1
|
Marchenkov V, Surin A, Ugarov V, Kotova N, Marchenko N, Fedorov A, Finkelstein A, Filimonov V, Semisotnov G. Co-chaperonin GroES subunit exchange as dependent on time, pH, protein concentration, and urea. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:141032. [PMID: 39004159 DOI: 10.1016/j.bbapap.2024.141032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/27/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
The discovery of a subunit exchange in some oligomeric proteins, implying short-term dissociation of their oligomeric structure, requires new insights into the role of the quaternary structure in oligomeric protein stability and function. Here we demonstrate the effect of pH, protein concentration, and urea on the efficiency of GroES heptamer (GroES7) subunit exchange. A mixture of equimolar amounts of wild-type (WT) GroES7 and its Ala97Cys mutant modified with iodoacetic acid (97-carboxymethyl cysteine or CMC-GroES7) was incubated in various conditions and subjected to isoelectric focusing (IEF) in polyacrylamide gel. For each sample, there are eight Coomassie-stained electrophoretic bands showing different charges that result from a different number of included mutant subunits, each carrying an additional negative charge. The intensities of these bands serve to analyze the protein subunit exchange. The protein stability is evaluated using the transverse urea gradient gel electrophoresis (TUGGE). At pH 8.0, the intensities of the initial bands corresponding to WT-GroES7 and CMC-GroES7 are decreased with a half-time of (23 ± 2) min. The exchange decreases with decreasing pH and seems to be strongly hindered at pH 5.2 due to the protonation of groups with pK ∼ 6.3, which stabilizes the protein quaternary structure. The destabilization of the protein quaternary structure caused by increased pH, decreased protein concentration, or urea accelerates the GroES subunit exchange. This study allows visualizing the subunit exchange in oligomeric proteins and confirms its direct connection with the stability of the protein quaternary structure.
Collapse
Affiliation(s)
- Victor Marchenkov
- Institute of Protein Research, Russian Academy of Sciences, 4 Institutskaya Street, 142290 Pushchino, Russia
| | - Alexey Surin
- Institute of Protein Research, Russian Academy of Sciences, 4 Institutskaya Street, 142290 Pushchino, Russia; Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Prospekt Nauki, 142290 Pushchino, Russia; State Research Centre for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia
| | - Victor Ugarov
- Institute of Protein Research, Russian Academy of Sciences, 4 Institutskaya Street, 142290 Pushchino, Russia
| | - Nina Kotova
- Institute of Protein Research, Russian Academy of Sciences, 4 Institutskaya Street, 142290 Pushchino, Russia
| | - Natalia Marchenko
- Institute of Protein Research, Russian Academy of Sciences, 4 Institutskaya Street, 142290 Pushchino, Russia
| | - Alexey Fedorov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33, Bld. 2 Leninsky Ave., 119071 Moscow, Russia
| | - Alexei Finkelstein
- Institute of Protein Research, Russian Academy of Sciences, 4 Institutskaya Street, 142290 Pushchino, Russia
| | - Vladimir Filimonov
- Institute of Protein Research, Russian Academy of Sciences, 4 Institutskaya Street, 142290 Pushchino, Russia
| | - Gennady Semisotnov
- Institute of Protein Research, Russian Academy of Sciences, 4 Institutskaya Street, 142290 Pushchino, Russia.
| |
Collapse
|
2
|
Shafqat W, Jaskani MJ, Maqbool R, Sattar Khan A, Abbas Naqvi S, Ali Z, Ahmad Khan I. Genome Wide Analysis of Citrus sinensis Heat Shock Proteins. IRANIAN JOURNAL OF BIOTECHNOLOGY 2020; 18:e2529. [PMID: 34056019 PMCID: PMC8148642 DOI: 10.30498/ijb.2020.2529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Plant and animal cells possess a ubiquitous protein known as heat shock proteins (HSPs). Hsps were originally described in relation to heat shock and against abiotic and biotic stresses. Heat shock protein was classified in other crops on the bases of single classes or all classes but in Citrus sinensis Hsps groups, classes, subfamilies and members were not classified and characterized up to our knowledge. OBJECTIVES Present study was focused on the identification and grouping of C. sinensis Hsps (CsHsps) classes, members among classes, their phylogenetic relationship, gene structure, conserved motifs and identification of proteins by using bioinformatics tools and analyses. MATERIALS AND METHODS Genomic, Peptide and CDS sequences of CsHsps were downloaded from phytozome. MEGA 7 used for the phylogenetic analysis, GSDS for gene structure, UGENE for the multiple sequence alignment and MEME suite for the conserved motif analysis. RESULTS The genome size of C. sinensis was 367 Mb, Chromosome number (2n)18, having 151 Hsps with six groups CsHsp10, 20, 40, 60,70 and 90. CsHsp20 was the largest group having 54 members, followed by CsHsp60 and CsHsp70 both having 30 members respectively. CONCLUSION CsHsps members within a class shared more similar gene and protein structure. CsHsp 60, CsHsp 70 and CsHsp90 shared more conserved and similar amino acid pattern. Each class had some important proteins such as Cpn in CsHsp10, Hypothetical proteins in CsHsp20 and 40, Dnak in CsHsp60, Molecular chaperone in CsHsp70 and Hsp90 in CsHsp90. These proteins are produced by cells in response to stresses in citrus. Chaperonins and some hypothetical proteins identified in CsHsps, help in ATP synthesis and protein degradation. This is genome wide analysis and classification sets the groundwork for future investigations to fully characterize functionally the Citrus Hsps families and underscores the relevance of Hsps response to abiotic and biotic stresses in Citrus.
Collapse
Affiliation(s)
- Waqar Shafqat
- Institute of Horticultural Sciences, Faculty of Agriculture, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Jafar Jaskani
- Institute of Horticultural Sciences, Faculty of Agriculture, University of Agriculture, Faisalabad, Pakistan
| | - Rizwana Maqbool
- Center for Advanced Studies, University of Agriculture, Faisalabad, Pakistan
- Department of Plant Breeding and Genetics, Faculty of Agriculture, University of Agriculture, Faisalabad, Pakistan
| | - Ahmad Sattar Khan
- Institute of Horticultural Sciences, Faculty of Agriculture, University of Agriculture, Faisalabad, Pakistan
| | - Summar Abbas Naqvi
- Institute of Horticultural Sciences, Faculty of Agriculture, University of Agriculture, Faisalabad, Pakistan
| | - Zulfiqar Ali
- Plant Breeding and Genetics, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Iqrar Ahmad Khan
- Institute of Horticultural Sciences, Faculty of Agriculture, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
3
|
Abstract
This chronologue seeks to document the discovery and development of an understanding of oligomeric ring protein assemblies known as chaperonins that assist protein folding in the cell. It provides detail regarding genetic, physiologic, biochemical, and biophysical studies of these ATP-utilizing machines from both in vivo and in vitro observations. The chronologue is organized into various topics of physiology and mechanism, for each of which a chronologic order is generally followed. The text is liberally illustrated to provide firsthand inspection of the key pieces of experimental data that propelled this field. Because of the length and depth of this piece, the use of the outline as a guide for selected reading is encouraged, but it should also be of help in pursuing the text in direct order.
Collapse
|
4
|
Dyachenko A, Tamara S, Heck AJR. Distinct Stabilities of the Structurally Homologous Heptameric Co-Chaperonins GroES and gp31. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:7-15. [PMID: 29736602 PMCID: PMC6318259 DOI: 10.1007/s13361-018-1910-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/01/2018] [Accepted: 02/01/2018] [Indexed: 05/06/2023]
Abstract
The GroES heptamer is the molecular co-chaperonin that partners with the tetradecamer chaperonin GroEL, which assists in the folding of various nonnative polypeptide chains in Escherichia coli. Gp31 is a structural and functional analogue of GroES encoded by the bacteriophage T4, becoming highly expressed in T4-infected E. coli, taking over the role of GroES, favoring the folding of bacteriophage proteins. Despite being slightly larger, gp31 is quite homologous to GroES in terms of its tertiary and quaternary structure, as well as in its function and mode of interaction with the chaperonin GroEL. Here, we performed a side-by-side comparison of GroES and gp31 heptamer complexes by (ion mobility) tandem mass spectrometry. Surprisingly, we observed quite distinct fragmentation mechanisms for the GroES and gp31 heptamers, whereby GroES displays a unique and unusual bimodal charge distribution in its released monomers. Not only the gas-phase dissociation but also the gas-phase unfolding of GroES and gp31 were found to be very distinct. We rationalize these observations with the similar discrepancies we observed in the thermal unfolding characteristics and surface contacts within GroES and gp31 in the solution. From our data, we propose a model that explains the observed simultaneous dissociation pathways of GroES and the differences between GroES and gp31 gas-phase dissociation and unfolding. We conclude that, although GroES and gp31 exhibit high homology in tertiary and quaternary structure, they are quite distinct in their solution and gas-phase (un)folding characteristics and stability. Graphical Abstract.
Collapse
Affiliation(s)
- Andrey Dyachenko
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- Netherlands Proteomics Centre, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Sem Tamara
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- Netherlands Proteomics Centre, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
- Netherlands Proteomics Centre, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| |
Collapse
|
5
|
Tamara S, Dyachenko A, Fort KL, Makarov AA, Scheltema RA, Heck AJR. Symmetry of Charge Partitioning in Collisional and UV Photon-Induced Dissociation of Protein Assemblies. J Am Chem Soc 2016; 138:10860-8. [PMID: 27480281 PMCID: PMC6392339 DOI: 10.1021/jacs.6b05147] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Indexed: 01/08/2023]
Abstract
Tandem mass spectrometry can provide structural information on intact protein assemblies, generating mass fingerprints indicative of the stoichiometry and quaternary arrangement of the subunits. However, in such experiments, collision-induced dissociation yields restricted information due to simultaneous subunit unfolding, charge rearrangement, and subsequent ejection of a highly charged unfolded single subunit. Alternative fragmentation strategies can potentially overcome this and supply a deeper level of structural detail. Here, we implemented ultraviolet photodissociation (UVPD) on an Orbitrap mass spectrometer optimized for native MS and benchmark its performance to HCD fragmentation using various protein oligomers. We investigated dimeric β-lactoglobulin, dimeric superoxide dismutase, dimeric and tetrameric concanavalin A, and heptameric GroES and Gp31; ranging in molecular weight from 32 to 102 kDa. We find that, for the investigated systems, UVPD produces more symmetric charge partitioning than HCD. While HCD spectra show sporadic fragmentation over the full protein backbone sequence of the subunits with a bias toward fragmenting labile bonds, UVPD spectra provided higher sequence coverage. Taken together, we conclude that UVPD is a strong addition to the toolbox of fragmentation methods for top-down proteomics experiments, especially for native protein assemblies.
Collapse
Affiliation(s)
- Sem Tamara
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for
Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, and Netherlands
Proteomics Center, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Andrey Dyachenko
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for
Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, and Netherlands
Proteomics Center, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Kyle L. Fort
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for
Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, and Netherlands
Proteomics Center, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Alexander A. Makarov
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for
Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, and Netherlands
Proteomics Center, Utrecht University, 3584 CH Utrecht, The Netherlands
- Thermo
Fisher Scientific (Bremen), 28199 Bremen, Germany
| | - Richard A. Scheltema
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for
Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, and Netherlands
Proteomics Center, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Albert J. R. Heck
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for
Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, and Netherlands
Proteomics Center, Utrecht University, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
6
|
Non-structural proteins P17 and P33 are involved in the assembly of the internal membrane-containing virus PRD1. Virology 2015; 482:225-33. [PMID: 25880114 DOI: 10.1016/j.virol.2015.03.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 11/30/2014] [Accepted: 03/22/2015] [Indexed: 11/24/2022]
Abstract
Bacteriophage PRD1, which has been studied intensively at the structural and functional levels, still has some gene products with unknown functions and certain aspects of the PRD1 assembly process have remained unsolved. In this study, we demonstrate that the phage-encoded non-structural proteins P17 and P33, either individually or together, complement the defect in a temperature-sensitive GroES mutant of Escherichia coli for host growth and PRD1 propagation. Confocal microscopy of fluorescent fusion proteins revealed co-localisation between P33 and P17 as well as between P33 and the host chaperonin GroEL. A fluorescence recovery after photobleaching assay demonstrated that the diffusion of the P33 fluorescent fusion protein was substantially slower in E. coli than theoretically calculated, presumably resulting from intermolecular interactions. Our results indicate that P33 and P17 function in procapsid assembly, possibly in association with the host chaperonin complex GroEL/GroES.
Collapse
|
7
|
Molecular biology and biotechnology of bacteriophage. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014. [PMID: 19714316 DOI: 10.1007/10_2008_46] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
The development of the molecular biology of bacteriophage such as T4, lambda and filamentous phages was described and the process that the fundamental knowledge obtained in this field has subsequently led us to the technology of phage display was introduced.
Collapse
|
8
|
Vitlin Gruber A, Nisemblat S, Zizelski G, Parnas A, Dzikowski R, Azem A, Weiss C. P. falciparum cpn20 is a bona fide co-chaperonin that can replace GroES in E. coli. PLoS One 2013; 8:e53909. [PMID: 23326533 PMCID: PMC3542282 DOI: 10.1371/journal.pone.0053909] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Accepted: 12/04/2012] [Indexed: 02/05/2023] Open
Abstract
Human malaria is among the most ubiquitous and destructive tropical, parasitic diseases in the world today. The causative agent, Plasmodium falciparum, contains an unusual, essential organelle known as the apicoplast. Inhibition of this degenerate chloroplast results in second generation death of the parasite and is the mechanism by which antibiotics function in treating malaria. In order to better understand the biochemistry of this organelle, we have cloned a putative, 20 kDa, co-chaperonin protein, Pf-cpn20, which localizes to the apicoplast. Although this protein is homologous to the cpn20 that is found in plant chloroplasts, its ability to function as a co-chaperonin was questioned in the past. In the present study, we carried out a structural analysis of Pf-cpn20 using circular dichroism and analytical ultracentrifugation and then used two different approaches to investigate the ability of this protein to function as a co-chaperonin. In the first approach, we purified recombinant Pf-cpn20 and tested its ability to act as a co-chaperonin for GroEL in vitro, while in the second, we examined the ability of Pf-cpn20 to complement an E. coli depletion of the essential bacterial co-chaperonin GroES. Our results demonstrate that Pf-cpn20 is fully functional as a co-chaperonin in vitro. Moreover, the parasitic co-chaperonin is able to replace GroES in E. coli at both normal and heat-shock temperatures. Thus, Pf-cpn20 functions as a co-chaperonin in chaperonin-mediated protein folding. The ability of the malarial protein to function in E. coli suggests that this simple system can be used as a tool for further analyses of Pf-cpn20 and perhaps other chaperone proteins from P. falciparum.
Collapse
Affiliation(s)
- Anna Vitlin Gruber
- George E. Wise Faculty of Life Sciences, Department of Biochemistry and Molecular Biology, Tel Aviv University, Ramat Aviv, Israel
| | | | | | | | | | | | | |
Collapse
|
9
|
Expression and functional characterization of the first bacteriophage-encoded chaperonin. J Virol 2012; 86:10103-11. [PMID: 22787217 DOI: 10.1128/jvi.00940-12] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chaperonins promote protein folding in vivo and are ubiquitously found in bacteria, archaea, and eukaryotes. The first viral chaperonin GroEL ortholog, gene product 146 (gp146), whose gene was earlier identified in the genome of bacteriophage EL, has been shown to be synthesized during phage propagation in Pseudomonas aeruginosa cells. The recombinant gp146 has been expressed in Escherichia coli and characterized by different physicochemical methods for the first time. Using serum against the recombinant protein, gp146's native substrate, the phage endolysin gp188, has been immunoprecipitated from the lysate of EL-infected bacteria and identified by mass spectrometry. In vitro experiments have shown that gp146 has a protective effect against endolysin thermal inactivation and aggregation, providing evidence of its chaperonin function. The phage chaperonin has been found to have the architecture and some properties similar to those of GroEL but not to require cochaperonin for its functional activity.
Collapse
|
10
|
Tsai YCC, Mueller-Cajar O, Saschenbrecker S, Hartl FU, Hayer-Hartl M. Chaperonin cofactors, Cpn10 and Cpn20, of green algae and plants function as hetero-oligomeric ring complexes. J Biol Chem 2012; 287:20471-81. [PMID: 22518837 DOI: 10.1074/jbc.m112.365411] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The chloroplast chaperonin system of plants and green algae is a curiosity as both the chaperonin cage and its lid are encoded by multiple genes, in contrast to the single genes encoding the two components of the bacterial and mitochondrial systems. In the green alga Chlamydomonas reinhardtii (Cr), three genes encode chaperonin cofactors, with cpn10 encoding a single ∼10-kDa domain and cpn20 and cpn23 encoding tandem cpn10 domains. Here, we characterized the functional interaction of these proteins with the Escherichia coli chaperonin, GroEL, which normally cooperates with GroES, a heptamer of ∼10-kDa subunits. The C. reinhardtii cofactor proteins alone were all unable to assist GroEL-mediated refolding of bacterial ribulose-bisphosphate carboxylase/oxygenase but gained this ability when CrCpn20 and/or CrCpn23 was combined with CrCpn10. Native mass spectrometry indicated the formation of hetero-oligomeric species, consisting of seven ∼10-kDa domains. The cofactor "heptamers" interacted with GroEL and encapsulated substrate protein in a nucleotide-dependent manner. Different hetero-oligomer arrangements, generated by constructing cofactor concatamers, indicated a preferential heptamer configuration for the functional CrCpn10-CrCpn23 complex. Formation of heptamer Cpn10/Cpn20 hetero-oligomers was also observed with the Arabidopsis thaliana (At) cofactors, which functioned with the chloroplast chaperonin, AtCpn60α(7)β(7). It appears that hetero-oligomer formation occurs more generally for chloroplast chaperonin cofactors, perhaps adapting the chaperonin system for the folding of specific client proteins.
Collapse
Affiliation(s)
- Yi-Chin C Tsai
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | | | | | | | | |
Collapse
|
11
|
Ang D, Georgopoulos C. An ORFan no more: the bacteriophage T4 39.2 gene product, NwgI, modulates GroEL chaperone function. Genetics 2012; 190:989-1000. [PMID: 22234860 PMCID: PMC3296260 DOI: 10.1534/genetics.111.135640] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Accepted: 11/07/2011] [Indexed: 11/18/2022] Open
Abstract
Bacteriophages are the most abundant biological entities in our biosphere, characterized by their hyperplasticity, mosaic composition, and the many unknown functions (ORFans) encoded by their immense genetic repertoire. These genes are potentially maintained by the bacteriophage to allow efficient propagation on hosts encountered in nature. To test this hypothesis, we devised a selection to identify bacteriophage-encoded gene(s) that modulate the host Escherichia coli GroEL/GroES chaperone machine, which is essential for the folding of certain host and bacteriophage proteins. As a result, we identified the bacteriophage RB69 gene 39.2, of previously unknown function and showed that homologs of 39.2 in bacteriophages T4, RB43, and RB49 similarly modulate GroEL/GroES. Production of wild-type bacteriophage T4 Gp39.2, a 58-amino-acid protein, (a) enables diverse bacteriophages to plaque on the otherwise nonpermissive groES or groEL mutant hosts in an allele-specific manner, (b) suppresses the temperature-sensitive phenotype of both groES and groEL mutants, (c) suppresses the defective UV-induced PolV function (UmuCD) of the groEL44 mutant, and (d) is lethal to the host when overproduced. Finally, as proof of principle that Gp39.2 is essential for bacteriophage growth on certain bacterial hosts, we constructed a T4 39.2 deletion strain and showed that, unlike the isogenic wild-type parent, it is incapable of propagating on certain groEL mutant hosts. We propose a model of how Gp39.2 modulates GroES/GroEL function.
Collapse
Affiliation(s)
- Debbie Ang
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112-5650
| | - Costa Georgopoulos
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112-5650
| |
Collapse
|
12
|
Hildenbrand ZL, Bernal RA. Chaperonin-Mediated Folding of Viral Proteins. VIRAL MOLECULAR MACHINES 2012; 726:307-24. [DOI: 10.1007/978-1-4614-0980-9_13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
13
|
Aguilar X, F. Weise C, Sparrman T, Wolf-Watz M, Wittung-Stafshede P. Macromolecular Crowding Extended to a Heptameric System: The Co-chaperonin Protein 10. Biochemistry 2011; 50:3034-44. [DOI: 10.1021/bi2002086] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ximena Aguilar
- Department of Chemistry, Chemical Biological Center, Umeå University, 901 87 Umeå, Sweden
| | - Christoph F. Weise
- Department of Chemistry, Chemical Biological Center, Umeå University, 901 87 Umeå, Sweden
| | - Tobias Sparrman
- Department of Chemistry, Chemical Biological Center, Umeå University, 901 87 Umeå, Sweden
| | - Magnus Wolf-Watz
- Department of Chemistry, Chemical Biological Center, Umeå University, 901 87 Umeå, Sweden
| | | |
Collapse
|
14
|
Abstract
The assembly of subunits in protein oligomers is an important topic to study as a vast number of proteins exists as stable or transient oligomer and because it is a mechanism used by some protein oligomers for killing cells (e.g., perforin from the human immune system, pore-forming toxins from bacteria, phage, amoeba, protein misfolding diseases, etc.). Only a few of the amino acids that constitute a protein oligomer seem to regulate the capacity of the protein to assemble (to form interfaces), and some of these amino acids are localized at the interfaces that link the different chains. The identification of the residues of these interfaces is rather difficult. We have developed a series of programs, under the common name of Gemini, that can select the subset of the residues that is involved in the interfaces of a protein oligomer of known atomic structure, and generate a 2D interaction network (or graph) of the subset. The graphs generated for several oligomers demonstrate the accuracy of the selection of subsets that are involved in the geometrical and the chemical properties of interfaces. The results of the Gemini programs are in good agreement with those of similar programs with an advantage that Gemini programs can perform the residue selection much more rapidly. Moreover, Gemini programs can also perform on a single protein oligomer without the need of comparison partners. The graphs are extremely useful for comparative studies that would help in addressing questions not only on the sequence specificity of protein interfaces but also on the mechanism of the assembly of unrelated protein oligomers.
Collapse
Affiliation(s)
- Giovanni Feverati
- Laboratoire de physique théorique LAPTH, CNRS, UMR 5108 associé à l'Université de Savoie, BP 110, Annecy le Vieux, France
| | - Claire Lesieur
- Laboratoire de physique théorique LAPTH, CNRS, UMR 5108 associé à l'Université de Savoie, BP 110, Annecy le Vieux, France
- * E-mail:
| |
Collapse
|
15
|
Calmat S, Hendriks J, van Heerikhuizen H, Schmidt CF, van der Vies SM, Peterman EJG. Dissociation kinetics of the GroEL-gp31 chaperonin complex studied with Förster resonance energy transfer. Biochemistry 2010; 48:11692-8. [PMID: 19899806 DOI: 10.1021/bi9013962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Propagation of bacteriophage T4 in its host Escherichia coli involves the folding of the major capsid protein gp23, which is facilitated by a hybrid chaperone complex consisting of the bacterial chaperonin GroEL and the phage-encoded co-chaperonin, gp31. It has been well established that the GroEL-gp31 complex is capable of folding gp23 whereas the homologous GroEL-GroES complex cannot perform this function. To assess whether this is a consequence of differences in the interactions of the proteins within the chaperonin complex, we have investigated the dissociation kinetics of GroEL-gp31 and GroEL-GroES complexes using Forster resonance energy transfer. Here we report that the dissociation of gp31 from GroEL is slightly faster than that of GroES from GroEL and is further accelerated by the binding of gp23. In contrast to what had been observed previously, we found that gp23 is able to interact with the GroEL-GroES complex, which might explain how bacteriophage T4 redirects the folding machinery of Escherichia coli during morphogenesis.
Collapse
Affiliation(s)
- Stéphane Calmat
- Department of Physics and Astronomy and Laser Centre, VU University, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
16
|
Horwich AL, Apetri AC, Fenton WA. The GroEL/GroES cis cavity as a passive anti-aggregation device. FEBS Lett 2009; 583:2654-62. [PMID: 19577567 PMCID: PMC2759771 DOI: 10.1016/j.febslet.2009.06.049] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 06/27/2009] [Accepted: 06/30/2009] [Indexed: 10/20/2022]
Abstract
The GroEL/GroES chaperonin folding chamber is an encapsulated space of approximately 65 A diameter with a hydrophilic wall, inside of which many cellular proteins reach the native state. The question of whether the cavity wall actively directs folding reactions or is playing a passive role has been open. We review past and recent observations and conclude that the chamber functions as a passive "Anfinsen cage" that prevents folding monomers from multimolecular aggregation.
Collapse
Affiliation(s)
- Arthur L Horwich
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA.
| | | | | |
Collapse
|
17
|
Weiss C, Bonshtien A, Farchi-Pisanty O, Vitlin A, Azem A. Cpn20: siamese twins of the chaperonin world. PLANT MOLECULAR BIOLOGY 2009; 69:227-38. [PMID: 19031045 DOI: 10.1007/s11103-008-9432-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Accepted: 11/08/2008] [Indexed: 05/08/2023]
Abstract
The chloroplast cpn20 protein is a functional homolog of the cpn10 co-chaperonin, but its gene consists of two cpn10-like units joined head-to-tail by a short chain of amino acids. This double protein is unique to plastids and was shown to exist in plants as well plastid-containing parasites. In vitro assays showed that this cpn20 co-chaperonin is a functional homolog of cpn10. In terms of structure, existing data indicate that the oligomer is tetrameric, yet it interacts with a heptameric cpn60 partner. Thus, the functional oligomeric structure remains a mystery. In this review, we summarize what is known about this distinctive chaperonin and use a bioinformatics approach to examine the expression of cpn20 in Arabidopsis thaliana relative to other chaperonin genes in this species. In addition, we examine the primary structure of the two homologous domains for similarities and differences, in comparison with cpn10 from other species. Lastly, we hypothesize as to the oligomeric structure and raison d'être of this unusual co-chaperonin homolog.
Collapse
Affiliation(s)
- Celeste Weiss
- Department of Biochemistry, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | |
Collapse
|
18
|
Clare DK, Bakkes PJ, van Heerikhuizen H, van der Vies SM, Saibil HR. Chaperonin complex with a newly folded protein encapsulated in the folding chamber. Nature 2009; 457:107-10. [PMID: 19122642 PMCID: PMC2728927 DOI: 10.1038/nature07479] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Accepted: 09/12/2008] [Indexed: 11/08/2022]
Abstract
A subset of essential cellular proteins requires the assistance of chaperonins (in Escherichia coli, GroEL and GroES), double-ring complexes in which the two rings act alternately to bind, encapsulate and fold a wide range of nascent or stress-denatured proteins. This process starts by the trapping of a substrate protein on hydrophobic surfaces in the central cavity of a GroEL ring. Then, binding of ATP and co-chaperonin GroES to that ring ejects the non-native protein from its binding sites, through forced unfolding or other major conformational changes, and encloses it in a hydrophilic chamber for folding. ATP hydrolysis and subsequent ATP binding to the opposite ring trigger dissociation of the chamber and release of the substrate protein. The bacteriophage T4 requires its own version of GroES, gp31, which forms a taller folding chamber, to fold the major viral capsid protein gp23 (refs 16-20). Polypeptides are known to fold inside the chaperonin complex, but the conformation of an encapsulated protein has not previously been visualized. Here we present structures of gp23-chaperonin complexes, showing both the initial captured state and the final, close-to-native state with gp23 encapsulated in the folding chamber. Although the chamber is expanded, it is still barely large enough to contain the elongated gp23 monomer, explaining why the GroEL-GroES complex is not able to fold gp23 and showing how the chaperonin structure distorts to enclose a large, physiological substrate protein.
Collapse
Affiliation(s)
- D K Clare
- Department of Crystallography and Institute for Structural and Molecular Biology, Birkbeck College, Malet Street, London WC1E 7HX, UK
| | | | | | | | | |
Collapse
|
19
|
Geels RBJ, Calmat S, Heck AJR, van der Vies SM, Heeren RMA. Thermal activation of the co-chaperonins GroES and gp31 probed by mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2008; 22:3633-3641. [PMID: 18972453 DOI: 10.1002/rcm.3782] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Many biological active proteins are assembled in protein complexes. Understanding the (dis)assembly of such complexes is therefore of major interest. Here we use mass spectrometry to monitor the disassembly induced by thermal activation of the heptameric co-chaperonins GroES and gp31. We use native electrospray ionization mass spectrometry (ESI-MS) on a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer to monitor the stoichiometry of the chaperonins. A thermally controlled electrospray setup was employed to analyze conformational and stoichiometric changes of the chaperonins at varying temperature. The native ESI-MS data agreed well with data obtained from fluorescence spectroscopy as the measured thermal dissociation temperatures of the complexes were in good agreement. Furthermore, we observed that thermal denaturing of GroES and gp31 proceeds via intermediate steps of all oligomeric forms, with no evidence of a transiently stable unfolded heptamer. We also evaluated the thermal dissociation of the chaperonins in the gas phase using infrared multiphoton dissociation (IRMPD) for thermal activation. Using gas-phase activation the smaller (2-4) oligomers were not detected, only down to the pentamer, whereafter the complex seemed to dissociate completely. These results demonstrate clearly that conformational changes of GroES and gp31 due to heating in solution and in the gas phase are significantly different.
Collapse
Affiliation(s)
- Rimco B J Geels
- FOM Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
20
|
Abstract
This overview provides an illustrated, comprehensive survey of some commonly observed protein‐fold families and structural motifs, chosen for their functional significance. It opens with descriptions and definitions of the various elements of protein structure and associated terminology. Following is an introduction into web‐based structural bioinformatics that includes surveys of interactive web servers for protein fold or domain annotation, protein‐structure databases, protein‐structure‐classification databases, structural alignments of proteins, and molecular graphics programs available for personal computers. The rest of the overview describes selected families of protein folds in terms of their secondary, tertiary, and quaternary structural arrangements, including ribbon‐diagram examples, tables of representative structures with references, and brief explanations pointing out their respective biological and functional significance.
Collapse
Affiliation(s)
- Peter D Sun
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | | | | |
Collapse
|
21
|
Yagi H, Sato A, Yoshida A, Hattori Y, Hara M, Shimamura J, Sakane I, Hongo K, Mizobata T, Kawata Y. Fibril formation of hsp10 homologue proteins and determination of fibril core regions: differences in fibril core regions dependent on subtle differences in amino acid sequence. J Mol Biol 2008; 377:1593-606. [PMID: 18329043 DOI: 10.1016/j.jmb.2008.02.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Revised: 01/10/2008] [Accepted: 02/07/2008] [Indexed: 11/18/2022]
Abstract
Heat shock protein 10 (hsp10) is a member of the molecular chaperones and works with hsp60 in mediating various protein folding reactions. GroES is a representative protein of hsp10 from Escherichia coli. Recently, we found that GroES formed a typical amyloid fibril from a guanidine hydrochloride (Gdn-HCl) unfolded state at neutral pH. Here, we report that other hsp10 homologues, such as human hsp10 (Hhsp10), rat mitochondrial hsp10 (Rhsp10), Gp31 from T4 phage, and hsp10 from the hyperthermophilic bacteria Thermotoga maritima, also form amyloid fibrils from an unfolded state. Interestingly, whereas GroES formed fibrils from either the Gdn-HCl unfolded state (at neutral pH) or the acidic unfolded state (at pH 2.0-3.0), Hhsp10, Rhsp10, and Gp31 formed fibrils from only the acidic unfolded state. Core peptide regions of these protein fibrils were determined by proteolysis treatment followed by a combination of Edman degradation and mass spectroscopy analyses of the protease-resistant peptides. The core peptides of GroES fibrils were identical for fibrils formed from the Gdn-HCl unfolded state and those formed from the acidic unfolded state. However, a peptide with a different sequence was isolated from fibrils of Hhsp10 and Rhsp10. With the use of synthesized peptides of the determined core regions, it was also confirmed that the identified regions were capable of fibril formation. These findings suggested that GroES homologues formed typical amyloid fibrils under acidic unfolding conditions but that the fibril core structures were different, perhaps owing to differences in local amino acid sequences.
Collapse
Affiliation(s)
- Hisashi Yagi
- Department of Biotechnology, Faculty of Engineering, Tottori University, Koyama-Minami, Tottori 680-8552, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Affiliation(s)
- Michel Morange
- Centre Cavaillés, Ecole normale supérieure, 29 rue d'Ulm, 75230 Paris Cedex 05, France.
| |
Collapse
|
23
|
Abstract
Chaperonins are large ring assemblies that assist protein folding to the native state by binding nonnative proteins in their central cavities and then, upon binding ATP, release the substrate protein into a now-encapsulated cavity to fold productively. Two families of such components have been identified: type I in mitochondria, chloroplasts, and the bacterial cytosol, which rely on a detachable "lid" structure for encapsulation, and type II in archaea and the eukaryotic cytosol, which contain a built-in protrusion structure. We discuss here a number of issues under current study. What is the range of substrates acted on by the two classes of chaperonin, in particular by GroEL in the bacterial cytoplasm and CCT in the eukaryotic cytosol, and are all these substrates subject to encapsulation? What are the determinants for substrate binding by the type II chaperonins? And is the encapsulated chaperonin cavity a passive container that prevents aggregation, or could it be playing an active role in polypeptide folding?
Collapse
Affiliation(s)
- Arthur L Horwich
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA.
| | | | | | | |
Collapse
|
24
|
Krissinel E, Henrick K. Inference of macromolecular assemblies from crystalline state. J Mol Biol 2007; 372:774-97. [PMID: 17681537 DOI: 10.1016/j.jmb.2007.05.022] [Citation(s) in RCA: 8091] [Impact Index Per Article: 449.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Revised: 03/26/2007] [Accepted: 05/08/2007] [Indexed: 11/30/2022]
Abstract
We discuss basic physical-chemical principles underlying the formation of stable macromolecular complexes, which in many cases are likely to be the biological units performing a certain physiological function. We also consider available theoretical approaches to the calculation of macromolecular affinity and entropy of complexation. The latter is shown to play an important role and make a major effect on complex size and symmetry. We develop a new method, based on chemical thermodynamics, for automatic detection of macromolecular assemblies in the Protein Data Bank (PDB) entries that are the results of X-ray diffraction experiments. As found, biological units may be recovered at 80-90% success rate, which makes X-ray crystallography an important source of experimental data on macromolecular complexes and protein-protein interactions. The method is implemented as a public WWW service.
Collapse
Affiliation(s)
- Evgeny Krissinel
- European Bioinformatics Institute, Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | | |
Collapse
|
25
|
Luke K, Perham M, Wittung-Stafshede P. Kinetic Folding and Assembly Mechanisms Differ for Two Homologous Heptamers. J Mol Biol 2006; 363:729-42. [PMID: 16979655 DOI: 10.1016/j.jmb.2006.08.058] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Revised: 08/15/2006] [Accepted: 08/20/2006] [Indexed: 11/22/2022]
Abstract
Here we investigate the time-resolved folding and assembly mechanism of the heptameric co-chaperonin protein 10 (cpn10) in vitro. The structure of cpn10 is conserved throughout nature: seven beta-barrel subunits are non-covalently assembled through beta-strand pairings in an overall doughnut-like shape. Kinetic folding/assembly experiments of chemically denatured cpn10 from Homo sapiens (hmcpn10) and Aquifex aeolicus (Aacpn10) were monitored by far-UV circular dichroism and fluorescence. We find the processes to be complex, involving several kinetic steps, and to differ between the mesophilic and hyper-thermophilic proteins. The hmcpn10 molecules partition into two parallel pathways, one involving polypeptide folding before protein-protein assembly and another in which inter-protein interactions take place prior to folding. In contrast, the Aacpn10 molecules follow a single sequential path that includes initial monomer misfolding, relaxation to productive intermediates and, subsequently, final folding and heptamer assembly. An A. aeolicus variant lacking the unique C-terminal extension of Aacpn10 displays the same kinetic mechanism as Aacpn10, signifying that the tail is not responsible for the rapid misfolding step. This study demonstrates that molecular details can overrule similarity of native-state topology in defining apparent protein-biophysical properties.
Collapse
Affiliation(s)
- Kathryn Luke
- Department of Biochemistry and Cell Biology, Rice University, 6100 Main Street, Houston, TX 77251, USA
| | | | | |
Collapse
|
26
|
Carmicle S, Steede NK, Landry SJ. Antigen three-dimensional structure guides the processing and presentation of helper T-cell epitopes. Mol Immunol 2006; 44:1159-68. [PMID: 16893568 DOI: 10.1016/j.molimm.2006.06.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Revised: 06/28/2006] [Accepted: 06/30/2006] [Indexed: 11/18/2022]
Abstract
Antigen three-dimensional structure potentially controls presentation of CD4(+) T-cell epitopes by limiting the access of proteolytic enzymes and MHC class II antigen-presenting proteins. The protease-sensitive mobile loops of Hsp10s from mycobacteria, Escherichia coli, and bacteriophage T4 (T4Hsp10) are associated with adjacent immunodominant helper T-cell epitopes, and a mobile-loop deletion in T4Hsp10 eliminated the protease sensitivity and the associated epitope immunodominance. In the present work, protease-sensitivity and epitope presentation was analyzed in a group of T4Hsp10 variants. Two mobile-loop sequence variants of T4Hsp10 were constructed by replacing different segments of the mobile loop with an irrelevant sequence from hen egg lysozyme. The variant proteins retained native-like structure, and the mobile loops retained protease sensitivity. Mobile-loop deletion and reconstruction affected the presentation of two epitopes according to whether the epitope was protease-independent or protease-dependent. The protease-independent epitope lies within the mobile loop, and the protease-dependent epitope lies in a well-ordered segment on the carboxy-terminal flank of the mobile loop. The results are consistent with a model for processing of the protease-dependent epitope in which an endoproteolytic nick in the mobile-loop unlocks T4Hsp10 three-dimensional structure, and then the epitope becomes available for binding to the MHC protein.
Collapse
Affiliation(s)
- Stephanie Carmicle
- Department of Biochemistry, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | | | | |
Collapse
|
27
|
Tang YC, Chang HC, Roeben A, Wischnewski D, Wischnewski N, Kerner MJ, Hartl FU, Hayer-Hartl M. Structural features of the GroEL-GroES nano-cage required for rapid folding of encapsulated protein. Cell 2006; 125:903-14. [PMID: 16751100 DOI: 10.1016/j.cell.2006.04.027] [Citation(s) in RCA: 230] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Revised: 03/29/2006] [Accepted: 04/04/2006] [Indexed: 11/28/2022]
Abstract
GroEL and GroES form a chaperonin nano-cage for proteins up to approximately 60 kDa to fold in isolation. Here we explored the structural features of the chaperonin cage critical for rapid folding of encapsulated substrates. Modulating the volume of the GroEL central cavity affected folding speed in accordance with confinement theory. Small proteins (approximately 30 kDa) folded more rapidly as the size of the cage was gradually reduced to a point where restriction in space slowed folding dramatically. For larger proteins (approximately 40-50 kDa), either expanding or reducing cage volume decelerated folding. Additionally, interactions with the C-terminal, mildly hydrophobic Gly-Gly-Met repeat sequences of GroEL protruding into the cavity, and repulsion effects from the negatively charged cavity wall were required for rapid folding of some proteins. We suggest that by combining these features, the chaperonin cage provides a physical environment optimized to catalyze the structural annealing of proteins with kinetically complex folding pathways.
Collapse
Affiliation(s)
- Yun-Chi Tang
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Numoto N, Kita A, Miki K. Crystal structure of the Co-chaperonin Cpn10 from Thermus thermophilus HB8. Proteins 2006; 58:498-500. [PMID: 15558581 DOI: 10.1002/prot.20317] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Nobutaka Numoto
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | |
Collapse
|
29
|
Stan G, Brooks BR, Lorimer GH, Thirumalai D. Residues in substrate proteins that interact with GroEL in the capture process are buried in the native state. Proc Natl Acad Sci U S A 2006; 103:4433-8. [PMID: 16537402 PMCID: PMC1450189 DOI: 10.1073/pnas.0600433103] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have used a bioinformatic approach to predict the natural substrate proteins for the Escherichia coli chaperonin GroEL based on two simple criteria. Natural substrate proteins should contain binding motifs similar in sequence to the mobile loop peptide of GroES that displaces the binding motif during the chaperonin cycle. Secondly, each substrate protein should contain multiple copies of the binding motif so that the chaperonin can perform "work" on the substrate protein. To validate these criteria, we have used a database of 252 proteins that have been experimentally shown to interact with the chaperonin machinery in vivo. More than 80% are identified by these criteria. The binding motifs of all 79 proteins in the database with a known three-dimensional structure are buried (<50% solvent-accessible surface area) in the native state. Our results show that the binding motifs are inaccessible in the native state but become solvent-exposed in unfolded state, thus enabling GroEL to distinguish between unfolded and native states. The structures of the binding motif in the native states of the substrate proteins include alpha-helices, beta-strands, and random coils. The diversity of secondary structures implies that there are large and varied conformational transitions in the recognition motifs after their displacement by the mobile loops of GroES.
Collapse
Affiliation(s)
- George Stan
- *Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Bernard R. Brooks
- *Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - George H. Lorimer
- Biophysics Program, Institute for Physical Science and Technology and Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742
- To whom correspondence may be addressed. E-mail: or
| | - D. Thirumalai
- Biophysics Program, Institute for Physical Science and Technology and Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742
- To whom correspondence may be addressed. E-mail: or
| |
Collapse
|
30
|
Clare DK, Bakkes PJ, van Heerikhuizen H, van der Vies SM, Saibil HR. An expanded protein folding cage in the GroEL-gp31 complex. J Mol Biol 2006; 358:905-11. [PMID: 16549073 DOI: 10.1016/j.jmb.2006.02.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Revised: 02/10/2006] [Accepted: 02/13/2006] [Indexed: 11/30/2022]
Abstract
Bacteriophage T4 produces a GroES analogue, gp31, which cooperates with the Escherichia coli GroEL to fold its major coat protein gp23. We have used cryo-electron microscopy and image processing to obtain three-dimensional structures of the E.coli chaperonin GroEL complexed with gp31, in the presence of both ATP and ADP. The GroEL-gp31-ADP map has a resolution of 8.2 A, which allows accurate fitting of the GroEL and gp31 crystal structures. Comparison of this fitted structure with that of the GroEL-GroES-ADP structure previously determined by cryo-electron microscopy shows that the folding cage is expanded. The enlarged volume for folding is consistent with the size of the bacteriophage coat protein gp23, which is the major substrate of GroEL-gp31 chaperonin complex. At 56 kDa, gp23 is close to the maximum size limit of a polypeptide that is thought to fit inside the GroEL-GroES folding cage.
Collapse
Affiliation(s)
- Daniel K Clare
- School of Crystallography, Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK
| | | | | | | | | |
Collapse
|
31
|
Kawe M, Plückthun A. GroEL Walks the Fine Line: The Subtle Balance of Substrate and Co-chaperonin Binding by GroEL. A Combinatorial Investigation by Design, Selection and Screening. J Mol Biol 2006; 357:411-26. [PMID: 16427651 DOI: 10.1016/j.jmb.2005.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Revised: 11/23/2005] [Accepted: 12/01/2005] [Indexed: 10/25/2022]
Abstract
While support in protein folding by molecular chaperones is extremely efficient for endogenous polypeptides, it often fails for recombinant proteins in a bacterial host, thus constituting a major hurdle for protein research and biotechnology. To understand the reasons for this difference and to answer the question of whether it is feasible to design tailor-made chaperones, we investigated one of the most prominent bacterial chaperones, the GroEL/ES ring complex. On the basis of structural data, we designed and constructed a combinatorial GroEL library, where the substrate-binding site was randomized. Screening and selection experiments with this library demonstrated that substrate binding and release is supported by many variants, but the majority of the library members failed to assist in chaperonin-mediated protein folding under conditions where spontaneous folding is suppressed. These findings revealed a conflict between binding of substrate and binding of the co-chaperonin GroES. As a consequence, the window of mutational freedom in that region of GroEL is very small. In screening experiments, we could identify GroEL variants slightly improved for a given substrate, which were still promiscuous. As the substrate-binding site of the GroEL molecule overlaps strongly with the site of cofactor binding, the outcome of our experiments suggests that maintenance of cofactor binding affinity is more critical for chaperonin-mediated protein folding than energetically optimized substrate recognition.
Collapse
Affiliation(s)
- Martin Kawe
- Biochemisches Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | |
Collapse
|
32
|
Abstract
Bacterophage T4 consists of three parts, namely, a head, a tail, and six tail fibers, each of which is assembled along an independent pathway and then joined. In contrast to simple plant viruses such as tobacco mosaic virus, disassembly and reassembly of the virion is not possible. This is due mainly to the fact that the assembly involves not only irreversible steps such as cleavage of covalent bonds of some constituent proteins, but also that it requires a scaffold and involves the inner membrane of the host cell. Another unique feature of the assembly as a biological nanomachine is the involvement of specific protein devices such as a "ruler molecule," which determines the length of the tail, an ATP-driven DNA packaging protein complex, and phage-encoded molecular chaperones. Recent structural biological studies of the phage started to unveil the molecular mechanics of structural transformation of the tail upon infection.
Collapse
Affiliation(s)
- Fumio Arisaka
- Department of Biomolecular Processing, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B39, Nagatsuta, Midori-ku, Yokohama 226-8501, Japan.
| |
Collapse
|
33
|
Bakkes PJ, Faber BW, van Heerikhuizen H, van der Vies SM. The T4-encoded cochaperonin, gp31, has unique properties that explain its requirement for the folding of the T4 major capsid protein. Proc Natl Acad Sci U S A 2005; 102:8144-9. [PMID: 15919824 PMCID: PMC1149413 DOI: 10.1073/pnas.0500048102] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2005] [Accepted: 04/04/2005] [Indexed: 12/30/2022] Open
Abstract
The morphogenesis of bacteriophage T4 requires a specialized bacteriophage-encoded molecular chaperone (gp31) that is essential for the folding of the T4 major capsid protein (gp23). gp31 is related to GroES, the chaperonin of the Escherichia coli host because it displays a similar overall structure and properties. Why GroES is unable to fold the T4 capsid protein in conjunction with GroEL is unknown. Here we show that gp23 binds to the GroEL heptameric ring opposite to the ring that is bound by gp31 (the so-called trans-ring), while no binding to the trans-ring of the GroEL-GroES complex is observed. Although gp23 can be enclosed within the folding cage of the GroEL-gp31 complex, encapsulation within the GroEL-GroES complex is not possible. So it appears that folding of the T4 major capsid protein requires a gp31-dependent cis-folding mechanism likely inside an enlarged "Anfinsen cage" provided by GroEL and gp31.
Collapse
Affiliation(s)
- Patrick J Bakkes
- Section of Biochemistry and Molecular Biology, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
34
|
van Duijn E, Bakkes PJ, Heeren RMA, van den Heuvel RHH, van Heerikhuizen H, van der Vies SM, Heck AJR. Monitoring macromolecular complexes involved in the chaperonin-assisted protein folding cycle by mass spectrometry. Nat Methods 2005; 2:371-6. [PMID: 15846365 DOI: 10.1038/nmeth753] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2005] [Accepted: 03/18/2005] [Indexed: 11/08/2022]
Abstract
We have used native mass spectrometry to analyze macromolecular complexes involved in the chaperonin-assisted refolding of gp23, the major capsid protein of bacteriophage T4. Adapting the instrumental methods allowed us to monitor all intermediate complexes involved in the chaperonin folding cycle. We found that GroEL can bind up to two unfolded gp23 substrate molecules. Notably, when GroEL is in complex with the cochaperonin gp31, it binds exclusively one gp23. We also demonstrated that the folding and assembly of gp23 into 336-kDa hexamers by GroEL-gp31 can be monitored directly by electrospray ionization mass spectrometry (ESI-MS). These data reinforce the great potential of ESI-MS as a technique to investigate structure-function relationships of protein assemblies in general and the chaperonin-protein folding machinery in particular. A major advantage of native mass spectrometry is that, given sufficient resolution, it allows the analysis at the picomole level of sensitivity of heterogeneous protein complexes with molecular masses up to several million daltons.
Collapse
Affiliation(s)
- Esther van Duijn
- Department of Biomolecular Mass Spectrometry, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
35
|
Mesyanzhinov VV, Leiman PG, Kostyuchenko VA, Kurochkina LP, Miroshnikov KA, Sykilinda NN, Shneider MM. Molecular architecture of bacteriophage T4. BIOCHEMISTRY (MOSCOW) 2005; 69:1190-202. [PMID: 15627372 DOI: 10.1007/s10541-005-0064-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In studying bacteriophage T4--one of the basic models of molecular biology for several decades--there has come a Renaissance, and this virus is now actively used as object of structural biology. The structures of six proteins of the phage particle have recently been determined at atomic resolution by X-ray crystallography. Three-dimensional reconstruction of the infection device--one of the most complex multiprotein components--has been developed on the basis of cryo-electron microscopy images. The further study of bacteriophage T4 structure will allow a better understanding of the regulation of protein folding, assembly of biological structures, and also mechanisms of functioning of the complex biological molecular machines.
Collapse
Affiliation(s)
- V V Mesyanzhinov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia.
| | | | | | | | | | | | | |
Collapse
|
36
|
Snyder L, Tarkowski HJ. The N Terminus of the Head Protein of T4 Bacteriophage Directs Proteins to the GroEL Chaperonin. J Mol Biol 2005; 345:375-86. [PMID: 15571729 DOI: 10.1016/j.jmb.2004.10.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2004] [Revised: 10/15/2004] [Accepted: 10/18/2004] [Indexed: 10/26/2022]
Abstract
The head protein of T4 bacteriophage requires the GroEL chaperonin for its insertion into a growing T4 head. Hundreds of thousands of copies of this protein must pass through the chaperonin in a limited time later in infection, indicating that the protein must use GroEL very efficiently and may contain sequences that bind tightly to GroEL. We show that green fluorescent protein (GFP) fused to the N terminus of the head protein can fold at temperatures higher than those at which the GFP protein can fold well by itself. We present evidence that this folding is promoted by the strong binding of N-terminal head protein sequences to GroEL. This binding is so strong that some fusion proteins can apparently deplete the cell of the GroEL needed for other cellular functions, altering the cellular membranes and slowing growth.
Collapse
Affiliation(s)
- Larry Snyder
- Department of Microbiolgy, Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA.
| | | |
Collapse
|
37
|
Abstract
UNLABELLED Computational protein docking is a useful technique for gaining insights into protein interactions. We have developed an algorithm M-ZDOCK for predicting the structure of cyclically symmetric (Cn) multimers based on the structure of an unbound (or partially bound) monomer. Using a grid-based Fast Fourier Transform approach, a space of exclusively symmetric multimers is searched for the best structure. This leads to improvements both in accuracy and running time over the alternative, which is to run a binary docking program ZDOCK and filter the results for near-symmetry. The accuracy is improved because fewer false positives are considered in the search, thus hits are not as easily overlooked. By searching four instead of six degrees of freedom, the required amount of computation is reduced. This program has been tested on several known multimer complexes from the Protein DataBank, including four unbound multimers: three trimers and a pentamer. For all of these cases, M-ZDOCK was able to find at least one hit, whereas only two of the four testcases had hits when using ZDOCK and a symmetry filter. In addition, the running times are 30-40% faster for M-ZDOCK. AVAILABILITY M-ZDOCK is freely available to academic users at http://zlab.bu.edu/m-zdock/ CONTACT zhiping@bu.edu SUPPLEMENTARY INFORMATION http://zlab.bu.edu/m-zdock.
Collapse
Affiliation(s)
- Brian Pierce
- Bioinformatics Program, Boston University, Boston, MA, USA
| | | | | |
Collapse
|
38
|
Mesyanzhinov VV, Leiman PG, Kostyuchenko VA, Kurochkina LP, Miroshnikov KA, Sykilinda NN, Shneider MM. Molecular architecture of bacteriophage T4. BIOCHEMISTRY (MOSCOW) 2004. [DOI: 10.1007/pl00021751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
39
|
Fossati G, Cremonesi P, Izzo G, Rizzi E, Sandrone G, Harding S, Errington N, Walters C, Henderson B, Roberts MM, Coates ARM, Mascagni P. The Mycobacterium tuberculosis chaperonin 10 monomer exhibits structural plasticity. Biopolymers 2004; 75:148-62. [PMID: 15356869 DOI: 10.1002/bip.20106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The conditions which favor dissociation of oligomeric Mycobacterium tuberculosis chaperonin 10 and the solution structure of the monomer were studied by analytical ultracentrifugation, size exclusion chromatography, fluorescence, and circular dichroism spectroscopies. At neutral pH and in the absence of divalent cations, the protein is fully monomeric below approximately a 4.7 microM concentration. Under these conditions the monomer forms completely unfolded and partially folded conformers which are in equilibrium with each other. One conformer accumulates over the others which is stable within a very narrow range of temperatures. It contains a beta-sheet-structured C-terminal half and a mostly disordered N-terminal half. Other components of the equilibrium include partially helical structures which do not completely unfold at high temperature or under strong acidic conditions. Complete unfolding of the monomer occurs in the presence of denaturants or below 14 degrees C. Cold-denaturation is detected at an unusually high temperature and this may be due to the concentration of hydrophobic residues, which is larger in chaperonins than in other globular proteins. Finally, the monomer self-associates in the pH range 5.8-2.9, where it forms small oligomers. A structure-activity relationship was investigated with the sequences known to be involved in the various biological activities of the monomer.
Collapse
Affiliation(s)
- Gianluca Fossati
- Italfarmaco Research Centre, via Lavoratori 54, Cinisello Balsamo 20092 Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Shewmaker F, Kerner MJ, Hayer-Hartl M, Klein G, Georgopoulos C, Landry SJ. A mobile loop order-disorder transition modulates the speed of chaperonin cycling. Protein Sci 2004; 13:2139-48. [PMID: 15238634 PMCID: PMC2279813 DOI: 10.1110/ps.04773204] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Molecular machines order and disorder polypeptides as they form and dissolve large intermolecular interfaces, but the biological significance of coupled ordering and binding has been established in few, if any, macromolecular systems. The ordering and binding of GroES co-chaperonin mobile loops accompany an ATP-dependent conformational change in the GroEL chaperonin that promotes client protein folding. Following ATP hydrolysis, disordering of the mobile loops accompanies co-chaperonin dissociation, reversal of the GroEL conformational change, and release of the client protein. "High-affinity" GroEL mutants were identified by their compatibility with "low-affinity" co-chaperonin mutants and incompatibility with high-affinity co-chaperonin mutants. Analysis of binding kinetics using the intrinsic fluorescence of tryptophan-containing co-chaperonin variants revealed that excessive affinity causes the chaperonin to stall in a conformation that forms in the presence of ATP. Destabilizing the beta-hairpins formed by the mobile loops restores the normal rate of dissociation. Thus, the free energy of mobile-loop ordering and disordering acts like the inertia of an engine's flywheel by modulating the speed of chaperonin conformational changes.
Collapse
Affiliation(s)
- Frank Shewmaker
- Department of Biochemistry, Tulane University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | | | | | | | |
Collapse
|
41
|
Terwilliger TC, Park MS, Waldo GS, Berendzen J, Hung LW, Kim CY, Smith CV, Sacchettini JC, Bellinzoni M, Bossi R, De Rossi E, Mattevi A, Milano A, Riccardi G, Rizzi M, Roberts MM, Coker AR, Fossati G, Mascagni P, Coates ARM, Wood SP, Goulding CW, Apostol MI, Anderson DH, Gill HS, Eisenberg DS, Taneja B, Mande S, Pohl E, Lamzin V, Tucker P, Wilmanns M, Colovos C, Meyer-Klaucke W, Munro AW, McLean KJ, Marshall KR, Leys D, Yang JK, Yoon HJ, Lee BI, Lee MG, Kwak JE, Han BW, Lee JY, Baek SH, Suh SW, Komen MM, Arcus VL, Baker EN, Lott JS, Jacobs W, Alber T, Rupp B. The TB structural genomics consortium: a resource for Mycobacterium tuberculosis biology. Tuberculosis (Edinb) 2004; 83:223-49. [PMID: 12906835 DOI: 10.1016/s1472-9792(03)00051-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The TB Structural Genomics Consortium is an organization devoted to encouraging, coordinating, and facilitating the determination and analysis of structures of proteins from Mycobacterium tuberculosis. The Consortium members hope to work together with other M. tuberculosis researchers to identify M. tuberculosis proteins for which structural information could provide important biological information, to analyze and interpret structures of M. tuberculosis proteins, and to work collaboratively to test ideas about M. tuberculosis protein function that are suggested by structure or related to structural information. This review describes the TB Structural Genomics Consortium and some of the proteins for which the Consortium is in the progress of determining three-dimensional structures.
Collapse
Affiliation(s)
- T C Terwilliger
- Los Alamos National Laboratory, Bioscience Division, Mail Stop M888, Los Alamos, NM 87545, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Guidry J, Wittung-Stafshede P. First characterization of co-chaperonin protein 10 from hyper-thermophilic Aquifex aeolicus. Biochem Biophys Res Commun 2004; 317:176-80. [PMID: 15047164 DOI: 10.1016/j.bbrc.2004.03.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2004] [Indexed: 11/26/2022]
Abstract
All known co-chaperonin protein 10 (cpn10) molecules are heptamers of seven identical subunits that are linked together by beta-strand interactions. Here, we report the first characterization of a cpn10 protein from a thermophilic organism: Aquifex aeolicus. Primary-structure alignment of A. aeolicus cpn10 (Aaecpn10) shows high homology with mesophilic cpn10 sequences, except for a unique 25-residue C-terminal extension not found in any other cpn10. Recombinant Aaecpn10 adopts a heptameric structure in solution at pH values above 4 (20 degrees C). Both monomers and heptamers are folded at 20 degrees C, although the thermal stability of the monomers (pH 3; Tm approximately 58 degrees C) is lower than that of the heptamers (pH 7; Tm approximately 115 degrees C). Aaecpn10 functions in a GroEL-dependent in vitro activity assay. Taken together, Aaecpn10 appears similar in secondary, tertiary, and quaternary structure, as well as in many biophysical features, to its mesophilic counterparts despite a functional temperature of 90 degrees C.
Collapse
Affiliation(s)
- Jesse Guidry
- Department of Pharmacology and Experimental Therapeutics, LSU Health Science Center, New Orleans, LA 70112, USA
| | | |
Collapse
|
43
|
Guidry JJ, Shewmaker F, Maskos K, Landry S, Wittung-Stafshede P. Probing the interface in a human co-chaperonin heptamer: residues disrupting oligomeric unfolded state identified. BMC BIOCHEMISTRY 2003; 4:14. [PMID: 14525625 PMCID: PMC270013 DOI: 10.1186/1471-2091-4-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2003] [Accepted: 10/02/2003] [Indexed: 11/21/2022]
Abstract
Background The co-chaperonin protein 10 (cpn10) assists cpn60 in the folding of nonnative polypeptides in a wide range of organisms. All known cpn10 molecules are heptamers of seven identical subunits that are linked together by β-strand interactions at a large and flexible interface. Unfolding of human mitochondrial cpn10 in urea results in an unfolded heptameric state whereas GuHCl additions result in unfolded monomers. To address the role of specific interface residues in the assembly of cpn10 we prepared two point-mutated variants, in each case removing a hydrophobic residue positioned at the subunit-subunit interface. Results Replacing valine-100 with a glycine (Val100Gly cpn10) results in a wild-type-like protein with seven-fold symmetry although the thermodynamic stability is decreased and the unfolding processes in urea and GuHCl both result in unfolded monomers. In sharp contrast, replacing phenylalanine-8 with a glycine (Phe8Gly cpn10) results in a protein that has lost the ability to assemble. Instead, this protein exists mostly as unfolded monomers. Conclusions We conclude that valine-100 is a residue important to adopt an oligomeric unfolded state but it does not affect the ability to assemble in the folded state. In contrast, phenylalanine-8 is required for both heptamer assembly and monomer folding and therefore this mutation results in unfolded monomers at physiological conditions. Despite the plasticity and large size of the cpn10 interface, our observations show that isolated interface residues can be crucial for both the retention of a heptameric unfolded structure and for subunit folding.
Collapse
Affiliation(s)
- Jesse J Guidry
- Chemistry Department, Tulane University, New Orleans, 70118 Louisiana, USA
| | - Frank Shewmaker
- Chemistry Department, Tulane University, New Orleans, 70118 Louisiana, USA
| | - Karol Maskos
- Coordinated Instrumentation Facility, Tulane University, New Orleans, 70118 Louisiana, USA
| | - Samuel Landry
- Biochemistry Department, Tulane University, New Orleans, 70112 Louisiana, USA
| | | |
Collapse
|
44
|
Roberts MM, Coker AR, Fossati G, Mascagni P, Coates ARM, Wood SP. Mycobacterium tuberculosis chaperonin 10 heptamers self-associate through their biologically active loops. J Bacteriol 2003; 185:4172-85. [PMID: 12837792 PMCID: PMC164875 DOI: 10.1128/jb.185.14.4172-4185.2003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The crystal structure of Mycobacterium tuberculosis chaperonin 10 (cpn10(Mt)) has been determined to a resolution of 2.8 A. Two dome-shaped cpn10(Mt) heptamers complex through loops at their bases to form a tetradecamer with 72 symmetry and a spherical cage-like structure. The hollow interior enclosed by the tetradecamer is lined with hydrophilic residues and has dimensions of 30 A perpendicular to and 60 A along the sevenfold axis. Tetradecameric cpn10(Mt) has also been observed in solution by dynamic light scattering. Through its base loop sequence cpn10(Mt) is known to be the agent in the bacterium responsible for bone resorption and for the contribution towards its strong T-cell immunogenicity. Superimposition of the cpn10(Mt) sequences 26 to 32 and 66 to 72 and E. coli GroES 25 to 31 associated with bone resorption activity shows them to have similar conformations and structural features, suggesting that there may be a common receptor for the bone resorption sequences. The base loops of cpn10s in general also attach to the corresponding chaperonin 60 (cpn60) to enclose unfolded protein and to facilitate its correct folding in vivo. Electron density corresponding to a partially disordered protein subunit appears encapsulated within the interior dome cavity of each heptamer. This suggests that the binding of substrates to cpn10 is possible in the absence of cpn60.
Collapse
Affiliation(s)
- Michael M Roberts
- Medical Microbiology, Department of Cellular and Molecular Medicine, St. George's Hospital Medical School, London SW17 0RE, England.
| | | | | | | | | | | |
Collapse
|
45
|
Miller ES, Kutter E, Mosig G, Arisaka F, Kunisawa T, Rüger W. Bacteriophage T4 genome. Microbiol Mol Biol Rev 2003; 67:86-156, table of contents. [PMID: 12626685 PMCID: PMC150520 DOI: 10.1128/mmbr.67.1.86-156.2003] [Citation(s) in RCA: 562] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phage T4 has provided countless contributions to the paradigms of genetics and biochemistry. Its complete genome sequence of 168,903 bp encodes about 300 gene products. T4 biology and its genomic sequence provide the best-understood model for modern functional genomics and proteomics. Variations on gene expression, including overlapping genes, internal translation initiation, spliced genes, translational bypassing, and RNA processing, alert us to the caveats of purely computational methods. The T4 transcriptional pattern reflects its dependence on the host RNA polymerase and the use of phage-encoded proteins that sequentially modify RNA polymerase; transcriptional activator proteins, a phage sigma factor, anti-sigma, and sigma decoy proteins also act to specify early, middle, and late promoter recognition. Posttranscriptional controls by T4 provide excellent systems for the study of RNA-dependent processes, particularly at the structural level. The redundancy of DNA replication and recombination systems of T4 reveals how phage and other genomes are stably replicated and repaired in different environments, providing insight into genome evolution and adaptations to new hosts and growth environments. Moreover, genomic sequence analysis has provided new insights into tail fiber variation, lysis, gene duplications, and membrane localization of proteins, while high-resolution structural determination of the "cell-puncturing device," combined with the three-dimensional image reconstruction of the baseplate, has revealed the mechanism of penetration during infection. Despite these advances, nearly 130 potential T4 genes remain uncharacterized. Current phage-sequencing initiatives are now revealing the similarities and differences among members of the T4 family, including those that infect bacteria other than Escherichia coli. T4 functional genomics will aid in the interpretation of these newly sequenced T4-related genomes and in broadening our understanding of the complex evolution and ecology of phages-the most abundant and among the most ancient biological entities on Earth.
Collapse
Affiliation(s)
- Eric S Miller
- Department of Microbiology, North Carolina State University, Raleigh, North Carolina 27695-7615, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Wang JD, Herman C, Tipton KA, Gross CA, Weissman JS. Directed evolution of substrate-optimized GroEL/S chaperonins. Cell 2002; 111:1027-39. [PMID: 12507429 DOI: 10.1016/s0092-8674(02)01198-4] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
GroEL/S chaperonin ring complexes fold many unrelated proteins. To understand the basis and extent of the chaperonin substrate spectrum, we used rounds of selection and DNA shuffling to obtain GroEL/S variants that dramatically enhanced folding of a single substrate-green fluorescent protein (GFP). Changes in the substrate-optimized chaperonins increase the polarity of the folding cavity and alter the ATPase cycle. These findings reveal a surprising plasticity of GroEL/S, which can be exploited to aid folding of recombinant proteins. Our studies also reveal a conflict between specialization and generalization of chaperonins as increased GFP folding comes at the expense of the ability of GroEL/S to fold its natural substrates. This conflict and the nature of the ring structure may help explain the evolution of cellular chaperone systems.
Collapse
Affiliation(s)
- Jue D Wang
- Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco 94143, USA
| | | | | | | | | |
Collapse
|
47
|
Keppel F, Rychner M, Georgopoulos C. Bacteriophage-encoded cochaperonins can substitute for Escherichia coli's essential GroES protein. EMBO Rep 2002; 3:893-8. [PMID: 12189177 PMCID: PMC1084229 DOI: 10.1093/embo-reports/kvf176] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The Escherichia coli chaperonin machine is composed of two members, GroEL and GroES. The GroEL chaperonin can bind 10-15% of E. coli's unfolded proteins in one of its central cavities and help them fold in cooperation with the GroES cochaperonin. Both proteins are absolutely essential for bacterial growth. Several large, lytic bacteriophages, such as T4 and RB49, use the host-encoded GroEL in conjunction with their own bacteriophage-encoded cochaperonin for the correct assembly of their major capsid protein, suggesting a cochaperonin specificity for the in vivo folding of certain substrates. Here, we demonstrate that, when the cochaperonin of either bacteriophage T4 (Gp31) or RB49 (CocO) is expressed in E. coli, the otherwise essential groES gene can be deleted. Thus, it appears that, despite very little sequence identity with groES, the bacteriophage-encoded Gp31 and CocO proteins are capable of replacing GroES in the folding of E. coli's essential, housekeeping proteins.
Collapse
Affiliation(s)
- France Keppel
- Département de Biochimie Médicale, Centre Médicale Universitaire, Geneva, Switzerland.
| | | | | |
Collapse
|
48
|
Carmicle S, Dai G, Steede NK, Landry SJ. Proteolytic sensitivity and helper T-cell epitope immunodominance associated with the mobile loop in Hsp10s. J Biol Chem 2002; 277:155-60. [PMID: 11673463 DOI: 10.1074/jbc.m107624200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Antigen three-dimensional structure potentially limits antigen processing and presentation to helper T-cell epitopes. The association of helper T-cell epitopes with the mobile loop in Hsp10s from mycobacteria and bacteriophage T4 suggests that the mobile loop facilitates proteolytic processing and presentation of adjacent sequences. Sites of initial proteolytic cleavage were mapped in divergent Hsp10s after treatment with a variety of proteases including cathepsin S. Each protease preferentially cleaved the Hsp10s in the mobile loop. Flexibility in the 22-residue mobile loop most probably allows it to conform to protease active sites. Three variants of the bacteriophage T4 Hsp10 were constructed with deletions in the mobile loop to test the hypothesis that shorter loops would be less sensitive to proteolysis. The two largest deletions effectively inhibited proteolysis by several proteases. Circular dichroism spectra and chemical cross-linking of the deletion variants indicate that the secondary and quaternary structures of the variants are native-like, and all three variants were more thermostable than the wild-type Hsp10. Local structural flexibility appears to be a general requirement for proteolytic sensitivity, and thus, it could be an important factor in antigen processing and helper T-cell epitope immunogenicity.
Collapse
Affiliation(s)
- Stephanie Carmicle
- Department of Biochemistry, Tulane University Health Sciences Center, New Orleans, Louisiana 70112-2699, USA
| | | | | | | |
Collapse
|
49
|
Dai G, Carmicle S, Steede NK, Landry SJ. Structural basis for helper T-cell and antibody epitope immunodominance in bacteriophage T4 Hsp10. Role of disordered loops. J Biol Chem 2002; 277:161-8. [PMID: 11602571 DOI: 10.1074/jbc.m102259200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Antigen three-dimensional structure potentially limits the access of endoproteolytic processing enzymes to cleavage sites and of class II major histocompatibility antigen-presenting proteins to helper T-cell epitopes. Helper T-cell epitopes in bacteriophage T4 Hsp10 have been mapped by restimulation of splenocytes from CBA/J and C57BL/6J mice immunized in conjunction with mutant (R192G) heat-labile enterotoxin from Escherichia coli. Promiscuously immunogenic sequences were associated with unstable loops in the three-dimensional structure of T4 Hsp10. The immunodominant sequence lies on the N-terminal flank of the 22-residue mobile loop, which is sensitive to proteolysis in divergent Hsp10s. Several mobile loop deletions that inhibited proteolysis in vitro caused global changes in the helper T-cell epitope map. A mobile loop deletion that strongly stabilized the protein dramatically reduced the immunogenicity of the flanking immunodominant helper T-cell epitope, although the protein retained good overall immunogenicity. Antisera against the mobile loop deletion variants exhibited increased cross-reactivity, most especially the antisera against the strongly stabilized variant. The results support the hypothesis that unstable loops promote the presentation of flanking epitopes and suggest that loop deletion could be a general strategy to increase the breadth and strength of an immune response.
Collapse
Affiliation(s)
- Guixiang Dai
- Department of Biochemistry, Tulane University Health Sciences Center, New Orleans, Louisiana 70112-2699, USA
| | | | | | | |
Collapse
|
50
|
Mitraki A, Miller S, van Raaij MJ. Review: conformation and folding of novel beta-structural elements in viral fiber proteins: the triple beta-spiral and triple beta-helix. J Struct Biol 2002; 137:236-47. [PMID: 12064949 DOI: 10.1006/jsbi.2002.4447] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Apart from alpha-helical coiled coils and the collagen triple helices, fibrous proteins can contain beta-structure in various conformations. Elongated enzymes such as pectate lyase and the bacteriophage P22 tailspike protein contain single-stranded beta-helices. Virus and bacteriophage fibers, which are often trimeric, have been shown to contain novel triple-stranded beta-structures such as the triple beta-spiral and the triple beta-helix. The conformation and folding of viral fibers containing beta-structure are discussed.
Collapse
Affiliation(s)
- Anna Mitraki
- Institut de Biologie Structurale (CEA-CNRS-UJF), Grenoble, France.
| | | | | |
Collapse
|