-length QRS, but not with either QRS-C or QRS-N, both the QRS catalytic domain and the N-terminal appended domain were required for full aminoacylation activity. When QRS-C was overexpressed, arginyl-tRNA synthetase and p43 were released from the multi-ARS complex along with endogenous QRS, suggesting that the N-terminal appendix of QRS is required to keep arginyl-tRNA synthetase and p43 within the complex. Thus, the eukaryote-specific N-terminal appendix of QRS appears to stabilize the association of other components in the multi-ARS complex, whereas the C-terminal catalytic domain is necessary for QRS association with the multi-ARS complex.
Collapse
Affiliation(s)
- T Kim
- National Creative Research Initiatives Center for ARS Network, Sung Kyun Kwan University, Suwon, Kyunggido 440-746, Korea
| | | | | | | | | | | |
Collapse
|
31
|
Norcum MT, Warrington JA. The cytokine portion of p43 occupies a central position within the eukaryotic multisynthetase complex. J Biol Chem 2000; 275:17921-4. [PMID: 10787402 DOI: 10.1074/jbc.c000266200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Multicellular eukaryotes contain a macromolecular assembly of nine aminoacyl-tRNA synthetase activities and three auxiliary proteins. One of these, p43, is the precursor of endothelial monocyte-activating polypeptide II (EMAP II), an inflammatory cytokine involved in apoptotic processes. As a step toward understanding this paradoxical association, the EMAP II portion of p43 has been localized within the rabbit reticulocyte multisynthetase complex. Immunoblot analysis demonstrates strong reaction of anti-EMAP II antiserum with p43, as well as cross-reactivity with isoleucyl-tRNA synthetase. Electron microscopic images of immunocomplexes show two antibody binding sites. The primary site is near the midpoint of the multisynthetase complex at the intersection of the arms with the base. This site near the lower edge of the central cleft is assigned to the C-terminal cytokine portion of p43. The secondary site of antibody binding is in the base of the particle and maps the location of isoleucyl-tRNA synthetase. These data allow refinement of the three-domain model of polypeptide distribution within the multisynthetase complex. Moreover, the central location of p43/EMAP II suggests a role for this polypeptide in optimizing normal function and in rapid disruption of essential cellular machinery when apoptosis is signaled.
Collapse
Affiliation(s)
- M T Norcum
- Department of Biochemistry, the University of Mississippi Medical Center, Jackson, Mississippi 39216-4505, USA.
| | | |
Collapse
|
32
|
Jorgensen R, Søgaard TM, Rossing AB, Martensen PM, Justesen J. Identification and characterization of human mitochondrial tryptophanyl-tRNA synthetase. J Biol Chem 2000; 275:16820-6. [PMID: 10828066 DOI: 10.1074/jbc.275.22.16820] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A full-length cDNA clone encoding the human mitochondrial tryptophanyl-tRNA synthetase (h(mt)TrpRS) has been identified. The deduced amino acid sequence shows high homology to both the mitochondrial tryptophanyl-tRNA synthetase ((mt)TrpRS) from Saccharomyces cerevisiae and to different eubacterial forms of tryptophanyl-tRNA synthetase (TrpRS). Using the baculovirus expression system, we have expressed and purified the protein with a carboxyl-terminal histidine tag. The purified His-tagged h(mt)TrpRS catalyzes Trp-dependent exchange of PP(i) in the PP(i)-ATP exchange assay. Expression of h(mt)TrpRS in both human and insect cells leads to high levels of h(mt)TrpRS localizing to the mitochondria, and in insect cells the first 18 amino acids constitute the mitochondrial localization signal sequence. Until now the human cytoplasmic tryptophanyl-tRNA synthetase (hTrpRS) was thought to function as the h(mt)TrpRS, possibly in the form of a splice variant. However, no mitochondrial localization signal sequence was ever detected and the present identification of a different (mt)TrpRS almost certainly rules out that possibility. The h(mt)TrpRS shows kinetic properties similar to human mitochondrial phenylalanyl-tRNA synthetase (h(mt)PheRS), and h(mt)TrpRS is not induced by interferon-gamma as is hTrpRS.
Collapse
Affiliation(s)
- R Jorgensen
- Department of Molecular and Structural Biology, University of Aarhus, 8000 Aarhus C, Denmark
| | | | | | | | | |
Collapse
|
33
|
Abstract
The aminoacyl-tRNA synthetases are an ancient group of enzymes that catalyze the covalent attachment of an amino acid to its cognate transfer RNA. The question of specificity, that is, how each synthetase selects the correct individual or isoacceptor set of tRNAs for each amino acid, has been referred to as the second genetic code. A wealth of structural, biochemical, and genetic data on this subject has accumulated over the past 40 years. Although there are now crystal structures of sixteen of the twenty synthetases from various species, there are only a few high resolution structures of synthetases complexed with cognate tRNAs. Here we review briefly the structural information available for synthetases, and focus on the structural features of tRNA that may be used for recognition. Finally, we explore in detail the insights into specific recognition gained from classical and atomic group mutagenesis experiments performed with tRNAs, tRNA fragments, and small RNAs mimicking portions of tRNAs.
Collapse
Affiliation(s)
- P J Beuning
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | | |
Collapse
|
34
|
Ko YG, Kang YS, Kim EK, Park SG, Kim S. Nucleolar localization of human methionyl-tRNA synthetase and its role in ribosomal RNA synthesis. J Cell Biol 2000; 149:567-74. [PMID: 10791971 PMCID: PMC2174846 DOI: 10.1083/jcb.149.3.567] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Human aminoacyl-tRNA synthetases (ARSs) are normally located in cytoplasm and are involved in protein synthesis. In the present work, we found that human methionyl-tRNA synthetase (MRS) was translocated to nucleolus in proliferative cells, but disappeared in quiescent cells. The nucleolar localization of MRS was triggered by various growth factors such as insulin, PDGF, and EGF. The presence of MRS in nucleoli depended on the integrity of RNA and the activity of RNA polymerase I in the nucleolus. The ribosomal RNA synthesis was specifically decreased by the treatment of anti-MRS antibody as determined by nuclear run-on assay and immunostaining with anti-Br antibody after incorporating Br-UTP into nascent RNA. Thus, human MRS plays a role in the biogenesis of rRNA in nucleoli, while it is catalytically involved in protein synthesis in cytoplasm.
Collapse
Affiliation(s)
- Young-Gyu Ko
- National Creative Research Initiatives Center for ARS Network, Sung Kyun Kwan University, Jangangu, Suwon, Kyunggido 440-746, Korea
| | - Young-Sun Kang
- National Creative Research Initiatives Center for ARS Network, Sung Kyun Kwan University, Jangangu, Suwon, Kyunggido 440-746, Korea
| | - Eun-Kyoung Kim
- National Creative Research Initiatives Center for ARS Network, Sung Kyun Kwan University, Jangangu, Suwon, Kyunggido 440-746, Korea
| | - Sang Gyu Park
- National Creative Research Initiatives Center for ARS Network, Sung Kyun Kwan University, Jangangu, Suwon, Kyunggido 440-746, Korea
| | - Sunghoon Kim
- National Creative Research Initiatives Center for ARS Network, Sung Kyun Kwan University, Jangangu, Suwon, Kyunggido 440-746, Korea
| |
Collapse
|
35
|
Grosshans H, Simos G, Hurt E. Review: transport of tRNA out of the nucleus-direct channeling to the ribosome? J Struct Biol 2000; 129:288-94. [PMID: 10806079 DOI: 10.1006/jsbi.2000.4226] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although tRNA was the first substrate whose export from the nuclei of eukaryotic cells had been shown to be carrier-mediated and active, it has only been in the last 2 years that the first mechanistic details of this nucleocytoplasmic transport pathway have begun to emerge. A member of the importin/karyopherin beta superfamily, Los1p in yeast and Xpo-t in vertebrates, has been shown to export tRNA in cooperation with the small GTPase Ran (Gsp1p) from the nucleus into the cytoplasm, where tRNA becomes available for translation. However, Los1p is not essential for viability in yeast cells, suggesting that alternative tRNA export pathways exist. Recent results show that aminoacylation and a translation factor are also required for efficient nuclear tRNA export. Thus, protein translation and nuclear export of tRNA appear to be coupled processes.
Collapse
Affiliation(s)
- H Grosshans
- Biochemie-Zentrum Heidelberg (BZH), University of Heidelberg, Im Neuenheimer Feld 328, Heidelberg, D-69120, Germany
| | | | | |
Collapse
|
36
|
Stanford DR, Martin NC, Hopper AK. ADEPTs: information necessary for subcellular distribution of eukaryotic sorting isozymes resides in domains missing from eubacterial and archaeal counterparts. Nucleic Acids Res 2000; 28:383-92. [PMID: 10606634 PMCID: PMC102526 DOI: 10.1093/nar/28.2.383] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/1999] [Revised: 11/22/1999] [Accepted: 11/22/1999] [Indexed: 11/14/2022] Open
Abstract
Sorting isozymes are encoded by single genes, but the encoded proteins are distributed to multiple subcellular compartments. We surveyed the predicted protein sequences of several nucleic acid interacting sorting isozymes from the eukaryotic taxonomic domain and compared them with their homologs in the archaeal and eubacterial domains. Here, we summarize the data showing that the eukaryotic sorting isozymes often possess sequences not present in the archaeal and eubacterial counterparts and that the additional sequences can act to target the eukaryotic proteins to their appropriate subcellular locations. Therefore, we have named these protein domains ADEPTs (Additional Domains for Eukaryotic Protein Targeting). Identification of additional domains by phylogenetic comparisons should be generally useful for locating candidate sequences important for subcellular distribution of eukaryotic proteins.
Collapse
Affiliation(s)
- D R Stanford
- Department of Biochemistry, Pennsylvania State University College of Medicine, H171, 500 University Drive, Hershey, PA 17033, USA
| | | | | |
Collapse
|
37
|
Abstract
The exact physiological function of Ap3A (A5'ppp5"A, 5'5" diadenosine triphosphate) remains unclear. Previously we have demonstrated that the human p46 2-5A synthetase (OAS1) efficiently utilises Ap3A as an acceptor substrate for oligoadenylate synthesis. Here we show that Ap3A(2'p5'A)n oligonucleotides can activate the 2-5A-dependent RNase (RNase L), when the number of 2',5'-linked adenyl residues is two or more. Under the experimental conditions applied the half-maximal activation (AC50) of RNase L for 2'-adenylated Ap3A derivatives was determined to be in nanomolar range while the AC50 for 2-5A3 was 0.4 nM. The Ap3A(2'p5'A)n oligonucleotides are thus less effective in activating RNase L than 2-5A. We also investigated the occurrence of 2'-adenylated Ap3A in interferon and poly(I).poly(C)-treated HeLa cells. In purified trichloroacetic acid-soluble extracts about 40% of RNase L-activating material is resistant to phosphatase treatment, whereas the removal of 5'-terminal phosphates greatly reduces the activating properties of 2-5A. We assume that this activity at least partly may be associated with the presence of 2'-adenylated ApnA derivatives with blocked 5'-terminal phosphates.
Collapse
Affiliation(s)
- K Turpaev
- Department of Molecular and Structural Biology, Aarhus University, Denmark
| | | | | |
Collapse
|
38
|
Park SG, Jung KH, Lee JS, Jo YJ, Motegi H, Kim S, Shiba K. Precursor of pro-apoptotic cytokine modulates aminoacylation activity of tRNA synthetase. J Biol Chem 1999; 274:16673-6. [PMID: 10358004 DOI: 10.1074/jbc.274.24.16673] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Endothelial monocyte activating polypeptide II (EMAPII) is a cytokine that is specifically induced by apoptosis. Its precursor (pro-EMAPII) has been suggested to be identical to p43, which is associated with the multi-tRNA synthetase complex. Herein, we have demonstrated that the N-terminal domain of pro-EMAPII interacts with the N-terminal extension of human cytoplasmic arginyl-tRNA synthetase (RRS) using genetic and immunoprecipitation analyses. Aminoacylation activity of RRS was enhanced about 2.5-fold by the interaction with pro-EMAPII but not with its N- or C-terminal domains alone. The N-terminal extension of RRS was not required for enzyme activity but did mediate activity stimulation by pro-EMAPII. Pro-EMAPII reduced the apparent Km of RRS to tRNA, whereas the kcat value remained unchanged. Therefore, the precursor of EMAPII is a multi-functional protein that assists aminoacylation in normal cells and releases the functional cytokine upon apoptosis.
Collapse
Affiliation(s)
- S G Park
- National Creative Research Initiatives Center for ARS Network, Sung Kyun Kwan University, Suwon, Kyunggido, 440-746, Korea
| | | | | | | | | | | | | |
Collapse
|
39
|
Norcum MT, Dignam JD. Immunoelectron microscopic localization of glutamyl-/ prolyl-tRNA synthetase within the eukaryotic multisynthetase complex. J Biol Chem 1999; 274:12205-8. [PMID: 10212184 DOI: 10.1074/jbc.274.18.12205] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A high molecular mass complex of aminoacyl-tRNA synthetases is readily isolated from a variety of eukaryotes. Although its composition is well characterized, knowledge of its structure and organization is still quite limited. This study uses antibodies directed against prolyl-tRNA synthetase for immunoelectron microscopic localization of the bifunctional glutamyl-/prolyl-tRNA synthetase. This is the first visualization of a specific site within the multisynthetase complex. Images of immunocomplexes are presented in the characteristic views of negatively stained multisynthetase complex from rabbit reticulocytes. As described in terms of a three domain working model of the structure, in "front" views of the particle and "intermediate" views, the primary antibody binding site is near the intersection between the "base" and one "arm." In "side" views, where the particle is rotated about its long axis, the binding site is near the midpoint. "Top" and "bottom" views, which appear as square projections, are also consistent with the central location of the binding site. These data place the glutamyl-/prolyl-tRNA synthetase polypeptide in a defined area of the particle, which encompasses portions of two domains, yet is consistent with the previous structural model.
Collapse
Affiliation(s)
- M T Norcum
- Department of Biochemistry, The University of Mississippi Medical Center, Jackson, Mississippi 39216-4505, USA.
| | | |
Collapse
|
40
|
Rho SB, Kim MJ, Lee JS, Seol W, Motegi H, Kim S, Shiba K. Genetic dissection of protein-protein interactions in multi-tRNA synthetase complex. Proc Natl Acad Sci U S A 1999; 96:4488-93. [PMID: 10200289 PMCID: PMC16359 DOI: 10.1073/pnas.96.8.4488] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cytoplasmic aminoacyl-tRNA synthetases of higher eukaryotes acquired extra peptides in the course of their evolution. It has been thought that these appendices are related to the occurrence of the multiprotein complex consisting of at least eight different tRNA synthetase polypeptides. This complex is believed to be a signature feature of metazoans. In this study, we used multiple sequence alignments to infer the locations of the peptide appendices from human cytoplasmic tRNA synthetases found in the multisynthetase complex. The selected peptide appendices ranged from 22 aa of aspartyl-tRNA synthetase to 267 aa of methionyl-tRNA synthetase. We then made genetic constructions to investigate interactions between all 64 combinations of these peptides that were individually fused to nonsynthetase test proteins. The analyses identified 11 (10 heterologous and 1 homologous) interactions. The six peptide-dependent interactions paralleled what had been detected by crosslinking methods applied to the isolated multisynthetase complex. Thus, small peptide appendices seem to link together different synthetases into a complex. In addition, five interacting pairs that had not been detected previously were suggested from the observed peptide-dependent complexes.
Collapse
Affiliation(s)
- S B Rho
- Department of Biological Science, National Creative Research Initiatives Center for ARS Network, Sung Kyun Kwan University, Suwon, Kyunggido 440-746, Korea
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Only correctly folded and mature tRNAs can leave the nucleus and enter the cytoplasm. Surprisingly, tRNA-aminoacylation has been found to occur, not only in the cytosol, but also inside the nucleus, where it may act as an additional proofreading step and facilitate the export of 'ready-to-function' aminoacyl-tRNAs.
Collapse
Affiliation(s)
- G Simos
- Biochemie-Zentrum Heidelberg, 69120 Heidelberg, Germany.
| | | |
Collapse
|
42
|
Norcum MT. Ultrastructure of the eukaryotic aminoacyl-tRNA synthetase complex derived from two dimensional averaging and classification of negatively stained electron microscopic images. FEBS Lett 1999; 447:217-22. [PMID: 10214949 DOI: 10.1016/s0014-5793(99)00287-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Several aminoacyl-tRNA synthetases in higher eukaryotes are consistently isolated as a multi-enzyme complex for which little structural information is yet known. This study uses computational methods for analysis of electron microscopic images of the particle. A data set of almost 2000 negatively stained images was processed through reference-free alignment and multivariate statistical analysis. Interpretable structural information was evident in five eigenvectors. Hierarchical ascendant classification extracted clusters corresponding to distinct image orientations. The class averages are consistent with rotations around and orthogonal to a central particle axis and provide particle measurements: approximately 25 nm in height, 30 nm at the widest point and 23 nm thick. The results also provide objective evidence in support of the working structural model and demonstrate the feasibility of obtaining the three dimensional structure of the multisynthetase complex by single particle reconstruction methods.
Collapse
Affiliation(s)
- M T Norcum
- Biochemistry Department, University of Mississippi Medical Center, Jackson 39216-4505, USA.
| |
Collapse
|
43
|
Kornelyuk AI, Tas MPR, Dubrovsky AL, Murray JC. Cytokine activity of the non-catalytic EMAP-2-like domain of mammalian tyrosyl-tRNA synthetase. ACTA ACUST UNITED AC 1999. [DOI: 10.7124/bc.000516] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- A. I. Kornelyuk
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
| | | | - A. L. Dubrovsky
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
| | | |
Collapse
|
44
|
Negrutskii BS, Shalak VF, Kerjan P, El'skaya AV, Mirande M. Functional interaction of mammalian valyl-tRNA synthetase with elongation factor EF-1alpha in the complex with EF-1H. J Biol Chem 1999; 274:4545-50. [PMID: 9988688 DOI: 10.1074/jbc.274.8.4545] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In mammalian cells valyl-tRNA synthetase (ValRS) forms a high Mr complex with the four subunits of elongation factor EF-1H. The beta, gamma, and delta subunits, that contribute the guanine nucleotide exchange activity of EF-1H, are tightly associated with the NH2-terminal polypeptide extension of valyl-tRNA synthetase. In this study, we have examined the possibility that the functioning of the companion enzyme EF-1alpha could regulate valyl-tRNA synthetase activity. We show here that the addition of EF-1alpha and GTP in excess in the aminoacylation mixture is accompanied by a 2-fold stimulation of valyl-tRNAVal synthesis catalyzed by the valyl-tRNA synthetase component of the ValRS.EF-1H complex. This effect is not observed in the presence of EF-1alpha and GDP or EF-Tu.GTP and requires association of valyl-tRNA synthetase within the ValRS.EF-1H complex. Since valyl-tRNA synthetase and elongation factor EF-1alpha catalyze two consecutive steps of the in vivo tRNA cycle, aminoacylation and formation of the ternary complex EF-1alpha.GTP. Val-tRNAVal that serves as a vector of tRNA from the synthetase to the ribosome, the data suggest a coordinate regulation of these two successive reactions. The EF-1alpha.GTP-dependent stimulation of valyl-tRNA synthetase activity provides further evidence for tRNA channeling during protein synthesis in mammalian cells.
Collapse
Affiliation(s)
- B S Negrutskii
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, 91190 Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|
45
|
Fujiwara S, Takagi M, Imanaka T. Archaeon Pyrococcus kodakaraensis KOD1: application and evolution. BIOTECHNOLOGY ANNUAL REVIEW 1999; 4:259-84. [PMID: 9890143 DOI: 10.1016/s1387-2656(08)70073-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Archaea is the third domain which is phylogenetically differentiated from the other two domains, bacteria and eucarya. Hyperthermophile within the archaea domain has evolved most slowly retaining many ancestral features of higher eukaryotes. Pyrococcus kodakaraensis KOD1, which grows at 95 degrees C optimally, is a newly isolated hyperthermophilc archaeon. The KOD1 strain possesses a circular genome, whose size is estimated to be approximately 2,036 kb. KOD1 enzymes involved in the genetic information processing system, such as DNA polymerase, Rec protein, aspartyl tRNA synthetase and molecular chaperonin, share features of eukaryotic enzymes. Rapid and accurate PCR method by KOD1 DNA polymerase and enzyme stabilization system by KOD1 chaperonin are also introduced in this article.
Collapse
Affiliation(s)
- S Fujiwara
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Japan
| | | | | |
Collapse
|
46
|
Affiliation(s)
- A K Hopper
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|
47
|
Abstract
After synthesis and processing in the nucleus, mature transfer RNAs (tRNAs) are exported to the cytoplasm in a Ran.guanosine triphosphate-dependent manner. Export of defective or immature tRNAs is avoided by monitoring both structure and function of tRNAs in the nucleus, and only tRNAs with mature 5' and 3' ends are exported. All tRNAs examined can be aminoacylated in nuclei of Xenopus oocytes, thereby providing a possible mechanism for functional proofreading of newly made tRNAs. Inhibition of aminoacylation of a specific tRNA retards its appearance in the cytoplasm, indicating that nuclear aminoacylation promotes efficient export.
Collapse
MESH Headings
- Acylation
- Animals
- Biological Transport
- Cell Nucleus/metabolism
- Cytoplasm/metabolism
- Introns
- Nucleic Acid Conformation
- Oocytes
- RNA Precursors/chemistry
- RNA Precursors/metabolism
- RNA Processing, Post-Transcriptional
- RNA Splicing
- RNA, Transfer/chemistry
- RNA, Transfer/metabolism
- RNA, Transfer, Amino Acid-Specific
- RNA, Transfer, Amino Acyl/chemistry
- RNA, Transfer, Amino Acyl/metabolism
- RNA, Transfer, Met/chemistry
- RNA, Transfer, Met/metabolism
- RNA, Transfer, Tyr/chemistry
- RNA, Transfer, Tyr/metabolism
- Templates, Genetic
- Xenopus laevis
Collapse
Affiliation(s)
- E Lund
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, 1300 University Avenue, Madison, WI 53-706, USA
| | | |
Collapse
|
48
|
Churin J, Hause B, Feussner I, Maucher HP, Feussner K, Börner T, Wasternack C. Cloning and expression of a new cDNA from monocotyledonous plants coding for a diadenosine 5',5'''-P1,P4-tetraphosphate hydrolase from barley (Hordeum vulgare). FEBS Lett 1998; 431:481-5. [PMID: 9714569 DOI: 10.1016/s0014-5793(98)00819-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
From a cDNA library generated from mRNA of white leaf tissues of the ribosome-deficient mutant 'albostrians' of barley (Hordeum vulgare cv. Haisa) a cDNA was isolated carrying 54.2% identity to a recently published cDNA which codes for the diadenosine-5',5'''-P1,P4-tetraphosphate (Ap4A) hydrolase of Lupinus angustifolius (Maksel et al. (1998) Biochem. J. 329, 313-319), and 69% identity to four partial peptide sequences of Ap4A hydrolase of tomato. Overexpression in Escherichia coli revealed a protein of about 19 kDa, which exhibited Ap4A hydrolase activity and cross-reactivity with an antibody raised against a purified tomato Ap4A hydrolase (Feussner et al. (1996) Z. Naturforsch. 51c, 477-486). Expression studies showed an mRNA accumulation in all organs of a barley seedling. Possible functions of Ap4A hydrolase in plants will be discussed.
Collapse
Affiliation(s)
- J Churin
- Institute of Biology, Division of Genetics, Humboldt-University Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
49
|
Kornelyuk AI. Structural and functional investigation of mammalian tyrosyl-tRNA synthetase. ACTA ACUST UNITED AC 1998. [DOI: 10.7124/bc.0004df] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- A. I. Kornelyuk
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
| |
Collapse
|
50
|
Abstract
Cysteinyl-tRNA synthetase (CRS) from rabbit liver was purified 8300-fold to a constant specific activity. SDS-PAGE revealed the presence of two polypeptides of 86 kDa and 92 kDa, in the proportions of 60% and 40% respectively. The SDS-electrophoretic migration of the major 86 kDa component was indistinguishable from that of the single polypeptide previously found in CRS from S. cerevisiae. The two polypeptides from rabbit CRS were inaccessible to Edman degradation, but internal peptides generated from each by in-gel proteolysis after SDS-electrophoretic separation, yielded sequences found in the deduced protein sequence of human CRS. Moreover, subjecting the two polypeptides separated by SDS-PAGE to a renaturation treatment showed that CRS activity was associated with both. The structure of the native enzyme was probed by limited proteolysis with elastase. The strikingly simple degradation pattern observed supported a model according to which the two polypeptides derive from the same gene, differing only by a approximately 6 kDa extension located at the C-terminal extremity of the 92 kDa component. Moreover, the finding that notwithstanding the presence of the two polypeptides, the behaviour of rabbit CRS upon gel-filtration or chemical cross-linking was indistinguishable from that of homodimeric yeast CRS, indicated that the 6 kDa C-terminal extension on the 92 kDa polypeptide does not impede dimerisation. The origin of the two components of rabbit CRS is discussed in light of the deduced protein sequence of human CRS derived from the published cDNA sequence and the recently released genomic sequence of the human enzyme.
Collapse
Affiliation(s)
- Y Motorin
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, Gif-Sur-Yvette, France
| | | |
Collapse
|