1
|
Zhao L, Xin S, Wu Y, Huang S, Xu K, Xu Y, Ruan D, Wu B, Chen D, He X. Global DNA and protein interactomes of FLT1P1 (Fms-related tyrosine kinase 1 pseudogene 1) revealed its molecular regulatory functions associated with preeclampsia. Mol Biol Rep 2023; 50:1267-1279. [PMID: 36451001 DOI: 10.1007/s11033-022-08070-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/31/2022] [Indexed: 12/05/2022]
Abstract
BACKGROUND Preeclampsia (PE) is one of the most serious pregnancy complications with unknown pathogenesis. Emerging evidence has demonstrated that Fms-related tyrosine kinase 1 (FLT1) is highly involved in PE development. As a pseudogene of FLT1, FLT1P1 increased in PE samples. However, its functions remain largely unknown. METHODS AND RESULTS In this study, co-expression analysis was performed to identify the potential target genes of FTL1P1. Then chromatin isolation using RNA purification (ChIRP) method was employed to explore the interactomes of FLT1P1, including interacting with DNA fragments and proteins. We found that in PE samples, both FLT1P1 and FLT1 were highly expressed and closely correlated. ChIRP-protein data revealed that FLT1P1 interacts with translation- and transcription-related proteins, including 4 transcription factors (TFs). ChIRP-DNA analysis revealed that FLT1P1 preferentially interacted with DNA fragments downstream of transcription start sites (TSSs). Functional analysis of its interacting genes revealed that they were enriched in transcriptional regulation and apoptosis-related pathways. Twenty-six TFs, including CREB1 and SRF, were extracted from the potential FLT1P1-interacting gene sets and were potential targets of FLT1P1. CREB1 could bind to FLT1 promoter, and was negatively correlated with FLT1 at the expression level, making it a potential regulator of FLT1. CONCLUSIONS Our study extensively investigated the interactome profiles of FLT1P1, especially the prompter region of TF gene CREB1, and revealed the potential molecular regulatory mechanisms of FLT1 expression in PE samples. Our results provide a novel view of PE pathogenesis, and suggest that FLT1P1 could serve as a potential therapeutic target in PE diagnosis and treatment.
Collapse
Affiliation(s)
- Lu Zhao
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Siming Xin
- Department of Obstetrics, Maternal, Child Health Hospital Afflicted to Nanchang University, Nanchang, People's Republic of China
| | - Yunfei Wu
- Center for Genome Analysis, Wuhan Ruixing Biotechnology Co., Ltd., Wuhan, People's Republic of China
| | - Shaofang Huang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Kangxiang Xu
- Second Clinical Medical College, Nanchang University, Nanchang, People's Republic of China
| | - Yuqi Xu
- Second Clinical Medical College, Nanchang University, Nanchang, People's Republic of China
| | - Dong Ruan
- Second Clinical Medical College, Nanchang University, Nanchang, People's Republic of China
| | - Bingqi Wu
- Second Clinical Medical College, Nanchang University, Nanchang, People's Republic of China
| | - Dong Chen
- Center for Genome Analysis, Wuhan Ruixing Biotechnology Co., Ltd., Wuhan, People's Republic of China
| | - Xiaoju He
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China.
| |
Collapse
|
2
|
Evidence suggesting phosphodiesterase-3B regulation of NPY/AgRP gene expression in mHypoE-46 hypothalamic neurons. Neurosci Lett 2015; 604:113-8. [PMID: 26254161 DOI: 10.1016/j.neulet.2015.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 07/21/2015] [Accepted: 08/03/2015] [Indexed: 01/03/2023]
Abstract
Hypothalamic neurons expressing neuropeptide Y (NPY) and agouti related-protein (AgRP) are critical regulators of feeding behavior and body weight, and transduce the action of many peripheral signals including leptin and insulin. However, intracellular signaling molecules involved in regulating NPY/AgRP neuronal activity are incompletely understood. Since phosphodiesterase-3B (PDE3B) mediates the hypothalamic action of leptin and insulin on feeding, and is expressed in NPY/AgRP neurons, PDE3B could play a significant role in regulating NPY/AgRP neuronal activity. To investigate the direct regulation of NPY/AgRP neuronal activity by PDE3B, we examined the effects of gain-of-function or reduced function of PDE3B on NPY/AgRP gene expression in a clonal hypothalamic neuronal cell line, mHypoE-46, which endogenously express NPY, AgRP and PDE3B. Overexpression of PDE3B in mHypoE-46 cells with transfection of pcDNA-3.1-PDE3B expression plasmid significantly decreased NPY and AgRP mRNA levels and p-CREB levels as compared to the control plasmid. For the PDE3B knockdown study, mHypoE-46 cells transfected with lentiviral PDE3BshRNAmir plasmid or non-silencing lentiviral shRNAmir control plasmid were selected with puromycin, and stably transfected cells were grown in culture for 48h. Results showed that PDE3BshRNAmir mediated knockdown of PDE3B mRNA and protein levels (∼60-70%) caused an increase in both NPY and AgRP gene expression and in p-CREB levels. Together, these results demonstrate a reciprocal change in NPY and AgRP gene expression following overexpression and knockdown of PDE3B, and suggest a significant role for PDE3B in the regulation of NPY/AgRP gene expression in mHypoE-46 hypothalamic neurons.
Collapse
|
3
|
Paul J, Naskar K, Chowdhury S, Chakraborti T, De T. TLR mediated GSK3β activation suppresses CREB mediated IL-10 production to induce a protective immune response against murine visceral leishmaniasis. Biochimie 2014; 107 Pt B:235-46. [DOI: 10.1016/j.biochi.2014.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 09/04/2014] [Indexed: 12/20/2022]
|
4
|
Huang HFS, Wang S, Molina CA, Ottenweller JE. Preservation of Spermatogenesis in Spinal Cord Injured Rats With Exogenous Testosterone. Relationship With Serum Testosterone Levels and Cellular Localization of cAMP Responsive Element Modulator. ACTA ACUST UNITED AC 2013; 25:95-103. [PMID: 14662791 DOI: 10.1002/j.1939-4640.2004.tb02763.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
UNLABELLED The current experiment examined the effects of exogenous testosterone (T) on spermatogenesis in rats with spinal cord injury (SCI) and their relationship with the cellular distribution of a cyclic AMP-responsive element modulator (CREM) in testicular cells. Implantation of T-filled Silastic capsules (TCs, 1-20 cm) resulted in dose-dependent, biphasic changes in testicular T levels and spermatogenesis in SCI rats. However, dose responsiveness of spermatogenesis to exogenous T in SCI rats differed from that in sham control rats. Specifically, implantation of 2-cm TCs enhanced the effects of SCI on spermatogenesis, resulting in total regression of the seminiferous epithelium. Although 3-cm TCs maintained complete spermatogenesis in sham control rats, this regimen failed to support complete spermatogenesis in SCI rats. Although complete spermatogenesis was maintained in SCI rats given 5-20-cm TC implants, various abnormalities persisted. Cellular distribution of CREM remained normal in SCI rats but was altered in those SCI rats that received 3- or 5-cm TC implants. Such effects were associated with reduced CREM proteins in testicular tissues. These results were consistent with altered cAMP signaling and its regulation in testicular cells after SCI and provided possible mechanistic explanations for the effects of SCI on spermatogenesis. CONCLUSION SCI resulted in changes in the responsiveness of spermatogenesis to exogenous T. These effects were associated with altered cAMP/CREM signaling in testicular cells. Further studies, including a study of the relationship between serum T levels and normalcy of sperm functions and the role of neural-endocrine interactions in mediating the effects of SCI on spermatogenesis and sperm function, are needed so that therapeutic regimens can be designed for clinical use.
Collapse
Affiliation(s)
- Hosea F S Huang
- Veterans Affairs Medical Center, East Orange, New Jersey 07103, USA.
| | | | | | | |
Collapse
|
5
|
Currer R, Van Duyne R, Jaworski E, Guendel I, Sampey G, Das R, Narayanan A, Kashanchi F. HTLV tax: a fascinating multifunctional co-regulator of viral and cellular pathways. Front Microbiol 2012; 3:406. [PMID: 23226145 PMCID: PMC3510432 DOI: 10.3389/fmicb.2012.00406] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 11/12/2012] [Indexed: 12/18/2022] Open
Abstract
Human T-cell lymphotropic virus type 1 (HTLV-1) has been identified as the causative agent of adult T-cell leukemia (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The virus infects between 15 and 20 million people worldwide of which approximately 2-5% develop ATL. The past 35 years of research have yielded significant insight into the pathogenesis of HTLV-1, including the molecular characterization of Tax, the viral transactivator, and oncoprotein. In spite of these efforts, the mechanisms of oncogenesis of this pleiotropic protein remain to be fully elucidated. In this review, we illustrate the multiple oncogenic roles of Tax by summarizing a recent body of literature that refines our understanding of cellular transformation. A focused range of topics are discussed in this review including Tax-mediated regulation of the viral promoter and other cellular pathways, particularly the connection of the NF-κB pathway to both post-translational modifications (PTMs) of Tax and subcellular localization. Specifically, recent research on polyubiquitination of Tax as it relates to the activation of the IkappaB kinase (IKK) complex is highlighted. Regulation of the cell cycle and DNA damage responses due to Tax are also discussed, including Tax interaction with minichromosome maintenance proteins and the role of Tax in chromatin remodeling. The recent identification of HTLV-3 has amplified the importance of the characterization of emerging viral pathogens. The challenge of the molecular determination of pathogenicity and malignant disease of this virus lies in the comparison of the viral transactivators of HTLV-1, -2, and -3 in terms of transformation and immortalization. Consequently, differences between the three proteins are currently being studied to determine what factors are required for the differences in tumorogenesis.
Collapse
Affiliation(s)
- Robert Currer
- National Center for Biodefense and Infectious Diseases, George Mason University Manassas, VA, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Geist B, Vorwerk B, Coiro P, Ninnemann O, Nitsch R. PRG-1 transcriptional regulation independent from Nex1/Math2-mediated activation. Cell Mol Life Sci 2012; 69:651-61. [PMID: 21805347 PMCID: PMC11114846 DOI: 10.1007/s00018-011-0774-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 07/06/2011] [Accepted: 07/07/2011] [Indexed: 12/12/2022]
Abstract
Plasticity-related gene 1 (PRG-1) is a novel player in glutamatergic synaptic transmission, acting by interfering with lysophosphatidic acid (LPA)-dependent signaling pathways. In the central nervous system, PRG-1 expression is restricted to postsynaptic dendrites on glutamatergic neurons. In this study, we describe the promoter architecture of the PRG-1 gene using RNA ligase-mediated rapid amplification of cDNA ends (RLM-Race) and PCR analysis. We found that PRG-1 expression is under the control of a TATA-less promoter with multiple transcription start sites. We demonstrated also that 200-kb genomic environment of the PRG-1 gene is sufficient to mediate cell type-specific expression in a reporter mouse model. Characterization of the PRG-1 promoter resulted in the identification of a 450-bp sequence, mediating ≈40-fold enhancement of transcription in cultured primary neurons compared to controls, and which induced reporter expression in slice cultures in neurons. Recently, the regulation of PRG-1 by the basic helix-loop-helix transcription factor Nex1 (Math2, NeuroD6) was reported. However, our studies in Nex1-null-mice revealed that Nex1-deficiency induces no change in PRG-1 expression and localization. We detected an additional Nex1-independent regulation mechanism that increases PRG-1 expression and mediates neuron-specific expression in an organotypic environment.
Collapse
Affiliation(s)
- Beate Geist
- Institute for Microanatomy and Neurobiology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
- Present Address: Institute of Cell Biology and Neurobiology, Center for Anatomy, Charité, Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Brita Vorwerk
- Institute of Cell Biology and Neurobiology, Center for Anatomy, Charité, Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Pierluca Coiro
- Institute of Cell Biology and Neurobiology, Center for Anatomy, Charité, Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Olaf Ninnemann
- Institute of Cell Biology and Neurobiology, Center for Anatomy, Charité, Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Robert Nitsch
- Institute for Microanatomy and Neurobiology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| |
Collapse
|
7
|
Nandan D, Camargo de Oliveira C, Moeenrezakhanlou A, Lopez M, Silverman JM, Subek J, Reiner NE. Myeloid cell IL-10 production in response to leishmania involves inactivation of glycogen synthase kinase-3β downstream of phosphatidylinositol-3 kinase. THE JOURNAL OF IMMUNOLOGY 2011; 188:367-78. [PMID: 22140263 DOI: 10.4049/jimmunol.1100076] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Leishmania disease expression has been linked to IL-10. In this study, we investigated the regulation of IL-10 production by macrophages infected with Leishmania donovani. Infection of either murine or human macrophages brought about selective phosphorylation of Akt-2 in a PI3K-dependent manner. These events were linked to phosphorylation and inactivation of glycogen synthase kinase-3β (GSK-3β) at serine 9, as the latter was abrogated by inhibition of either PI3K or Akt. One of the transcription factors that is negatively regulated by GSK-3β is CREB, which itself positively regulates IL-10 expression. Infection of macrophages with leishmania induced phosphorylation of CREB at serine 133, and this was associated with enhanced CREB DNA binding activity and induction of IL-10. Similar to phosphorylation of GSK-3β, both phosphorylation of CREB at serine 133 and CREB DNA binding activity were abrogated in cells treated with inhibitors of either PI3K or Akt prior to infection. Furthermore, disruption of this pathway either by inhibition of Akt or by overexpression of GSK-3β markedly attenuated IL-10 production in response to leishmania. Thus, GSK-3β negatively regulates myeloid cell IL-10 production in response to leishmania. Switching off GSK-3β promotes disease pathogenesis.
Collapse
Affiliation(s)
- Devki Nandan
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | |
Collapse
|
8
|
Frohman LA, Kineman RD. Growth Hormone‐Releasing Hormone: Discovery, Regulation, and Actions. Compr Physiol 2011. [DOI: 10.1002/cphy.cp070508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
9
|
Role of ubiquitin-proteasome-mediated proteolysis in nervous system disease. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2010; 1809:128-40. [PMID: 20674814 DOI: 10.1016/j.bbagrm.2010.07.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Revised: 07/15/2010] [Accepted: 07/21/2010] [Indexed: 12/12/2022]
Abstract
Proteolysis by the ubiquitin-proteasome pathway (UPP) is now widely recognized as a molecular mechanism controlling myriad normal functions in the nervous system. Also, this pathway is intimately linked to many diseases and disorders of the brain. Among the diseases connected to the UPP are neurodegenerative disorders such as Alzheimer's, Parkinson's and Huntington's diseases. Perturbation in the UPP is also believed to play a causative role in mental disorders such as Angelman syndrome. The pathology of neurodegenerative diseases is characterized by abnormal deposition of insoluble protein aggregates or inclusion bodies within neurons. The ubiquitinated protein aggregates are believed to result from dysfunction of the UPP or from structural changes in the protein substrates which prevent their recognition and degradation by the UPP. An early effect of abnormal UPP in diseases of the nervous system is likely to be impairment of synaptic function. Here we discuss the UPP and its physiological roles in the nervous system and how alterations in the UPP relate to development of nervous system diseases. This article is part of a Special Issue entitled The 26S Proteasome: When degradation is just not enough!
Collapse
|
10
|
Vasquez MM, Castro R, Seidner SR, Henson BM, Ashton DJ, Mustafa SB. Induction of serum- and glucocorticoid-induced kinase-1 (SGK1) by cAMP regulates increases in alpha-ENaC. J Cell Physiol 2008; 217:632-42. [PMID: 18615584 DOI: 10.1002/jcp.21534] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Alpha-ENaC expression and activity is regulated by a variety of hormones including beta-adrenergic agonists via the second messenger cAMP. We evaluated the early intermediate pathways involved in the up-regulation of SGK1 by DbcAMP and whether SGK1 is a prerequisite for induction of alpha-ENaC expression. Submandibular gland epithelial (SMG-C6) cells treated with DbcAMP (1 mM) induced both SGK1 mRNA and protein expression. DbcAMP-stimulated SGK1 mRNA expression was decreased by actinomycin D and mRNA and protein expressions were attenuated by PKA inhibitors (H-89 and KT5720). Inhibition of PI3-K with either LY294002 or dominant negative PI3-K reduced DbcAMP-stimulated SGK1 protein and mRNA levels, attenuated the phosphorylation of CREB (a cAMP-activated transcription factor) and decreased alpha-ENaC protein levels and Na(+) transport. In addition, the combination of PKA inhibitors with dominant negative PI3-K synergistically inhibited DbcAMP-induced Na(+) transport. Inhibition of SGK1 expression by siRNA decreased but did not obliterate DbcAMP-induced alpha-ENaC expression. Thus, in a cell line which endogenously exhibits minimal alpha-ENaC expression, induction of SGK1 by DbcAMP occurs via the PI3-K and PKA pathways. Increased alpha-ENaC levels and function are partly dependent upon the early induction of SGK1 expression.
Collapse
Affiliation(s)
- Margarita M Vasquez
- Department of Pediatrics/Division of Neonatology, University of Texas Health Science Center, San Antonio, Texas 78229, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Hsieh YS, Yang SF, Chu SC, Ho YJ, Kuo CS, Kuo DY. Transcriptional interruption of cAMP response element binding protein modulates superoxide dismutase and neuropeptide Y-mediated feeding behavior in freely moving rats. J Neurochem 2008; 105:1438-49. [DOI: 10.1111/j.1471-4159.2008.05246.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
12
|
Mustafa SB, Castro R, Falck AJ, Petershack JA, Henson BM, Mendoza YM, Choudary A, Seidner SR. Protein kinase A and mitogen-activated protein kinase pathways mediate cAMP induction of alpha-epithelial Na+ channels (alpha-ENaC). J Cell Physiol 2008; 215:101-10. [PMID: 17960568 DOI: 10.1002/jcp.21291] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A major mechanism for Na+ transport across epithelia occurs through epithelial Na+ channels (ENaC). ENaC is a multimeric channel consisting of three subunits (alpha, beta, and gamma). The alpha-subunit is critical for ENaC function. In specific culture conditions, the rat submandibular gland epithelial cell line (SMG-C6) demonstrates minimal Na+ transport properties and exposure to dibutyryl cAMP (DbcAMP) for up to 48 h caused an elevation of alpha-ENaC mRNA and protein expression and amiloride-sensitive short-circuit current (I(SC)). Here we examined the early signaling pathways evoked by DbcAMP which contribute to the eventual increase in Na+ transport is present. Treatment with either of the protein kinase A (PKA) inhibitors KT5720 or H-89 followed by exposure to 1 mM DbcAMP for 24 h markedly attenuated DbcAMP-induced alpha-ENaC protein formation and I(SC). Exposure of SMG-C6 cells to 1 mM DbcAMP induced a rapid, transient phosphorylation of the cAMP response element binding protein (CREB). This response was attenuated in the presence of either KT5720 or H-89. Dominant-negative CREB decreased DbcAMP-induced alpha-ENaC expression. Suppression of the extracellular signal-regulated protein kinase (ERK 1,2) with PD98059 or the p38 mitogen-activated protein kinase (MAPK) pathway with SB203580 reduced DbcAMP-induced alpha-ENaC protein levels in SMG-C6 cells. DbcAMP-induced phosphorylation of CREB was markedly attenuated by PD98059 or SB203580. DbcAMP-induced activation of the either the p38 or the ERK 1,2 MAPK pathways was abolished by either of the PKA inhibitors, H-89 or KT5720. Cross talk between these signaling pathways induced by DbcAMP via the activation of CREB appears to contribute to increased levels of alpha-ENaC observed after 24 h of treatment in SMG-C6 epithelial cells.
Collapse
Affiliation(s)
- Shamimunisa B Mustafa
- Department of Pediatrics/Division of Neonatology, University of Texas Health Science Center, San Antonio, Texas 78229, USA.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Hsieh YS, Yang SF, Kuo DY. Intracerebral administration of protein kinase A or cAMP response element-binding protein antisense oligonucleotide can modulate amphetamine-mediated appetite suppression in free-moving rats. Am J Physiol Endocrinol Metab 2007; 292:E123-31. [PMID: 16896163 DOI: 10.1152/ajpendo.00195.2006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although amphetamine (AMPH)-induced appetite suppression has been attributed to its inhibitory action on neuropeptide Y (NPY), an appetite neurotransmitter abundant in the brain, molecular mechanisms underlying this effect are not well known. This study examined the possible role of protein kinase A (PKA) and cAMP response element-binding protein (CREB) signaling in this anorectic effect, and the results showed that both PKA and CREB mRNA levels in hypothalamus were increased following AMPH treatment, which was relevant to a reduction of NPY mRNA level. To determine whether PKA or CREB was involved in the anorectic response, intracerebroventricular infusions of antisense oligonucleotide (or missense control) were performed 60 min before daily AMPH treatment in conscious rats, and results showed that either PKA or CREB knockdown could block AMPH-induced anorexia as well as restore NPY mRNA level, indicating the respective involvement of PKA and CREB signaling in the regulation of NPY gene expression. It is suggested that hypothalamic PKA and CREB signaling may involve the central regulation of AMPH-mediated feeding suppression via the modulation of NPY gene expression.
Collapse
Affiliation(s)
- Yih-Shou Hsieh
- Dept. of Physiology, Chung Shan Medical University, Taichung City 40201, Taiwan
| | | | | |
Collapse
|
14
|
Oetjen E, Lechleiter A, Blume R, Nihalani D, Holzman L, Knepel W. Inhibition of membrane depolarisation-induced transcriptional activity of cyclic AMP response element binding protein (CREB) by the dual-leucine-zipper-bearing kinase in a pancreatic islet beta cell line. Diabetologia 2006; 49:332-42. [PMID: 16369771 DOI: 10.1007/s00125-005-0087-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Accepted: 09/07/2005] [Indexed: 12/18/2022]
Abstract
AIMS/HYPOTHESIS The activation of the transcription factor cyclic AMP response element binding protein (CREB) by protein kinase A is inhibited by the human orthologue of the mitogen-activated protein kinase, dual-leucine-zipper-bearing kinase (DLK) in teratocarcinoma cells. However, pancreatic beta cells are electrically excitable and a major pathway regulating CREB in these cells is membrane depolarisation, leading to calcium influx and activation of the calcium/calmodulin-dependent protein phosphatase calcineurin. Therefore, the effect of DLK on CREB activity induced by membrane depolarisation was investigated in the beta cell line HIT. MATERIALS AND METHODS Reporter gene assays and biochemical techniques were used. RESULTS RT-PCR, Western blot analysis and immunohistochemistry demonstrated the expression of DLK in HIT cells and primary mouse islets. In transient transfection experiments, DLK inhibited both GAL4-CREB activity induced by membrane depolarisation, and transcription directed by the CREB binding site, the cyclic AMP response element. Furthermore, DLK inhibited the transcriptional activity conferred by the CREB coactivator, CREB binding protein, both under basal conditions and after membrane depolarisation. DLK was also effective in response to glucose, the most potent physiological stimulus and known to cause membrane depolarisation of beta cells. Inhibition of calcineurin enhanced DLK activity, whereas overexpression of calcineurin reduced the inhibition by DLK of transcription directed by cyclic AMP response element after membrane depolarisation. CONCLUSIONS/INTERPRETATION These results demonstrate a calcineurin-sensitive inhibition by DLK of CREB activity after membrane depolarisation in pancreatic islet beta cells. This inhibition may, at least partially, be mediated at the coactivator level. The results thus suggest that DLK plays a role in the regulation of beta cell function, including insulin gene transcription and beta cell apoptosis.
Collapse
Affiliation(s)
- E Oetjen
- Molecular Pharmacology, University of Göttingen, Robert-Koch Strasse 40, 37099 Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
15
|
Allagnat F, Martin D, Condorelli DF, Waeber G, Haefliger JA. Glucose represses connexin36 in insulin-secreting cells. J Cell Sci 2005; 118:5335-44. [PMID: 16263767 DOI: 10.1242/jcs.02600] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The gap-junction protein connexin36 (Cx36) contributes to control the functions of insulin-producing cells. In this study, we investigated whether the expression of Cx36 is regulated by glucose in insulin-producing cells. Glucose caused a significant reduction of Cx36 in insulin-secreting cell lines and freshly isolated pancreatic rat islets. This decrease appeared at the mRNA and the protein levels in a dose- and time-dependent manner. 2-Deoxyglucose partially reproduced the effect of glucose, whereas glucosamine, 3-O-methyl-D-glucose and leucine were ineffective. Moreover, KCl-induced depolarization of beta-cells had no effect on Cx36 expression, indicating that glucose metabolism and ATP production are not mandatory for glucose-induced Cx36 downregulation. Forskolin mimicked the repression of Cx36 by glucose. Glucose or forskolin effects on Cx36 expression were not suppressed by the L-type Ca(2+)-channel blocker nifedipine but were fully blunted by the cAMP-dependent protein kinase (PKA) inhibitor H89. A 4 kb fragment of the human Cx36 promoter was identified and sequenced. Reporter-gene activity driven by various Cx36 promoter fragments indicated that Cx36 repression requires the presence of a highly conserved cAMP responsive element (CRE). Electrophoretic-mobility-shift assays revealed that, in the presence of a high glucose concentration, the binding activity of the repressor CRE-modulator 1 (CREM-1) is enhanced. Taken together, these data provide evidence that glucose represses the expression of Cx36 through the cAMP-PKA pathway, which activates a member of the CRE binding protein family.
Collapse
Affiliation(s)
- Florent Allagnat
- Department of Internal Medicine, Laboratory of Molecular Biology 19-135S, University Hospital, CHUV-1011 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
16
|
Tyson-Capper AJ, Bailey J, Krainer AR, Robson SC, Europe-Finner GN. The switch in alternative splicing of cyclic AMP-response element modulator protein CREM{tau}2{alpha} (activator) to CREM{alpha} (repressor) in human myometrial cells is mediated by SRp40. J Biol Chem 2005; 280:34521-9. [PMID: 16103121 DOI: 10.1074/jbc.m505344200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transcription factor cAMP-response element modulator (CREM) protein, plays a major role in cAMP-responsive gene regulation. Biological consequences resulting from the transcriptional stimuli of CREM are dictated by the expression of multiple protein isoforms generated by extensive alternative splicing of its precursor mRNA. We have previously shown that alternative splicing enables the expression of the CREM gene to be "switched" within the human myometrium during pregnancy from the production of CREMtau(2alpha), a potent transcriptional activator to the synthesis of CREMalpha, a transcriptional repressor. Furthermore we have recently reported that this change in the expression of CREM spliced variants is likely to have important ramifications on the regulation of downstream cAMP-response element-responsive target genes involved in uterine activity during gestation. We have investigated the splicing factors involved in controlling the expression of myometrial CREM splice variants. Data presented here from transient transfections indicate that the switch in the synthesis of CREMtau(2)alpha to CREMalpha that occurs during pregnancy is regulated primarily by an SR protein family member, SRp40. We also show that expression of this splicing factor is tightly regulated in the myometrium during pregnancy. SRp40 regulates the splicing of CREM via its interactions with multiple ESE motifs present in the alternatively exons of CREM. In vitro splicing and electrophoretic mobility shift assays were employed to confirm the functionality of the SRp40-binding ESEs, thus providing a mechanistic explanation of how SRp40 regulates the switch in splicing from production of CREMtau(2)alpha to CREMalpha.
Collapse
Affiliation(s)
- Alison J Tyson-Capper
- School of Surgical and Reproductive Sciences, 3rd Floor, William Leech Building, The Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, United Kingdom.
| | | | | | | | | |
Collapse
|
17
|
Mohamed HA, Yao W, Fioravante D, Smolen PD, Byrne JH. cAMP-response elements in Aplysia creb1, creb2, and Ap-uch promoters: implications for feedback loops modulating long term memory. J Biol Chem 2005; 280:27035-43. [PMID: 15888447 DOI: 10.1074/jbc.m502541200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Aplysia genes encoding for cAMP-response element-binding protein 1 (CREB1), CREB2, and ubiquitin C-terminal hydrolase (Ap-uch) have been implicated in the formation of long term memory. However, nothing is known about the promoter regions of these genes or the transcription factors that regulate them. We cloned the promoter regions of creb1, creb2, and Ap-uch and identified a canonical cAMP-response element (CRE) in the promoter region of creb1. Variants of the canonical CRE were identified in all three promoters. TATA boxes and C/EBP-binding motifs are also present in the promoter regions of these genes. Promoter immunoprecipitation assays and chromatin immunoprecipitation assays indicated that CREB1 and CREB2 bind to the promoter regions of creb1 and creb2, suggesting that feedback loops modulate the formation of long term memory. In a positive feedback loop, phosphorylated CREB1 might induce its own gene via CREs. In support of this suggestion, treatment with serotonin enhanced binding of CREB1 to its promoter region and increased mRNA levels of creb1. Levels of Ap-uch mRNA also increased in response to serotonin; however, binding of CREB1 or CREB2 to the promoter region of Ap-uch was not detected. The finding that the promoter region of creb2 has a CRE raises the intriguing possibility that its expression is regulated by CREB1 and/or CREB2. CREB2 may repress its own gene, forming a negative feedback loop, and CREB2 up-regulation via CREB1 may limit the activity of the CREB1-mediated positive feedback loop.
Collapse
Affiliation(s)
- Habib A Mohamed
- Department of Neurobiology and Anatomy, W. M. Keck Center for the Neurobiology of Learning and Memory, the University of Texas Medical School, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
18
|
Oetjen E, Thoms KM, Laufer Y, Pape D, Blume R, Li P, Knepel W. The immunosuppressive drugs cyclosporin A and tacrolimus inhibit membrane depolarization-induced CREB transcriptional activity at the coactivator level. Br J Pharmacol 2005; 144:982-93. [PMID: 15711594 PMCID: PMC1576078 DOI: 10.1038/sj.bjp.0706127] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2004] [Revised: 11/22/2004] [Accepted: 12/01/2004] [Indexed: 11/09/2022] Open
Abstract
Cyclosporin A and tacrolimus are clinically important immunosuppressive drugs directly targeting the transcription factor nuclear factor of activated T cells (NFAT). Through inhibition of calcineurin phosphatase activity they block the dephosphorylation and thus activation of NFAT. Cyclosporin A and tacrolimus also inhibit other calcineurin-dependent transcription factors including the ubiquitously expressed cAMP response element-binding protein (CREB). Membrane depolarization by phosphorylating CREB on Ser119 leads to the recruitment of its coactivator CREB-binding protein (CBP) that stimulates initiation of transcription. It was unknown at what step in CREB-mediated transcription cyclosporin A and tacrolimus interfere. In transient transfection experiments, using GAL4-CREB fusion proteins and a pancreatic islet beta-cell line, cyclosporin A inhibited depolarization-induced activation of CREB proteins which carried various deletions or mutations throughout their sequence providing no evidence for the existence of a distinct CREB domain conferring cyclosporin A sensitivity. In a mammalian two-hybrid assay, cyclosporin A did not inhibit Ser119-dependent interaction of CREB with its coactivator CBP. Using GAL4-CBP fusion proteins, cyclosporin A inhibited depolarization-induced CBP activity, with cyclosporin A-sensitive domains mapped to both the N- (aa 1-451) and C-terminal (aa 2040-2305) ends of CBP. The depolarization-induced transcriptional activity of the CBP C-terminus was enhanced by overexpression of calcineurin and was inhibited by cyclosporin A and tacrolimus in a concentration-dependent manner with IC50 values (10 and 1 nM, respectively) consistent with their known IC50 values for inhibition of calcineurin. These data suggest that, in contrast to NFAT, cyclosporin A and tacrolimus inhibit CREB transcriptional activity at the coactivator level.
Collapse
Affiliation(s)
- Elke Oetjen
- Department of Molecular Pharmacology, University of Göttingen, D-37099 Göttingen, Germany
| | - Kai-Martin Thoms
- Department of Molecular Pharmacology, University of Göttingen, D-37099 Göttingen, Germany
| | - Yvonne Laufer
- Department of Molecular Pharmacology, University of Göttingen, D-37099 Göttingen, Germany
| | - Daniela Pape
- Department of Molecular Pharmacology, University of Göttingen, D-37099 Göttingen, Germany
| | - Roland Blume
- Department of Molecular Pharmacology, University of Göttingen, D-37099 Göttingen, Germany
| | - Pingfeng Li
- Department of Molecular Pharmacology, University of Göttingen, D-37099 Göttingen, Germany
| | - Willhart Knepel
- Department of Molecular Pharmacology, University of Göttingen, D-37099 Göttingen, Germany
| |
Collapse
|
19
|
Huang X, Zhang J, Lu L, Yin L, Xu M, Wang Y, Zhou Z, Sha J. Cloning and expression of a novel CREB mRNA splice variant in human testis. Reproduction 2005; 128:775-82. [PMID: 15579595 DOI: 10.1530/rep.1.00036] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Identification of genes specifically expressed in adult and fetal testis is important in furthering our understanding of testis development and function. In this study, a novel human transcript, designated human testis cAMP-responsive element-binding protein (htCREB), was identified by hybridization of adult and fetal human testis cDNA probes with a human cDNA microarray containing 9216 clones. The htCREB transcript (GenBank Accession no. AY347527) was expressed at 2.35-fold higher levels in adult human testes than in fetal testes. Sequence and ntBLAST analyses against the human genome database indicated that htCREB was a novel splice variant of human CREB. RT-PCR-based tissue distribution experiments demonstrated that the htCREB transcript was highly expressed in adult human testis and in healthy sperm, but not in testes from patients with Sertoli cell-only syndrome. Taken together, these results suggest that the htCREB transcript is chiefly expressed in germ cells and is most likely involved in spermatogenesis.
Collapse
Affiliation(s)
- Xiaoyan Huang
- Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 210029, PR China
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Hegde AN. Ubiquitin-proteasome-mediated local protein degradation and synaptic plasticity. Prog Neurobiol 2004; 73:311-57. [PMID: 15312912 DOI: 10.1016/j.pneurobio.2004.05.005] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2003] [Accepted: 05/28/2004] [Indexed: 02/07/2023]
Abstract
A proteolytic pathway in which attachment of a small protein, ubiquitin, marks the substrates for degradation by a multi-subunit complex called the proteasome has been shown to function in synaptic plasticity and in several other physiological processes of the nervous system. Attachment of ubiquitin to protein substrates occurs through a series of highly specific and regulated steps. Degradation by the proteasome is subject to multiple levels of regulation as well. How does the ubiquitin-proteasome pathway contribute to synaptic plasticity? Long-lasting, protein synthesis-dependent, changes in the synaptic strength occur through activation of molecular cascades in the nucleus in coordination with signaling events in specific synapses. Available evidence indicates that ubiquitin-proteasome-mediated degradation has a role in the molecular mechanisms underlying synaptic plasticity that operate in the nucleus as well as at the synapse. Since the ubiquitin-proteasome pathway has been shown to be versatile in having roles in addition to proteolysis in several other cellular processes relevant to synaptic plasticity, such as endocytosis and transcription, this pathway is highly suited for a localized role in the neuron. Because of its numerous roles, malfunctioning of this pathway leads to several diseases and disorders of the nervous system. In this review, I examine the ubiquitin-proteasome pathway in detail and describe the role of regulated proteolysis in long-term synaptic plasticity. Also, using synaptic tagging theory of synapse-specific plasticity, I provide a model on the possible roles and regulation of local protein degradation by the ubiquitin-proteasome pathway.
Collapse
Affiliation(s)
- Ashok N Hegde
- Department of Neurobiology and Anatomy, Medical Center Boulevard, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA.
| |
Collapse
|
21
|
Abstract
Leptin, the long-sought satiety factor of adipocytes origin, has emerged as one of the major signals that relay the status of fat stores to the hypothalamus and plays a significant role in energy homeostasis. Understanding the mechanisms of leptin signaling in the hypothalamus during normal and pathological conditions, such as obesity, has been the subject of intensive research during the last decade. It is now established that leptin action in the hypothalamus in regulation of food intake and body weight is mediated by a neural circuitry comprising of orexigenic and anorectic signals, including NPY, MCH, galanin, orexin, GALP, alpha-MSH, NT, and CRH. In addition to the conventional JAK2-STAT3 pathway, it has become evident that PI3K-PDE3B-cAMP pathway plays a critical role in leptin signaling in the hypothalamus. It is now established that central leptin resistance contributes to the development of diet-induced obesity and ageing associated obesity. Central leptin resistance also occurs due to hyperleptinimia produced by exogenous leptin infusion. A defective nutritional regulation of leptin receptor gene expression and reduced STAT3 signaling may be involved in the development of leptin resistance in DIO. However, leptin resistance in the hypothalamic neurons may occur despite an intact JAK2-STAT3 pathway of leptin signaling. Thus, in addition to defective JAK2-STAT3 pathway, defects in other leptin signaling pathways may be involved in leptin resistance. We hypothesize that defective regulation of PI3K-PDE3B-cAMP pathway may be one of the mechanisms behind the development of central leptin resistance seen in obesity.
Collapse
Affiliation(s)
- Abhiram Sahu
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, S829 Scaife Hall, 3550 Terrace Street, Pittsburgh, PA 15261, USA.
| |
Collapse
|
22
|
Hassan S, Duong B, Kim KS, Miles MF. Pharmacogenomic analysis of mechanisms mediating ethanol regulation of dopamine beta-hydroxylase. J Biol Chem 2003; 278:38860-9. [PMID: 12842874 DOI: 10.1074/jbc.m305040200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We previously showed that ethanol regulates dopamine beta-hydroxylase (DBH) mRNA and protein levels in human neuroblastoma cells (Thibault, C., Lai, C., Wilke, N., Duong, B., Olive, M. F., Rahman, S., Dong, H., Hodge, C. W., Lockhart, D. J., and Miles, M. F. (2000) Mol. Pharmacol. 58, 1593-1600). DBH catalyzes norepinephrine synthesis, and several studies have suggested a role for norepinephrine in ethanol-mediated behaviors. Here, we performed a detailed analysis of mechanism(s) underlying ethanol regulation of DBH expression in SH-SY5Y cells. Transient transfection analysis showed that ethanol (25-200 mM) caused concentration- and time-dependent increases in DBH gene transcription. Progressive deletions identified ethanol-responsive sequences in the -262 to -142 bp region of the DBH gene promoter. Mutagenesis of cAMP-response element (CRE) sequences in this region abolished ethanol responsiveness while maintaining responsiveness to phorbol esters. Coexpression of dominant-negative CRE-binding protein greatly reduced ethanol induction of DBH. Inhibitors of protein kinase A, casein kinase II, and MAPK reduced ethanol induction of DBH promoter activity. Pharmacogenomic studies with microarrays showed that protein kinase A, MEK, and casein kinase II inhibitors blocked induction of DBH and a large subset of ethanol-responsive genes. These genes had diverse functional groupings, including multiple members of the MAPK and phosphatidylinositol signaling cascades. Real-time PCR analysis validated select microarray results. Taken together, these results suggest that ethanol regulation of DBH requires a functional CRE and its binding protein and may require interaction of multiple kinase pathways. This mechanism may also mediate ethanol responsiveness of a complex subset of genes in neural cells. These studies may have implications for behavioral responses to ethanol or mechanisms underlying ethanol-related neurological disease.
Collapse
Affiliation(s)
- Sajida Hassan
- Departments of Pharmacology Toxicology and Neurology and the Center for Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | | | | | | |
Collapse
|
23
|
MacDougall MWJ, Europe-Finner GN, Robson SC. Human myometrial quiescence and activation during gestation and parturition involve dramatic changes in expression and activity of particulate type II (RII alpha) protein kinase A holoenzyme. J Clin Endocrinol Metab 2003; 88:2194-205. [PMID: 12727975 DOI: 10.1210/jc.2002-021862] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
There are substantial data indicating that components of the cAMP-signaling pathway are differentially expressed in the human myometrium during pregnancy. The effects of cAMP in most tissues and cell types are mainly modulated via protein kinase A, a heterotetrameric protein complex consisting of two regulatory (R) and two catalytic (C) subunits. In the studies presented here, we used specific antibodies in Western blotting/immunoprecipitation, RT-PCR, and functional protein kinase A (PKA) phosphorylation assays to determine the PKA holoenzymes that are expressed in the human myometrium throughout pregnancy and labor. We report that as early as the second trimester of pregnancy, there is a significant increase in expression of the regulatory RII alpha protein subunit of PKA in the myometrium. This increase in protein expression is also mirrored at the mRNA level, indicating transcriptional control throughout pregnancy, whereas during parturition both transcript and protein are significantly decreased. This increase in RII alpha protein also resulted in increased particulate PKA activity in the myometrium during gestation, which was subsequently decreased during labor. Two specific A kinase anchoring proteins, AKAP95 and AKAP79, which have high binding affinities for RII alpha subunits, were found to form complexes with myometrial RII alpha species employing immunoprecipitation assays, but their levels of expression remained uniform in all myometrial tissue samples investigated. Our findings indicate that increased particulate type II PKA activity occurs throughout pregnancy, therefore directing the cAMP quiescence signal to specific subcellular loci within myometrial smooth muscle cells including the contractile machinery at the cytoskeleton; this effect is then removed during parturition.
Collapse
Affiliation(s)
- Malcolm W J MacDougall
- Department of Obstetrics and Gynaecology, School of Surgical and Reproductive Sciences, University of Newcastle upon Tyne, Royal Victoria Infirmary, Newcastle upon Tyne NE1 4LP, United Kingdom
| | | | | |
Collapse
|
24
|
Huang HFS, Li MT, Wang S, Wang G, Ottenweller JE. Spinal cord contusion impairs sperm motility in the rat without disrupting spermatogenesis. JOURNAL OF ANDROLOGY 2003; 24:371-80. [PMID: 12721213 DOI: 10.1002/j.1939-4640.2003.tb02685.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Our previous studies demonstrated various abnormalities in spermatogenesis after spinal cord injury (SCI) in cord-transected rats. In this study, we examined whether abnormalities in spermatogenesis in SCI rats were related to the degree of SCI. We used spinal cord-contused (SCC) rats as a model. Adult male Sprague-Dawley rats were subjected to various degrees of cord contusion caused by the weight of a rod dropped from different heights (12.5, 25, 50, and 75 mm) using a New York University IMPACTOR. Testicular histology revealed persistent complete spermatogenesis in all SCC rats 4, 8, or 14 weeks after cord contusion regardless of the extent of SCI. Northern blot complementary DNA (cDNA) hybridization revealed transient but significant decreases in the levels of Sertoli cell-specific transcripts in SCC rats. In addition, levels of messenger RNA (mRNA) transcripts for germ cell-specific transition protein-2 and protamine-1 were consistently decreased in these rats. Such effects were related to the height of the weight drop and were associated with reduced levels of mRNA for cyclic adenosine monophosphate (cAMP) responsive element modulator (CREM). These results demonstrated specific effects of SCI on spermiogenesis and were consistent with altered cAMP signaling in testicular cells after SCI. Sperm motility was also significantly decreased in SCC rats and was related to the height of weight drop. Normal sperm motility recovered only in those rats injured by weight drop from 12.5- and 25-mm heights. In summary, current results demonstrate persistent abnormalities in spermiogenesis and sperm motility in rats that suffered spinal cord contusion by weight drop. Such effects were related to the height of the weight drop and thus to the extent of SCI.
Collapse
Affiliation(s)
- Hosea F S Huang
- Department of Surgery, Division of Urology, UMD-New Jersey Medical School Newark, New Jersey 07103, USA.
| | | | | | | | | |
Collapse
|
25
|
Weitzel JM, Shiryaeva NB, Middendorff R, Balvers M, Radtke C, Ivell R, Seitz HJ. Testis-specific expression of rat mitochondrial glycerol-3-phosphate dehydrogenase in haploid male germ cells. Biol Reprod 2003; 68:699-707. [PMID: 12533437 DOI: 10.1095/biolreprod.102.008540] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Mitochondrial glycerol-3-phosphate dehydrogenase (mGPDH) is regulated by multiple promoters in a tissue-specific manner. We characterized the testis-specific promoter C of the mGPDH gene and investigated the cellular localization of mGPDH within the testis. Electrophoretic mobility shift experiments identified a cAMP-response element (CRE) site at -57 that was active in the testis. An in vitro-translated CRE modulator (CREM) protein was able to bind this CRE site, and an anti-CREM antibody interfered with this complex. Ectopic expression of the testis-specific transcriptional activator CREMtau and protein kinase A in human hepatocarcinoma HepG2 cells activated a promoter C-driven luciferase construct in transient transfection experiments. Furthermore, mGPDH expression was undetectable in testis of CREM-deficient mice. The cellular localization of mGPDH expression and translation in adult rat testis was determined by in situ hybridization and immunohistochemistry techniques. The mGPDH transcripts were detected solely in postmeiotic germ cells. Expression of mGPDH was restricted from round spermatids to early elongating spermatids. The mGPDH protein was delayed in postmeiotic germ cells, restricted from late elongating spermatids to mature spermatids. Our results indicate that rat mGPDH is expressed by a testis-specific promoter from haploid male germ cells in a stage-specific manner.
Collapse
Affiliation(s)
- Joachim M Weitzel
- Institute of Medical Biochemistry and Molecular Biology, University Hospital Hamburg-Eppendorf, D-20246 Hamburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
26
|
Balasubramaniam A, Sheriff S, Zhai W, Chance WT. Bis(31/31')[[Cys(31), Nva(34)]NPY(27-36)-NH(2)]: a neuropeptide Y (NPY) Y(5) receptor selective agonist with a latent stimulatory effect on food intake in rats. Peptides 2002; 23:1485-90. [PMID: 12182951 DOI: 10.1016/s0196-9781(02)00086-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The actions of neuropeptide Y (NPY) are mediated by at least six G-protein coupled receptors denoted as Y(1), Y(2), Y(3), Y(4), Y(5), and y(6). Investigations using receptor selective ligands and receptor knock-out mice suggest that NPY effects on feeding are mediated by both Y(1) and Y(5) receptors. We have previously shown that Cys-dimers of NPY C-terminal peptides exhibit Y(1) selectivity relative to Y(2) receptors. Re-investigation of their selectivity with respect to the newly cloned receptors, has identified bis(31/31') [[Cys(31), Nva(34)]NPY(27-36)-NH(2)] (BWX-46) as a Y(5) receptor selective agonist. BWX-46 selectively bound Y(5) receptors, and inhibited cAMP synthesis by Y(5) cells with potencies comparable to that of NPY. Moreover, BWX-46 (10 microM) exhibited no significant effect on the cAMP synthesis by Y(1), Y(2), and Y(4) cells. Thus, BWX-46 constitutes the lowest molecular weight Y(5) selective agonist reported to date. Intrahypothalamic (i.h.t)-injection of 30 and 40 microg of BWX-46 stimulated the food intake by rats in a gradual manner, reaching maximal level 8 h after injection. This response was similar to that exhibited by other Y(5) selective agonists, but differed from that of NPY, which exhibited a rapid orexigenic stimulus within 1 h. It is suggested that the differences in the orexigenic stimuli of NPY and Y(5) agonists may be due to their differences in the signal transduction mechanisms.
Collapse
Affiliation(s)
- Ambikaipakan Balasubramaniam
- Department of Surgery, University of Cincinnati and VA Medical Center, 231 Bethesda Ave ML 558, Cincinnati, OH 45267-0558, USA.
| | | | | | | |
Collapse
|
27
|
Courtois-Coutry N, Le Moellic C, Boulkroun S, Fay M, Cluzeaud F, Escoubet B, Farman N, Blot-Chabaud M. Calcyclin is an early vasopressin-induced gene in the renal collecting duct. Role in the long term regulation of ion transport. J Biol Chem 2002; 277:25728-34. [PMID: 12000747 DOI: 10.1074/jbc.m112435200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Long-term effects of arginine vasopressin (AVP) in the kidney involve the transcription of unidentified genes. By subtractive hybridization experiments performed on the RCCD(1) cortical collecting duct cell line, we identified calcyclin as an early AVP-induced gene (1 h). Calcyclin is a calcium-binding protein involved in the transduction of intracellular signals. In the kidney, calcyclin was localized at the mRNA level in the glomerulus, all along the collecting duct, and in the epithelium lining the papilla. In RCCD(1) cells and in m-IMCD(3) inner medullary collecting duct cells, calcyclin was evidenced in the cytoplasm. Calcyclin mRNA levels were progressively increased by AVP treatment in RCCD(1) (1.7-fold at 4 h) and m-IMCD(3) (2-fold at 7.5 h) cells. In RCCD(1) cells, calcyclin protein levels were increased by 4 h of AVP treatment. In vivo, treatment of genetically vasopressin-deficient Brattleboro rats with AVP for 4 days induced an increase in both calcyclin and aquaporin-2 mRNA expression. Finally, introduction of anti-calcyclin antibodies into RCCD(1) cells by permeabilizing the plasma membrane prevented the long-term (but not short-term) increase in short-circuit current induced by AVP. Taken together, these results suggest that calcyclin is an early vasopressin-induced gene that participates in the late phase of the hormone response in transepithelial ion transport.
Collapse
Affiliation(s)
- Nathalie Courtois-Coutry
- INSERM U478, Institut Fédératif de Recherches 02, Faculté de Médecine Xavier Bichat, Université Paris 7, 16 rue Henri Huchard, France
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Umayahara Y, Kajimoto Y, Fujitani Y, Gorogawa SI, Yasuda T, Kuroda A, Ohtoshi K, Yoshida S, Kawamori D, Yamasaki Y, Hori M. Protein kinase C-dependent, CCAAT/enhancer-binding protein beta-mediated expression of insulin-like growth factor I gene. J Biol Chem 2002; 277:15261-70. [PMID: 11825899 DOI: 10.1074/jbc.m110827200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The possible involvement of the protein kinase C (PKC) pathway in transcriptional regulation of the human insulin-like growth factor-I (IGF-I) gene has been suggested. In this study, we sought to determine whether a PKC-dependent pathway is implicated in the transcriptional control, and if it is, how this occurs. Treatment with 12-O-tetradecanoylphorbol 13-acetate (TPA) caused an increase in the activity of the human IGF-I gene major promoter in HepG2 cells. A CCAAT/enhancer-binding protein (C/EBP) binding site located at +22 to +30 was bound by C/EBP beta in a TPA-dependent manner and was solely responsible for the TPA responsiveness. This increase in C/EBP beta activity occurs through transcriptional and posttranslational regulation, and the latter is mediated by activation of p90 ribosomal S6 kinase (RSK): co-expression of dominant negative RSK abolished the TPA-responsive and C/EBP beta-dependent transactivation. Also, TPA-responsive activation of GAL4-C/EBP beta chimera required the Ser residue known as the RSK target. In SK-N-MC cells, which display constitutive, high expression of IGF-I on use of the major promoter, a large amount of C/EBP beta binding was observed with the C/EBP site in the basal state. Treatment with PKC inhibitors substantially reduced the promoter activity and mRNA amounts of IGF-I, with the binding of C/EBP beta to the C/EBP site also being reduced. When the C/EBP site was disrupted, the basal promoter activity was reduced, but the reduction by the PKC inhibitor was no longer observed. These observations suggest that the increase of C/EBP beta binding to the C/EBP site, which is in part mediated via activation of RSK, can primarily explain the TPA responsiveness of the IGF-I gene promoter. The intrinsic PKC activity in SK-N-MC cells should play a major role in the constitutive, high expression of IGF-I and may therefore contribute in part to the maintenance of the tumor phenotype of the cells.
Collapse
Affiliation(s)
- Yutaka Umayahara
- Department of Internal Medicine and Therapeutics (A8), Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka Pref. 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Dinger MC, Beck-Sickinger AG. The first reporter gene assay on living cells: green fluorescent protein as reporter gene for the investigation of Gi-protein coupled receptors. Mol Biotechnol 2002; 21:9-18. [PMID: 11989662 DOI: 10.1385/mb:21:1:009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Reporter gene assay systems are important tools for the investigation of G-protein coupled receptors and their interaction with ligands. Here, we describe a novel reporter gene assay system for the investigation of Gi-protein coupled receptors in living cells. For the first time green fluorescent protein (GFP) was used as reporter gene under the transcriptional control of cAMP-response elements (CREs). Three different reporter gene vectors with increasing numbers of CREs were cloned and GFP expression was investigated after forskolin stimulation. Furthermore, the novel reporter system was successfully applied to the neuropeptide Y (NPY) rY5 receptor subtype, a Gi-protein coupled receptor. Our data clearly demonstrate dose-dependent GFP expression for NPY. Furthermore, receptor subtype selectivity of well characterized NPY analog could be proven for the NPY rY5 receptor. The great advantage of the method is that no cell lysis is required and assays can be performed on living cells. Accordingly, in vitro testing of agonist gets faster and significantly more convenient.
Collapse
|
30
|
Bailey J, Phillips RJ, Pollard AJ, Gilmore K, Robson SC, Europe-Finner GN. Characterization and functional analysis of cAMP response element modulator protein and activating transcription factor 2 (ATF2) isoforms in the human myometrium during pregnancy and labor: identification of a novel ATF2 species with potent transactivation properties. J Clin Endocrinol Metab 2002; 87:1717-28. [PMID: 11932306 DOI: 10.1210/jcem.87.4.8360] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
There is now extensive evidence to indicate that components of the cAMP signaling pathway are up-regulated in the human myometrium during pregnancy so as to potentiate the maintenance of uterine quiescence until term. In many tissue and cell types, increased signaling of the cAMP pathway results in profound changes in gene expression that are catalyzed via stimulation of PKA and activation of cAMP-dependent transcription factors that bind cAMP response elements (CREs) within the promoter regions of affected genes. In the myometrium, these CRE containing genes include beta2-adrenoceptor, cyclo-oxygenase 2, oxytocin receptor, and connexin-43. In preliminary investigations, we reported the differential expression of members of the cAMP bZIP protein family in the myometrium during pregnancy and labor. In this present study, we have now identified and functionally characterized these proteins with respect to myometrial gene expression. We report the identification of a 39,000 mol wt CRE response element modulator protein (CREM)tau2alpha protein having both transactivation and transrepressor properties whose expression is sequentially decreased in the myometrium during gestation and parturition. In contrast, expression of a myometrial 28,000 mol wt CREMalpha protein having only transrepressor actions progressively increased in the myometrium during pregnancy and labor. Similarly, we have isolated two ATF2 proteins of 60,000 and 28,000 mol wts, which represent full-length ATF2 and a novel small isoform of ATF2 that we have termed ATF2-small (ATF2-sm). These proteins are potent transactivators of gene expression and appear to be spatially expressed within the myometrium of the upper and lower uterine regions. The identification and functional characterization of these basic region/leucine zipper proteins in the myometrium may provide further insight into the molecular mechanisms regulating uterine activity during fetal maturation and parturition.
Collapse
Affiliation(s)
- Jarrod Bailey
- Department of Obstetrics and Gynaecology, University of Newcastle upon Tyne, Royal Victoria Infirmary, Newcastle upon Tyne NE1 4LP, United Kingdom.
| | | | | | | | | | | |
Collapse
|
31
|
Sheriff S, F Qureshy A, T Chance W, Kasckow JW, Balasubramaniam A. Predominant role by CaM kinase in NPY Y(1) receptor signaling: involvement of CREB [corrected]. Peptides 2002; 23:87-96. [PMID: 11814622 DOI: 10.1016/s0196-9781(01)00583-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The role of Ca(2+)/cAMP-dependent signal transduction and transcription factor CREB in mediating NPY- Y(1) receptor function was investigated in SK-N-MC cells. The Y(1) receptor agonist, [Leu(31),Pro(34)]-NPY, inhibited forskolin-stimulated cAMP production which was insensitive to thapsigargin or the CaM kinase II inhibitor, KN-93. Although activation of the Y(1) receptor leads to an increase in CREB phosphorylation, [Leu(31),Pro(34)]-NPY inhibited CREB phosphorylation in KN-93-treated cells. SK-N-MC cells were also transfected with PathDetect cis-CRE and trans-CREB/trans-cFos reporter genes to monitor the role of Ca(2+)/cAMP signals, triggered by Y(1) receptor, on reporter gene activity. Treatment of the cis-CRE-luciferase expression vector-transfected cells with [Leu(31),Pro(34)]-NPY increased reporter gene activity by 2 fold through a KN-93 sensitive pathway. In contrast, the peptide inhibited forskolin-stimulated luciferase activity. Consistently, [Leu(31),Pro(34)]-NPY induced trans-CREB mediated luciferase activity through a CaM kinase dependent pathway, and inhibited forskolin-stimulated luciferase gene expression. However, no effect of the peptide was observed on trans-cFos- mediated luciferase activity. These findings suggest that the NPY Y(1) receptor induces the expression of CRE containing target genes through the CaM kinase-CREB pathway, and inhibits CRE containing genes when cellular cAMP levels are elevated.
Collapse
Affiliation(s)
- Sulaiman Sheriff
- Department of Surgery, College of Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267, USA.
| | | | | | | | | |
Collapse
|
32
|
Grimes CA, Jope RS. CREB DNA binding activity is inhibited by glycogen synthase kinase-3 beta and facilitated by lithium. J Neurochem 2001; 78:1219-32. [PMID: 11579131 PMCID: PMC1947002 DOI: 10.1046/j.1471-4159.2001.00495.x] [Citation(s) in RCA: 320] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The regulatory influences of glycogen synthase kinase-3 beta (GSK3 beta) and lithium on the activity of cyclic AMP response element binding protein (CREB) were examined in human neuroblastoma SH-SY5Y cells. Activation of Akt (protein kinase B) with serum-increased phospho-serine-9-GSK3 beta (the inactive form of the enzyme), inhibited GSK3 beta activity, and increased CREB DNA binding activity. Inhibition of GSK3 beta by another paradigm, treatment with the selective inhibitor lithium, also increased CREB DNA binding activity. The inhibitory regulation of CREB DNA binding activity by GSK3 beta also was evident in differentiated SH-SY5Y cells, indicating that this regulatory interaction is maintained in non-proliferating cells. These results demonstrate that inhibition of GSK3 beta by serine-9 phosphorylation or directly by lithium increases CREB activation. Conversely, overexpression of active GSK3 beta to 3.5-fold the normal levels completely blocked increases in CREB DNA binding activity induced by epidermal growth factor, insulin-like growth factor-1, forskolin, and cyclic AMP. The inhibitory effects due to overexpressed GSK3 beta were reversed by treatment with lithium and with another GSK 3beta inhibitor, sodium valproate. Overall, these results demonstrate that GSK3 beta inhibits, and lithium enhances, CREB activation.
Collapse
Affiliation(s)
- C A Grimes
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0017, USA
| | | |
Collapse
|
33
|
Downregulation of fasting-induced cAMP response element-mediated gene induction by leptin in neuropeptide Y neurons of the arcuate nucleus. J Neurosci 2001. [PMID: 11160394 DOI: 10.1523/jneurosci.21-04-01238.2001] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
States of increased metabolic demand such as fasting modulate hypothalamic neuropeptide gene expression and decrease circulating leptin levels. This study tested the hypotheses that fasting stimulates gene induction mediated by cAMP response element (CRE)-dependent increases in gene transcription and that fasting-induced decreases in leptin can regulate this CRE-mediated gene induction. Using C57BL/6J mice transgenic for a CRE-lacZ construct, an immunocytochemical study showed that fasting activated reporter gene expression in the hypothalamic arcuate nucleus (Arc) in a small subset of neurons and increased phosphorylation of CRE binding protein. The increase of beta-galactosidase expression caused by fasting was inhibited by a protein kinase A inhibitor, Rp-8-Br-cAMPS, when the compound was microinjected into the medial basal hypothalamus, and enhanced by intraperitoneal injection of selective phosphodiesterase inhibitors. In situ hybridization studies showed that neuropeptide Y (NPY) mRNA levels increased in the Arc during fasting, whereas proopiomelanocortin (POMC) mRNA levels decreased. Double labeling of mRNA and beta-galactosidase immunoreactivity in the fasted brain indicated that the subpopulation of the neurons expressing beta-galactosidase all produced NPY but not POMC. To study the possible involvement of decreased circulating leptin during starvation on CRE-mediated gene induction, leptin was administered intraperitoneally to fasted mice. Leptin significantly attenuated both beta-galactosidase expression and NPY gene expression stimulated by fasting, suggesting that leptin inhibits fasting-stimulated NPY gene expression at least in part through downregulation of CRE-mediated gene induction in the Arc. Leptin-induced modification of CRE-mediated gene induction in the Arc may play an essential role in the central regulation of feeding behavior and energy expenditure.
Collapse
|
34
|
Behr R, Weinbauer GF. cAMP response element modulator (CREM): an essential factor for spermatogenesis in primates? INTERNATIONAL JOURNAL OF ANDROLOGY 2001; 24:126-35. [PMID: 11380701 DOI: 10.1046/j.1365-2605.2001.00277.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
CREM is a cAMP-related transcription factor and alternate promotor usage and splicing generate repressor and activator transcripts of CREM within the testis. CREM activators are highly expressed in post-meiotic haploid germ cells and are essential for spermatid maturation in the mouse model as revealed by gene-targeting studies. Analysis of testicular CREM expression in rodent and monkey species, and in men yielded a highly comparable pattern thus suggesting that CREM is of general importance for spermatid development in the mammalian testis. Also, many CREM target genes have been identified in haploid germ cells. Studies in men with spermatogenic disturbance and spermatid maturation arrest demonstrated abnormal CREM expression and altered splicing events. Collectively, the data strongly argue for an essential role of CREM during spermatid maturation in primates.
Collapse
Affiliation(s)
- R Behr
- University of Pennsylvania School of Medicine, Department of Genetics, Clinical Research Building, Curie Boulevard, Philadelphia, USA
| | | |
Collapse
|
35
|
Stricker SA, Smythe TL. 5-HT causes an increase in cAMP that stimulates, rather than inhibits, oocyte maturation in marine nemertean worms. Development 2001; 128:1415-27. [PMID: 11262241 DOI: 10.1242/dev.128.8.1415] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
In the nemertean worms Cerebratulus lacteus and Micrura alaskensis, 5-HT (=5-hydroxytryptamine, or serotonin) causes prophase-arrested oocytes to mature and complete germinal vesicle breakdown (GVBD). To identify the intracellular pathway that mediates 5-HT stimulation, follicle-free oocytes of nemerteans were assessed for GVBD rates in the presence or absence of 5-HT after being treated with various modulators of cAMP, a well known transducer of 5-HT signaling and an important regulator of hormone-induced maturation in general. Unlike in many animals where high levels of intra-oocytic cAMP block maturation, treatment of follicle-free nemertean oocytes with agents that elevate cAMP (8-bromo-cAMP, forskolin or inhibitors of phosphodiesterases) triggered GVBD in the absence of added 5-HT. Similarly, 5-HT caused a substantial cAMP increase prior to GVBD in nemertean oocytes that had been pre-injected with a cAMP fluorosensor. Such a rise in cAMP seemed to involve G-protein-mediated signaling and protein kinase A (PKA) stimulation, based on the inhibition of 5-HT-induced GVBD by specific antagonists of these transduction steps. Although the downstream targets of activated PKA remain unknown, neither the synthesis of new proteins nor the activation of MAPKs (mitogen-activated protein kinases) appeared to be required for GVBD after 5-HT stimulation. Alternatively, pre-incubation in roscovitine, an inhibitor of maturation-promoting factor (MPF), prevented GVBD, indicating that maturing oocytes eventually need to elevate their MPF levels, as has been documented for other animals. Collectively, this study demonstrates for the first time that 5-HT can cause immature oocytes to undergo an increase in cAMP that stimulates, rather than inhibits, meiotic maturation. The possible relationship between such a form of oocyte maturation and that observed in other animals is discussed.
Collapse
Affiliation(s)
- S A Stricker
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA.
| | | |
Collapse
|
36
|
Richards JS. New signaling pathways for hormones and cyclic adenosine 3',5'-monophosphate action in endocrine cells. Mol Endocrinol 2001; 15:209-18. [PMID: 11158328 DOI: 10.1210/mend.15.2.0606] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The glycoprotein hormones, ACTH, TSH, FSH, and LH regulate diverse functions in endocrine cells. Although cAMP and PKA have long been shown to mediate specific intracellular signaling events including the transcription of specific genes via the CREB-CBP complex, recent observations have indicated that PKA does not account for all of the intracellular targets of cAMP. For example, TSH stimulation of thyroid cell proliferation is not completely blocked by PKA inhibitors. TSH and FSH can stimulate PKB phosphorylation by a PKAindependent but PI3-K/PDK1-dependent pathway. An FSH inducible kinase, Sgk, has recently been shown to be a close relative of PKB. Sgk is also a target of PI3-K-PDK1 pathway, indicating that some effects previously ascribed to PKB may be mediated by this inducible kinase. The identification of novel cAMP-binding proteins that exhibit guanine nucleotide exchange (GEF) activity (cAMP-GEFS; Epacs) has open new doors for cAMP action that include activation of small GTPases such as Rap1a, Rap2, and possibly Ras. These GTPases are known activators of downstream kinase cascades, including p38MAPK and Erk1/2 as well as PI3-K. Thus, FSH and TSH activation of PKB and Sgk may occur via this alternative cAMP pathway that involves cAMP-GEFs and the activation of the PI3-K/PDK1 pathway.
Collapse
Affiliation(s)
- J S Richards
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030-3498, USA.
| |
Collapse
|
37
|
Fu Z, Kubo T, Sugahara K, Noguchi T, Kato H. Cloning of complementary deoxyribonucleic acids encoding quail (Coturnix coturnix japonica) retinoic acid receptor ss isoforms and changes in their gene expression during gonadotropic growth. Biol Reprod 2001; 64:231-41. [PMID: 11133679 DOI: 10.1095/biolreprod64.1.231] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Retinoids have important effects on the development of the reproductive system, where they act via their specific nuclear receptors: retinoic acid receptors (RARalpha, ss, gamma) and retinoid X receptors (RXRalpha, ss, gamma). The research reported here was conducted in an effort to clone quail RARbeta+ cDNA (qRARbeta) and to evaluate the expression of qRARbeta+ mRNAs in different tissues and during the development of gonadotropic organs. Two complete cDNAs of qRARbeta1 and qRARbeta2 were isolated by a combination of reverse transcription-polymerase chain reaction and 5'- and 3'-rapid amplification of cDNA ends techniques. An RNase protection assay revealed the widespread expression of qRARbeta1 and beta2 with large tissue-specific variations. The qRARbeta1 isoform was predominant in the testis, whereas qRARbeta2 was dominant in the other tissues examined with the exception of the brain, where both isoforms were almost equally expressed. In the developing testes, the qRARbeta1 mRNA level was high between 30 and 40 days of age, the period during which the testes grew rapidly. The level declined thereafter to its initial level. In contrast, qRARbeta2 mRNA did not exhibit obvious changes. In the developing oviducts, both qRARbeta1 and beta2 mRNAs reached their peak levels by 30 days of age, just before the rapid development of the oviduct occurred, and then decreased to almost undetectable levels when the oviduct developed to the laying stage (over 2.88 g in weight). Similar expression patterns of qRARbeta1 and beta2 were also observed in the developing follicles from the prehierarchical (<2-mm diameter) to the largest preovulatory follicle. In contrast, neither qRARbeta1 nor beta2 mRNA exhibited developmental changes in the brain. These results suggest that RARbeta+ may play an important role in the development of the reproductive systems of birds.
Collapse
Affiliation(s)
- Z Fu
- Laboratory of Nutritional Biochemistry, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | | | | | | | | |
Collapse
|
38
|
Sharma SC, Richards JS. Regulation of AP1 (Jun/Fos) factor expression and activation in ovarian granulosa cells. Relation of JunD and Fra2 to terminal differentiation. J Biol Chem 2000; 275:33718-28. [PMID: 10934195 DOI: 10.1074/jbc.m003555200] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
AP1 transcription factors control rapid responses of mammalian cells to stimuli that impact proliferation, differentiation, and transformation. To determine which AP1 factors are present in and regulated by hormones in ovarian cells during specific stages of proliferation and differentiation, we used both in vitro and in vivo models, Western blotting, immunohistochemistry, DNA binding assays, and transfections of AP1 promoter-reporter constructs. The expression patterns of Jun and Fos family members in response to hormones (follicle-stimulating hormone (FSH), luteinizing hormone (LH), and cAMP) were distinct. JunB, c-Jun, c-Fos, and Fra2 were rapidly but transiently induced by FSH in immature granulosa cells. JunD and Fra2 were induced by LH and maintained as granulosa cells terminally differentiated into luteal cells. Forskolin and phorbol myristate acetate acted synergistically to enhance transcription of an AP1(-73COL)-luciferase construct. JunD appears to be one mediator of this effect, since JunD was a major component of the AP1-DNA binding complex in granulosa cells, and menin, a selective inhibitor of JunD, blocked transcription of -73COL-luciferase. Thus, FSH and LH via cAMP induce specific AP1 factors, the AP1 expression patterns are distinct, and that of JunD and Fra2 correlates with the transition of proliferating granulosa cells to terminally differentiated, non-dividing luteal cells.
Collapse
Affiliation(s)
- S C Sharma
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
39
|
Chance WT, Sheriff S, Peng F, Balasubramaniam A. Antagonism of NPY-induced feeding by pretreatment with cyclic AMP response element binding protein antisense oligonucleotide. Neuropeptides 2000; 34:167-72. [PMID: 11021976 DOI: 10.1054/npep.2000.0807] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Although second messenger systems subserving neuropeptide Y (NPY)-mediated behaviors have been identified for a variety of receptors in several tissues, downstream signaling events are not well known. The nuclear binding protein, cyclic AMP response element binding protein (CREB) appears to be a transcription factor that is activated following injection of NPY into rat hypothalamus. To allow determination of the functional nature of CREB mediation of NPY-induced feeding, injection cannulae were implanted into the perifornical hypothalamus of 18 rats. Treatment of seven rats with CREB antisense oligonucleotide (15 ug) significantly antagonized NPY feeding for up to one week after treatment, while similar injections of CREB sense oligonucleotide (15 ug) had no significant effect on NPY-induced feeding. Two weeks after the antisense oligonucleotide treatment, feeding was once again elicited by the injection of NPY. Hypothalamic CREB protein was also reduced significantly two days after the CREB antisense oligonucleotide treatment. These results suggest that activation of CREB, probably through phosphorylation, may be a necessary event for the signal transduction of NPY stimulation into feeding behavior.
Collapse
Affiliation(s)
- W T Chance
- Medical Research Service, VA Medical Center, 3200 Vine Street, Cincinnati, OH 45220, USA
| | | | | | | |
Collapse
|
40
|
Umar S, Sellin JH, Morris AP. Murine colonic mucosa hyperproliferation. II. PKC-beta activation and cPKC-mediated cellular CFTR overexpression. Am J Physiol Gastrointest Liver Physiol 2000; 278:G765-74. [PMID: 10801269 DOI: 10.1152/ajpgi.2000.278.5.g765] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In the companion article (Umar S, Scott J, Sellin JH, Dubinsky WP, and Morris AP, Am J Physiol Gastrointest Liver Physiol 278: 753-764, 2000), we have shown that transmissible murine colonic hyperplasia (TMCH) increased cellular cystic fibrosis transmembrane conductance regulator (CFTR) mRNA and protein expression, relocalized CFTR within colonocytes, and enhanced mucosal cAMP-dependent Cl(-) secretion. We show here that these changes were dependent on elevated cellular levels of membrane-bound Ca(2+)- and diacylglycerol-sensitive protein kinase C (PKC) activity (12-fold), induced by selective (3- to 4-fold) rises in conventional PKC (cPKC) isoform expression and membrane translocation. Three cPKC isoforms were detected in isolated crypts: alpha, beta1, and beta2. cPKC-beta1 rises preceded and those of cPKC-alpha and cPKC-beta2 paralleled cellular hyperproliferation and its effects on CFTR expression and cAMP-dependent Cl(-) current secretion. Only cPKC-beta1 and cPKC-beta2 were membrane translocated during TMCH. Furthermore, only cPKC-beta1 trafficked to the nucleus, whereas cPKC-beta2 remained partitioned among cytosolic, membrane, and cytoskeletal subcellular fractions. Modest increases in novel PKC-epsilon (nPKC-epsilon) expression and subcellular membrane partitioning were recorded during TMCH, but no changes were seen for PKC-delta or -eta. No nPKC isoform nuclear partitioning was detected. The orally bioactive cPKC inhibitor Ro-32-0432 reversed both TMCH and elevated cellular CFTR mRNA levels, whereas a pharmacologically inert analog (Ro-31-6045) failed to inhibit either response. On the basis of these facts, we present a new hypothesis whereby PKC-dependent cellular proliferation promotes endogenous cellular CFTR levels. PKC-beta1 was identified as a candidate regulatory PKC isoform.
Collapse
Affiliation(s)
- S Umar
- Department of Integrative Biology, Pharmacology, and Physiology, Division of Gastroenterology, Hepatology, and Nutrition, The University of Texas Health Science Center at Houston, Medical School, Houston 77030, USA
| | | | | |
Collapse
|
41
|
Thommesen L, Nørsett K, Sandvik AK, Hofsli E, Laegreid A. Regulation of inducible cAMP early repressor expression by gastrin and cholecystokinin in the pancreatic cell line AR42J. J Biol Chem 2000; 275:4244-50. [PMID: 10660591 DOI: 10.1074/jbc.275.6.4244] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The CREM gene encodes both activators and repressors of cAMP-induced transcription. Inducible cAMP early repressor (ICER) isoforms are generated upon activation of an alternative, intronic promoter within the CREM gene. ICER is proposed to down-regulate both its own expression and the expression of other genes that contain cAMP-responsive elements such as a number of growth factors. Thus, ICER has been postulated to play a role in proliferation and differentiation. Here we show that ICER gene expression is induced by gastrin, cholecystokinin (CCK), and epidermal growth factor in AR42J cells. The time course of gastrin- and CCK-mediated ICER induction is rapid and transient, similar to forskolin- and phorbol 12-myristate 13-acetate-induced ICER expression. The specific CCK-B receptor antagonist L740,093 blocks the gastrin but not the CCK response, indicating that both the CCK-B and the CCK-A receptor can mediate ICER gene activation. Noteworthy, CREB is constitutively phosphorylated at Ser-133 in AR42J cells, and ICER induction proceeds in the absence of increased CREB Ser(P)-133. Gastrin-mediated ICER induction was not reduced in the presence of the protein kinase A inhibitor H-89, indicating a protein kinase A-independent mechanism. This is the first report on ICER inducibility via G(q)/G(11) protein-coupled receptors.
Collapse
Affiliation(s)
- L Thommesen
- Department of Physiology and Biomedical Engineering, Norwegian University of Science and Technology, N-7489 Trondheim, Norway
| | | | | | | | | |
Collapse
|
42
|
Behr R, Weinbauer GF. Germ cell-specific cyclic adenosine 3',5'-monophosphate response element modulator expression in rodent and primate testis is maintained despite gonadotropin deficiency. Endocrinology 1999; 140:2746-54. [PMID: 10342865 DOI: 10.1210/endo.140.6.6764] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
cAMP response element modulator (CREM) is an important component of the cAMP-mediated signaling pathway and is essential for differentiation of haploid male germ cells. In the rodent, testicular expression of CREM is believed to be controlled by FSH. We studied the expression pattern of CREM and gonadotropic control in the nonhuman primate and rodent testis. Adult cynomolgus monkeys (Macaca fascicularis) received daily either vehicle or the potent GnRH antagonist (ANT) cetrorelix for periods of 25 and 56 days. Rats were also exposed to vehicle or ANT for periods of 14 and 42 days. ANT treatment suppressed pituitary gonadotropin secretion, reduced testis size, and altered spermatogenesis. A rabbit polyclonal antibody raised against recombinant CREM tau and reacting with CREM alpha, -beta, -gamma, -tau1, and -tau2 at similar affinities was used for immunocytochemistry and Western blotting. CREM expression was seen in round spermatids, with highest levels during spermatogenic stages V-VII, but declined with progression of spermatid development in the primate. Similar observations were made for the rat testis. Thus, CREM expression was maximal at the onset of acrosome formation and was low or undetectable upon initiation of spermatid elongation in both species. A weak, but specific, CREM signal was seen in mid- to late pachytene spermatocytes and during meiotic division in both species. After ANT exposure, the germ cell- and stage-specific pattern of CREM expression was quantitatively retained at all time points and in both species. Northern and Western blot analysis confirmed the maintenance of testicular CREM expression despite 25 days of ANT treatment. A retrospective immunocytochemical analysis of rat testes 14 days posthypophysectomy revealed CREM signals in round spermatids. These findings demonstrate that the testicular expression of CREM is not entirely dependent on gonadotropic hormones but, rather, on the maturational stage of haploid round germ cells.
Collapse
Affiliation(s)
- R Behr
- Institute of Reproductive Medicine of the University, Munster, Germany
| | | |
Collapse
|
43
|
Hernández-Munain C, Sleckman BP, Krangel MS. A developmental switch from TCR delta enhancer to TCR alpha enhancer function during thymocyte maturation. Immunity 1999; 10:723-33. [PMID: 10403647 DOI: 10.1016/s1074-7613(00)80071-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
V(D)J recombination and transcription within the TCR alpha/delta locus are regulated by three characterized cis-acting elements: the TCR delta enhancer (Edelta), TCR alpha enhancer (Ealpha), and T early alpha (TEA) promoter. Analysis of enhancer and promoter occupancy and function in developing thymocytes in vivo indicates Edelta and Ealpha to be developmental-stage-specific enhancers, with Edelta "on" and Ealpha "off" in double-negative III thymocytes and Edelta "off" and Ealpha "on" in double-positive thymocytes. Edelta downregulation reflects a loss of occupancy. Surprisingly, Ealpha and TEA are extensively occupied even prior to activation. TCR delta downregulation in double-positive thymocytes depends on two events, Edelta inactivation and removal of TCR delta from the influence of Ealpha by chromosomal excision.
Collapse
Affiliation(s)
- C Hernández-Munain
- Department of Immunology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
44
|
Umayahara Y, Billiard J, Ji C, Centrella M, McCarthy TL, Rotwein P. CCAAT/enhancer-binding protein delta is a critical regulator of insulin-like growth factor-I gene transcription in osteoblasts. J Biol Chem 1999; 274:10609-17. [PMID: 10187857 DOI: 10.1074/jbc.274.15.10609] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin-like growth factor-I (IGF-I) plays a major role in promoting skeletal growth by stimulating bone cell replication and differentiation. Prostaglandin E2 and other agents that induce cAMP production enhance IGF-I gene transcription in cultured rat osteoblasts through a DNA element termed HS3D, located in the proximal part of the major rat IGF-I promoter. We previously determined that CCAAT/enhancer-binding protein delta (C/EBPdelta) is the key cAMP-stimulated regulator of IGF-I transcription in these cells and showed that it transactivates the rat IGF-I promoter through the HS3D site. We now have defined the physical-chemical properties and functional consequences of the interactions between C/EBPdelta and HS3D. C/EBPdelta, expressed in COS-7 cells or purified as a recombinant protein from Escherichia coli, bound to HS3D with an affinity at least equivalent to that of the albumin D-site, a known high affinity C/EBP binding sequence, and both DNA elements competed equally for C/EBPdelta. C/EBPdelta bound to HS3D as a dimer, with protein-DNA contact points located on guanine residues on both DNA strands within and just adjacent to the core C/EBP half-site, GCAAT, as determined by methylation interference footprinting. C/EBPdelta also formed protein-protein dimers in the absence of interactions with its DNA binding site, as indicated by results of glutaraldehyde cross-linking studies. As established by competition gel-mobility shift experiments, the conserved HS3D sequence from rat, human, and chicken also bound C/EBPdelta with similar affinity. We also found that prostaglandin E2-induced expression of reporter genes containing human IGF-I promoter 1 or four tandem copies of the human HS3D element fused to a minimal promoter and show that these effects were enhanced by a co-transfected C/EBPdelta expression plasmid. Taken together, our results provide evidence that C/EBPdelta is a critical activator of IGF-I gene transcription in osteoblasts and potentially in other cell types and species.
Collapse
Affiliation(s)
- Y Umayahara
- Oregon Health Sciences University, Molecular Medicine Division, Department of Medicine, Portland, Oregon 97201-3098, USA
| | | | | | | | | | | |
Collapse
|
45
|
Danner S, Lohse MJ. Regulation of beta-adrenergic receptor responsiveness modulation of receptor gene expression. Rev Physiol Biochem Pharmacol 1999; 136:183-223. [PMID: 9932487 DOI: 10.1007/bfb0032325] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- S Danner
- Institute of Pharmacology, University of Würzburg, Germany
| | | |
Collapse
|
46
|
Bryce PJ, Dascombe MJ, Hutchinson IV. Immunomodulatory effects of pharmacological elevation of cyclic AMP in T lymphocytes proceed via a protein kinase A independent mechanism. IMMUNOPHARMACOLOGY 1999; 41:139-46. [PMID: 10102795 DOI: 10.1016/s0162-3109(98)00060-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of the cAMP pathway as an immunomodulatory system has been an area of intensive research. Pharmacological elevation of the cAMP pathway inhibits T lymphocyte proliferation and production of Th1-type cytokines. The effects of cAMP are thought to be mediated via activation of the intracellular receptor, protein kinase A (PKA). We investigated the inhibitory effects of cAMP elevation on human lymphocyte proliferation and function by utilising a range of selective inhibitors of PKA. Elevation of cAMP activity by dbcAMP, Sp-cAMPS and forskolin induced significant decreases of Con A stimulated PBMC proliferation. Co-incubation with the selective PKA inhibitors HA1004, KT5720 and Rp-cAMPS showed these antiproliferative effects to persist, despite measurable PKA activity being inhibited to that of untreated cells or less. IL-2 production was also inhibited by dbcAMP in the presence of HA1004 and Rp-cAMPS. It has been demonstrated that the inhibitory effects of pharmacological elevations in cAMP on human T cell proliferation and IL-2 production do not require PKA activity. These observations indicate that control of lymphocyte proliferation and functional status by cAMP proceeds through PKA-independent events. Identification of the underlying mechanisms behind these effects would increase our understanding of the cAMP cascade and may provide a potentially novel target for immunomodulation.
Collapse
Affiliation(s)
- P J Bryce
- School of Biological Sciences, University of Manchester, UK.
| | | | | |
Collapse
|
47
|
Uyttersprot N, Costagliola S, Dumont JE, Miot F. Requirement for cAMP-response element (CRE) binding protein/CRE modulator transcription factors in thyrotropin-induced proliferation of dog thyroid cells in primary culture. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 259:370-8. [PMID: 9914516 DOI: 10.1046/j.1432-1327.1999.00049.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In several cell types, mostly of epithelial origin, activation of the cAMP pathway triggers DNA synthesis and cell division. Regulation of gene expression by cAMP involves phosphorylation by pyruvate kinase A and activation of cAMP-response element binding protein (CREB)/CRE modulator (CREM) transcription factors which bind DNA to CRE sites. On the other hand, several CREM isoforms are transcriptional repressors, such as the inducible cAMP early repressor (ICER) transcription factors, which are synthesized from an intronic promoter of the CREM gene. This study investigated the potential role of CREB/CREM transcription factors in the cAMP mitogenic pathway, using an experimental model of epithelial cells in primary culture, i.e. dog thyroid cells stimulated by thyroid-stimulating hormone (TSH). In response to TSH, CREB/CREM transcription factors were phosphorylated on the serine residue of the pyruvate kinase A consensus site. In addition, the synthesis of ICER mRNAs was strongly induced by TSH. This transient upregulation of ICER expression correlated with increased protein levels. It was restricted to the cAMP pathway, as neither epidermal growth factor nor phorbol myristate acetate, which are potent mitogens for dog thyroid cells, induced ICER expression. On the other hand, increased expression of ICER mRNAs was not detected in dog thyroids chronically stimulated by TSH in vivo. The requirement for CREB/CREM transcription factors in the mitogenic effect of TSH was assessed by transfecting expression vectors encoding CREM repressors into dog thyrocytes in order to interfere with CRE-mediated gene transcription. The ectopic expression of ICER Igamma or CREM alpha isoforms inhibited DNA replication in dog thyrocytes stimulated by TSH. This inhibitory effect was dependent on the ability of CREM repressors to form dimers but did not involve their DNA-binding capacity. Together these results show that CREB/CREM transcription factors are tightly regulated, at the transcriptional and post-translational levels, by TSH in dog thyroid cells, and provide clear evidence that their activity is required for the cAMP-dependent proliferation of cells in primary culture. Moreover, the transient induction of ICER transcription factors during mitogenic stimulation by TSH raises questions about the role of these potent repressors of CRE-dependent transcription as timers of cellular proliferation.
Collapse
Affiliation(s)
- N Uyttersprot
- Interdisciplinary Research Institute, Free University of Brussels, Belgium
| | | | | | | |
Collapse
|
48
|
Aldred A, Nagy LE. Ethanol dissociates hormone-stimulated cAMP production from inhibition of TNF-alpha production in rat Kupffer cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:G98-G106. [PMID: 9886984 DOI: 10.1152/ajpgi.1999.276.1.g98] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ethanol impairs hormone-stimulated cAMP production in a number of cell types, yet the effects of ethanol on downstream responses mediated by cAMP-dependent protein kinase (PKA) are not understood. Here we have investigated the effects of ethanol feeding on cAMP-mediated inhibition of tumor necrosis factor-alpha (TNF-alpha) synthesis in rat Kupffer cells. Male Wistar rats were fed liquid diets containing 36% of calories as ethanol for 4 wk or were pair fed a control diet. Stimulation of cAMP production by the adenosine A2 receptor agonist 5'-(N-ethylcarboxamido)-adenosine (NECA), prostaglandin E2, or forskolin was decreased to 25% of control values in Kupffer cells isolated from ethanol-fed rats. This decrease was associated with a reduction in the quantity of immunoreactive Gsalpha protein in ethanol-fed rats, with no changes observed in Gialpha or Gbeta. TNF-alpha production was higher in ethanol-fed rats in response to stimulation with lipopolysaccharide or latex beads. Despite the profound reduction in the ability of hormone to increase cAMP production, NECA and prostaglandin E2 inhibited TNF-alpha production to an equivalent degree in Kupffer cells from ethanol- and pair-fed rats. Total activity and immuoreactive protein quantity of PKA did not differ between groups. Activation of PKA in response to a 15-min treatment with 1 microM NECA was reduced by 50% in ethanol-fed rats compared with control. Despite this reduction in activation, translocation of the catalytic subunit of PKA to the nucleus and phosphorylation of cAMP response element binding protein in response to activation were observed in Kupffer cells from both ethanol- and pair-fed rats. These data demonstrate that there is a dissociation between ethanol-induced desensitization of hormone-stimulated cAMP production in rat Kupffer cells and the downstream inhibition of TNF-alpha production mediated by cAMP.
Collapse
Affiliation(s)
- A Aldred
- Department of Nutrition, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | |
Collapse
|
49
|
Bartsch D, Casadio A, Karl KA, Serodio P, Kandel ER. CREB1 encodes a nuclear activator, a repressor, and a cytoplasmic modulator that form a regulatory unit critical for long-term facilitation. Cell 1998; 95:211-23. [PMID: 9790528 DOI: 10.1016/s0092-8674(00)81752-3] [Citation(s) in RCA: 262] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Although CREB seems to be important for memory formation, it is not known which of the isoforms of CREB, CREM, or ATF1 are expressed in the neurons that undergo long-term synaptic changes and what roles they have in memory formation. We have found a single Aplysia CREB1 gene homologous to both mammalian CREB and CREM and have characterized in the sensory neurons that mediate gill-withdrawal reflex the expression and function of the three proteins that it encodes: CREB1a, CREB1b, and CREB1c. CREB1a is a transcriptional activator that is both necessary and, upon phosphorylation, sufficient for long-term facilitation. CREB1b is a repressor of long-term facilitation. Cytoplasmic CREB1c modulates both the short- and long-term facilitation. Thus, in the sensory neurons, CREB1 encodes a critical regulatory unit converting short- to long-term synaptic changes.
Collapse
Affiliation(s)
- D Bartsch
- Center for Neurobiology and Behavior, College of Physicians and Surgeons of Columbia University and New York State Psychiatric Institute, New York 10032, USA.
| | | | | | | | | |
Collapse
|
50
|
Daniel PB, Habener JF. Cyclical alternative exon splicing of transcription factor cyclic adenosine monophosphate response element-binding protein (CREB) messenger ribonucleic acid during rat spermatogenesis. Endocrinology 1998; 139:3721-9. [PMID: 9724023 DOI: 10.1210/endo.139.9.6174] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
During spermatogenesis, the levels of cAMP in seminiferous tubules undergo stage-dependent cyclical fluctuations. We show that changes in cAMP levels are accompanied by alternative exon splicing of the RNA encoding the cAMP-responsive transcription factor CREB (cAMP response element-binding protein), expressed in both the Sertoli and germ cells. Exons Y and W are expressed exclusively in the testis, and they introduce stop codons into the normal protein coding frame of CREB. The splicing in of W was shown earlier to activate the internal translation of two alternative products of the CREB messenger RNA (mRNA) containing the DNA-binding domain (I-CREBs). The I-CREBs act as potent inhibitors of activator isoforms of CREB. The functions of the alternatively spliced exon Y are unknown. To investigate whether the splicing of exons W and Y is regulated during spermatogenesis, seminiferous tubules, isolated from adult rats, were dissected into segments representing different stages of the spermatogenic cycle and were analyzed by RT-PCR. The analyses of pooled-tubule segments revealed stage-dependent splicing of both exons W and Y in the CREB transcripts. Single tubules were dissected into smaller segments for greater staging accuracy and were analyzed by RT-PCR for CREB mRNAs containing either exons W or Y, as well as for FSH receptor mRNA. This analysis confirmed that a marked, cycle-dependent variation in CREB mRNA levels was occurring. Maximal splicing of exons W and Y occurs independently at different stages of the spermatogenic cycle, stages II-VI and IX, respectively. The distinct spermatogenic cycle-dependent regulation of the splicing of exons W and Y provides further evidence in support of a functional relevance for CREB-W and Y mRNA isoforms in spermatogenesis.
Collapse
Affiliation(s)
- P B Daniel
- Laboratory of Molecular Endocrinology, Massachusetts General Hospital and Howard Hughes Medical Institute, Harvard Medical School, Boston 02114, USA
| | | |
Collapse
|