1
|
Rissardo JP, Caprara ALF. Movement disorders associated with acetylcholinesterase inhibitors in Alzheimer's dementia: A systematic review. Brain Circ 2025; 11:9-23. [PMID: 40224553 PMCID: PMC11984823 DOI: 10.4103/bc.bc_134_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/20/2025] [Accepted: 01/30/2025] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND Acetylcholinesterase inhibitors (AChEIs) are widely used in Alzheimer's disease (AD). This study aims to systematically review the literature about movement disorders (MDs) associated with AChEIs for AD, which include donepezil, galantamine, rivastigmine, tacrine, and ipidacrine. METHODOLOGY Two reviewers conducted a comprehensive review of relevant studies across six databases, without language restrictions, covering publications from 1992 to 2024. RESULTS Overall, 74 studies containing 92 cases were found of MDs related to ACHEIs. The MDs found were Pisa syndrome in 33 patients, parkinsonism in 31, myoclonus in 11, dystonia in 10, dyskinesia in 6, and extrapyramidal symptoms in 1. Regarding the medications, the abnormal movements were associated with donepezil in 62 cases, rivastigmine in 15, galantamine in 10, and tacrine in 5. No case of ipidacrine-induced MD was found. Overall, the most commonly affected sex was the female, accounting for 61.9% of the cases. The mean and median age was 74.1 (standard deviation: 8.9) and 75 years (range: 49-93 years). The MD occurred within 6 months of the starting of AChEI in approximately 70% of the patients. Furthermore, the full recovery of the MD after the main management was noticed within 6 months in about 80% of the patients. About 86.3% of the individuals fully recovered after treatment, which included AChEI discontinuation, dose adjustment, and prescription of additional therapy. CONCLUSIONS The occurrence of tacrine-induced tremor indicated a potential predisposition to movement disorders associated with AChEI therapy. Based on the drug class side effect profile, it is possible that future studies may observe abnormal movements with other AChEIs.
Collapse
|
2
|
Chvojkova M, Kolar D, Kovacova K, Cejkova L, Misiachna A, Hakenova K, Gorecki L, Horak M, Korabecny J, Soukup O, Vales K. Pro-cognitive effects of dual tacrine derivatives acting as cholinesterase inhibitors and NMDA receptor antagonists. Biomed Pharmacother 2024; 176:116821. [PMID: 38823278 DOI: 10.1016/j.biopha.2024.116821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/19/2024] [Accepted: 05/26/2024] [Indexed: 06/03/2024] Open
Abstract
Therapeutic options for Alzheimer's disease are limited. Dual compounds targeting two pathways concurrently may enable enhanced effect. The study focuses on tacrine derivatives inhibiting acetylcholinesterase (AChE) and simultaneously N-methyl-D-aspartate (NMDA) receptors. Compounds with balanced inhibitory potencies for the target proteins (K1578 and K1599) or increased potency for AChE (K1592 and K1594) were studied to identify the most promising pro-cognitive compound. Their effects were studied in cholinergic (scopolamine-induced) and glutamatergic (MK-801-induced) rat models of cognitive deficits in the Morris water maze. Moreover, the impacts on locomotion in the open field and AChE activity in relevant brain structures were investigated. The effect of the most promising compound on NMDA receptors was explored by in vitro electrophysiology. The cholinergic antagonist scopolamine induced a deficit in memory acquisition, however, it was unaffected by the compounds, and a deficit in reversal learning that was alleviated by K1578 and K1599. K1578 and K1599 significantly inhibited AChE in the striatum, potentially explaining the behavioral observations. The glutamatergic antagonist dizocilpine (MK-801) induced a deficit in memory acquisition, which was alleviated by K1599. K1599 also mitigated the MK-801-induced hyperlocomotion in the open field. In vitro patch-clamp corroborated the K1599-associated NMDA receptor inhibitory effect. K1599 emerged as the most promising compound, demonstrating pro-cognitive efficacy in both models, consistent with intended dual effect. We conclude that tacrine has the potential for development of derivatives with dual in vivo effects. Our findings contributed to the elucidation of the structural and functional properties of tacrine derivatives associated with optimal in vivo pro-cognitive efficacy.
Collapse
Affiliation(s)
- Marketa Chvojkova
- National Institute of Mental Health, Topolova 748, Klecany 250 67, Czech Republic.
| | - David Kolar
- National Institute of Mental Health, Topolova 748, Klecany 250 67, Czech Republic
| | - Katarina Kovacova
- National Institute of Mental Health, Topolova 748, Klecany 250 67, Czech Republic; Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, Bratislava 4 842 15, Slovak Republic
| | - Lada Cejkova
- National Institute of Mental Health, Topolova 748, Klecany 250 67, Czech Republic
| | - Anna Misiachna
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, Prague 142 20, Czech Republic; Department of Physiology, Faculty of Science, Charles University in Prague, Albertov 6, Prague 2 12843, Czech Republic
| | - Kristina Hakenova
- National Institute of Mental Health, Topolova 748, Klecany 250 67, Czech Republic; Third Faculty of Medicine, Charles University, Ruska 87, Prague 10 100 00, Czech Republic
| | - Lukas Gorecki
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, Hradec Kralove 500 05, Czech Republic; Department of Toxicology and Military Pharmacy, Military Faculty of Medicine, University of Defence, Trebesska 1575, Hradec Kralove 500 02, Czech Republic
| | - Martin Horak
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, Prague 142 20, Czech Republic
| | - Jan Korabecny
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, Hradec Kralove 500 05, Czech Republic; Department of Toxicology and Military Pharmacy, Military Faculty of Medicine, University of Defence, Trebesska 1575, Hradec Kralove 500 02, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, Hradec Kralove 500 05, Czech Republic; Department of Toxicology and Military Pharmacy, Military Faculty of Medicine, University of Defence, Trebesska 1575, Hradec Kralove 500 02, Czech Republic
| | - Karel Vales
- National Institute of Mental Health, Topolova 748, Klecany 250 67, Czech Republic; Third Faculty of Medicine, Charles University, Ruska 87, Prague 10 100 00, Czech Republic
| |
Collapse
|
3
|
Structure-activity relationships of dually-acting acetylcholinesterase inhibitors derived from tacrine on N-methyl-d-Aspartate receptors. Eur J Med Chem 2021; 219:113434. [PMID: 33892271 DOI: 10.1016/j.ejmech.2021.113434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/27/2022]
Abstract
Tacrine is a classic drug whose efficacy against neurodegenerative diseases is still shrouded in mystery. It seems that besides its inhibitory effect on cholinesterases, the clinical benefit is co-determined by NMDAR-antagonizing activity. Our previous data showed that the direct inhibitory effect of tacrine, as well as its 7-methoxy derivative (7-MEOTA), is ensured via a "foot-in-the-door" open-channel blockage, and that interestingly both tacrine and 7-MEOTA are slightly more potent at the GluN1/GluN2A receptors when compared with the GluN1/GluN2B receptors. Here, we report that in a series of 30 novel tacrine derivatives, designed for assessment of structure-activity relationship, blocking efficacy differs among different compounds and receptors using electrophysiology with HEK293 cells expressing the defined types of NMDARs. Selected compounds (4 and 5) potently inhibited both GluN1/GluN2A and GluN1/GluN2B receptors; other compounds (7 and 23) more effectively inhibited the GluN1/GluN2B receptors; or the GluN1/GluN2A receptors (21 and 28). QSAR study revealed statistically significant model for the data obtained for inhibition of GluN1/Glu2B at -60 mV expressed as IC50 values, and for relative inhibition of GluN1/Glu2A at +40 mV caused by a concentration of 100 μM. The models can be utilized for a ligand-based virtual screening to detect potential candidates for inhibition of GluN1/Glu2A and/or GluN1/Glu2B subtypes. Using in vivo experiments in rats we observed that unlike MK-801, the tested novel compounds did not induce hyperlocomotion in open field, and also did not impair prepulse inhibition of startle response, suggesting minimal induction of psychotomimetic side effects. We conclude that tacrine derivatives are promising compounds since they are centrally available subtype-specific inhibitors of the NMDARs without detrimental behavioral side-effects.
Collapse
|
4
|
Kaniakova M, Korabecny J, Holubova K, Kleteckova L, Chvojkova M, Hakenova K, Prchal L, Novak M, Dolezal R, Hepnarova V, Svobodova B, Kucera T, Lichnerova K, Krausova B, Horak M, Vales K, Soukup O. 7-phenoxytacrine is a dually acting drug with neuroprotective efficacy in vivo. Biochem Pharmacol 2021; 186:114460. [PMID: 33571502 DOI: 10.1016/j.bcp.2021.114460] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 11/28/2022]
Abstract
N-methyl-D-aspartaterecepro receptor (NMDARs) are a subclass of glutamate receptors, which play an essential role in excitatory neurotransmission, but their excessive overactivation by glutamate leads to excitotoxicity. NMDARs are hence a valid pharmacological target for the treatment of neurodegenerative disorders; however, novel drugs targeting NMDARs are often associated with specific psychotic side effects and abuse potential. Motivated by currently available treatment against neurodegenerative diseases involving the inhibitors of acetylcholinesterase (AChE) and NMDARs, administered also in combination, we developed a dually-acting compound 7-phenoxytacrine (7-PhO-THA) and evaluated its neuropsychopharmacological and drug-like properties for potential therapeutic use. Indeed, we have confirmed the dual potency of 7-PhO-THA, i.e. potent and balanced inhibition of both AChE and NMDARs. We discovered that it selectively inhibits the GluN1/GluN2B subtype of NMDARs via an ifenprodil-binding site, in addition to its voltage-dependent inhibitory effect at both GluN1/GluN2A and GluN1/GluN2B subtypes of NMDARs. Furthermore, whereas NMDA-induced lesion of the dorsal hippocampus confirmed potent anti-excitotoxic and neuroprotective efficacy, behavioral observations showed also a cholinergic component manifesting mainly in decreased hyperlocomotion. From the point of view of behavioral side effects, 7-PhO-THA managed to avoid these, notably those analogous to symptoms of schizophrenia. Thus, CNS availability and the overall behavioral profile are promising for subsequent investigation of therapeutic use.
Collapse
Affiliation(s)
- Martina Kaniakova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic; Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic
| | - Jan Korabecny
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Kristina Holubova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic; National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic
| | - Lenka Kleteckova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic; National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic
| | - Marketa Chvojkova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic; National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic
| | - Kristina Hakenova
- National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic
| | - Lukas Prchal
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Martin Novak
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Rafael Dolezal
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Vendula Hepnarova
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Barbora Svobodova
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Tomas Kucera
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Katarina Lichnerova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic; Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic
| | - Barbora Krausova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic
| | - Martin Horak
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic; Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic.
| | - Karel Vales
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic; National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic.
| | - Ondrej Soukup
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.
| |
Collapse
|
5
|
Behavioural effects of novel multitarget anticholinesterasic derivatives in Alzheimer's disease. Behav Pharmacol 2018; 28:124-131. [PMID: 28125507 DOI: 10.1097/fbp.0000000000000292] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The current pharmacological approach to Alzheimer's disease (AD) treatment, mostly based on acetylcholinesterase inhibitors (AChEIs), is being revisited, especially in terms of the temporal frames and the potential benefits of their noncanonic actions, raising the question of whether inhibitors of AChE might also act in a disease-modifying manner. Besides, in the last decades, the pharmacophoric moieties of known AChEIs have been covalently linked to other pharmacophores in the pursuit of multitarget hybrid molecules that are expected to induce long-lasting amelioration of impaired neurotransmission and clinical symptoms but also to exert disease-modifying effects. Our research consortium has synthesized and defined the pharmacological profile of new AChEIs derivatives of potential interest for the treatment of AD. Among these, huprines and derivatives have been characterized successfully. Huprine X, a reversible AChE inhibitor, designed by molecular hybridization of tacrine and huperzine A, has been shown to affect the amyloidogenic process in vitro, and the AD-related neuropathology in vivo in mice models of the disease. More recently, we have shown that a group of donepezil-huprine heterodimers exerts a highly potent and selective inhibitory action on AChE both in vitro and ex vivo, simultaneously interacting with both peripheral and catalytic binding sites, and inhibiting the β-amyloid aggregation, whereas some levetiracetam-huprine hybrids have been shown to reduce epileptiform activity, neuroinflammation and amyloid burden in an animal model of AD. Here, we summarize the behavioural correlates of these noncanonic actions as assessed in three distinct biological scenarios: middle-age, cognitive deficits associated with ageing and AD-like phenotype in mice. Besides the improvement in the hallmark cognitive symptomatology without inducing side effects, these drugs have shown to be able to modulate emotional and anxiety-like behaviours or to reduce spontaneous seizures, all of them related to the so-called 'behavioural and psychological symptoms of dementia'. Overall, the studies show that these novel multitarget anticholinesterasics exert noncanonic actions providing symptomatic and disease-modifying benefits of potential interest for the management of AD.
Collapse
|
6
|
Deveci HA, Karapehlivan M. Chlorpyrifos-induced parkinsonian model in mice: Behavior, histopathology and biochemistry. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 144:36-41. [PMID: 29463406 DOI: 10.1016/j.pestbp.2017.11.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 09/26/2017] [Accepted: 11/06/2017] [Indexed: 06/08/2023]
Abstract
INTRODUCTION The aim of this study was to investigate the protective effect of caffeic acid phenethyl ester (CAPE) on Paraoxonase (PON1) activity, and levels of lipid profile, total sialic acid (TSA), total antioxidant capacity (TAC) and total oxidant capacity (TOC) in the plasma and brain tissue of mice with chlorpyrifos-ethyl (CPF)-induced Parkinson. MATERIAL AND METHOD In the study, 35 male Swiss albino mice were divided into 5 groups including equal number of mice as follows; intraperitoneal injection of saline for mice in control (C) group, subcutaneous injection of 80mg/kg CPF for CPF group, intraperitoneal injection of 10μmol/kg CAPE for CAPE group, subcutaneous injection of 80mg/kg CPF and intraperitoneal injection of 10μmol/kg CAPE for CPF+CAPE group and intraperitoneal injection of 10% ethanol diluted in physiological saline solution for 21days for ethanol (E) group. All the mice were fed with normal feed and tap water ad libitum. At the end of the study, PON1 activity, lipid profile (except for brain), and TSA, TAC and TOC levels in the plasma and brain tissue were analyzed. Tissue samples of brain substantia nigra were evaluated histopathologically. RESULTS Levels of plasma TAC, high density lipoprotein (HDL) and PON1 activity were statistically lower in CPF group than the other groups (P<0.001). Also, levels of plasma TOC, TSA, total cholesterol, triglycerides, low density lipoprotein (LDL) and very low density lipoprotein (VLDL) were statistically higher in CPF group than the other groups(P<0.001). PON1 activity and level of TAC were significantly lower in brain tissue of CPF groups (P<0.001). In addition, TOC and TSA levels were significantly higher in brain tissue in CPF group (P<0.001). CONCLUSION In conclusion, CAPE showed a protective effect on PON1 activity and levels of lipid profile, TSA, TAC and TOC in plasma and brain tissue and prevented the neurodegenerations in brain tissue in CPF-induced Parkinson's disease.
Collapse
Affiliation(s)
- Haci Ahmet Deveci
- Gaziantep University, Islahiye Vocational School, 27800 Gaziantep, Turkey.
| | - Mahmut Karapehlivan
- Kafkas University, Medical Faculty, Biochemistry Department, 36100 Kars, Turkey
| |
Collapse
|
7
|
Giménez-Llort L, Ratia M, Pérez B, Camps P, Muñoz-Torrero D, Badia A, Clos MV. AVCRI104P3, a novel multitarget compound with cognition-enhancing and anxiolytic activities: studies in cognitively poor middle-aged mice. Behav Brain Res 2015; 286:97-103. [PMID: 25732954 DOI: 10.1016/j.bbr.2015.02.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 02/15/2015] [Accepted: 02/20/2015] [Indexed: 11/25/2022]
Abstract
The present work describes, for the first time, the in vivo effects of the multitarget compound AVCRI104P3, a new anticholinesterasic drug with potent inhibitory effects on human AChE, human BuChE and BACE-1 activities as well as on the AChE-induced and self-induced Aβ aggregation. We characterized the behavioral effects of chronic treatment with AVCRI104P3 (0.6 μmol kg(-1), i.p., 21 days) in a sample of middle aged (12-month-old) male 129/Sv×C57BL/6 mice with poor cognitive performance, as shown by the slow acquisition curves of saline-treated animals. Besides, a comparative assessment of cognitive and non-cognitive actions was done using its in vitro equipotent doses of huprine X (0.12 μmol kg(-1)), a huperzine A-tacrine hybrid. The screening assessed locomotor activity, anxiety-like behaviors, cognitive function and side effects. The results on the 'acquisition' of spatial learning and memory show that AVCRI104P3 exerted pro-cognitive effects improving both short- and long-term processes, resulting in a fast and efficient acquisition of the place task in the Morris water maze. On the other hand, a removal test and a perceptual visual learning task indicated that both AChEIs improved short-term 'memory' as compared to saline treated mice. Both drugs elicited the same response in the corner test, but only AVCRI104P3 exhibited anxiolytic-like actions in the dark/light box test. These cognitive-enhancement and anxiolytic-like effects demostrated herein using a sample of middle-aged animals and the lack of adverse effects, strongly encourage further studies on AVCRI104P3 as a promising multitarget therapeutic agent for the treatment of cholinergic dysfunction underlying natural aging and/or dementias.
Collapse
Affiliation(s)
- L Giménez-Llort
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; Departament de Psiquiatria i Medicina Legal, Universitat Autònoma de Barcelona, Spain.
| | - M Ratia
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; Departament de Farmacologia, de Terapèutica i de Toxicologia, Universitat Autònoma de Barcelona, Spain
| | - B Pérez
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; Departament de Farmacologia, de Terapèutica i de Toxicologia, Universitat Autònoma de Barcelona, Spain
| | - P Camps
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia, and Institut de Biomedicina (IBUB), Universitat de Barcelona, Spain
| | - D Muñoz-Torrero
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia, and Institut de Biomedicina (IBUB), Universitat de Barcelona, Spain
| | - A Badia
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; Departament de Farmacologia, de Terapèutica i de Toxicologia, Universitat Autònoma de Barcelona, Spain
| | - M V Clos
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; Departament de Farmacologia, de Terapèutica i de Toxicologia, Universitat Autònoma de Barcelona, Spain
| |
Collapse
|
8
|
Koganemaru G, Abe H, Kuramashi A, Ebihara K, Matsuo H, Funahashi H, Yasuda K, Ikeda T, Nishimori T, Ishida Y. Effects of cabergoline and rotigotine on tacrine-induced tremulous jaw movements in rats. Pharmacol Biochem Behav 2014; 126:103-8. [PMID: 25265240 DOI: 10.1016/j.pbb.2014.09.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 09/14/2014] [Accepted: 09/20/2014] [Indexed: 11/28/2022]
Abstract
OBJECTIVES We examined the effects of two dopamine agonists, cabergoline and rotigotine, on tacrine-induced tremor and c-Fos expression in rats. METHODS Rats received intraperitoneal injection of cabergoline (0.5, 1.0, or 5.0mg/kg), rotigotine (1.0, 2.5, or 10.0mg/kg), or vehicle 30min before intraperitoneal injection of tacrine (5.0mg/kg). The number of tremulous jaw movements (TJMs) after tacrine administration was counted for 5min. Animals were sacrificed 2h later under deep anesthesia, and the brain sections were immunostained in order to evaluate the c-Fos expression. RESULTS Induction of TJMs by tacrine was dose-dependently reduced by pretreatment with cabergoline and rotigotine. The number of c-Fos-positive cells was significantly enhanced in the medial striatum, nucleus accumbens core, and nucleus accumbens shell after tacrine administration, and the enhanced expression of c-Fos in these three regions was significantly attenuated by cabergoline, while rotigotine suppressed c-Fos expression in two regions except the nucleus accumbens core. CONCLUSIONS These results suggest that tacrine-induced TJMs would be relieved by either cabergoline or rotigotine and that anticholinesterase-induced TJMs and the ameliorating effects of dopamine agonists would relate to neuronal activation in the striatum and nucleus accumbens.
Collapse
Affiliation(s)
- Go Koganemaru
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki-city, Miyazaki 889-1692, Japan
| | - Hiroshi Abe
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki-city, Miyazaki 889-1692, Japan.
| | - Aki Kuramashi
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki-city, Miyazaki 889-1692, Japan
| | - Kosuke Ebihara
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki-city, Miyazaki 889-1692, Japan
| | - Hisae Matsuo
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki-city, Miyazaki 889-1692, Japan
| | - Hideki Funahashi
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki-city, Miyazaki 889-1692, Japan
| | - Kazuya Yasuda
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki-city, Miyazaki 889-1692, Japan; Department of Pharmacy, Faculty of Medicine, University of Miyazaki Hospital, 5200 Kihara, Kiyotake, Miyazaki-city, Miyazaki 889-1692, Japan
| | - Tetsuya Ikeda
- Division of Neurobiology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki-city, Miyazaki 889-1692, Japan
| | - Toshikazu Nishimori
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki-city, Miyazaki 889-1692, Japan
| | - Yasushi Ishida
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki-city, Miyazaki 889-1692, Japan
| |
Collapse
|
9
|
Ratia M, Giménez-Llort L, Camps P, Muñoz-Torrero D, Pérez B, Clos MV, Badia A. Huprine X and huperzine A improve cognition and regulate some neurochemical processes related with Alzheimer's disease in triple transgenic mice (3xTg-AD). NEURODEGENER DIS 2012; 11:129-40. [PMID: 22626981 DOI: 10.1159/000336427] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 01/05/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Different studies have established that cholinergic neurodegeneration could be a major pathological feature of Alzheimer's disease (AD). Thus, enhancement of the central cholinergic neurotransmission has been regarded as one of the most promising strategies for the symptomatic treatment of AD, mainly by means of reversible acetylcholinesterase inhibitors (AChEIs). The cognitive-enhancing properties of both huprine X, a new AChEI, and the structurally related huperzine A, as well as their effects on the regulation of several neurochemical processes related to AD have been studied in triple transgenic mice (3xTg-AD). METHODS Seven-month-old homozygous 3xTg-AD male mice, which received chronic intraperitoneal treatment with either saline, huprine X (0.12 µmol·kg(-1)) or huperzine A (0.8 µmol·kg(-1)) were subjected to a battery of behavioural tests after 3 weeks of treatment and thereafter the brains were dissected to study the neurochemical effects induced by the two AChEIs. RESULTS Treatments with huprine X and huperzine A improved learning and memory in the Morris water maze and some indicators of emotionality without inducing important adverse effects. Moreover, huprine X and huperzine A activate protein kinase C/mitogen-activated protein kinase pathway signalling, α-secretases (ADAM 10 and TACE) and increase the fraction of phospho-glycogen synthase kinase 3-β. CONCLUSION Results obtained herein using a sample of 3xTg-AD animals strongly suggest that the treatment with the two AChEIs not only improves the cognitive performance of the animals but also induces some neurochemical changes that could contribute to the beneficial effects observed.
Collapse
Affiliation(s)
- M Ratia
- Departament de Farmacologia, de Terapèutica i de Toxicologia, Universitat Autònoma de Barcelona, Barcelona, España
| | | | | | | | | | | | | |
Collapse
|
10
|
The effects of donepezil on computer-simulated driving ability among healthy older adults: a pilot study. J Clin Psychopharmacol 2011; 31:587-92. [PMID: 21869695 DOI: 10.1097/jcp.0b013e31822bb1ba] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The purpose of the present pilot study was to examine the effect of donepezil on simulated driving among healthy older adults. Twenty participants with a mean age of 72 years were randomized to take 5 mg of donepezil or placebo for 2 weeks. All participants were assessed at baseline and 2 weeks later on measures of attention, global cognition, and simulated driving on the York driving simulator. Driving measures included speed deviation, deviation of road position, reaction time to wind gusts, and collisions. Groups were compared using analysis of covariance, controlling for baseline values. There were no differences between the groups on attentional measures, number of collisions, or composite simulator measures. The placebo group fared approximately 0.5 second better in reaction time to wind gusts and showed a nonsignificant tendency toward less deviation of road position, compared with the donepezil group. This analysis does not support the use of donepezil to extend the period of safe driving among older adults, but further study is needed regarding its role among patients with cognitive disorders.
Collapse
|
11
|
Collins LE, Paul NE, Abbas SF, Leser CE, Podurgiel SJ, Galtieri DJ, Chrobak JJ, Baqi Y, Müller CE, Salamone JD. Oral tremor induced by galantamine in rats: a model of the parkinsonian side effects of cholinomimetics used to treat Alzheimer's disease. Pharmacol Biochem Behav 2011; 99:414-22. [PMID: 21640750 DOI: 10.1016/j.pbb.2011.05.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 05/17/2011] [Accepted: 05/22/2011] [Indexed: 01/17/2023]
Abstract
Anticholinesterases are the most common treatment for Alzheimer's disease, and, in recent years, a new group of cholinesterase inhibitors (i.e. rivastigmine, galantamine, and donepezil) has become available. Although these drugs improve cognitive symptoms, they also can induce or exacerbate parkinsonian symptoms, including tremor. The present studies were conducted to determine if galantamine induces tremulous jaw movements, a rodent model of parkinsonian tremor, and to investigate whether these oral motor impairments can be reversed by co-administration of adenosine A(2A) antagonists. The first experiment demonstrated that systemic injections of galantamine (0.75-6.0 mg/kg I.P.) induced a dose-related increase in tremulous jaw movements in rats. In a second study, co-administration of the muscarinic antagonist scopolamine (0.0156-0.25 mg/kg I.P.) produced a dose dependent suppression of tremulous jaw movements induced by a 3.0 mg/kg dose of galantamine, indicating that galantamine induces these tremulous oral movements through actions on muscarinic acetylcholine receptors. In two additional studies, analyses of freeze-frame video and electromyographic activity recorded from the lateral temporalis muscle indicated that the local frequency of these galantamine-induced jaw movements occurs in the 3-7 Hz frequency range that is characteristic of parkinsonian tremor. In the final experiment, the adenosine A(2A) antagonist MSX-3 significantly attenuated the tremulous jaw movements induced by the 3.0mg/kg dose of galantamine, which is consistent with the hypothesis that co-administration of adenosine A(2A) antagonists may be beneficial in reducing parkinsonian motor impairments induced by anticholinesterase treatment.
Collapse
Affiliation(s)
- Lyndsey E Collins
- Dept. of Psychology, University of Connecticut, Storrs, CT 06269-1020, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Machado A, Herrera AJ, Venero JL, Santiago M, de Pablos RM, Villarán RF, Espinosa-Oliva AM, Argüelles S, Sarmiento M, Delgado-Cortés MJ, Mauriño R, Cano J. Inflammatory Animal Model for Parkinson's Disease: The Intranigral Injection of LPS Induced the Inflammatory Process along with the Selective Degeneration of Nigrostriatal Dopaminergic Neurons. ISRN NEUROLOGY 2011; 2011:476158. [PMID: 22389821 PMCID: PMC3263561 DOI: 10.5402/2011/476158] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 03/17/2011] [Indexed: 12/15/2022]
Abstract
We have developed an animal model of degeneration of the nigrostriatal dopaminergic neurons, the neuronal system involved in Parkinson's disease (PD). The implication of neuroinflammation on this disease was originally established in 1988, when the presence of activated microglia in the substantia nigra (SN) of parkinsonians was reported by McGeer et al. Neuroinflammation could be involved in the progression of the disease or even has more direct implications. We injected 2 μg of the potent proinflammatory compound lipopolysaccharide (LPS) in different areas of the CNS, finding that SN displayed the highest inflammatory response and that dopaminergic (body) neurons showed a special and specific sensitivity to this process with the induction of selective dopaminergic degeneration. Neurodegeneration is induced by inflammation since it is prevented by anti-inflammatory compounds. The special sensitivity of dopaminergic neurons seems to be related to the endogenous dopaminergic content, since it is overcome by dopamine depletion. Compounds that activate microglia or induce inflammation have similar effects to LPS. This model suggest that inflammation is an important component of the degeneration of the nigrostriatal dopaminergic system, probably also in PD. Anti-inflammatory treatments could be useful to prevent or slow down the rate of dopaminergic degeneration in this disease.
Collapse
Affiliation(s)
- A Machado
- - Departmento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Pan SY, Guo BF, Zhang Y, Yu Q, Yu ZL, Dong H, Ye Y, Han YF, Ko KM. Tacrine Treatment at High Dose Suppresses the Recognition Memory in Juvenile and Adult Mice with Attention to Hepatotoxicity. Basic Clin Pharmacol Toxicol 2011; 108:421-7. [DOI: 10.1111/j.1742-7843.2011.00677.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
14
|
McLaughlin PJ, Chuck TL, Arizzi-LaFrance MN, Salamone JD, Correa M. Central vs. peripheral administration of ethanol, acetaldehyde and acetate in rats: effects on lever pressing and response initiation. Pharmacol Biochem Behav 2008; 89:304-13. [PMID: 18294679 DOI: 10.1016/j.pbb.2008.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Revised: 01/07/2008] [Accepted: 01/09/2008] [Indexed: 11/28/2022]
Abstract
The metabolites of ethanol, acetaldehyde and acetate, are biologically active, and different effects may be produced depending upon the particular metabolite and the route of administration. These studies characterized the effects of intraperitoneal (IP) vs. intraventricular (ICV) administration of ethanol, acetaldehyde, and acetate administered to male Sprague-Dawley rats. Operant behavior was assessed by conducting a detailed temporal analysis of lever pressing with rats responding on a fixed ratio 5 schedule of food reinforcement. IP administration of all three drugs produced a rate-decreasing effect on the total number of responses. Acetaldehyde and acetate were much more potent than ethanol at reducing lever pressing. The interresponse time (IRT) distribution also was more potently altered by IP administration of ethanol metabolites than by ethanol itself. The total lever pressing and IRT distributions of ethanol- and acetaldehyde- treated rats were not significantly affected when these drugs were administered ICV, while acetate produced a marked suppression of fast responses and an increase in pausing. The metabolites of ethanol are more potent than ethanol itself in terms of altering patterns of lever pressing. Thus, the effects of ethanol administration could in part be due to the actions of its biologically active metabolites.
Collapse
Affiliation(s)
- Peter J McLaughlin
- Department of Psychology, University of Connecticut, Storrs, CT 06269-1020, USA
| | | | | | | | | |
Collapse
|
15
|
Betz AJ, McLaughlin PJ, Burgos M, Weber SM, Salamone JD. The muscarinic receptor antagonist tropicamide suppresses tremulous jaw movements in a rodent model of parkinsonian tremor: possible role of M4 receptors. Psychopharmacology (Berl) 2007; 194:347-59. [PMID: 17594079 DOI: 10.1007/s00213-007-0844-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Accepted: 05/30/2007] [Indexed: 11/25/2022]
Abstract
RATIONALE Nonselective muscarinic acetylcholine antagonists have been used for several years as antiparkinsonian drugs. However, there are at least five subtypes of muscarinic receptor (M1-5). Neostriatal M4 receptors have been implicated in aspects of motor function, and it has been suggested that M4 antagonists could be used as treatments for parkinsonism. OBJECTIVE Currently, there is a lack of highly selective M4 antagonists that readily penetrate the blood brain barrier. Thus, the present studies focused upon the effects of tropicamide, a muscarinic acetylcholine receptor antagonist with moderate binding selectivity for the M4 receptor subtype. MATERIALS AND METHODS Tremulous jaw movements were used as a model of parkinsonian tremor in these studies, and the effects of tropicamide were compared with those of the nonselective muscarinic antagonist atropine. RESULTS Tropicamide suppressed the tremulous jaw movements induced by the muscarinic agonist pilocarpine and the dopamine antagonist pimozide. Analysis of the dose-response curves indicated that tropicamide showed approximately the same potency as atropine for suppression of pilocarpine-induced jaw movements but was more potent than atropine on the suppression of pimozide-induced jaw movements. In contrast, atropine was more potent than tropicamide in terms of impairing performance on visual stimulus detection and delayed nonmatch-to-position tasks. CONCLUSIONS These studies demonstrate that tropicamide, which currently is used clinically for ophthalmic purposes, can exert actions that are consistent with antiparkinsonian effects. Moreover, the different pattern of effects shown by tropicamide compared to those of atropine on motor vs cognitive tasks could be due to the modest M4 selectivity shown by tropicamide.
Collapse
Affiliation(s)
- Adrienne J Betz
- Behavioral Neuroscience, Department of Psychology, University of Connecticut, Storrs, CT 06269-1020, USA
| | | | | | | | | |
Collapse
|
16
|
Chuck TL, McLaughlin PJ, Arizzi-LaFrance MN, Salamone JD, Correa M. Comparison between multiple behavioral effects of peripheral ethanol administration in rats: Sedation, ataxia, and bradykinesia. Life Sci 2006; 79:154-61. [PMID: 16487981 DOI: 10.1016/j.lfs.2005.12.045] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Revised: 12/15/2005] [Accepted: 12/19/2005] [Indexed: 10/25/2022]
Abstract
Although low doses of systemic ethanol stimulate locomotion in mice, in rats the typical response to peripheral ethanol administration is a dose-dependent suppression of motor activity. In the present study, male rats received acute doses of ethanol IP (0.0, 0.25, 0.5, 1.0 or 2.0 g/kg) and were tested on several behavioral tasks related to the motor suppressive or sedative effects of the drug. This research design allowed for comparisons between the effects of ethanol on different behavioral tasks in order to determine which tasks were most sensitive to the drug (i.e., which tasks would yield deficits that appear at lower doses). In the first two experiments, rats were evaluated on a sedation rating scale, and ataxia/motor incoordination was assessed using the rotarod apparatus. Administration of 2.0 g/kg ethanol produced sedation as measured by the sedation scale, and also impaired performance on the rotarod. In a third experiment, ethanol reduced locomotion in the stabilimeter at several doses and times after IP injection, with 0.25 g/kg being the lowest dose that produced a significant decrease in locomotion. Finally, experiment four studied the effects of ethanol on operant lever pressing reinforced on a fixed ratio 5 (FR5) schedule for food reinforcement. Data showed suppressive effects on lever pressing at doses of 1.0, and 2.0 g/kg ethanol. Analysis of the interresponse time distribution showed that ethanol produced a modest slowing of operant responding, as well as fragmentation of the temporal pattern of responding and increases in pausing. Taken together, these results indicate that rats can demonstrate reduced locomotion and slowing of operant responding at doses lower than those that result in sedation or ataxia as measured by the rotarod. The detection of subtle changes in different motor test across a broad range of ethanol doses is important for understanding ethanol effects in other cognitive, motivational or sensory processes.
Collapse
Affiliation(s)
- Trisha L Chuck
- Department of Psychology, University of Connecticut, 406 Babbidge Rd. U-1020, Storrs, CT 06269-1020, USA
| | | | | | | | | |
Collapse
|
17
|
Sun TT, Paul IA, Ho IK. Motor functions but not learning and memory are impaired upon repeated exposure to sub-lethal doses of methyl parathion. J Biomed Sci 2006; 13:515-23. [PMID: 16645783 DOI: 10.1007/s11373-006-9075-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Accepted: 01/26/2006] [Indexed: 10/24/2022] Open
Abstract
Our previous work showed that repeated exposure to methyl parathion (MP) caused a prolonged inhibition of acetylcholinesterase (AChE) activity (approximately 80%) and down-regulation of M(1) and M(2) muscarinic receptors (up to 38%) in rats at brain regions, including frontal cortex, striatum, hippocampus and thalamus. In the present neurobehavioral study, we found this repeated MP treatment had suppressant effects on rat's locomotor activity. However, we observed no evidence of long-term effects of MP on associative learning and memory. Our data demonstrated that repeated exposure to MP caused some functional deficits in CNS, but motor activity and associative learning/memory process might differ in the sensitivity to its toxic effect. The motor dysfunctions in MP-treated rats may be mediated via reciprocal balance between cholinergic and dopaminergic systems at striatum following cholinergic over-stimulation. Our findings also suggest that the CNS deficits induced by repeated exposure to MP or other organophosphate (OP) pesticides cannot be attributed entirely to the inhibition of AChE. To accurately assess the neuro-toxic risk by occupational exposure to sub-lethal doses of MP, novel biomarkers besides in vivo anticholinesterase potency are needed.
Collapse
Affiliation(s)
- Ting-Ting Sun
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | | | | |
Collapse
|
18
|
Sagi Y, Driguès N, Youdim MBH. The neurochemical and behavioral effects of the novel cholinesterase-monoamine oxidase inhibitor, ladostigil, in response to L-dopa and L-tryptophan, in rats. Br J Pharmacol 2005; 146:553-60. [PMID: 16086033 PMCID: PMC1751181 DOI: 10.1038/sj.bjp.0706355] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2005] [Revised: 06/23/2005] [Accepted: 07/01/2005] [Indexed: 11/09/2022] Open
Abstract
The novel drugs, ladostigil (TV3326) and TV3279, are R and S isomers, respectively, derived from a combination of the carbamate cholinesterase (ChE) inhibitor, rivastigmine, and the pharmacophore of the monoamine oxidase (MAO) B inhibitor, rasagiline. They were developed for the treatment of comorbidity of dementia with Parkinsonism. In the present study, we determined the effects of these drugs on both aminergic neurotransmitter levels and motor behavioral activity in naïve and in L-dopa- or L-tryptophan-induced rats. Chronic treatment of rats with ladostigil (52 mg kg(-1) for 21 days) inhibited hippocampal and striatal MAO A and B activities by >90%, increased striatal levels of dopamine and serotonin, and inhibited striatal ChE activity by approximately 50%. Chronic TV3279 (26 mg kg(-1) for 21 days) similarly inhibited approximately 50% of striatal ChE activity, but did not affect MAO activity or amine levels. In sharp contrast to the inductive effect of the MAO A/B inhibitor, tranylcypromine (TCP), on stereotyped hyperactivity in response to L-dopa (50 mg kg(-1)) or L-tryptophan (100 mg kg(-1)), ladostigil completely inhibited these behavioral hyperactivity syndromes. Accordingly, acute rivastigmine (2 mg kg(-1)) and chronic TV3279 abolished the ability of TCP to initiate L-dopa-induced hyperactivity, while scopolamine (0.5 mg kg(-1)) reversed the inhibitory effect of chronic ladostigil on L-dopa-induced hyperactivity, suggesting that ladostigil may attenuate successive locomotion by activating central cholinergic muscarinic receptors.Finally, while chronic ladostigil administration to naïve rats resulted in preserved spontaneous motor behavior, acute treatment with ladostigil decreased motor performance, compared to control animals. In contrast, chronic as well as acute treatments with TV3279 reduced spontaneous motor activity. Thus, the aminergic potentiation by ladostigil may counteract its cholinergic inhibitory effect on spontaneous motor behavior. Our results suggest that potentiation of both aminergic and cholinergic transmission systems by ladostigil contributes equally to motor behavior performance, which is substantially impaired in comorbidity of dementia with Parkinsonism including dementia with Lewy bodies (DLB).
Collapse
Affiliation(s)
- Yotam Sagi
- Eve Topf and U.S.A. National Parkinson Foundation, Centers of Excellence for Neurodegenerative Diseases Research and Department of Pharmacology, Technion-Rappaport Faculty of Medicine, Haifa, Israel
| | - Noam Driguès
- Eve Topf and U.S.A. National Parkinson Foundation, Centers of Excellence for Neurodegenerative Diseases Research and Department of Pharmacology, Technion-Rappaport Faculty of Medicine, Haifa, Israel
| | - Moussa B H Youdim
- Eve Topf and U.S.A. National Parkinson Foundation, Centers of Excellence for Neurodegenerative Diseases Research and Department of Pharmacology, Technion-Rappaport Faculty of Medicine, Haifa, Israel
| |
Collapse
|
19
|
Salamone JD, Carlson BB, Rios C, Lentini E, Correa M, Wisniecki A, Betz A. Dopamine agonists suppress cholinomimetic-induced tremulous jaw movements in an animal model of Parkinsonism: tremorolytic effects of pergolide, ropinirole and CY 208-243. Behav Brain Res 2005; 156:173-9. [PMID: 15582103 DOI: 10.1016/j.bbr.2004.05.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2003] [Revised: 05/15/2004] [Accepted: 05/17/2004] [Indexed: 11/21/2022]
Abstract
Considerable evidence indicates that cholinomimetic-induced tremulous jaw movements in rats share many characteristics with human Parkinsonian tremor, and several antiparkinsonian drugs suppress cholinomimetic-induced tremulous jaw movements. The present study investigated three different types of dopamine agonists, which have known antiparkinsonian characteristics, for their ability to suppress the tremulous jaw movements induced by tacrine (5.0 mg/kg). The non-selective dopamine agonist pergolide, a widely used antiparkinsonian drug, was highly potent at suppressing tacrine-induced jaw movements (e.g. 0.125-1.0 mg/kg). The selective D2 agonist ropinirole, which also is used clinically as an antiparkinsonian drug, suppressed jaw movements in the dose range of 2.5-20.0 mg/kg. The D1 agonist CY 208-243, which has been reported to suppress tremor, also reduced jaw movement activity (4.0 mg/kg). Across several studies, the rank order of potency for suppressing cholinomimetic-induced jaw movements in rats is related to the potency for producing antiparkinsonian effects in humans. Together with previous studies, the present results suggest that cholinomimetic-induced jaw movements in rats can be used to characterize dopaminergic antiparkinsonian agents and to investigate the basal ganglia circuits involved in the generation of tremulous movements.
Collapse
Affiliation(s)
- John D Salamone
- Department of Psychology, University of Connecticut, Storrs, CT 06269-1020, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Ishiwari K, Betz A, Weber S, Felsted J, Salamone JD. Validation of the tremulous jaw movement model for assessment of the motor effects of typical and atypical antipychotics: effects of pimozide (Orap) in rats. Pharmacol Biochem Behav 2005; 80:351-62. [PMID: 15680188 DOI: 10.1016/j.pbb.2004.12.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2004] [Revised: 12/01/2004] [Accepted: 12/03/2004] [Indexed: 11/26/2022]
Abstract
Drug-induced tremulous jaw movements (TJMs) in rats have been used as a model of parkinsonian tremor. Previous studies demonstrated that the typical antipsychotic haloperidol induced TJMs after acute or subchronic administration, while atypical antipsychotics did not. Moreover, it has been suggested that the relative potency for suppression of tacrine-induced TJMs relative to the suppression of lever pressing can be used to discriminate between typical and atypical antipsychotics. In order to validate this model with additional drugs, the present studies assessed the effects of the typical antipsychotic pimozide. In the first series of experiments, the effects of acute pimozide on tacrine-induced TJMs and lever pressing were examined. As with haloperidol, pimozide failed to suppress tacrine-induced TJMs, even at doses considerably higher than those that suppressed lever pressing. In the second group of experiments, rats were given single daily injections of pimozide (0.125-1.0 mg/kg) or tartaric acid vehicle for 13 days, and were observed for TJMs on days 1, 7, and 13. Pimozide induced TJMs in a dose-related manner on all days. The jaw movements occurred largely in the 3-7 Hz frequency range characteristic of parkinsonian tremor. These data support the hypothesis that typical antipsychotics can induce TJMs in rats, and demonstrate that chronic administration of typical antipsychotics is not necessary for induction of TJMs. TJMs induced by acute or subchronic pimozide may be related to early-onset motor syndromes such as drug-induced parkinsonism.
Collapse
Affiliation(s)
- Keita Ishiwari
- Department of Psychology, University of Connecticut, Storrs, CT 06269-1020, USA
| | | | | | | | | |
Collapse
|
21
|
Hallam KT, Horgan JE, McGrath C, Norman TR. An investigation of the effect of tacrine and physostigmine on spatial working memory deficits in the olfactory bulbectomised rat. Behav Brain Res 2004; 153:481-486. [PMID: 15265646 DOI: 10.1016/j.bbr.2004.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2003] [Revised: 12/30/2003] [Accepted: 01/06/2004] [Indexed: 10/26/2022]
Abstract
The olfactory bulbectomised (OB) rat is being increasingly used as a model of impaired learning and mnemonic functioning. In this study the model has been utilised to determine the effect of the acetylcholinesterase inhibiting compounds tacrine and physostigmine on spatial working memory deficits associated with the OB rat. One-hundred and twenty male rats were randomly allocated to OB or sham operated groups and received chronic i.p. treatment with either saline, physostigmine (0.1 mg/kg) or tacrine (0.1 and 0.3 mg/kg). Two weeks after beginning treatment animals were tested on the Morris water maze and open field test. The results indicated that the OB surgery was associated with spatial working memory disturbances that were effectively attenuated with both doses of tacrine, but not physostigmine. Increased hyperactivity and defecation was observed in OB animals in the Open-field test, however, these changes were not ameliorated by either drug treatment. The ability for tacrine but not physostigmine to attenuate OB cognitive deficits may be associated with the different half-life of these compounds. This study provides further support for the use of the OB rat as a drug discovery model for the investigation of novel therapeutic compounds that target the cholinergic system.
Collapse
Affiliation(s)
- K T Hallam
- Department of Psychiatry, Austin and Repatriation Medical Centre, Level 10 Lance Townsend Building, Studley Road, Heidelberg, Vic. 3084, Australia.
| | | | | | | |
Collapse
|
22
|
Arizzi MN, Correa M, Betz AJ, Wisniecki A, Salamone JD. Behavioral effects of intraventricular injections of low doses of ethanol, acetaldehyde, and acetate in rats: studies with low and high rate operant schedules. Behav Brain Res 2003; 147:203-10. [PMID: 14659586 DOI: 10.1016/s0166-4328(03)00158-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Although ethanol is typically classed as a sedative-hypnotic, low doses of ethanol have been shown to stimulate locomotor activity in mice. However, in rats the typical response to peripheral administration of ethanol is a dose-dependent suppression of motor activity and operant responding. The present study was undertaken to determine the effects of intraventricular (ICV) infusions of ethanol, acetaldehyde, and acetate on operant performance in rats. ICV injections of ethanol, acetaldehyde, or acetate were given to rats previously trained on either a differential-reinforcement-of-low-rates-of-responding (DRL) 30-s schedule, which generates low rates of responding, or a fixed ratio 5 (FR5) schedule, which generates relatively high rates. Ethanol, acetaldehyde, and acetate all produced a rate-increasing effect in rats on the DRL 30-s schedule at moderate doses (2.8 and 1.4 micromol, respectively). Acetate also produced a rate-decreasing effect on the DRL 30-s schedule at a larger dose (8.8 micromol). Performance on the FR5 schedule was unaltered by ethanol and acetaldehyde, even at doses as high as 17.6 micromol. However, acetate produced a rate-decreasing effect on the FR5 schedule at doses of 4.4, 5.6, and 8.8 micromol. Central administration of low doses of ethanol and its metabolites can increase operant responding on some schedules in rats. Acetate is the substance that is most potent for producing rate-suppressing effects. These results indicate that the major metabolites of ethanol are pharmacologically active when injected into the brain, and suggest that acetate may mediate some of the rate-suppressing effects of ethanol, such as sedation, ataxia or motor slowing.
Collapse
Affiliation(s)
- Maria N Arizzi
- Department of Psychology, University of Connecticut, U-1020, Storrs, CT 06269-1020, USA
| | | | | | | | | |
Collapse
|
23
|
Zhu H, Rockhold RW, Baker RC, Kramer RE, Ho IK. Effects of single or repeated dermal exposure to methyl parathion on behavior and blood cholinesterase activity in rats. J Biomed Sci 2001; 8:467-74. [PMID: 11702010 DOI: 10.1007/bf02256609] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The effects of a single or repeated dermal administration of methyl parathion on motor function, learning and memory were investigated in adult female rats and correlated with blood cholinesterase activity. Exposure to a single dose of 50 mg/kg methyl parathion (75% of the dermal LD(50)) resulted in an 88% inhibition of blood cholinesterase activity and was associated with severe acute toxicity. Spontaneous locomotor activity and neuromuscular coordination were also depressed. Rats treated with a lower dose of methyl parathion, i.e. 6.25 or 12.5 mg/kg, displayed minimal signs of acute toxicity. Blood cholinesterase activity and motor function, however, were depressed initially but recovered fully within 1-3 weeks. There were no delayed effects of a single dose of methyl parathion on learning acquisition or memory as assessed by a step-down inhibitory avoidance learning task. Repeated treatment with 1 mg/kg/day methyl parathion resulted in a 50% inhibition of blood cholinesterase activity. A decrease in locomotor activity and impairment of memory were also observed after 28 days of repeated treatment. Thus, a single dermal exposure of rats to doses of methyl parathion which are lower than those that elicit acute toxicity can cause decrements in both cholinesterase activity and motor function which are reversible. In contrast, repeated low-dose dermal treatment results in a sustained inhibition of cholinesterase activity and impairment of both motor function and memory.
Collapse
Affiliation(s)
- H Zhu
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | | | | | | | | |
Collapse
|
24
|
Nowend KL, Arizzi M, Carlson BB, Salamone JD. D1 or D2 antagonism in nucleus accumbens core or dorsomedial shell suppresses lever pressing for food but leads to compensatory increases in chow consumption. Pharmacol Biochem Behav 2001; 69:373-82. [PMID: 11509194 DOI: 10.1016/s0091-3057(01)00524-x] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Although interference with dopamine (DA) systems can suppress lever pressing for food reinforcement, it is not clear whether this effect occurs because of a general disruption of food motivation. One way of assessing this has been a choice procedure in which a rat responds on an fixed ratio 5 (FR5) schedule for preferred Bioserve pellets while a less preferred lab chow is concurrently available in the operant chamber. Untreated rats consume little of the chow, preferring to respond for the Bioserve pellets. Previous studies have shown that depleting DA in the accumbens substantially decreased lever pressing while increasing chow consumption. In the present study, low doses (0.0625-1.0 microg) of the D1 antagonist SCH 23390 or the D2 antagonist raclopride were injected into the either the core or shell subregions of nucleus accumbens, and rats were tested on the concurrent lever pressing/feeding task. Analysis of the dose response curves showed that injections of SCH 23390 into the core were more potent than injections into the shell for suppressing lever pressing (i.e., the ED(50) was lower in the core). Nevertheless, injections of either drug into either site suppressed lever pressing and increased intake of the concurrently available chow. Across both drugs and at both sites, the amount of chow consumed was negatively correlated with the total number of responses. Neither drug significantly increased response duration, suggesting that accumbens DA antagonism did not produce the type of motor impairment that leads to severe alterations in the form of lever pressing. In summary, the blockade of D1 or D2 receptors in nucleus accumbens core or shell decreased lever pressing for food reinforcers, but rats remained directed toward the acquisition and consumption of food. These results indicate that accumbens D1 antagonism does not decrease lever pressing because of a general reduction in food motivation. Nevertheless, interference with accumbens DA does appear to set constraints upon which responses are selected for obtaining food, and may impair the ability of animals to overcome work-related response costs in order to obtain food.
Collapse
Affiliation(s)
- K L Nowend
- Unit 1020, Department of Psychology, University of Connecticut, 406 Babbidge Road, Storrs, CT 06269-1020, USA
| | | | | | | |
Collapse
|
25
|
Vizuete ML, Merino M, Venero JL, Santiago M, Cano J, Machado A. Histamine infusion induces a selective dopaminergic neuronal death along with an inflammatory reaction in rat substantia nigra. J Neurochem 2000; 75:540-52. [PMID: 10899929 DOI: 10.1046/j.1471-4159.2000.0750540.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have evaluated the effects of a direct infusion of histamine, as mediator of inflammatory response, in substantia nigra, striatum, medial septum, and medial lemniscus. Injection of 100 and 250 nmol of histamine in substantia nigra produced a selective damage in dopaminergic neurons evidenced by the loss of tyrosine hydroxylase mRNA-expressing cells, tyrosine hydroxylase-immunolabeled-positive cell bodies, and dopamine and 3,4-dihydroxyphenylacetic acid levels. In parallel we found an acute inflammatory response manifested by a loss of glial fibrillary acidic protein-immunolabeled astrocytes and, at precisely the same area, an activation of microglia. In the striatum, only high doses (500 nmol) produced an evident terminal degeneration. The selective neurotoxicity of histamine for dopaminergic cells was demonstrated by the unaltered transcription of glutamic acid decarboxylase mRNA in substantia nigra. Moreover, intraseptal injection of 100 nmol of histamine failed to alter the pattern of choline acetyltransferase mRNA-expressing cells, and intraparenchymal injection of histamine in medial lemniscus failed to alter the pattern of serotonin-immunolabeled cells. We conclude that the substantia nigra is highly sensitive to histamine-derived neurotoxicity, where inflammatory processes mediated by histamine could be important in the pathological changes that lead to dopaminergic neuronal damage after histamine infusion.
Collapse
Affiliation(s)
- M L Vizuete
- Departamento de Bioquimica, Bromatologia, Toxicologia, y Medicina Legal, Universidad de Sevilla, Sevilla, Spain
| | | | | | | | | | | |
Collapse
|
26
|
Carlson BB, Trevitt JT, Salamone JD. Effects of H1 antagonists on cholinomimetic-induced tremulous jaw movements: studies of diphenhydramine, doxepin, and mepyramine. Pharmacol Biochem Behav 2000; 65:683-9. [PMID: 10764923 DOI: 10.1016/s0091-3057(99)00242-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In several previous studies, tremulous jaw movements in rats have been used to assess the effects of antiparkinsonian drugs and atypical antipsychotics. Because antihistamines such as diphenhydramine are used as antiparkinsonian agents, and atypical antipsychotic drugs such as clozapine and olanzapine have high affinity for histamine H1 receptors, the present study investigated the effects of H1 antagonists on cholinomimetic-induced jaw movements. Diphenhydramine, doxepin, and mepyramine (all injected IP 2.5-20.0 mg/kg) were assessed for their ability to block the jaw movements induced by 5.0 mg/kg of the anticholinesterase tacrine. Within this dose range, only diphenhydramine produced a robust and significant reduction in jaw movement activity. Thus, diphenhydramine was subjected to further testing, which employed procedures previously used to assess the effects of other antitremorogenic drugs, such as clozapine. Diphenhydramine did not induce jaw movement activity. In addition to suppressing jaw movement activity after acute injections, diphenhydramine also suppressed tacrine-induced jaw movements after repeated (14-day) administration. In summary, the present results show that diphenhydramine suppresses cholinomimetic-induced jaw movements, an effect that is similar to other antiparkinsonian or antitremor drugs such as anticholinergics, L-DOPA, DA antagonists, and clozapine. Nevertheless, doxepin produced only mild effects, and mepyramine, which has a higher affinity and selectivity than diphenhydramine for H1 receptors, failed to suppress cholinomimetic-induced jaw movements. These results suggest that diphenhydramine suppresses tremulous movements through a mechanism that does not depend upon antagonism of histamine H1 receptors.
Collapse
Affiliation(s)
- B B Carlson
- Department of Psychology, University of Connecticut, Storrs, CT 06269-1020, USA
| | | | | |
Collapse
|
27
|
Mayorga AJ, Cousins MS, Trevitt JT, Conlan A, Gianutsos G, Salamone JD. Characterization of the muscarinic receptor subtype mediating pilocarpine-induced tremulous jaw movements in rats. Eur J Pharmacol 1999; 364:7-11. [PMID: 9920179 DOI: 10.1016/s0014-2999(98)00811-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Four muscarinic receptor antagonists with varying selectivities for the four pharmacologically-defined muscarinic receptor subtypes (M1-M4) were administered into the lateral ventricle to determine their relative potency in reducing tremulous jaw movements induced by i.p. injection of the muscarinic receptor agonist pilocarpine (4.0 mg/kg). All four muscarinic receptor antagonists reduced tremulous jaw movements in a dose-dependent manner, with the following rank order of potency: scopolamine > methoctramine > or = telenzepine > pirenzepine. This pattern is inconsistent with the rank order of affinity of these agents at the muscarinic M1 receptor, and is consistent with their rank order of affinity at muscarinic M2 or M4 receptors. Because tremulous jaw movements are related to striatal function, and the muscarinic M4 receptor is more predominant than the muscarinic M2 receptor as a post-synaptic receptor in striatum, the present results suggest that pilocarpine induces jaw movements due to muscarinic M4 receptor stimulation. In view of the hypothesized relation between parkinsonism and cholinomimetic-induced jaw movements, these data suggest that a centrally-acting muscarinic M4 receptor antagonist could be useful as an antiparkinsonian agent.
Collapse
Affiliation(s)
- A J Mayorga
- Department of Psychology, University of Connecticut, Storrs 06269-1020, USA
| | | | | | | | | | | |
Collapse
|
28
|
Salamone JD, Mayorga AJ, Trevitt JT, Cousins MS, Conlan A, Nawab A. Tremulous jaw movements in rats: a model of parkinsonian tremor. Prog Neurobiol 1998; 56:591-611. [PMID: 9871939 DOI: 10.1016/s0301-0082(98)00053-7] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Several pharmacological and neurochemical conditions in rats induce 'vacuous' or 'tremulous' jaw movements. Although the clinical significance of these movements has been a subject of some debate, considerable evidence indicates that the non-directed, chewing-like movements induced by cholinomimetics, dopamine antagonists and dopamine depletions have many of the characteristics of parkinsonian tremor. These movements occur within the 3-7 Hz peak frequency range that is characteristic of parkinsonian tremor. Tremulous jaw movements are induced by many of the conditions that are associated with parkinsonism, and suppressed by several different antiparkinsonian drugs, including scopolamine, benztropine, L-DOPA, apomorphine, bromocriptine, amantadine and clozapine. Striatal cholinergic and dopaminergic mechanisms are involved in the generation of tremulous jaw movements, and substantia nigra pars reticulata appears to be a major basal ganglia output region through which the jaw movements are regulated. Future research on the neurochemical and anatomical characteristics of tremulous jaw movements could yield important insights into the brain mechanisms that generate tremulous movements.
Collapse
Affiliation(s)
- J D Salamone
- Department of Psychology, University of Connecticut, Storrs 06269-1020, USA
| | | | | | | | | | | |
Collapse
|
29
|
Cousins MS, Atherton A, Salamone JD. Behavioral and electromyographic characterization of the local frequency of tacrine-induced tremulous jaw movements. Physiol Behav 1998; 64:153-8. [PMID: 9662079 DOI: 10.1016/s0031-9384(98)00021-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Rats were implanted with fine-wire electromyograph (EMG) electrodes and were videotaped to identify the local frequency characteristics and muscle activity associated with tacrine-induced tremulous jaw movements. All rats received intraperitoneal injections of 2.5 mg/kg tacrine. The videotape sessions were played back in slow motion (i.e., one-sixth normal speed), and an observer entered each jaw movement into a computer program that recalculated the interresponse time and the local frequency (in hertz) for each movement within a burst. Analyses of the distribution of frequencies showed that the peak frequency of jaw movements was in the 3- to 5-Hz frequency range, with an average frequency of 4.0 Hz. EMG electrodes were implanted into three jaw muscles: temporalis, anterior belly of digastricus, and masseter. Tremulous jaw movements were not accompanied by consistent changes in masseter activity. The anterior belly of digastricus showed bursts of EMG activity during some jaw movements, although the temporal relation between jaw movements and EMG activity was somewhat inconsistent. The muscle that showed activity most closely related to tremulous jaw movements was the temporalis. During bursts of jaw movements, temporalis muscles across several different rats showed bursts of EMG activity. Sections of videotape corresponding to bursts of EMG activity were reanalyzed by freeze-frame examination of the tape; typically, the temporalis showed a burst for each jaw movement, with the burst of activity occurring during the jaw-closing phase and the transition between jaw closing and opening. These results indicate that the local frequency of tremulous jaw movements is within the 3- to 7-Hz frequency that is typically associated with parkinsonian tremor. Moreover, the EMG data suggest that temporalis is a major contributor to the muscle activity that underlies tremulous jaw movements.
Collapse
Affiliation(s)
- M S Cousins
- Department of Psychology, University of Connecticut, Storrs 06269-1020, USA
| | | | | |
Collapse
|