1
|
Billard E, Torbey A, Inserra A, Grant E, Bertazzo A, De Gregorio D, Comai S, Chatenet D, Gobbi G, Hébert TE. Pharmacological characterization of cannabidiol as a negative allosteric modulator of the 5-HT 2A receptor. Cell Signal 2025; 127:111588. [PMID: 39761844 DOI: 10.1016/j.cellsig.2025.111588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/20/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
Promising clinical evidence suggests that psychedelic compounds, like lysergic acid diethylamide (LSD), have therapeutic value for treatment of psychiatric disorders. However, they often produce hallucinations and dissociative states, likely mediated by the serotonin (5-HT) receptor 5-HT2A, raising challenges regarding therapeutic scalability. Given the reported antipsychotic effects of cannabidiol (CBD) and its promiscuous binding at many receptors, we assessed whether CBD could modulate 5-HT2A signalling. Activation of the 5-HT2A intracellular signalling events were assessed using resonance energy transfer- or fluorescence-based biosensors in HEK 293 cells and in rat primary cortical neurons. In 5-HT2A-transfected HEK 293 T cells, CBD antagonized LSD-mediated Gq activation in a saturable way, while leaving β-arrestin2 recruitment unaffected. CBD decreased Gq activation mediated by the 5-HT2A-specific agonist DOI as well as LSD-mediated activity in primary rat neonatal cortical neurons. Using Site Identification by Ligand Competitive Saturation (SILCS) simulations, we also predicted that the putative binding site of CBD overlapped with that of oleamide, a positive allosteric modulator of 5-HT2A, and could displace the binding of orthosteric ligands toward the external binding pocket. Based on these findings, we propose that CBD acts as a negative allosteric modulator of 5-HT2A.
Collapse
Affiliation(s)
- Etienne Billard
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Canada
| | - Alexandre Torbey
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Canada
| | - Antonio Inserra
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montréal, Canada
| | - Emily Grant
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montréal, Canada
| | - Antonella Bertazzo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Danilo De Gregorio
- IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita Salute San Raffaele University, Italy
| | - Stefano Comai
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montréal, Canada; Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy; IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita Salute San Raffaele University, Italy; Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - David Chatenet
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Canada
| | - Gabriella Gobbi
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montréal, Canada; Research Institute of the McGill University Health Center, Montréal, Canada
| | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Canada.
| |
Collapse
|
2
|
Aboharb F, Davoudian PA, Shao LX, Liao C, Rzepka GN, Wojtasiewicz C, Indajang J, Dibbs M, Rondeau J, Sherwood AM, Kaye AP, Kwan AC. Classification of psychedelics and psychoactive drugs based on brain-wide imaging of cellular c-Fos expression. Nat Commun 2025; 16:1590. [PMID: 39939591 PMCID: PMC11822132 DOI: 10.1038/s41467-025-56850-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 01/31/2025] [Indexed: 02/14/2025] Open
Abstract
Psilocybin, ketamine, and MDMA are psychoactive compounds that exert behavioral effects with distinguishable but also overlapping features. The growing interest in using these compounds as therapeutics necessitates preclinical assays that can accurately screen psychedelics and related analogs. We posit that a promising approach may be to measure drug action on markers of neural plasticity in native brain tissues. We therefore developed a pipeline for drug classification using light sheet fluorescence microscopy of immediate early gene expression at cellular resolution followed by machine learning. We tested male and female mice with a panel of drugs, including psilocybin, ketamine, 5-MeO-DMT, 6-fluoro-DET, MDMA, acute fluoxetine, chronic fluoxetine, and vehicle. In one-versus-rest classification, the exact drug was identified with 67% accuracy, significantly above the chance level of 12.5%. In one-versus-one classifications, psilocybin was discriminated from 5-MeO-DMT, ketamine, MDMA, or acute fluoxetine with >95% accuracy. We used Shapley additive explanation to pinpoint the brain regions driving the machine learning predictions. Our results suggest a unique approach for characterizing and validating psychoactive drugs with psychedelic properties.
Collapse
Affiliation(s)
- Farid Aboharb
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Weill Cornell Medicine/Rockefeller/Sloan-Kettering Tri-Institutional MD/PhD Program, New York, NY, USA
| | - Pasha A Davoudian
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, USA
- Medical Scientist Training Program, Yale University School of Medicine, New Haven, CT, USA
| | - Ling-Xiao Shao
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Clara Liao
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, USA
| | - Gillian N Rzepka
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | | | - Jonathan Indajang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Mark Dibbs
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Jocelyne Rondeau
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | | | - Alfred P Kaye
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Clinical Neurosciences Division, VA National Center for PTSD, West Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
| | - Alex C Kwan
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
3
|
Glatfelter GC, Pottie E, Partilla JS, Stove CP, Baumann MH. Comparative Pharmacological Effects of Lisuride and Lysergic Acid Diethylamide Revisited. ACS Pharmacol Transl Sci 2024; 7:641-653. [PMID: 38481684 PMCID: PMC10928901 DOI: 10.1021/acsptsci.3c00192] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/12/2023] [Accepted: 01/12/2024] [Indexed: 11/01/2024]
Abstract
Lisuride is a non-psychedelic serotonin (5-HT) 2A receptor (5-HT2A) agonist and analogue of the psychedelic lysergic acid diethylamide (LSD). Lisuride also acts as an agonist at the serotonin 1A receptor (5-HT1A), a property known to counter psychedelic effects. Here, we tested whether lisuride lacks psychedelic activity due to a dual mechanism: (1) partial agonism at 5-HT2A and (2) potent agonism at 5-HT1A. The in vitro effects of lisuride, LSD, and related analogues on 5-HT2A signaling were characterized by using miniGαq and β-arrestin 2 recruitment assays. The 5-HT1A- and 5-HT2A-mediated effects of lisuride and LSD were also compared in male C57BL/6J mice. The in vitro results confirmed that LSD is an agonist at 5-HT2A, with high efficacy and potency for recruiting miniGαq and β-arrestin 2. By contrast, lisuride displayed partial efficacy for both functional end points (6-52% of 5-HT or LSD Emax) and antagonized the effects of LSD. The mouse experiments demonstrated that LSD induces head twitch responses (HTRs)(ED50 = 0.039 mg/kg), while lisuride suppresses HTRs (ED50 = 0.006 mg/kg). Lisuride also produced potent hypothermia and hypolocomotion (ED50 = 0.008-0.023 mg/kg) that was blocked by the 5-HT1A antagonist WAY100635 (3 mg/kg). Blockade of 5-HT1A prior to lisuride restored basal HTRs, but it failed to increase HTRs above baseline levels. HTRs induced by LSD were blocked by lisuride (0.03 mg/kg) or the 5-HT1A agonist 8-OH-DPAT (1 mg/kg). Overall, our findings show that lisuride is an ultrapotent 5-HT1A agonist in C57BL/6J mice, limiting its use as a 5-HT2A ligand in mouse studies examining acute drug effects. Results also indicate that the 5-HT2A partial agonist-antagonist activity of lisuride explains its lack of psychedelic effects.
Collapse
Affiliation(s)
- Grant C. Glatfelter
- Designer
Drug Research Unit, National Institute on
Drug Abuse, Intramural Research Program, Baltimore, Maryland 21224, United States
| | - Eline Pottie
- Laboratory
of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical
Sciences, Ghent University, Ghent 460 9000, Belgium
| | - John S. Partilla
- Designer
Drug Research Unit, National Institute on
Drug Abuse, Intramural Research Program, Baltimore, Maryland 21224, United States
| | - Christophe P. Stove
- Laboratory
of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical
Sciences, Ghent University, Ghent 460 9000, Belgium
| | - Michael H. Baumann
- Designer
Drug Research Unit, National Institute on
Drug Abuse, Intramural Research Program, Baltimore, Maryland 21224, United States
| |
Collapse
|
4
|
Hatzipantelis CJ, Olson DE. The Effects of Psychedelics on Neuronal Physiology. Annu Rev Physiol 2024; 86:27-47. [PMID: 37931171 PMCID: PMC10922499 DOI: 10.1146/annurev-physiol-042022-020923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Psychedelics are quite unique among drugs that impact the central nervous system, as a single administration of a psychedelic can both rapidly alter subjective experience in profound ways and produce sustained effects on circuits relevant to mood, fear, reward, and cognitive flexibility. These remarkable properties are a direct result of psychedelics interacting with several key neuroreceptors distributed across the brain. Stimulation of these receptors activates a variety of signaling cascades that ultimately culminate in changes in neuronal structure and function. Here, we describe the effects of psychedelics on neuronal physiology, highlighting their acute effects on serotonergic and glutamatergic neurotransmission as well as their long-lasting effects on structural and functional neuroplasticity in the cortex. We propose that the neurobiological changes leading to the acute and sustained effects of psychedelics might be distinct, which could provide opportunities for engineering compounds with optimized safety and efficacy profiles.
Collapse
Affiliation(s)
- Cassandra J Hatzipantelis
- Institute for Psychedelics and Neurotherapeutics, University of California, Davis, Davis, California, USA;
- Department of Chemistry, University of California, Davis, Davis, California, USA
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, California, USA
| | - David E Olson
- Institute for Psychedelics and Neurotherapeutics, University of California, Davis, Davis, California, USA;
- Department of Chemistry, University of California, Davis, Davis, California, USA
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, California, USA
- Center for Neuroscience, University of California, Davis, Davis, California, USA
| |
Collapse
|
5
|
Zhu H, Liu X, Wang X, Li Y, Ma F, Tan B, Zhou P, Fu F, Su R. Gβγ subunit inhibitor decreases DOM-induced head twitch response via the PLCβ/IP3/Ca 2+/ERK and cAMP signaling pathways. Eur J Pharmacol 2023; 957:176038. [PMID: 37657742 DOI: 10.1016/j.ejphar.2023.176038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 08/17/2023] [Accepted: 08/30/2023] [Indexed: 09/03/2023]
Abstract
AIMS (-)-2,5-dimethoxy-4-methylamphetamine (DOM) induces the head-twitch response (HTR) primarily by activating the serotonin 5-hydroxytryptamine 2A receptor (5-HT2A receptor) in mice. However, the mechanisms underlying 5-HT2A receptor activation and the HTR remain elusive. Gβγ subunits are a potential treatment target in numerous diseases. The present study investigated the mechanism whereby Gβγ subunits influence DOM-induced HTR. MAIN METHODS The effects of the Gβγ inhibitor 3',4',5',6'-tetrahydroxyspiro[2-benzofuran-3,9'-xanthene]-1-one (gallein) and antagonistic peptide βARKct (β-adrenergic receptor kinase C-terminal fragment) on DOM-induced HTR were studied via an HTR test. The activation of the phospholipase C β (PLCβ)/inositol triphosphate (IP3)/calcium (Ca2+) signaling pathway and extracellular signal-regulated kinase (ERK) following Gβγ subunit inhibition was detected by western blotting, Homogeneous Time-Resolved Fluorescence (HTRF) inositol phosphate (IP1) assay and Fluorometric Imaging Plate Reader (FLIPR) calcium 6 assay. The Gβγ subunit-mediated regulation of cyclic adenosine monophosphate (cAMP) was assessed via a GloSensor™ cAMP assay. KEY FINDINGS The Gβγ subunit inhibitors gallein and βARKct reduced DOM-induced HTR in C57BL/6J mice. Like the 5-HT2A receptor-selective antagonist (R)-[2,3-di(methoxy)phenyl]-[1-[2-(4-fluorophenyl)ethyl]piperidin-4-yl]methanol (M100907), gallein inhibited PLCβ phosphorylation (pPLCβ), IP1 production, Ca2+ transients, ERK1/2 phosphorylation (pERK1/2) and cAMP accumulation induced by DOM in human embryonic kidney (HEK) 293T cells stably or transiently transfected with the human 5-HT2A receptor. Moreover, PLCβ protein inhibitor 1-[6-[[(8R,9S,13S,14S,17S)-3-methoxy-13-methyl-6,7,8,9,11,12,14,15,16,17-decahydrocyclopenta[a]phenanthren-17-yl]amino]hexyl]pyrrole-2,5-dione (U73122) (10 nmol/mouse), intracellular Ca2+ blocker 6-[6-[6-[5-acetamido-4,6-dihydroxy-2-(sulfooxymethyl)oxan-3-yl]oxy-2-carboxy-4-hydroxy-5-sulfooxyoxan-3-yl]oxy-2-(hydroxymethyl)-5-(sulfoamino)-4-sulfooxyoxan-3-yl]oxy-3,4-dihydroxy-5-sulfooxyoxane-2-carboxylic acid (heparin) (5 nmol/mouse), L-type Ca2+ channel blocker 3-O-(2-methoxyethyl) 5-O-propan-2-yl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate (nimodipine) (4 mg/kg), mitogen extracellular regulating kinase 1/2 (MEK1/2) inhibitor (Z)-3-amino-3-(4-aminophenyl)sulfanyl-2-[2-(trifluoromethyl)phenyl]prop-2-enenitrile (SL327) (30 mg/kg), and Gαs protein selective antagonist 4,4',4″,4‴-(Carbonylbis-(imino-5,1,3-benzenetriylbis(carbonylimino)))tetrakisbenzene-1,3-disulfonic acid (NF449) (10 nmol/mouse) reduced DOM-induced HTR in C57BL/6J mice. SIGNIFICANCE The Gβγ subunits potentially mediate the HTR after 5-HT2A receptor activation via the PLCβ/IP3/Ca2+/ERK1/2 and cAMP signaling pathways. Inhibitors targeting the Gβγ subunits potentially inhibit the hallucinogenic effects of 5-HT2A receptor agonists.
Collapse
Affiliation(s)
- Huili Zhu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China; School of Pharmacy, Yantai University, Yantai, 264005, China
| | - Xiaoqian Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Xiaoxuan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Yulei Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Fang Ma
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Bo Tan
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Peilan Zhou
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China.
| | - Fenghua Fu
- School of Pharmacy, Yantai University, Yantai, 264005, China
| | - Ruibin Su
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China.
| |
Collapse
|
6
|
Schmitz GP, Roth BL. G protein-coupled receptors as targets for transformative neuropsychiatric therapeutics. Am J Physiol Cell Physiol 2023; 325:C17-C28. [PMID: 37067459 PMCID: PMC10281788 DOI: 10.1152/ajpcell.00397.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 03/28/2023] [Accepted: 04/06/2023] [Indexed: 04/18/2023]
Abstract
G protein-coupled receptors (GPCRs) constitute the largest family of druggable genes in the human genome. Even though perhaps 30% of approved medications target GPCRs, they interact with only a small number of them. Here, we consider whether there might be new opportunities for transformative therapeutics for neuropsychiatric disorders by specifically targeting both known and understudied GPCRs. Using psychedelic drugs that target serotonin receptors as an example, we show how recent insights into the structure, function, signaling, and cell biology of these receptors have led to potentially novel therapeutics. We next focus on the possibility that nonpsychedelic 5-HT2A receptor agonists might prove to be safe and rapidly acting antidepressants. Finally, we examine understudied and orphan GPCRs using the MRGPR family of receptors as an example.
Collapse
Affiliation(s)
- Gavin P Schmitz
- Department of Pharmacology, UNC Chapel Hill Medical School, Chapel Hill, North Carolina, United States
| | - Bryan L Roth
- Department of Pharmacology, UNC Chapel Hill Medical School, Chapel Hill, North Carolina, United States
| |
Collapse
|
7
|
Glatfelter GC, Naeem M, Pham DNK, Golen JA, Chadeayne AR, Manke DR, Baumann MH. Receptor Binding Profiles for Tryptamine Psychedelics and Effects of 4-Propionoxy- N,N-dimethyltryptamine in Mice. ACS Pharmacol Transl Sci 2023; 6:567-577. [PMID: 37082754 PMCID: PMC10111620 DOI: 10.1021/acsptsci.2c00222] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Indexed: 03/12/2023]
Abstract
Analogues of 4-phosphoryloxy-N,N-dimethyltryptamine (psilocybin) are being sold on recreational drug markets and developed as potential medications for psychedelic-assisted therapies. Many of these tryptamine-based psilocybin analogues produce psychedelic-like effects in rodents and humans primarily by agonist activity at serotonin 2A receptors (5-HT2A). However, the comprehensive pharmacological target profiles for these compounds compared to psilocybin and its active metabolite 4-hydroxy-N,N-dimethyltryptamine (psilocin) are unknown. The present study determined the receptor binding profiles of various tryptamine-based psychedelics structurally related to psilocybin across a broad range of potential targets. Specifically, we examined tryptamine psychedelics with different 4-position (hydroxy, acetoxy, propionoxy) and N,N-dialkyl (dimethyl, methyl-ethyl, diethyl, methyl-propyl, ethyl-propyl, diisopropyl, methyl-allyl, diallyl) substitutions. Further, the psilocybin analogue 4-propionoxy-N,N-dimethyltryptamine (4-PrO-DMT) was administered to mice in experiments measuring head twitch response (HTR), locomotor activity, and body temperature. Overall, the present pharmacological profile screening data show that the tryptamine psychedelics target multiple serotonin receptors, including serotonin 1A receptors (5-HT1A). 4-Acetoxy and 4-propionoxy analogues of 4-hydroxy compounds displayed somewhat weaker binding affinities but similar target profiles across 5-HT receptors and other identified targets. Additionally, differential binding screen profiles were observed with N,N-dialkyl position variations across several non-5-HT receptor targets (i.e., alpha receptors, dopamine receptors, histamine receptors, and serotonin transporters), which could impact in vivo pharmacological effects of the compounds. In mouse experiments, 4-PrO-DMT displayed dose-related psilocybin-like effects to produce 5-HT2A-mediated HTR (0.3-3 mg/kg s.c.) as well as 5-HT1A-mediated hypothermia and hypolocomotion (3-30 mg/kg s.c.). Lastly, our data support a growing body of evidence that the 5-HT2A-mediated HTR induced by tryptamine psychedelics is attenuated by 5-HT1A receptor agonist activity at high doses in mice.
Collapse
Affiliation(s)
- Grant C. Glatfelter
- Designer
Drug Research Unit, National Institute on
Drug Abuse, Intramural Research Program, Baltimore, Maryland 21224 United States
| | - Marilyn Naeem
- Department
of Chemistry and Biochemistry, University
of Massachusetts Dartmouth, North Dartmouth, Massachusetts 02747, United States
| | - Duyen N. K. Pham
- Department
of Chemistry and Biochemistry, University
of Massachusetts Dartmouth, North Dartmouth, Massachusetts 02747, United States
| | - James A. Golen
- Department
of Chemistry and Biochemistry, University
of Massachusetts Dartmouth, North Dartmouth, Massachusetts 02747, United States
| | | | - David R. Manke
- Department
of Chemistry and Biochemistry, University
of Massachusetts Dartmouth, North Dartmouth, Massachusetts 02747, United States
| | - Michael H. Baumann
- Designer
Drug Research Unit, National Institute on
Drug Abuse, Intramural Research Program, Baltimore, Maryland 21224 United States
| |
Collapse
|
8
|
Wulff AB, Nichols CD, Thompson SM. Preclinical perspectives on the mechanisms underlying the therapeutic actions of psilocybin in psychiatric disorders. Neuropharmacology 2023; 231:109504. [PMID: 36921889 DOI: 10.1016/j.neuropharm.2023.109504] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/14/2023] [Accepted: 03/11/2023] [Indexed: 03/14/2023]
Abstract
Psychedelic compounds have shown extraordinary potential in treating a wide range of neuropsychiatric disorders. Psilocybin, for example, has now been shown in several clinical trials to induce a rapid (within days) and persistent (3-12 months) improvement in human treatment-resistant depression and other neuropsychiatric conditions. Here we review the preclinical models and experimental approaches that have been used to study the neurobiological actions of psychedelic drugs. We further summarize the insights these studies have provided into the possible mechanisms underlying the induction of their therapeutic actions, including the receptors to which psychedelics bind and the second messenger signaling cascades that they activate. We also discuss potential biological processes that psychedelics may alter to produce the lasting amelioration of symptoms, including improvements in synaptic structure and function and suppression of inflammation. Improved mechanistic understanding of psychedelic drug actions will aid in the advancement of these promising new medicines.
Collapse
Affiliation(s)
- Andreas B Wulff
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA; Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Charles D Nichols
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA, 70112, USA
| | - Scott M Thompson
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA; Department of Psychiatry, University of Colorado School of Medicine, Aurora, CO, 80045, USA.
| |
Collapse
|
9
|
Pedicini M, Cordner ZA. Utility of preclinical models in the study of psilocybin - A comprehensive review. Neurosci Biobehav Rev 2023; 146:105046. [PMID: 36646257 DOI: 10.1016/j.neubiorev.2023.105046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
Interest in the therapeutic potential of psilocybin across a broad range of neuropsychiatric disorders is rapidly expanding. Despite promising clinical data and tremendous public enthusiasm, complimentary basic and translational studies - which are critical for advancing our understanding of psilocybin's biological effects and promoting innovation - have been relatively few. As with all work involving the study of complex neuropsychopharmacology, the search for deeper understanding of biological mechanisms, and the need for nuanced behavioral analyses in the context of both normal and diseased states, the roles for preclinical models are clear. A systematic search of the literature identified 57 articles involving the study of psilocybin in preclinical rodent models. A comprehensive review and thematic analysis identified 4 broad areas of investigation - pharmacology, toxicity, effects on disease models, and molecular mechanisms - with pharmacology studies accounting for the majority. Though these papers represent a still remarkably small body of literature, several important conclusions can already be drawn, and several areas of high priority for future work can be identified.
Collapse
Affiliation(s)
- Megan Pedicini
- The Johns Hopkins University School of Medicine, Department of Psychiatry & Behavioral Sciences, Baltimore, MD 21287, USA.
| | - Zachary A Cordner
- The Johns Hopkins University School of Medicine, Department of Psychiatry & Behavioral Sciences, Baltimore, MD 21287, USA.
| |
Collapse
|
10
|
Glatfelter GC, Pottie E, Partilla JS, Sherwood AM, Kaylo K, Pham DNK, Naeem M, Sammeta VR, DeBoer S, Golen JA, Hulley EB, Stove CP, Chadeayne AR, Manke DR, Baumann MH. Structure-Activity Relationships for Psilocybin, Baeocystin, Aeruginascin, and Related Analogues to Produce Pharmacological Effects in Mice. ACS Pharmacol Transl Sci 2022; 5:1181-1196. [PMID: 36407948 PMCID: PMC9667540 DOI: 10.1021/acsptsci.2c00177] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Indexed: 11/06/2022]
Abstract
4-Phosphoryloxy-N,N-dimethyltryptamine (psilocybin) is a naturally occurring tertiary amine found in many mushroom species. Psilocybin is a prodrug for 4-hydroxy-N,N-dimethyltryptamine (psilocin), which induces psychedelic effects via agonist activity at the serotonin (5-HT) 2A receptor (5-HT2A). Several other 4-position ring-substituted tryptamines are present in psilocybin-containing mushrooms, including the secondary amine 4-phosphoryloxy-N-methyltryptamine (baeocystin) and the quaternary ammonium 4-phosphoryloxy-N,N,N-trimethyltryptamine (aeruginascin), but these compounds are not well studied. Here, we investigated the structure-activity relationships for psilocybin, baeocystin, and aeruginascin, as compared to their 4-acetoxy and 4-hydroxy analogues, using in vitro and in vivo methods. Broad receptor screening using radioligand binding assays in transfected cells revealed that secondary and tertiary tryptamines with either 4-acetoxy or 4-hydroxy substitutions display nanomolar affinity for most human 5-HT receptor subtypes tested, including the 5-HT2A and the serotonin 1A receptor (5-HT1A). The same compounds displayed affinity for 5-HT2A and 5-HT1A in mouse brain tissue in vitro and exhibited agonist efficacy in assays examining 5-HT2A-mediated calcium mobilization and β-arrestin 2 recruitment. In mouse experiments, only the tertiary amines psilocin, psilocybin, and 4-acetoxy-N,N-dimethyltryptamine (psilacetin) induced head twitch responses (ED50 0.11-0.29 mg/kg) indicative of psychedelic-like activity. Head twitches were blocked by 5-HT2A antagonist pretreatment, supporting 5-HT2A involvement. Both secondary and tertiary amines decreased body temperature and locomotor activity at higher doses, the effects of which were blocked by 5-HT1A antagonist pretreatment. Across all assays, the pharmacological effects of 4-acetoxy and 4-hydroxy compounds were similar, and these compounds were more potent than their 4-phosphoryloxy counterparts. Importantly, psilacetin appears to be a prodrug for psilocin that displays substantial serotonin receptor activities of its own.
Collapse
Affiliation(s)
- Grant C. Glatfelter
- Designer
Drug Research Unit, National Institute on
Drug Abuse Intramural Research Program, Baltimore, Maryland 21224, United States
| | - Eline Pottie
- Laboratory
of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical
Sciences, Ghent University, Campus Heymans, Ottergemsesteenweg
460, 9000 Ghent, Belgium
| | - John S. Partilla
- Designer
Drug Research Unit, National Institute on
Drug Abuse Intramural Research Program, Baltimore, Maryland 21224, United States
| | | | - Kristi Kaylo
- Usona
Institute, Madison, Wisconsin 53711, United States
| | - Duyen N. K. Pham
- Department
of Chemistry & Biochemistry, University
of Massachusetts Dartmouth, North Dartmouth, Massachusetts 02747, United States
| | - Marilyn Naeem
- Department
of Chemistry & Biochemistry, University
of Massachusetts Dartmouth, North Dartmouth, Massachusetts 02747, United States
| | - Vamshikrishna Reddy Sammeta
- Department
of Chemistry & Biochemistry, University
of Massachusetts Dartmouth, North Dartmouth, Massachusetts 02747, United States
| | - Stacie DeBoer
- Department
of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States
| | - James A. Golen
- Department
of Chemistry & Biochemistry, University
of Massachusetts Dartmouth, North Dartmouth, Massachusetts 02747, United States
| | - Elliott B. Hulley
- Department
of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Christophe P. Stove
- Laboratory
of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical
Sciences, Ghent University, Campus Heymans, Ottergemsesteenweg
460, 9000 Ghent, Belgium
| | | | - David R. Manke
- Department
of Chemistry & Biochemistry, University
of Massachusetts Dartmouth, North Dartmouth, Massachusetts 02747, United States
| | - Michael H. Baumann
- Designer
Drug Research Unit, National Institute on
Drug Abuse Intramural Research Program, Baltimore, Maryland 21224, United States
| |
Collapse
|
11
|
Jiang K, Liu X, Su R. Contrasting effects of DOI and lisuride on impulsive decision-making in delay discounting task. Psychopharmacology (Berl) 2022; 239:3551-3565. [PMID: 36107207 DOI: 10.1007/s00213-022-06229-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/28/2022] [Indexed: 11/25/2022]
Abstract
RATIONALE The 5-HT2A receptor is the major target of classic hallucinogens. Both DOI (2,5-dimethoxy-4-iodoamphetamine) and lisuride act at 5-HT2A receptors, and lisuride shares comparable affinity with DOI and acts as a partial agonist at 5-HT2A receptors. However, not like DOI, lisuride lacks hallucinogenic properties. Impulsive decision-making refers to the preference for an immediate small reinforcer (SR) over a delayed large reinforcer (LR). OBJECTIVES The current study aims to compare the effects of DOI and lisuride on impulsive decision-making and further to investigate the possible receptor mechanisms responsible for the actions of the two drugs. METHODS Impulsive decision-making was evaluated in male Sprague-Dawley rats by the percentage of choice for the LR in delay discounting task (DDT). Delay to the LR changed in an ascending order (0, 4, 8, 16, and 32 s) across one session. RESULTS DOI (0.5 and 1.0 mg/kg) increased impulsive decision-making, and the effects of DOI (1.0 mg/kg) were blocked by the 5-HT2A receptor antagonist ketanserin (1.0 mg/kg) rather than the 5-HT2C receptor antagonist SB-242084 (1.0 mg/kg). Contrarily, lisuride (0.1, 0.3, and 0.5 mg/kg) decreased impulsive decision-making. The effects of lisuride (0.3 mg/kg) were not antagonized by ketanserin (1.0 mg/kg), selective 5-HT1A antagonist WAY-100635 (1.0 mg/kg), or selective dopamine D4 receptor antagonist L-745870 (1.0 mg/kg) but were attenuated by the selective dopamine D2/D3 receptor antagonist tiapride (40 mg/kg). CONCLUSIONS DOI and lisuride have contrasting effects on impulsive decision-making via distinct receptors. DOI-induced increase of impulsivity is mediated by the 5-HT2A receptor, while lisuride-induced inhibition of impulsivity is regulated by the dopamine D2/D3 receptor.
Collapse
Affiliation(s)
- Kaili Jiang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Xiaoyan Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China.
| | - Ruibin Su
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China.
| |
Collapse
|
12
|
Abstract
In addition to producing profound subjective effects following acute administration, psychedelic compounds can induce beneficial behavioral changes relevant to the treatment of neuropsychiatric disorders that last long after the compounds have been cleared from the body. One hypothesis with the potential to explain the remarkable enduring effects of psychedelics is related to their abilities to promote structural and functional neuroplasticity in the prefrontal cortex (PFC). A hallmark of many stress-related neuropsychiatric diseases, including depression, post-traumatic stress disorder (PTSD), and addiction, is the atrophy of neurons in the PFC. Psychedelics appear to be particularly effective catalysts for the growth of these key neurons, ultimately leading to restoration of synaptic connectivity in this critical brain region. Furthermore, evidence suggests that the hallucinogenic effects of psychedelics are not directly linked to their ability to promote structural and functional neuroplasticity. If we are to develop improved alternatives to psychedelics for treating neuropsychiatric diseases, we must fully characterize the molecular mechanisms that give rise to psychedelic-induced neuroplasticity. Here, I review our current understanding of the biochemical signaling pathways activated by psychedelics and related neuroplasticity-promoting molecules, with an emphasis on key unanswered questions.
Collapse
Affiliation(s)
- David E. Olson
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA,Department of Biochemistry & Molecular Medicine, School of Medicine, University of California, Davis, 2700 Stockton Blvd, Suite 2102, Sacramento, CA 95817, USA,Center for Neuroscience, University of California, Davis, 1544 Newton Ct, Davis, CA 95618, USA,Corresponding Author: David E. Olson,
| |
Collapse
|
13
|
Pottie E, Stove CP. In vitro assays for the functional characterization of (psychedelic) substances at the serotonin receptor 5-HT 2A R. J Neurochem 2022; 162:39-59. [PMID: 34978711 DOI: 10.1111/jnc.15570] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 12/20/2022]
Abstract
Serotonergic psychedelics are substances that induce alterations in mood, perception, and thought, and have the activation of serotonin (5-HT) 2A receptors (5-HT2A Rs) as a main pharmacological mechanism. Besides their appearance on the (illicit) drug market, e.g. as new psychoactive substances, their potential therapeutic application is increasingly explored. This group of substances demonstrates a broad structural variety, leading to insufficiently described structure-activity relationships, hence illustrating the need for better functional characterization. This review therefore elaborates on the in vitro molecular techniques that have been used the most abundantly for the characterization of (psychedelic) 5-HT2A R agonists. More specifically, this review covers assays to monitor the canonical G protein signaling pathway (e.g. measuring G protein recruitment/activation, inositol phosphate accumulation, or Ca2+ mobilization), assays to monitor non-canonical G protein signaling (such as arachidonic acid release), assays to monitor β-arrestin recruitment or signaling, and assays to monitor receptor conformational changes. In particular, focus lies on the mechanism behind the techniques, and the specific advantages and challenges that are associated with these. Additionally, several variables are discussed that one should consider when attempting to compare functional outcomes from different studies, both linked to the specific assay mechanism and linked to its specific execution, as these may heavily impact the assay outcome.
Collapse
Affiliation(s)
- Eline Pottie
- Laboratory of Toxicology, Faculty of Pharmaceutical Sciences, Department of Bioanalysis, Ghent University, Ghent, Belgium
| | - Christophe P Stove
- Laboratory of Toxicology, Faculty of Pharmaceutical Sciences, Department of Bioanalysis, Ghent University, Ghent, Belgium
| |
Collapse
|
14
|
Slocum ST, DiBerto JF, Roth BL. Molecular insights into psychedelic drug action. J Neurochem 2021; 162:24-38. [PMID: 34797943 DOI: 10.1111/jnc.15540] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 12/14/2022]
Abstract
A confluence of factors has renewed interest in the scientific understanding and translational potential of psychedelic drugs such as lysergic acid diethylamide (LSD), mescaline, and psilocybin: the desire for additional approaches to mental health care, incremental progress in basic and clinical research, and the reconsideration and relaxation of existing drug policies. With the United States Food and Drug Administration's designation of psilocybin as a "Breakthrough Therapy" for treatment-resistant depression, a new path has been forged for the conveyance of psychedelics to the clinic. Essential to the further development of such applications, however, is a clearer understanding of how these drugs exert their effects at the molecular level. Here we review the current knowledge regarding the molecular details of psychedelic drug actions and suggest that these discoveries can facilitate new insights into their hallucinogenic and therapeutic mechanisms.
Collapse
Affiliation(s)
- Samuel T Slocum
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Jeffrey F DiBerto
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
15
|
Dong C, Ly C, Dunlap LE, Vargas MV, Sun J, Hwang IW, Azinfar A, Oh WC, Wetsel WC, Olson DE, Tian L. Psychedelic-inspired drug discovery using an engineered biosensor. Cell 2021; 184:2779-2792.e18. [PMID: 33915107 PMCID: PMC8122087 DOI: 10.1016/j.cell.2021.03.043] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/28/2021] [Accepted: 03/19/2021] [Indexed: 02/07/2023]
Abstract
Ligands can induce G protein-coupled receptors (GPCRs) to adopt a myriad of conformations, many of which play critical roles in determining the activation of specific signaling cascades associated with distinct functional and behavioral consequences. For example, the 5-hydroxytryptamine 2A receptor (5-HT2AR) is the target of classic hallucinogens, atypical antipsychotics, and psychoplastogens. However, currently available methods are inadequate for directly assessing 5-HT2AR conformation both in vitro and in vivo. Here, we developed psychLight, a genetically encoded fluorescent sensor based on the 5-HT2AR structure. PsychLight detects behaviorally relevant serotonin release and correctly predicts the hallucinogenic behavioral effects of structurally similar 5-HT2AR ligands. We further used psychLight to identify a non-hallucinogenic psychedelic analog, which produced rapid-onset and long-lasting antidepressant-like effects after a single administration. The advent of psychLight will enable in vivo detection of serotonin dynamics, early identification of designer drugs of abuse, and the development of 5-HT2AR-dependent non-hallucinogenic therapeutics.
Collapse
Affiliation(s)
- Chunyang Dong
- Graduate Program in Biochemistry, Molecular, Cellular, Developmental Biology, University of California, Davis, Davis, CA 95616, USA; Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA, USA
| | - Calvin Ly
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Lee E Dunlap
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Maxemiliano V Vargas
- Neuroscience Graduate Program, University of California, Davis, Davis, CA 95618, USA
| | - Junqing Sun
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA, USA
| | - In-Wook Hwang
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Arya Azinfar
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Won Chan Oh
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - William C Wetsel
- Departments of Psychiatry and Behavioral Sciences, Cell Biology, and Neurobiology, Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University Medical Center, Durham, NC 27710, USA
| | - David E Olson
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA; Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA, USA; Center for Neuroscience, University of California, Davis, 1544 Newton Court, Davis, CA 95618, USA.
| | - Lin Tian
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA, USA; Center for Neuroscience, University of California, Davis, 1544 Newton Court, Davis, CA 95618, USA.
| |
Collapse
|
16
|
Canal CE. Serotonergic Psychedelics: Experimental Approaches for Assessing Mechanisms of Action. Handb Exp Pharmacol 2019; 252:227-260. [PMID: 29532180 PMCID: PMC6136989 DOI: 10.1007/164_2018_107] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Recent, well-controlled - albeit small-scale - clinical trials show that serotonergic psychedelics, including psilocybin and lysergic acid diethylamide, possess great promise for treating psychiatric disorders, including treatment-resistant depression. Additionally, fresh results from a deluge of clinical neuroimaging studies are unveiling the dynamic effects of serotonergic psychedelics on functional activity within, and connectivity across, discrete neural systems. These observations have led to testable hypotheses regarding neural processing mechanisms that contribute to psychedelic effects and therapeutic benefits. Despite these advances and a plethora of preclinical and clinical observations supporting a central role for brain serotonin 5-HT2A receptors in producing serotonergic psychedelic effects, lingering and new questions about mechanisms abound. These chiefly pertain to molecular neuropharmacology. This chapter is devoted to illuminating and discussing such questions in the context of preclinical experimental approaches for studying mechanisms of action of serotonergic psychedelics, classic and new.
Collapse
Affiliation(s)
- Clinton E Canal
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA, USA.
| |
Collapse
|
17
|
Zamberlan F, Sanz C, Martínez Vivot R, Pallavicini C, Erowid F, Erowid E, Tagliazucchi E. The Varieties of the Psychedelic Experience: A Preliminary Study of the Association Between the Reported Subjective Effects and the Binding Affinity Profiles of Substituted Phenethylamines and Tryptamines. Front Integr Neurosci 2018; 12:54. [PMID: 30467466 PMCID: PMC6235949 DOI: 10.3389/fnint.2018.00054] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/15/2018] [Indexed: 02/05/2023] Open
Abstract
Classic psychedelics are substances of paramount cultural and neuroscientific importance. A distinctive feature of psychedelic drugs is the wide range of potential subjective effects they can elicit, known to be deeply influenced by the internal state of the user ("set") and the surroundings ("setting"). The observation of cross-tolerance and a series of empirical studies in humans and animal models support agonism at the serotonin (5-HT)2A receptor as a common mechanism for the action of psychedelics. The diversity of subjective effects elicited by different compounds has been attributed to the variables of "set" and "setting," to the binding affinities for other 5-HT receptor subtypes, and to the heterogeneity of transduction pathways initiated by conformational receptor states as they interact with different ligands ("functional selectivity"). Here we investigate the complementary (i.e., not mutually exclusive) possibility that such variety is also related to the binding affinity for a range of neurotransmitters and monoamine transporters including (but not limited to) 5-HT receptors. Building on two independent binding affinity datasets (compared to "in silico" estimates) in combination with natural language processing tools applied to a large repository of reports of psychedelic experiences (Erowid's Experience Vaults), we obtained preliminary evidence supporting that the similarity between the binding affinity profiles of psychoactive substituted phenethylamines and tryptamines is correlated with the semantic similarity of the associated reports. We also showed that the highest correlation was achieved by considering the combined binding affinity for the 5-HT, dopamine (DA), glutamate, muscarinic and opioid receptors and for the Ca+ channel. Applying dimensionality reduction techniques to the reports, we linked the compounds, receptors, transporters and the Ca+ channel to distinct fingerprints of the reported subjective effects. To the extent that the existing binding affinity data is based on a low number of displacement curves that requires further replication, our analysis produced preliminary evidence consistent with the involvement of different binding sites in the reported subjective effects elicited by psychedelics. Beyond the study of this particular class of drugs, we provide a methodological framework to explore the relationship between the binding affinity profiles and the reported subjective effects of other psychoactive compounds.
Collapse
Affiliation(s)
- Federico Zamberlan
- Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Física de Buenos Aires (IFIBA) and National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Camila Sanz
- Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Rocío Martínez Vivot
- Instituto de Física de Buenos Aires (IFIBA) and National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- Instituto de Investigaciones Biomédicas (BIOMED) and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Carla Pallavicini
- Instituto de Física de Buenos Aires (IFIBA) and National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- Fundación Para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Buenos Aires, Argentina
| | - Fire Erowid
- Erowid Center, Grass Valley, CA, United States
| | | | - Enzo Tagliazucchi
- Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Física de Buenos Aires (IFIBA) and National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- UMR7225 Institut du Cerveau et de la Moelle épinière (ICM), Paris, France
| |
Collapse
|
18
|
Lobao-Soares B, Eduardo-da-Silva P, Amarilha H, Pinheiro-da-Silva J, Silva PF, Luchiari AC. It's Tea Time: Interference of Ayahuasca Brew on Discriminative Learning in Zebrafish. Front Behav Neurosci 2018; 12:190. [PMID: 30210319 PMCID: PMC6119691 DOI: 10.3389/fnbeh.2018.00190] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/06/2018] [Indexed: 12/01/2022] Open
Abstract
Ayahuasca is a psychoactive brew traditionally used in shamanistic and vegetalistic rituals and has recently received lot of attention due to potential cognitive benefits. Ayahuasca effects are caused by the synergistic interaction of β-carbolines (harmine, harmaline and tetrahydroarmine) contained in Banisteriopsis caapi stalks combined with the N,N-dimethyltryptamine (DMT) from Psychotria viridis leaves, a potent agonist to serotonin (5-HT) receptors. The present study approaches the effects of chronic and acute exposure to two Ayahuasca concentrations (0.1 and 0.5 ml/L) on the cognitive ability to discriminate objects in a one-trial learning task in zebrafish. Based on the combination of concentrations and exposure regimens, we divided adult zebrafish in five treatment groups: acute 0.1 and 0.5 ml/L, chronic 0.1 and 0.5 ml/L, and control 0.0 (n = 20 for each group). Then we tested them in a memory task of object discrimination. Acute Ayahuasca exposed groups performed similarly to the control group, however chronically treated fish (13 days) presented both impaired discriminative performance and locomotor alterations. Overall, these results indicate that Ayahuasca is a potent psychoactive drug that, in chronic exposure, negatively affects mnemonic parameters in zebrafish. In single exposure it does not affects cognitive performance, but the higher concentration (0.5) affected locomotion. Moreover, we reinforce the importance of the zebrafish for behavioral pharmacological studies of drug screening, in special to psychedelic drug research.
Collapse
Affiliation(s)
- Bruno Lobao-Soares
- Departamento de Biofísica e Farmacologia, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Paulianny Eduardo-da-Silva
- Departamento de Biofísica e Farmacologia, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Hugo Amarilha
- Departamento de Biofísica e Farmacologia, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | | | - Priscila F. Silva
- Departamento de Fisiologia, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Ana Carolina Luchiari
- Departamento de Fisiologia, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
19
|
Davis AK, Barsuglia JP, Lancelotta R, Grant RM, Renn E. The epidemiology of 5-methoxy- N, N-dimethyltryptamine (5-MeO-DMT) use: Benefits, consequences, patterns of use, subjective effects, and reasons for consumption. J Psychopharmacol 2018; 32:779-792. [PMID: 29708042 PMCID: PMC6248886 DOI: 10.1177/0269881118769063] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND/AIM 5-Methoxy- N,N-dimethyltryptamine (5-MeO-DMT) is a psychoactive compound found in several plants and in high concentrations in Bufo alvarius toad venom. Synthetic, toad, and plant-sourced 5-MeO-DMT are used for spiritual and recreational purposes and may have psychotherapeutic effects. However, the use of 5-MeO-DMT is not well understood. Therefore, we examined patterns of use, motivations for consumption, subjective effects, and potential benefits and consequences associated with 5-MeO-DMT use. METHODS Using internet-based advertisements, 515 respondents ( Mage=35.4. SD=11.7; male=79%; White/Caucasian=86%; United States resident=42%) completed a web-based survey. RESULTS Most respondents consumed 5-MeO-DMT infrequently (<once/year), for spiritual exploration, and had used less than four times in their lifetime. The majority (average of 90%) reported moderate-to-strong mystical-type experiences ( Mintensity=3.64, SD=1.11; range 0-5; e.g., ineffability, timelessness, awe/amazement, experience of pure being/awareness), and relatively fewer (average of 37%) experienced very slight challenging experiences ( Mintensity=0.95, SD=0.91; range 0-5; e.g., anxiousness, fear). Less than half (39%) reported repeated consumption during the same session, and very few reported drug craving/desire (8%), or legal (1%), medical (1%), or psychiatric (1%) problems related to use. Furthermore, of those who reported being diagnosed with psychiatric disorders, the majority reported improvements in symptoms following 5-MeO-DMT use, including improvements related to post-traumatic stress disorder (79%), depression (77%), anxiety (69%), and alcoholism (66%) or drug use disorder (60%). CONCLUSION Findings suggest that 5-MeO-DMT is used infrequently, predominantly for spiritual exploration, has low potential for addiction, and might have psychotherapeutic effects. Future research should examine the safety and pharmacokinetics of 5-MeO-DMT administration in humans using rigorous experimental designs.
Collapse
Affiliation(s)
- Alan K. Davis
- Behavioral Pharmacology Research Unit, Department of Psychiatry, Johns Hopkins School of Medicine, 5510 Nathan Shock Drive, Baltimore, MD 21224 USA
| | | | - Rafael Lancelotta
- School of Counseling, Leadership, Advocacy, and Design, University of Wyoming, 1000 E. University Ave. Dept. 3374 Laramie, WY 82071 USA
| | - Robert M. Grant
- Department of Medicine, University of California, San Francisco, 1001 Potrero St, Building 100, Room 603, San Francisco, CA 94110 USA
| | | |
Collapse
|
20
|
Antoniadou I, Kouskou M, Arsiwala T, Singh N, Vasudevan SR, Fowler T, Cadirci E, Churchill GC, Sharp T. Ebselen has lithium-like effects on central 5-HT 2A receptor function. Br J Pharmacol 2018; 175:2599-2610. [PMID: 29488218 DOI: 10.1111/bph.14179] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 01/23/2018] [Accepted: 01/30/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Lithium's antidepressant action may be mediated by inhibition of inositol monophosphatase (IMPase), a key enzyme in Gq -protein coupled receptor signalling. Recently, the antioxidant agent ebselen was identified as an IMPase inhibitor. Here, we investigated both ebselen and lithium in models of the 5-HT2A receptor, a Gq -protein coupled receptor involved in lithium's actions. EXPERIMENTAL APPROACH 5-HT2A receptor function was assessed in mice by measuring the behavioural (head-twitches, ear scratches) and molecular (cortical immediate early gene [IEG] mRNA; Arc, c-fos, Egr2) responses to 5-HT2A receptor agonists. Ebselen and lithium were administered either acutely or repeatedly prior to assessment of 5-HT2A receptor function. Because lithium and 5-HT2A receptor antagonists augment the action of selective serotonin reuptake inhibitors (SSRIs), ebselen was tested for this activity by co-administration with the SSRI citalopram in microdialysis (extracellular 5-HT) experiments. KEY RESULTS Acute and repeated administration of ebselen inhibited behavioural and IEG responses to the 5-HT2A receptor agonist DOI. Repeated lithium also inhibited DOI-evoked behavioural and IEG responses. In comparison, a selective IMPase inhibitor (L-690330) attenuated the behavioural response to DOI whereas glycogen synthase kinase inhibitor (AR-A014418) did not. Finally, ebselen enhanced the increase in extracellular 5-HT induced by citalopram, and also increased regional brain 5-HT synthesis. CONCLUSIONS AND IMPLICATIONS Our data demonstrated lithium-mimetic effects of ebselen in different experimental models of 5-HT2A receptor function, probably mediated by IMPase inhibition. This evidence of lithium-like neuropharmacological effects of ebselen adds further support for the clinical testing of ebselen in mood disorders, including as an antidepressant augmenting agent.
Collapse
Affiliation(s)
- I Antoniadou
- Department of Pharmacology, University of Oxford, Oxford, UK.,Department of Pharmacy, European University of Cyprus, Nicosia, Cyprus
| | - M Kouskou
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - T Arsiwala
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - N Singh
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - S R Vasudevan
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - T Fowler
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - E Cadirci
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - G C Churchill
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - T Sharp
- Department of Pharmacology, University of Oxford, Oxford, UK
| |
Collapse
|
21
|
Abstract
Because of the ethical and regulatory hurdles associated with human studies, much of what is known about the psychopharmacology of hallucinogens has been derived from animal models. However, developing reliable animal models has proven to be a challenging task due to the complexity and variability of hallucinogen effects in humans. This chapter focuses on three animal models that are frequently used to test the effects of hallucinogens on unconditioned behavior: head twitch response (HTR), prepulse inhibition of startle (PPI), and exploratory behavior. The HTR has demonstrated considerable utility in the neurochemical actions of hallucinogens. However, the latter two models have clearer conceptual bridges to human phenomenology. Consistent with the known mechanism of action of hallucinogens in humans, the behavioral effects of hallucinogens in rodents are mediated primarily by activation of 5-HT2A receptors. There is evidence, however, that other receptors may play secondary roles. The structure-activity relationships (SAR) of hallucinogens are reviewed in relation to each model, with a focus on the HTR in rats and mice.
Collapse
Affiliation(s)
- Adam L Halberstadt
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093-0804, USA.
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA.
| | - Mark A Geyer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093-0804, USA
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
22
|
Halberstadt AL. Behavioral and pharmacokinetic interactions between monoamine oxidase inhibitors and the hallucinogen 5-methoxy-N,N-dimethyltryptamine. Pharmacol Biochem Behav 2016; 143:1-10. [PMID: 26780349 PMCID: PMC5403252 DOI: 10.1016/j.pbb.2016.01.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 11/08/2015] [Accepted: 01/14/2016] [Indexed: 01/13/2023]
Abstract
Monoamine oxidase inhibitors (MAOIs) are often ingested together with tryptamine hallucinogens, but relatively little is known about the consequences of their combined use. We have shown previously that monoamine oxidase-A (MAO-A) inhibitors alter the locomotor profile of the hallucinogen 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT) in rats, and enhance its interaction with 5-HT2A receptors. The goal of the present studies was to investigate the mechanism for the interaction between 5-MeO-DMT and MAOIs, and to determine whether other behavioral responses to 5-MeO-DMT are similarly affected. Hallucinogens disrupt prepulse inhibition (PPI) in rats, an effect typically mediated by 5-HT2A activation. 5-MeO-DMT also disrupts PPI but the effect is primarily attributable to 5-HT1A activation. The present studies examined whether an MAOI can alter the respective contributions of 5-HT1A and 5-HT2A receptors to the effects of 5-MeO-DMT on PPI. A series of interaction studies using the 5-HT1A antagonist WAY-100,635 and the 5-HT2A antagonist MDL 11,939 were performed to assess the respective contributions of these receptors to the behavioral effects of 5-MeO-DMT in rats pretreated with an MAOI. The effects of MAO-A inhibition on the pharmacokinetics of 5-MeO-DMT and its metabolism to bufotenine were assessed using liquid chromatography-electrospray ionization-selective reaction monitoring-tandem mass spectrometry (LC-ESI-SRM-MS/MS). 5-MeO-DMT (1mg/kg) had no effect on PPI when tested 45-min post-injection but disrupted PPI in animals pretreated with the MAO-A inhibitor clorgyline or the MAO-A/B inhibitor pargyline. The combined effect of 5-MeO-DMT and pargyline on PPI was antagonized by pretreatment with either WAY-100,635 or MDL 11,939. Inhibition of MAO-A increased the level of 5-MeO-DMT in plasma and whole brain, but had no effect on the conversion of 5-MeO-DMT to bufotenine, which was found to be negligible. The present results confirm that 5-MeO-DMT can disrupt PPI by activating 5-HT2A, and indicate that MAOIs alter 5-MeO-DMT pharmacodynamics by increasing its accumulation in the central nervous system.
Collapse
Affiliation(s)
- Adam L Halberstadt
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States; Research Service, VA San Diego Healthcare System, San Diego, CA, United States.
| |
Collapse
|
23
|
Abstract
Psychedelics (serotonergic hallucinogens) are powerful psychoactive substances that alter perception and mood and affect numerous cognitive processes. They are generally considered physiologically safe and do not lead to dependence or addiction. Their origin predates written history, and they were employed by early cultures in many sociocultural and ritual contexts. After the virtually contemporaneous discovery of (5R,8R)-(+)-lysergic acid-N,N-diethylamide (LSD)-25 and the identification of serotonin in the brain, early research focused intensively on the possibility that LSD and other psychedelics had a serotonergic basis for their action. Today there is a consensus that psychedelics are agonists or partial agonists at brain serotonin 5-hydroxytryptamine 2A receptors, with particular importance on those expressed on apical dendrites of neocortical pyramidal cells in layer V. Several useful rodent models have been developed over the years to help unravel the neurochemical correlates of serotonin 5-hydroxytryptamine 2A receptor activation in the brain, and a variety of imaging techniques have been employed to identify key brain areas that are directly affected by psychedelics. Recent and exciting developments in the field have occurred in clinical research, where several double-blind placebo-controlled phase 2 studies of psilocybin-assisted psychotherapy in patients with cancer-related psychosocial distress have demonstrated unprecedented positive relief of anxiety and depression. Two small pilot studies of psilocybin-assisted psychotherapy also have shown positive benefit in treating both alcohol and nicotine addiction. Recently, blood oxygen level-dependent functional magnetic resonance imaging and magnetoencephalography have been employed for in vivo brain imaging in humans after administration of a psychedelic, and results indicate that intravenously administered psilocybin and LSD produce decreases in oscillatory power in areas of the brain's default mode network.
Collapse
Affiliation(s)
- David E Nichols
- Eschelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
24
|
Halberstadt AL. Recent advances in the neuropsychopharmacology of serotonergic hallucinogens. Behav Brain Res 2015; 277:99-120. [PMID: 25036425 PMCID: PMC4642895 DOI: 10.1016/j.bbr.2014.07.016] [Citation(s) in RCA: 201] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 07/07/2014] [Accepted: 07/08/2014] [Indexed: 12/12/2022]
Abstract
Serotonergic hallucinogens, such as (+)-lysergic acid diethylamide, psilocybin, and mescaline, are somewhat enigmatic substances. Although these drugs are derived from multiple chemical families, they all produce remarkably similar effects in animals and humans, and they show cross-tolerance. This article reviews the evidence demonstrating the serotonin 5-HT2A receptor is the primary site of hallucinogen action. The 5-HT2A receptor is responsible for mediating the effects of hallucinogens in human subjects, as well as in animal behavioral paradigms such as drug discrimination, head twitch response, prepulse inhibition of startle, exploratory behavior, and interval timing. Many recent clinical trials have yielded important new findings regarding the psychopharmacology of these substances. Furthermore, the use of modern imaging and electrophysiological techniques is beginning to help unravel how hallucinogens work in the brain. Evidence is also emerging that hallucinogens may possess therapeutic efficacy.
Collapse
Affiliation(s)
- Adam L Halberstadt
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States.
| |
Collapse
|
25
|
Janowsky A, Eshleman AJ, Johnson RA, Wolfrum KM, Hinrichs DJ, Yang J, Zabriskie TM, Smilkstein MJ, Riscoe MK. Mefloquine and psychotomimetics share neurotransmitter receptor and transporter interactions in vitro. Psychopharmacology (Berl) 2014; 231:2771-83. [PMID: 24488404 PMCID: PMC4097020 DOI: 10.1007/s00213-014-3446-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 01/07/2014] [Indexed: 11/25/2022]
Abstract
RATIONALE Mefloquine is used for the prevention and treatment of chloroquine-resistant malaria, but its use is associated with nightmares, hallucinations, and exacerbation of symptoms of post-traumatic stress disorder. We hypothesized that potential mechanisms of action for the adverse psychotropic effects of mefloquine resemble those of other known psychotomimetics. OBJECTIVES Using in vitro radioligand binding and functional assays, we examined the interaction of (+)- and (-)-mefloquine enantiomers, the non-psychotomimetic anti-malarial agent, chloroquine, and several hallucinogens and psychostimulants with recombinant human neurotransmitter receptors and transporters. RESULTS Hallucinogens and mefloquine bound stereoselectively and with relatively high affinity (K i = 0.71-341 nM) to serotonin (5-HT) 2A but not 5-HT1A or 5-HT2C receptors. Mefloquine but not chloroquine was a partial 5-HT2A agonist and a full 5-HT2C agonist, stimulating inositol phosphate accumulation, with similar potency and efficacy as the hallucinogen dimethyltryptamine (DMT). 5-HT receptor antagonists blocked mefloquine's effects. Mefloquine had low or no affinity for dopamine D1, D2, D3, and D4.4 receptors, or dopamine and norepinephrine transporters. However, mefloquine was a very low potency antagonist at the D3 receptor and mefloquine but not chloroquine or hallucinogens blocked [(3)H]5-HT uptake by the 5-HT transporter. CONCLUSIONS Mefloquine, but not chloroquine, shares an in vitro receptor interaction profile with some hallucinogens and this neurochemistry may be relevant to the adverse neuropsychiatric effects associated with mefloquine use by a small percentage of patients. Additionally, evaluating interactions with this panel of receptors and transporters may be useful for characterizing effects of other psychotropic drugs and for avoiding psychotomimetic effects for new pharmacotherapies, including antimalarial quinolines.
Collapse
Affiliation(s)
- Aaron Janowsky
- Research Service (R&D22), VA Medical Center, 3710 SW US Veterans Hospital Road, Portland, OR, 97239, USA,
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Eshleman AJ, Forster MJ, Wolfrum KM, Johnson RA, Janowsky A, Gatch MB. Behavioral and neurochemical pharmacology of six psychoactive substituted phenethylamines: mouse locomotion, rat drug discrimination and in vitro receptor and transporter binding and function. Psychopharmacology (Berl) 2014; 231:875-88. [PMID: 24142203 PMCID: PMC3945162 DOI: 10.1007/s00213-013-3303-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 09/24/2013] [Indexed: 11/27/2022]
Abstract
RATIONALE Psychoactive-substituted phenethylamines 2,5-dimethoxy-4-chlorophenethylamine (2C-C); 2,5-dimethoxy-4-methylphenethylamine (2C-D); 2,5-dimethoxy-4-ethylphenethylamine (2C-E); 2,5-dimethoxy-4-iodophenethylamine (2C-I); 2,5-dimethoxy-4-ethylthiophenethylamine (2C-T-2); and 2,5-dimethoxy-4-chloroamphetamine (DOC) are used recreationally and may have deleterious side effects. OBJECTIVES This study compares the behavioral effects and the mechanisms of action of these substituted phenethylamines with those of hallucinogens and a stimulant. METHODS The effects of these compounds on mouse locomotor activity and in rats trained to discriminate dimethyltryptamine, (-)-DOM, (+)-LSD, (±)-MDMA, and S(+)-methamphetamine were assessed. Binding and functional activity of the phenethylamines at 5-HT1A, 5-HT2A, 5-HT2C receptors and monoamine transporters were assessed using cells heterologously expressing these proteins. RESULTS The phenethylamines depressed mouse locomotor activity, although 2C-D and 2C-E stimulated activity at low doses. The phenethylamines except 2C-T-2 fully substituted for at least one hallucinogenic training compound, but none fully substituted for (+)-methamphetamine. At 5-HT1A receptors, only 2C-T-2 and 2C-I were partial-to-full very low potency agonists. In 5-HT2A arachidonic acid release assays, the phenethylamines were partial to full agonists except 2C-I which was an antagonist. All compounds were full agonists at 5-HT2A and 5-HT2C receptor inositol phosphate assays. Only 2C-I had moderate affinity for, and very low potency at, the serotonin transporter. CONCLUSIONS The discriminative stimulus effects of 2C-C, 2C-D, 2C-E, 2C-I, and DOC were similar to those of several hallucinogens, but not methamphetamine. Additionally, the substituted phenethylamines were full agonists at 5-HT2A and 5-HT2C receptors, but for 2C-T-2, this was not sufficient to produce hallucinogen-like discriminative stimulus effects. Additionally, the 5-HT2A inositol phosphate pathway may be important in 2C-I's psychoactive properties.
Collapse
Affiliation(s)
- Amy J Eshleman
- Research Service, Portland Veterans Affairs Medical Center, 3710 SW US Veterans Hospital Rd., Portland, OR, USA,
| | | | | | | | | | | |
Collapse
|
27
|
|
28
|
Schindler EAD, Harvey JA, Aloyo VJ. Phospholipase C mediates (±)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI)-, but not lysergic acid diethylamide (LSD)-elicited head bobs in rabbit medial prefrontal cortex. Brain Res 2012; 1491:98-108. [PMID: 23123701 DOI: 10.1016/j.brainres.2012.10.057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 10/20/2012] [Accepted: 10/27/2012] [Indexed: 11/24/2022]
Abstract
The phenethylamine and indoleamine classes of hallucinogens demonstrate distinct pharmacological properties, although they share a serotonin(2A) (5-HT(2A)) receptor mechanism of action (MOA). The 5-HT(2A) receptor signals through phosphatidylinositol (PI) hydrolysis, which is initiated upon activation of phospholipase C (PLC). The role of PI hydrolysis in the effects of hallucinogens remains unclear. In order to better understand the role of PI hydrolysis in the MOA of hallucinogens, the PLC inhibitor, 1-[6-((17β-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl]-1H-pyrrole-2,5-dione (U73122), was used to study the effects of two hallucinogens, the phenethylamine, (±)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI), and the indoleamine, lysergic acid diethylamide (LSD). PI hydrolysis was quantified through release of [3H]inositol-4-phosphate from living rabbit frontocortical tissue prisms. Head bobs were counted after hallucinogens were infused into the medial prefrontal cortex (mPFC) of rabbits. Both DOI and LSD stimulated PI hydrolysis in frontocortical tissue through activation of PLC. DOI-stimulated PI hydrolysis was blocked by 5-HT(2A/2C) receptor antagonist, ketanserin, whereas the LSD signal was blocked by 5-HT(2B/2C) receptor antagonist, SB206553. When infused into the mPFC, both DOI- and LSD-elicited head bobs. Pretreatment with U73122 blocked DOI-, but not LSD-elicited head bobs. The two hallucinogens investigated were distinct in their activation of the PI hydrolysis signaling pathway. The serotonergic receptors involved with DOI and LSD signals in frontocortical tissue were different. Furthermore, PLC activation in mPFC was necessary for DOI-elicited head bobs, whereas LSD-elicited head bobs were independent of this pathway. These novel findings urge closer investigation into the intracellular mechanism of action of these unique compounds.
Collapse
Affiliation(s)
- Emmanuelle A D Schindler
- Drexel University College of Medicine, Department of Pharmacology & Physiology, 245 N. 15th Street, Philadelphia, PA 19102, United States.
| | | | | |
Collapse
|
29
|
González-Maeso J, Sealfon SC. Functional selectivity in GPCR heterocomplexes. Mini Rev Med Chem 2012; 12:851-5. [PMID: 22681249 DOI: 10.2174/138955712800959152] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 09/06/2011] [Accepted: 09/09/2011] [Indexed: 01/15/2023]
Abstract
G protein-coupled receptors (GPCRs) can couple to more than one signaling pathway. Biophysical studies and pharmacological theory indicate that they exist in different active conformations that differ in their capacity to activate specific signaling pathways. Individual agonists stabilize particular active conformations and thereby can differ in their relative activation of different signaling pathways coupled to the same receptor, a phenomenon referred to as functional selectivity. Many pairs of GPCRs have been shown to interact and form heterocomplexes in vitro and in vivo. Recent studies implicate these complexes in the responses to some therapeutic drugs and drugs of abuse, and raise the possibility that they may be involved in mediating functional selectivity.
Collapse
Affiliation(s)
- J González-Maeso
- Department Psychiatry, Mount Sinai School of Medicine, New York, New York, USA
| | | |
Collapse
|
30
|
Molecular dynamics simulations and docking studies on 3D models of the heterodimeric and homodimeric 5-HT2A receptor subtype. Future Med Chem 2011; 3:665-81. [DOI: 10.4155/fmc.11.27] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: G-protein coupled receptors may exist as functional homodimers, heterodimers and even as higher aggregates. In this work, we investigate the 5-HT2A receptor, which is a known target for antipsychotic drugs. Recently, 5-HT2A has been shown to form functional homodimers and heterodimers with the mGluR2 receptor. The objective of this study is to build up 3D models of the 5-HT2A/mGluR2 heterodimer and of the 5-HT2A-5-HT2A homodimer, and to evaluate the impact of the dimerization interface on the shape of the 5-HT2A binding pocket by using molecular dynamics simulations and docking studies. Results and discussion: The heterodimer, homodimer and monomeric 5-HT2A receptors were simulated by molecular dynamics for 40 ns each. The trajectories were clustered and representative structures of six clusters for each system were generated. Inspection of the these representative structures clearly indicate an effect of the dimerization interface on the topology of the binding pocket. Docking studies allowed to generate receiver operating characteristic curves for a set of 5-HT2A ligands, indicating that different complexes prefer different classes of 5-HT2A ligands. Conclusion: This study clearly indicates that the presence of a dimerization interface must explicitly be considered when studying G-protein coupled receptors known to exist as dimers. Molecular dynamics simulation and cluster analysis are appropriate tools to study the phenomenon.
Collapse
|
31
|
Halberstadt AL, Geyer MA. LSD but not lisuride disrupts prepulse inhibition in rats by activating the 5-HT(2A) receptor. Psychopharmacology (Berl) 2010; 208:179-89. [PMID: 19937319 PMCID: PMC2797624 DOI: 10.1007/s00213-009-1718-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 10/27/2009] [Indexed: 11/27/2022]
Abstract
RATIONALE Compounds that activate the 5-HT(2A) receptor, such as lysergic acid diethylamide (LSD), act as hallucinogens in humans. One notable exception is the LSD congener lisuride, which does not have hallucinogenic effects in humans even though it is a potent 5-HT(2A) agonist. LSD and other hallucinogens have been shown to disrupt prepulse inhibition (PPI), an operational measure of sensorimotor gating, by activating 5-HT(2A) receptors in rats. OBJECTIVE We tested whether lisuride disrupts PPI in male Sprague-Dawley rats. Experiments were also conducted to identify the mechanism(s) responsible for the effect of lisuride on PPI and to compare the effects of lisuride to those of LSD. RESULTS Confirming a previous report, LSD (0.05, 0.1, and 0.2 mg/kg, s.c.) reduced PPI, and the effect of LSD was blocked by pretreatment with the selective 5-HT(2A) antagonist MDL 11,939. Administration of lisuride (0.0375, 0.075, and 0.15 mg/kg, s.c.) also reduced PPI. However, the PPI disruption induced by lisuride (0.075 mg/kg) was not blocked by pretreatment with MDL 11,939 or the selective 5-HT(1A) antagonist WAY-100635 but was prevented by pretreatment with the selective dopamine D(2)/D(3) receptor antagonist raclopride (0.1 mg/kg, s.c). CONCLUSIONS The effect of LSD on PPI is mediated by the 5-HT(2A) receptor, whereas activation of the 5-HT(2A) receptor does not appear to contribute to the effect of lisuride on PPI. These findings demonstrate that lisuride and LSD disrupt PPI via distinct receptor mechanisms and provide additional support for the classification of lisuride as a non-hallucinogenic 5-HT(2A) agonist.
Collapse
Affiliation(s)
- Adam L. Halberstadt
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093 USA
| | - Mark A. Geyer
- Department of Psychiatry-0804, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0804 USA
| |
Collapse
|
32
|
Winter JC. Hallucinogens as discriminative stimuli in animals: LSD, phenethylamines, and tryptamines. Psychopharmacology (Berl) 2009; 203:251-63. [PMID: 18979087 DOI: 10.1007/s00213-008-1356-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Accepted: 09/24/2008] [Indexed: 12/24/2022]
Abstract
BACKGROUND Although man's first encounters with hallucinogens predate written history, it was not until the rise of the sister disciplines of organic chemistry and pharmacology in the nineteenth century that scientific studies became possible. Mescaline was the first to be isolated and its chemical structure determined. Since then, additional drugs have been recovered from their natural sources and synthetic chemists have contributed many more. Given their profound effects upon human behavior and the need for verbal communication to access many of these effects, some see humans as ideal subjects for study of hallucinogens. However, if we are to determine the mechanisms of action of these agents, establish hypotheses testable in human subjects, and explore the mechanistic links between hallucinogens and such apparently disparate topics as idiopathic psychosis, transcendental states, drug abuse, stress disorders, and cognitive dysfunction, studies in animals are essential. Stimulus control by hallucinogens has provided an intuitively attractive approach to the study of these agents in nonverbal species. OBJECTIVE The intent of this review is to provide a brief account of events from the time of the first demonstration of hallucinogen-induced stimulus control to the present. In general, the review is limited to lysergic acid diethylamide (LSD) and the hallucinogenic derivatives of phenethylamine and tryptamine. RESULTS The pharmacological basis for stimulus control by LSD and hallucinogenic phenethylamines and tryptamines is serotonergic in nature. The 5-HT(2A) receptor appears to be the primary site of action with significant modulation by other serotonergic sites including 5-HT(2C) and 5-HT(1A) receptors. Interactions with other neurotransmitters, especially glutamate and dopamine, are under active investigation. Most studies to date have been conducted in the rat but transgenic mice offer interesting possibilities. CONCLUSIONS Hallucinogen-induced stimulus control provides a unique behavioral tool for the prediction of subjective effects in man and for the elucidation of the pharmacological mechanisms of the action of these agents.
Collapse
Affiliation(s)
- J C Winter
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, 102 Farber Hall, Buffalo, NY 14214-3000, USA.
| |
Collapse
|
33
|
Wallach JV. Endogenous hallucinogens as ligands of the trace amine receptors: a possible role in sensory perception. Med Hypotheses 2008; 72:91-4. [PMID: 18805646 DOI: 10.1016/j.mehy.2008.07.052] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 07/24/2008] [Accepted: 07/27/2008] [Indexed: 10/21/2022]
Abstract
While the endogenous hallucinogens, N,N-dimethyltryptamine, 5-hydroxy-N,N-dimethyl-tryptamine and 5-methoxy-N,N-dimethyltryptamine, have been acknowledged as naturally occurring components of the mammalian body for decades, their biological function remains as elusive now as it was at the time of their discovery. The recent discovery of the trace amine associated receptors and the activity of DMT and other hallucinogenic compounds at these receptor sites leads to the hypothesis that the endogenous hallucinogens act as neurotransmitters of a subclass of these trace amine receptors. Additionally, while activity at the serotonin 5-HT2A receptor has been proposed as being responsible for the hallucinogenic affects of administered hallucinogens, in their natural setting the 5-HT2A receptor may not interact with the endogenous hallucinogens at all. Additionally 5-HT2A agonist activity is unable to account for the visual altering effects of many of the administered hallucinogens; these effects may be mediated by one of the endogenous hallucinogen trace amine receptors rather than the serotonin 5-HT2A receptor. Therefore, activity at the trace amine receptors, in addition to serotonin receptors, may play a large role in the sensory altering effects of administered hallucinogens and the trace amine receptors along with their endogenous hallucinogen ligands may serve an endogenous role in mediating sensory perception in the mammalian central nervous system. Thus the theory proposed states that these compounds act as true endogenous hallucinogenic transmitters acting in regions of the central nervous system involved in sensory perception.
Collapse
Affiliation(s)
- J V Wallach
- B.S. Cell and Molecular Biology, Peter Wallach Enterprises, 2758 Furlong Road, Doylestown, PA 18902, United States.
| |
Collapse
|
34
|
Blaazer A, Smid P, Kruse C. Structure-Activity Relationships of Phenylalkylamines as Agonist Ligands for 5-HT2AReceptors. ChemMedChem 2008; 3:1299-309. [DOI: 10.1002/cmdc.200800133] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
35
|
Fantegrossi WE, Murnane KS, Reissig CJ. The behavioral pharmacology of hallucinogens. Biochem Pharmacol 2007; 75:17-33. [PMID: 17977517 DOI: 10.1016/j.bcp.2007.07.018] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 07/11/2007] [Accepted: 07/13/2007] [Indexed: 11/25/2022]
Abstract
Until very recently, comparatively few scientists were studying hallucinogenic drugs. Nevertheless, selective antagonists are available for relevant serotonergic receptors, the majority of which have now been cloned, allowing for reasonably thorough pharmacological investigation. Animal models sensitive to the behavioral effects of the hallucinogens have been established and exploited. Sophisticated genetic techniques have enabled the development of mutant mice, which have proven useful in the study of hallucinogens. The capacity to study post-receptor signaling events has lead to the proposal of a plausible mechanism of action for these compounds. The tools currently available to study the hallucinogens are thus more plentiful and scientifically advanced than were those accessible to earlier researchers studying the opioids, benzodiazepines, cholinergics, or other centrally active compounds. The behavioral pharmacology of phenethylamine, tryptamine, and ergoline hallucinogens are described in this review, paying particular attention to important structure activity relationships which have emerged, receptors involved in their various actions, effects on conditioned and unconditioned behaviors, and in some cases, human psychopharmacology. As clinical interest in the therapeutic potential of these compounds is once again beginning to emerge, it is important to recognize the wealth of data derived from controlled preclinical studies on these compounds.
Collapse
Affiliation(s)
- William E Fantegrossi
- Division of Neuroscience, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road NE, Atlanta, GA 30322, USA.
| | | | | |
Collapse
|
36
|
Marona-Lewicka D, Nichols DE. Further evidence that the delayed temporal dopaminergic effects of LSD are mediated by a mechanism different than the first temporal phase of action. Pharmacol Biochem Behav 2007; 87:453-61. [PMID: 17618679 DOI: 10.1016/j.pbb.2007.06.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Revised: 06/03/2007] [Accepted: 06/04/2007] [Indexed: 11/16/2022]
Abstract
Activation of 5-HT(2A) receptors is thought to mediate the hallucinogenic effects of LSD. Nevertheless, in a previous report we provided evidence that a delayed temporal phase of the behavioral pharmacology of LSD is mediated by D(2)-like dopamine receptor stimulation. In this study rats were trained to discriminate LSD with either a 30 min preinjection time (LSD-30, N=12) or a 90 min preinjection time (LSD-90, N=13) from saline, using a two-lever, food-reinforced operant conditioning task. We then tested a large number of agonists and antagonists belonging to distinct pharmacological classes in these animals. As anticipated, classical hallucinogens such as psilocin and mescaline substituted only in LSD-30 rats, and not in LSD-90 rats. The dopamine receptor agonists ABT-724, aripiprazole, dihydrexidine, WAY 100635, and SKF 38393, fully or partially mimicked LSD-90, but not LSD-30. The results reported here support and extend our previous conclusion that the delayed temporal effects of LSD are mediated by activation of a dopaminergic system.
Collapse
Affiliation(s)
- Danuta Marona-Lewicka
- Department of Medicinal Chemistry and Molecular Pharmacology, School of Pharmacy and Pharmaceutical Sciences, RHPH, 575 Stadium Mall Dr. Purdue University, West Lafayette, IN 47907-2091, United States
| | | |
Collapse
|
37
|
Urban JD, Clarke WP, von Zastrow M, Nichols DE, Kobilka B, Weinstein H, Javitch JA, Roth BL, Christopoulos A, Sexton PM, Miller KJ, Spedding M, Mailman RB. Functional selectivity and classical concepts of quantitative pharmacology. J Pharmacol Exp Ther 2007; 320:1-13. [PMID: 16803859 DOI: 10.1124/jpet.106.104463] [Citation(s) in RCA: 858] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The concept of intrinsic efficacy has been enshrined in pharmacology for half of a century, yet recent data have revealed that many ligands can differentially activate signaling pathways mediated via a single G protein-coupled receptor in a manner that challenges the traditional definition of intrinsic efficacy. Some terms for this phenomenon include functional selectivity, agonist-directed trafficking, and biased agonism. At the extreme, functionally selective ligands may be both agonists and antagonists at different functions mediated by the same receptor. Data illustrating this phenomenon are presented from serotonin, opioid, dopamine, vasopressin, and adrenergic receptor systems. A variety of mechanisms may influence this apparently ubiquitous phenomenon. It may be initiated by differences in ligand-induced intermediate conformational states, as shown for the beta(2)-adrenergic receptor. Subsequent mechanisms that may play a role include diversity of G proteins, scaffolding and signaling partners, and receptor oligomers. Clearly, expanded research is needed to elucidate the proximal (e.g., how functionally selective ligands cause conformational changes that initiate differential signaling), intermediate (mechanisms that translate conformation changes into differential signaling), and distal mechanisms (differential effects on target tissue or organism). Besides the heuristically interesting nature of functional selectivity, there is a clear impact on drug discovery, because this mechanism raises the possibility of selecting or designing novel ligands that differentially activate only a subset of functions of a single receptor, thereby optimizing therapeutic action. It also may be timely to revise classic concepts in quantitative pharmacology and relevant pharmacological conventions to incorporate these new concepts.
Collapse
MESH Headings
- Animals
- Humans
- Ligands
- Protein Conformation
- Receptors, Adrenergic, beta-2/chemistry
- Receptors, Adrenergic, beta-2/drug effects
- Receptors, Adrenergic, beta-2/physiology
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/drug effects
- Receptors, Cell Surface/physiology
- Receptors, Dopamine D1/chemistry
- Receptors, Dopamine D1/drug effects
- Receptors, Dopamine D1/physiology
- Receptors, Dopamine D2/chemistry
- Receptors, Dopamine D2/drug effects
- Receptors, Dopamine D2/physiology
- Receptors, G-Protein-Coupled/chemistry
- Receptors, G-Protein-Coupled/drug effects
- Receptors, G-Protein-Coupled/physiology
- Receptors, Opioid, mu/chemistry
- Receptors, Opioid, mu/drug effects
- Receptors, Opioid, mu/physiology
- Receptors, Vasopressin/chemistry
- Receptors, Vasopressin/drug effects
- Receptors, Vasopressin/physiology
- Signal Transduction
Collapse
Affiliation(s)
- Jonathan D Urban
- Curriculum in Toxicology, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7160, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Riba J, Romero S, Grasa E, Mena E, Carrió I, Barbanoj MJ. Increased frontal and paralimbic activation following ayahuasca, the pan-Amazonian inebriant. Psychopharmacology (Berl) 2006; 186:93-8. [PMID: 16575552 DOI: 10.1007/s00213-006-0358-7] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Accepted: 02/13/2006] [Indexed: 11/28/2022]
Abstract
RATIONALE Ayahuasca is a South American psychoactive plant tea which contains the serotonergic psychedelic N,N-dimethyltryptamine (DMT) and monoamine-oxidase inhibitors that render DMT orally active. Previous investigations with ayahuasca have highlighted a psychotropic effect profile characterized by enhanced introspective attention, with individuals reporting altered somatic perceptions and intense emotional modifications, frequently accompanied by visual imagery. Despite recent advances in the study of ayahuasca pharmacology, the neural correlates of acute ayahuasca intoxication remain largely unknown. OBJECTIVES To investigate the effects of ayahuasca administration on regional cerebral blood flow. METHODS Fifteen male volunteers with prior experience in the use of psychedelics received a single oral dose of encapsulated freeze-dried ayahuasca equivalent to 1.0 mg DMT/kg body weight and a placebo in a randomized double-blind clinical trial. Regional cerebral blood flow was measured 100-110 min after drug administration by means of single photon emission tomography (SPECT). RESULTS Ayahuasca administration led to significant activation of frontal and paralimbic brain regions. Increased blood perfusion was observed bilaterally in the anterior insula, with greater intensity in the right hemisphere, and in the anterior cingulate/frontomedial cortex of the right hemisphere, areas previously implicated in somatic awareness, subjective feeling states, and emotional arousal. Additional increases were observed in the left amygdala/parahippocampal gyrus, a structure also involved in emotional arousal. CONCLUSIONS The present results suggest that ayahuasca interacts with neural systems that are central to interoception and emotional processing and point to a modulatory role of serotonergic neurotransmission in these processes.
Collapse
Affiliation(s)
- Jordi Riba
- Centre d'Investigació de Medicaments, Institut de Recerca, Servei de Farmacologia Clínica, Hospital de la Santa Creu i Sant Pau, and Departament de Farmacologia i Terapéutica, Universitat Autònoma de Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
39
|
Jacob MS, Presti DE. Endogenous psychoactive tryptamines reconsidered: an anxiolytic role for dimethyltryptamine. Med Hypotheses 2005; 64:930-7. [PMID: 15780487 DOI: 10.1016/j.mehy.2004.11.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2004] [Accepted: 11/04/2004] [Indexed: 12/17/2022]
Abstract
The presence of the potent hallucinogenic psychoactive chemical N,N-dimethyltryptamine (DMT) in the human body has puzzled scientists for decades. Endogenous DMT was investigated in the 1960s and 1970s and it was proposed that DMT was involved in psychosis and schizophrenia. This hypothesis developed from comparisons of the blood and urine of schizophrenic and control subjects. However, much of this research proved inconclusive and conventional thinking has since held that trace levels of DMT, and other endogenous psychoactive tryptamines, are insignificant metabolic byproducts. The recent discovery of a G-protein-coupled, human trace amine receptor has triggered a reappraisal of the role of compounds present in limited concentrations in biological systems. Interestingly enough, DMT and other psychoactive tryptamine hallucinogens elicit a robust response at the trace amine receptor. While it is currently accepted that serotonin 5-HT(2A) receptors play a pivotal role in the activity of hallucinogenic/psychedelic compounds, we propose that the effects induced by exogenous DMT administration, especially at low doses, are due in part to activity at the trace amine receptor. Furthermore, we suggest that endogenous DMT interacts with the TA receptor to produce a calm and relaxed mental state, which may suppress, rather than promote, symptoms of psychosis. This hypothesis may help explain the inconsistency in the early analysis of endogenous DMT in humans. Finally, we propose that amphetamine action at the TA receptor may contribute to the calming effects of amphetamine and related drugs, especially at low doses.
Collapse
Affiliation(s)
- Michael S Jacob
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3200, USA
| | | |
Collapse
|
40
|
Abstract
Hallucinogens (psychedelics) are psychoactive substances that powerfully alter perception, mood, and a host of cognitive processes. They are considered physiologically safe and do not produce dependence or addiction. Their origin predates written history, and they were employed by early cultures in a variety of sociocultural and ritual contexts. In the 1950s, after the virtually contemporaneous discovery of both serotonin (5-HT) and lysergic acid diethylamide (LSD-25), early brain research focused intensely on the possibility that LSD or other hallucinogens had a serotonergic basis of action and reinforced the idea that 5-HT was an important neurotransmitter in brain. These ideas were eventually proven, and today it is believed that hallucinogens stimulate 5-HT(2A) receptors, especially those expressed on neocortical pyramidal cells. Activation of 5-HT(2A) receptors also leads to increased cortical glutamate levels presumably by a presynaptic receptor-mediated release from thalamic afferents. These findings have led to comparisons of the effects of classical hallucinogens with certain aspects of acute psychosis and to a focus on thalamocortical interactions as key to understanding both the action of these substances and the neuroanatomical sites involved in altered states of consciousness (ASC). In vivo brain imaging in humans using [(18)F]fluorodeoxyglucose has shown that hallucinogens increase prefrontal cortical metabolism, and correlations have been developed between activity in specific brain areas and psychological elements of the ASC produced by hallucinogens. The 5-HT(2A) receptor clearly plays an essential role in cognitive processing, including working memory, and ligands for this receptor may be extremely useful tools for future cognitive neuroscience research. In addition, it appears entirely possible that utility may still emerge for the use of hallucinogens in treating alcoholism, substance abuse, and certain psychiatric disorders.
Collapse
Affiliation(s)
- David E Nichols
- Department of Medicinal Chemistry and Molecular Pharmacology, School of Pharmacy and Pharmacal Sciences, Purdue University, West Lafayette, IN 47907-2091, USA.
| |
Collapse
|
41
|
Villalobos CA, Bull P, Sáez P, Cassels BK, Huidobro-Toro JP. 4-Bromo-2,5-dimethoxyphenethylamine (2C-B) and structurally related phenylethylamines are potent 5-HT2A receptor antagonists in Xenopus laevis oocytes. Br J Pharmacol 2004; 141:1167-74. [PMID: 15006903 PMCID: PMC1574890 DOI: 10.1038/sj.bjp.0705722] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. We recently described that several 2-(2,5-dimethoxy-4-substituted phenyl)ethylamines (PEAs), including 4-I=2C-I, 4-Br=2C-B, and 4-CH(3)=2C-D analogs, are partial agonists at 5-HT(2C) receptors, and show low or even negligible intrinsic efficacy at 5-HT(2A) receptors. These results raised the proposal that these drugs may act as 5-HT(2) antagonists. 2. To test this hypothesis, Xenopus laevis oocytes were microinjected with the rat clones for 5-HT(2A) or 5-HT(2C) receptors. The above-mentioned PEAs and its 4-H analog (2C-H) blocked the 5-HT-induced currents at 5-HT(2A), but not at the 5-HT(2C) receptor, revealing 5-HT(2) receptor subtype selectivity. The 5-HT(2A) receptor antagonism required a 2-min preincubation to attain maximum inhibition. 3. All PEAs tested shifted the 5-HT concentration-response curves to the right and downward. Their potencies varied with the nature of the C(4) substituent; the relative rank order of their 5-HT(2A) receptor antagonist potency was 2C-I>2C-B>2C-D>2C-H. 4. The present results demonstrate that in X. laevis oocytes, a series of 2,5-dimethoxy-4-substituted PEAs blocked the 5-HT(2A) but not the 5-HT(2C) receptor-mediated responses. As an alternative hypothesis, we suggest that the psychostimulant activity of the PEAs may not be exclusively associated with partial or full 5-HT(2A) receptor agonism.
Collapse
MESH Headings
- Animals
- Cloning, Molecular
- Dimethoxyphenylethylamine/analogs & derivatives
- Dimethoxyphenylethylamine/pharmacology
- Drug Antagonism
- Microinjections
- Oocytes/drug effects
- Oocytes/metabolism
- Phenethylamines/chemistry
- Phenethylamines/classification
- Phenethylamines/pharmacology
- Rats
- Receptor, Serotonin, 5-HT2A/administration & dosage
- Receptor, Serotonin, 5-HT2A/genetics
- Receptor, Serotonin, 5-HT2C/administration & dosage
- Receptor, Serotonin, 5-HT2C/genetics
- Receptor, Serotonin, 5-HT2C/isolation & purification
- Serotonin 5-HT2 Receptor Antagonists
- Structure-Activity Relationship
- Xenopus laevis/metabolism
Collapse
Affiliation(s)
- Claudio A Villalobos
- Departamentos de Fisiología y, Instituto Milenio MIFAB, Centro de Regulación Celular y Patología Prof. J.V. Luco, Santiago, Chile.
| | | | | | | | | |
Collapse
|