1
|
Chaisanam R, Wattanathorn J. Acute Toxicity and Neuroprotective Effect of "RJ6601", a Newly Formulated Instant Soup, in Geriatric Rats. Foods 2025; 14:277. [PMID: 39856944 PMCID: PMC11765135 DOI: 10.3390/foods14020277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Given its antioxidant effects and central nervous system benefits, we hypothesized that RJ6601 should improve neurodegeneration in the hippocampus, a region critical for cognition and the maintenance of quality of life (QoL). To assure its safety, a single fixed dose of 2000 mg/kg BW was administered to female Wistar rats (250-450 g, 18 months old) to test the acute toxicity of RJ6601. No mortality and toxicity signs were observed. To prove that RJ6601 can protect against age-related neurodegeneration, RJ6601 at doses of 200 and 400 mg/kg BW was administered to the female Wistar rats once daily for 4 weeks. At the end of the study period, assessments were conducted to evaluate the neuron density; MDA levels; and activities of SOD, CAT, GSH-Px, AChE, total MAO, MAO-A, and MAO-B in the hippocampus. Our results reveal increased neuron density, SOD, CAT, and GSH-Px but decreased MDA, AChE, total MAO, MAO-A, and MAO-B in the hippocampi of female Wistar rats subjected to RJ6601 treatment at both doses used in this study. Therefore, RJ6601 is considered to have low toxicity and may improve neurodegeneration as well as cholinergic and monoaminergic dysfunctions. Subchronic toxicity studies and clinical trials are essential to confirm the safety of RJ6601 consumption and its health benefits.
Collapse
Affiliation(s)
- Rujikarn Chaisanam
- Department of Physiology and Graduate School (Neuroscience Program), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Jintanaporn Wattanathorn
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Research Institute for High Human Performance and Health Promotion, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
2
|
Huang S, Nunez J, Toresco DL, Wen C, Slotabec L, Wang H, Zhang H, Rouhi N, Adenawoola MI, Li J. Alterations in the inflammatory homeostasis of aging-related cardiac dysfunction and Alzheimer's diseases. FASEB J 2025; 39:e70303. [PMID: 39758048 DOI: 10.1096/fj.202402725rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/20/2024] [Accepted: 12/26/2024] [Indexed: 01/07/2025]
Abstract
Alzheimer's disease (AD) is well known among the elderly and has a profound impact on both patients and their families. Increasing research indicates that AD is a systemic disease, with a strong connection to cardiovascular disease. They share common genetic factors, such as mutations in the presenilin (PS1 and PS2) and the apolipoprotein E (APOE) genes. Cardiovascular conditions can lead to reduced cerebral blood flow and increased oxidative stress. These factors contribute to the accumulation of Aβ plaques and the formation of abnormal tau protein tangles, which are both key pathological features of AD. Additionally, Aβ deposits and abnormal protein responses have been observed in cardiomyocytes as well as in peripheral tissues. The toxic Aβ deposition intensifies damage to the microvascular structure associated with blood-brain barrier disruption and the initiation of neuroinflammation, which may accelerate the onset of neurocognitive deficits and cardiovascular dysfunction. Thus, we discuss the main mechanisms linking AD and cardiac dysfunction to enhance our understanding of these conditions. Ultimately, insights into the brain-heart axis may help us develop effective treatment strategies in the future.
Collapse
Affiliation(s)
- Shuli Huang
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Jeremiah Nunez
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
- G.V. (Sonny) Montgomery VA Medical Center, Jackson, Mississippi, USA
| | - Dai Lan Toresco
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
- G.V. (Sonny) Montgomery VA Medical Center, Jackson, Mississippi, USA
| | - Changhong Wen
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
- G.V. (Sonny) Montgomery VA Medical Center, Jackson, Mississippi, USA
| | - Lily Slotabec
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
- G.V. (Sonny) Montgomery VA Medical Center, Jackson, Mississippi, USA
| | - Hao Wang
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Haibei Zhang
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Nadiyeh Rouhi
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Michael I Adenawoola
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Ji Li
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
- G.V. (Sonny) Montgomery VA Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
3
|
Yepes M. Reprint of: Fibrinolytic and Non-fibrinolytic Roles of Tissue-type Plasminogen Activator in the Ischemic Brain. Neuroscience 2024; 550:21-29. [PMID: 38964373 DOI: 10.1016/j.neuroscience.2024.05.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/06/2023] [Indexed: 07/06/2024]
Abstract
The neurovascular unit (NVU) is assembled by endothelial cells (ECs) and pericytes, and encased by a basement membrane (BM) surveilled by microglia and surrounded by perivascular astrocytes (PVA), which in turn are in contact with synapses. Cerebral ischemia induces the rapid release of the serine proteinase tissue-type plasminogen activator (tPA) from endothelial cells, perivascular astrocytes, microglia and neurons. Owning to its ability to catalyze the conversion of plasminogen into plasmin, in the intravascular space tPA functions as a fibrinolytic enzyme. In contrast, the release of astrocytic, microglial and neuronal tPA have a plethora of effects that not always require the generation of plasmin. In the ischemic brain tPA increases the permeability of the NVU, induces microglial activation, participates in the recycling of glutamate, and has various effects on neuronal survival. These effects are mediated by different receptors, notably subunits of the N-methyl-D-aspartate receptor (NMDAR) and the low-density lipoprotein receptor-related protein-1 (LRP-1). Here we review data on the role of tPA in the NVU under non-ischemic and ischemic conditions, and analyze how this knowledge may lead to the development of potential strategies for the treatment of acute ischemic stroke patients.
Collapse
Affiliation(s)
- Manuel Yepes
- Department of Neurology, Emory University, Atlanta, GA, USA; Division of Neuropharmacology and Neurologic Diseases, Emory Primate Research Center, Atlanta, GA, USA; Department of Neurology, Veterans Affairs Medical Center, Atlanta, GA, USA.
| |
Collapse
|
4
|
O’Hare N, Millican K, Ebong EE. Unraveling neurovascular mysteries: the role of endothelial glycocalyx dysfunction in Alzheimer's disease pathogenesis. Front Physiol 2024; 15:1394725. [PMID: 39027900 PMCID: PMC11254711 DOI: 10.3389/fphys.2024.1394725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/27/2024] [Indexed: 07/20/2024] Open
Abstract
While cardiovascular disease, cancer, and human immunodeficiency virus (HIV) mortality rates have decreased over the past 20 years, Alzheimer's Disease (AD) deaths have risen by 145% since 2010. Despite significant research efforts, effective AD treatments remain elusive due to a poorly defined etiology and difficulty in targeting events that occur too downstream of disease onset. In hopes of elucidating alternative treatment pathways, now, AD is commonly being more broadly defined not only as a neurological disorder but also as a progression of a variety of cerebrovascular pathologies highlighted by the breakdown of the blood-brain barrier. The endothelial glycocalyx (GCX), which is an essential regulator of vascular physiology, plays a crucial role in the function of the neurovascular system, acting as an essential vascular mechanotransducer to facilitate ultimate blood-brain homeostasis. Shedding of the cerebrovascular GCX could be an early indication of neurovascular dysfunction and may subsequently progress neurodegenerative diseases like AD. Recent advances in in vitro modeling, gene/protein silencing, and imaging techniques offer new avenues of scrutinizing the GCX's effects on AD-related neurovascular pathology. Initial studies indicate GCX degradation in AD and other neurodegenerative diseases and have begun to demonstrate a possible link to GCX loss and cerebrovascular dysfunction. This review will scrutinize the GCX's contribution to known vascular etiologies of AD and propose future work aimed at continuing to uncover the relationship between GCX dysfunction and eventual AD-associated neurological deterioration.
Collapse
Affiliation(s)
- Nicholas O’Hare
- Department of Chemical Engineering, Northeastern University, Boston, MA, United States
| | - Karina Millican
- Department of Bioengineering, Northeastern University, Boston, MA, United States
| | - Eno E. Ebong
- Department of Chemical Engineering, Northeastern University, Boston, MA, United States
- Department of Bioengineering, Northeastern University, Boston, MA, United States
- Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, United States
| |
Collapse
|
5
|
Mincic AM, Antal M, Filip L, Miere D. Modulation of gut microbiome in the treatment of neurodegenerative diseases: A systematic review. Clin Nutr 2024; 43:1832-1849. [PMID: 38878554 DOI: 10.1016/j.clnu.2024.05.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND AND AIMS Microbiota plays an essential role in maintaining body health, through positive influences on metabolic, defensive, and trophic processes and on intercellular communication. Imbalance in intestinal flora, with the proliferation of harmful bacterial species (dysbiosis) is consistently reported in chronic illnesses, including neurodegenerative diseases (ND). Correcting dysbiosis can have a beneficial impact on the symptoms and evolution of ND. This review examines the effects of microbiota modulation through administration of probiotics, prebiotics, symbiotics, or prebiotics' metabolites (postbiotics) in patients with ND like multiple sclerosis (MS), Alzheimer's disease (AD), Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS). METHODS PubMed, Web of Science, Medline databases and ClinicalTrials.gov registry searches were performed using pre-/pro-/postbiotics and ND-related terms. Further references were obtained by checking relevant articles. RESULTS Although few compared to animal studies, the human studies generally show positive effects on disease-specific symptoms, overall health, metabolic parameters, on oxidative stress and immunological markers. Therapy with probiotics in various forms (mixtures of bacterial strains, fecal microbiota transplant, diets rich in fermented foods) exert favorable effects on patients' mental health, cognition, and quality of life, targeting pathogenetic ND mechanisms and inducing reparatory mechanisms at the cellular level. More encouraging results have been observed in prebiotic/postbiotic therapy in some ND. CONCLUSIONS The effects of probiotic-related interventions depend on the patients' ND stage and pre-existing allopathic medication. Further studies on larger cohorts and long term comprehensive neuropsychiatric, metabolic, biochemical testing, and neuroimaging monitoring are necessary to optimize therapeutic protocols in ND.
Collapse
Affiliation(s)
- Adina M Mincic
- Center for Systems Neuroscience, University of Oradea, Oradea, Romania; Department of Preclinical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania; Faculty of Pharmacy, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania.
| | - Miklos Antal
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Lorena Filip
- Faculty of Pharmacy, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| | - Doina Miere
- Faculty of Pharmacy, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| |
Collapse
|
6
|
Korszun-Karbowniczak J, Krysiak ZJ, Saluk J, Niemcewicz M, Zdanowski R. The Progress in Molecular Transport and Therapeutic Development in Human Blood-Brain Barrier Models in Neurological Disorders. Cell Mol Neurobiol 2024; 44:34. [PMID: 38627312 PMCID: PMC11021242 DOI: 10.1007/s10571-024-01473-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 03/18/2024] [Indexed: 04/19/2024]
Abstract
The blood-brain barrier (BBB) is responsible for maintaining homeostasis within the central nervous system (CNS). Depending on its permeability, certain substances can penetrate the brain, while others are restricted in their passage. Therefore, the knowledge about BBB structure and function is essential for understanding physiological and pathological brain processes. Consequently, the functional models can serve as a key to help reveal this unknown. There are many in vitro models available to study molecular mechanisms that occur in the barrier. Brain endothelial cells grown in culture are commonly used to modeling the BBB. Current BBB platforms include: monolayer platforms, transwell, matrigel, spheroidal, and tissue-on-chip models. In this paper, the BBB structure, molecular characteristic, as well as its dysfunctions as a consequence of aging, neurodegeneration, or under hypoxia and neurotoxic conditions are presented. Furthermore, the current modelling strategies that can be used to study BBB for the purpose of further drugs development that may reach CNS are also described.
Collapse
Affiliation(s)
- Joanna Korszun-Karbowniczak
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine National Research Institute, 128 Szaserów Street, 04-141, Warsaw, Poland
- BioMedChem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, 21/23 Matejki Street, 90-237, Lodz, Poland
| | - Zuzanna Joanna Krysiak
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine National Research Institute, 128 Szaserów Street, 04-141, Warsaw, Poland.
| | - Joanna Saluk
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, Institute of Biochemistry, University of Lodz, 68 Narutowicza Street, 90-136, Lodz, Poland
| | - Marcin Niemcewicz
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, 68 Narutowicza Street, 90-136, Lodz, Poland
| | - Robert Zdanowski
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine National Research Institute, 128 Szaserów Street, 04-141, Warsaw, Poland
| |
Collapse
|
7
|
Yepes M. Fibrinolytic and Non-fibrinolytic Roles of Tissue-type Plasminogen Activator in the Ischemic Brain. Neuroscience 2024; 542:69-80. [PMID: 37574107 DOI: 10.1016/j.neuroscience.2023.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/03/2023] [Accepted: 08/06/2023] [Indexed: 08/15/2023]
Abstract
The neurovascular unit (NVU) is assembled by endothelial cells (ECs) and pericytes, and encased by a basement membrane (BM) surveilled by microglia and surrounded by perivascular astrocytes (PVA), which in turn are in contact with synapses. Cerebral ischemia induces the rapid release of the serine proteinase tissue-type plasminogen activator (tPA) from endothelial cells, perivascular astrocytes, microglia and neurons. Owning to its ability to catalyze the conversion of plasminogen into plasmin, in the intravascular space tPA functions as a fibrinolytic enzyme. In contrast, the release of astrocytic, microglial and neuronal tPA have a plethora of effects that not always require the generation of plasmin. In the ischemic brain tPA increases the permeability of the NVU, induces microglial activation, participates in the recycling of glutamate, and has various effects on neuronal survival. These effects are mediated by different receptors, notably subunits of the N-methyl-D-aspartate receptor (NMDAR) and the low-density lipoprotein receptor-related protein-1 (LRP-1). Here we review data on the role of tPA in the NVU under non-ischemic and ischemic conditions, and analyze how this knowledge may lead to the development of potential strategies for the treatment of acute ischemic stroke patients.
Collapse
Affiliation(s)
- Manuel Yepes
- Department of Neurology, Emory University, Atlanta, GA, USA; Division of Neuropharmacology and Neurologic Diseases, Emory Primate Research Center, Atlanta, GA, USA; Department of Neurology, Veterans Affairs Medical Center, Atlanta, GA, USA.
| |
Collapse
|
8
|
Hosoki S, Hansra GK, Jayasena T, Poljak A, Mather KA, Catts VS, Rust R, Sagare A, Kovacic JC, Brodtmann A, Wallin A, Zlokovic BV, Ihara M, Sachdev PS. Molecular biomarkers for vascular cognitive impairment and dementia. Nat Rev Neurol 2023; 19:737-753. [PMID: 37957261 DOI: 10.1038/s41582-023-00884-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2023] [Indexed: 11/15/2023]
Abstract
As disease-specific interventions for dementia are being developed, the ability to identify the underlying pathology and dementia subtypes is increasingly important. Vascular cognitive impairment and dementia (VCID) is the second most common cause of dementia after Alzheimer disease, but progress in identifying molecular biomarkers for accurate diagnosis of VCID has been relatively limited. In this Review, we examine the roles of large and small vessel disease in VCID, considering the underlying pathophysiological processes that lead to vascular brain injury, including atherosclerosis, arteriolosclerosis, ischaemic injury, haemorrhage, hypoperfusion, endothelial dysfunction, blood-brain barrier breakdown, inflammation, oxidative stress, hypoxia, and neuronal and glial degeneration. We consider the key molecules in these processes, including proteins and peptides, metabolites, lipids and circulating RNA, and consider their potential as molecular biomarkers alone and in combination. We also discuss the challenges in translating the promise of these biomarkers into clinical application.
Collapse
Affiliation(s)
- Satoshi Hosoki
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Gurpreet K Hansra
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Tharusha Jayasena
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Anne Poljak
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW, Australia
| | - Karen A Mather
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Vibeke S Catts
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Ruslan Rust
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Abhay Sagare
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jason C Kovacic
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York, NY, USA
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Amy Brodtmann
- Department of Neurology, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Anders Wallin
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Berislav V Zlokovic
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
9
|
Chen Y, He Y, Han J, Wei W, Chen F. Blood-brain barrier dysfunction and Alzheimer's disease: associations, pathogenic mechanisms, and therapeutic potential. Front Aging Neurosci 2023; 15:1258640. [PMID: 38020775 PMCID: PMC10679748 DOI: 10.3389/fnagi.2023.1258640] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disorder characterized by the accumulation of amyloid-beta (Aβ), hyperphosphorylation of tau, and neuroinflammation in the brain. The blood-brain barrier (BBB) limits solutes from circulating blood from entering the brain, which is essential for neuronal functioning. Focusing on BBB function is important for the early detection of AD and in-depth study of AD pathogenic mechanisms. However, the mechanism of BBB alteration in AD is still unclear, which hinders further research on therapeutics that target the BBB to delay the progression of AD. The exact timing of the vascular abnormalities in AD and the complex cause-and-effect relationships remain uncertain. Thus, it is necessary to summarize and emphasize this process. First, in this review, the current evidence for BBB dysfunction in AD is summarized. Then, the interrelationships and pathogenic mechanisms between BBB dysfunction and the risk factors for AD, such as Aβ, tau, neuroinflammation, apolipoprotein E (ApoE) genotype and aging, were analyzed. Finally, we discuss the current status and future directions of therapeutic AD strategies targeting the BBB. We hope that these summaries or reviews will allow readers to better understand the relationship between the BBB and AD.
Collapse
Affiliation(s)
- Yanting Chen
- Department of Neurology, Shenzhen Sixth People’s Hospital, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Yanfang He
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jinling Han
- Department of Neurology, Shenzhen Sixth People’s Hospital, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Wenyan Wei
- Department of Gerontology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Feng Chen
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Department of Intensive Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
10
|
Lam T, Medcalf RL, Cloud GC, Myles PS, Keragala CB. Tranexamic acid for haemostasis and beyond: does dose matter? Thromb J 2023; 21:94. [PMID: 37700271 PMCID: PMC10496216 DOI: 10.1186/s12959-023-00540-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/04/2023] [Indexed: 09/14/2023] Open
Abstract
Tranexamic acid (TXA) is a widely used antifibrinolytic agent that has been used since the 1960's to reduce blood loss in various conditions. TXA is a lysine analogue that competes for the lysine binding sites in plasminogen and tissue-type plasminogen activator impairing its interaction with the exposed lysine residues on the fibrin surface. The presence of TXA therefore, impairs the plasminogen and tPA engagement and subsequent plasmin generation on the fibrin surface, protecting fibrin clot from proteolytic degradation. However, critical lysine binding sites for plasmin(ogen) also exist on other proteins and on various cell-surface receptors allowing plasmin to exert potent effects on other targets that are unrelated to classical fibrinolysis, notably in relation to immunity and inflammation. Indeed, TXA was reported to significantly reduce post-surgical infection rates in patients after cardiac surgery unrelated to its haemostatic effects. This has provided an impetus to consider TXA in other indications beyond inhibition of fibrinolysis. While there is extensive literature on the optimal dosage of TXA to reduce bleeding rates and transfusion needs, it remains to be determined if these dosages also apply to blocking the non-canonical effects of plasmin.
Collapse
Affiliation(s)
- Tammy Lam
- Australian Centre for Blood Diseases, Monash AMREP Building, Monash University, Level 1 Walkway, Via The Alfred Centre, 99 Commercial Rd, Melbourne, 3004, Australia
| | - Robert L Medcalf
- Australian Centre for Blood Diseases, Monash AMREP Building, Monash University, Level 1 Walkway, Via The Alfred Centre, 99 Commercial Rd, Melbourne, 3004, Australia
| | - Geoffrey C Cloud
- Department of Clinical Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Paul S Myles
- Department of Anaesthesiology and Perioperative Medicine, Alfred Hospital, Melbourne VIC, Australia
- Department of Anaesthesiology and Perioperative Medicine, Monash University, Melbourne VIC, Australia
| | - Charithani B Keragala
- Australian Centre for Blood Diseases, Monash AMREP Building, Monash University, Level 1 Walkway, Via The Alfred Centre, 99 Commercial Rd, Melbourne, 3004, Australia.
| |
Collapse
|
11
|
Soles A, Selimovic A, Sbrocco K, Ghannoum F, Hamel K, Moncada EL, Gilliat S, Cvetanovic M. Extracellular Matrix Regulation in Physiology and in Brain Disease. Int J Mol Sci 2023; 24:7049. [PMID: 37108212 PMCID: PMC10138624 DOI: 10.3390/ijms24087049] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/31/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
The extracellular matrix (ECM) surrounds cells in the brain, providing structural and functional support. Emerging studies demonstrate that the ECM plays important roles during development, in the healthy adult brain, and in brain diseases. The aim of this review is to briefly discuss the physiological roles of the ECM and its contribution to the pathogenesis of brain disease, highlighting the gene expression changes, transcriptional factors involved, and a role for microglia in ECM regulation. Much of the research conducted thus far on disease states has focused on "omic" approaches that reveal differences in gene expression related to the ECM. Here, we review recent findings on alterations in the expression of ECM-associated genes in seizure, neuropathic pain, cerebellar ataxia, and age-related neurodegenerative disorders. Next, we discuss evidence implicating the transcription factor hypoxia-inducible factor 1 (HIF-1) in regulating the expression of ECM genes. HIF-1 is induced in response to hypoxia, and also targets genes involved in ECM remodeling, suggesting that hypoxia could contribute to ECM remodeling in disease conditions. We conclude by discussing the role microglia play in the regulation of the perineuronal nets (PNNs), a specialized form of ECM in the central nervous system. We show evidence that microglia can modulate PNNs in healthy and diseased brain states. Altogether, these findings suggest that ECM regulation is altered in brain disease, and highlight the role of HIF-1 and microglia in ECM remodeling.
Collapse
Affiliation(s)
- Alyssa Soles
- Department of Neuroscience, University of Minnesota, 321 Church St SE, Minneapolis, MN 55455, USA
| | - Adem Selimovic
- Department of Neuroscience, University of Minnesota, 321 Church St SE, Minneapolis, MN 55455, USA
| | - Kaelin Sbrocco
- Department of Neuroscience, University of Minnesota, 321 Church St SE, Minneapolis, MN 55455, USA
| | - Ferris Ghannoum
- Department of Neuroscience, University of Minnesota, 321 Church St SE, Minneapolis, MN 55455, USA
| | - Katherine Hamel
- Department of Neuroscience, University of Minnesota, 321 Church St SE, Minneapolis, MN 55455, USA
| | - Emmanuel Labrada Moncada
- Department of Neuroscience, University of Minnesota, 321 Church St SE, Minneapolis, MN 55455, USA
| | - Stephen Gilliat
- Department of Neuroscience, University of Minnesota, 321 Church St SE, Minneapolis, MN 55455, USA
| | - Marija Cvetanovic
- Department of Neuroscience, University of Minnesota, 321 Church St SE, Minneapolis, MN 55455, USA
- Institute for Translational Neuroscience, University of Minnesota, 2101 6th Street SE, Minneapolis, MN 55455, USA
| |
Collapse
|
12
|
Saavedra J, Nascimento M, Liz MA, Cardoso I. Key brain cell interactions and contributions to the pathogenesis of Alzheimer's disease. Front Cell Dev Biol 2022; 10:1036123. [PMID: 36523504 PMCID: PMC9745159 DOI: 10.3389/fcell.2022.1036123] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/14/2022] [Indexed: 06/22/2024] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease worldwide, with the two major hallmarks being the deposition of extracellular β-amyloid (Aβ) plaques and of intracellular neurofibrillary tangles (NFTs). Additionally, early pathological events such as cerebrovascular alterations, a compromised blood-brain barrier (BBB) integrity, neuroinflammation and synaptic dysfunction, culminate in neuron loss and cognitive deficits. AD symptoms reflect a loss of neuronal circuit integrity in the brain; however, neurons do not operate in isolation. An exclusively neurocentric approach is insufficient to understand this disease, and the contribution of other brain cells including astrocytes, microglia, and vascular cells must be integrated in the context. The delicate balance of interactions between these cells, required for healthy brain function, is disrupted during disease. To design successful therapies, it is critical to understand the complex brain cellular connections in AD and the temporal sequence of their disturbance. In this review, we discuss the interactions between different brain cells, from physiological conditions to their pathological reactions in AD, and how this basic knowledge can be crucial for developing new therapeutic strategies.
Collapse
Affiliation(s)
- Joana Saavedra
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Mariana Nascimento
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Márcia A. Liz
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Isabel Cardoso
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| |
Collapse
|
13
|
Saha PS, Mayhan WG. Prenatal exposure to alcohol: mechanisms of cerebral vascular damage and lifelong consequences. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2022; 2:10818. [PMID: 38390614 PMCID: PMC10880760 DOI: 10.3389/adar.2022.10818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 11/01/2022] [Indexed: 02/24/2024]
Abstract
Alcohol is a well-known teratogen, and prenatal alcohol exposure (PAE) leads to a greater incidence of many cardiovascular-related pathologies. Alcohol negatively impacts vasculogenesis and angiogenesis in the developing fetal brain, resulting in fetal alcohol spectrum disorders (FASD). Ample preclinical evidence indicates that the normal reactivity of cerebral resistance arterioles, which regulate blood flow distribution in response to metabolic demand (neurovascular coupling), is impaired by PAE. This impairment of dilation of cerebral arteries may carry implications for the susceptibility of the brain to cerebral ischemic damage well into adulthood. The focus of this review is to consolidate findings from studies examining the influence of PAE on vascular development, give insights into relevant pathological mechanisms at the vascular level, evaluate the risks of ethanol-driven alterations of cerebrovascular reactivity, and revisit different preventive interventions that may have promise in reversing vascular changes in preclinical FASD models.
Collapse
Affiliation(s)
- Partha S Saha
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States
| | - William G Mayhan
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States
| |
Collapse
|
14
|
Yang L, Conley BM, Yoon J, Rathnam C, Pongkulapa T, Conklin B, Hou Y, Lee KB. High-Content Screening and Analysis of Stem Cell-Derived Neural Interfaces Using a Combinatorial Nanotechnology and Machine Learning Approach. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9784273. [PMID: 36204248 PMCID: PMC9513834 DOI: 10.34133/2022/9784273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022]
Abstract
A systematic investigation of stem cell-derived neural interfaces can facilitate the discovery of the molecular mechanisms behind cell behavior in neurological disorders and accelerate the development of stem cell-based therapies. Nevertheless, high-throughput investigation of the cell-type-specific biophysical cues associated with stem cell-derived neural interfaces continues to be a significant obstacle to overcome. To this end, we developed a combinatorial nanoarray-based method for high-throughput investigation of neural interface micro-/nanostructures (physical cues comprising geometrical, topographical, and mechanical aspects) and the effects of these complex physical cues on stem cell fate decisions. Furthermore, by applying a machine learning (ML)-based analytical approach to a large number of stem cell-derived neural interfaces, we comprehensively mapped stem cell adhesion, differentiation, and proliferation, which allowed for the cell-type-specific design of biomaterials for neural interfacing, including both adult and human-induced pluripotent stem cells (hiPSCs) with varying genetic backgrounds. In short, we successfully demonstrated how an innovative combinatorial nanoarray and ML-based platform technology can aid with the rational design of stem cell-derived neural interfaces, potentially facilitating precision, and personalized tissue engineering applications.
Collapse
Affiliation(s)
- Letao Yang
- Department of Chemistry and Chemical Biology, Rutgers University, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Brian M. Conley
- Department of Chemistry and Chemical Biology, Rutgers University, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jinho Yoon
- Department of Chemistry and Chemical Biology, Rutgers University, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Christopher Rathnam
- Department of Chemistry and Chemical Biology, Rutgers University, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Thanapat Pongkulapa
- Department of Chemistry and Chemical Biology, Rutgers University, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Brandon Conklin
- Department of Chemistry and Chemical Biology, Rutgers University, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Yannan Hou
- Department of Chemistry and Chemical Biology, Rutgers University, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers University, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
15
|
Zhang X, Zhou J, Xu W, Zhan W, Zou H, Lin J. Transcriptomic and Behavioral Studies of Small Yellow Croaker ( Larimichthyspolyactis) in Response to Noise Exposure. Animals (Basel) 2022; 12:2061. [PMID: 36009652 PMCID: PMC9405241 DOI: 10.3390/ani12162061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/28/2022] [Accepted: 08/11/2022] [Indexed: 11/21/2022] Open
Abstract
Noise has the potential to induce physiological stress in marine fishes, which may lead to all sorts of ecological consequences. In the current study, we used the RNA-sequencing (RNA-seq) method to sequence the whole transcriptome of the brain in small yellow croaker (Larimichthys polyactis). The animals were exposed to a mix of noises produced by different types of boat played back in a tank, then the brain tissues were collected after the fish had been exposed to a 120 dB noise for 0.5 h. In total, 762 differently expressed genes (DEGs) between the two groups were identified, including 157 up regulated and 605 down regulated genes in the noise exposure group compared with the control group. Gene ontology (GO) enrichment analysis indicated that the most up regulated gene categories included synaptic membranes, receptor-mediated endocytosis and the neurotransmitter secretion process. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways found that endocytosis, cell adhesion molecules and the extracellular matrix (ECM) receptor interaction pathway were over-represented. Specifically, ECM-related genes, including lamin2, lamin3, lamin4, coll1a2, coll5a1 and col4a5 were down regulated in the noise exposure group, implying the impaired composition of the ECM. In addition, the behavioral experiment revealed that L. polyactis exhibited avoidance behaviors to run away from the noise source at the beginning of the noise exposure period. At the end of the noise exposure period, L. polyactis kept motionless on the surface of the water and lost the ability to keep their balance. Taken together, our results indicate that exposure to noise stress contributes to neurological dysfunction in the brain and impaired locomotor ability in L. polyactis.
Collapse
Affiliation(s)
- Xuguang Zhang
- Engineering Technology Research Center of Marine Ranching, College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Jun Zhou
- Engineering Technology Research Center of Marine Ranching, College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Wengang Xu
- School of Ocean, Yantai University, Yantai 264005, China
| | - Wei Zhan
- Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Huafeng Zou
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- The Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Jun Lin
- Engineering Technology Research Center of Marine Ranching, College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
16
|
Godinez A, Rajput R, Chitranshi N, Gupta V, Basavarajappa D, Sharma S, You Y, Pushpitha K, Dhiman K, Mirzaei M, Graham S, Gupta V. Neuroserpin, a crucial regulator for axogenesis, synaptic modelling and cell-cell interactions in the pathophysiology of neurological disease. Cell Mol Life Sci 2022; 79:172. [PMID: 35244780 PMCID: PMC8897380 DOI: 10.1007/s00018-022-04185-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 01/31/2023]
Abstract
Neuroserpin is an axonally secreted serpin that is involved in regulating plasminogen and its enzyme activators, such as tissue plasminogen activator (tPA). The protein has been increasingly shown to play key roles in neuronal development, plasticity, maturation and synaptic refinement. The proteinase inhibitor may function both independently and through tPA-dependent mechanisms. Herein, we discuss the recent evidence regarding the role of neuroserpin in healthy and diseased conditions and highlight the participation of the serpin in various cellular signalling pathways. Several polymorphisms and mutations have also been identified in the protein that may affect the serpin conformation, leading to polymer formation and its intracellular accumulation. The current understanding of the involvement of neuroserpin in Alzheimer's disease, cancer, glaucoma, stroke, neuropsychiatric disorders and familial encephalopathy with neuroserpin inclusion bodies (FENIB) is presented. To truly understand the detrimental consequences of neuroserpin dysfunction and the effective therapeutic targeting of this molecule in pathological conditions, a cross-disciplinary understanding of neuroserpin alterations and its cellular signaling networks is essential.
Collapse
Affiliation(s)
- Angela Godinez
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia
| | - Rashi Rajput
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia
| | - Nitin Chitranshi
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia.
| | - Veer Gupta
- School of Medicine, Deakin University, Melbourne, VIC, Australia
| | - Devaraj Basavarajappa
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia
| | - Samridhi Sharma
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia
| | - Yuyi You
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia
| | - Kanishka Pushpitha
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia
| | - Kunal Dhiman
- School of Medicine, Deakin University, Melbourne, VIC, Australia
| | - Mehdi Mirzaei
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia
| | - Stuart Graham
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia
- Save Sight Institute, University of Sydney, Sydney, NSW, Australia
| | - Vivek Gupta
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia.
| |
Collapse
|
17
|
Custodia A, Ouro A, Romaus-Sanjurjo D, Pías-Peleteiro JM, de Vries HE, Castillo J, Sobrino T. Endothelial Progenitor Cells and Vascular Alterations in Alzheimer’s Disease. Front Aging Neurosci 2022; 13:811210. [PMID: 35153724 PMCID: PMC8825416 DOI: 10.3389/fnagi.2021.811210] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/14/2021] [Indexed: 12/14/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease representing the most common type of dementia worldwide. The early diagnosis of AD is very difficult to achieve due to its complexity and the practically unknown etiology. Therefore, this is one of the greatest challenges in the field in order to develop an accurate therapy. Within the different etiological hypotheses proposed for AD, we will focus on the two-hit vascular hypothesis and vascular alterations occurring in the disease. According to this hypothesis, the accumulation of β-amyloid protein in the brain starts as a consequence of damage in the cerebral vasculature. Given that there are several vascular and angiogenic alterations in AD, and that endothelial progenitor cells (EPCs) play a key role in endothelial repair processes, the study of EPCs in AD may be relevant to the disease etiology and perhaps a biomarker and/or therapeutic target. This review focuses on the involvement of endothelial dysfunction in the onset and progression of AD with special emphasis on EPCs as a biomarker and potential therapeutic target.
Collapse
Affiliation(s)
- Antía Custodia
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Alberto Ouro
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- *Correspondence: Alberto Ouro,
| | - Daniel Romaus-Sanjurjo
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Juan Manuel Pías-Peleteiro
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Helga E. de Vries
- Neuroimmunology Research Group, Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, Netherlands
| | - José Castillo
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Tomás Sobrino
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Tomás Sobrino,
| |
Collapse
|
18
|
Stevenson TK, Moore SJ, Murphy GG, Lawrence DA. Tissue Plasminogen Activator in Central Nervous System Physiology and Pathology: From Synaptic Plasticity to Alzheimer's Disease. Semin Thromb Hemost 2021; 48:288-300. [DOI: 10.1055/s-0041-1740265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractTissue plasminogen activator's (tPA) fibrinolytic function in the vasculature is well-established. This specific role for tPA in the vasculature, however, contrasts with its pleiotropic activities in the central nervous system. Numerous physiological and pathological functions have been attributed to tPA in the central nervous system, including neurite outgrowth and regeneration; synaptic and spine plasticity; neurovascular coupling; neurodegeneration; microglial activation; and blood–brain barrier permeability. In addition, multiple substrates, both plasminogen-dependent and -independent, have been proposed to be responsible for tPA's action(s) in the central nervous system. This review aims to dissect a subset of these different functions and the different molecular mechanisms attributed to tPA in the context of learning and memory. We start from the original research that identified tPA as an immediate-early gene with a putative role in synaptic plasticity to what is currently known about tPA's role in a learning and memory disorder, Alzheimer's disease. We specifically focus on studies demonstrating tPA's involvement in the clearance of amyloid-β and neurovascular coupling. In addition, given that tPA has been shown to regulate blood–brain barrier permeability, which is perturbed in Alzheimer's disease, this review also discusses tPA-mediated vascular dysfunction and possible alternative mechanisms of action for tPA in Alzheimer's disease pathology.
Collapse
Affiliation(s)
- Tamara K. Stevenson
- Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Molecular and Integrative Physiology, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Shannon J. Moore
- Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Molecular and Integrative Physiology, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Geoffrey G. Murphy
- Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Molecular and Integrative Physiology, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Daniel A. Lawrence
- Department of Molecular and Integrative Physiology, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
19
|
Hernandez SJ, Fote G, Reyes-Ortiz AM, Steffan JS, Thompson LM. Cooperation of cell adhesion and autophagy in the brain: Functional roles in development and neurodegenerative disease. Matrix Biol Plus 2021; 12:100089. [PMID: 34786551 PMCID: PMC8579148 DOI: 10.1016/j.mbplus.2021.100089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/11/2021] [Accepted: 10/18/2021] [Indexed: 12/19/2022] Open
Abstract
Cellular adhesive connections directed by the extracellular matrix (ECM) and maintenance of cellular homeostasis by autophagy are seemingly disparate functions that are molecularly intertwined, each regulating the other. This is an emerging field in the brain where the interplay between adhesion and autophagy functions at the intersection of neuroprotection and neurodegeneration. The ECM and adhesion proteins regulate autophagic responses to direct protein clearance and guide regenerative programs that go awry in brain disorders. Concomitantly, autophagic flux acts to regulate adhesion dynamics to mediate neurite outgrowth and synaptic plasticity with functional disruption contributed by neurodegenerative disease. This review highlights the cooperative exchange between cellular adhesion and autophagy in the brain during health and disease. As the mechanistic alliance between adhesion and autophagy has been leveraged therapeutically for metastatic disease, understanding overlapping molecular functions that direct the interplay between adhesion and autophagy might uncover therapeutic strategies to correct or compensate for neurodegeneration.
Collapse
Affiliation(s)
- Sarah J. Hernandez
- Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
| | - Gianna Fote
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Andrea M. Reyes-Ortiz
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Joan S. Steffan
- Psychaitry and Human Behavior, University of California Irvine, Irvine, CA 92697, USA
- Institute of Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92617, USA
| | - Leslie M. Thompson
- Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
- Psychaitry and Human Behavior, University of California Irvine, Irvine, CA 92697, USA
- Institute of Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92617, USA
| |
Collapse
|
20
|
Landucci E, Mazzantini C, Lana D, Davolio PL, Giovannini MG, Pellegrini-Giampietro DE. Neuroprotective Effects of Cannabidiol but Not Δ 9-Tetrahydrocannabinol in Rat Hippocampal Slices Exposed to Oxygen-Glucose Deprivation: Studies with Cannabis Extracts and Selected Cannabinoids. Int J Mol Sci 2021; 22:ijms22189773. [PMID: 34575932 PMCID: PMC8468213 DOI: 10.3390/ijms22189773] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 12/30/2022] Open
Abstract
(1) Background: Over the past 10 years, a number of scientific studies have demonstrated the therapeutic potential of cannabinoid compounds present in the Cannabis Sativa and Indica plants. However, their role in mechanisms leading to neurodegeneration following cerebral ischemia is yet unclear. (2) Methods: We investigated the effects of Cannabis extracts (Bedrocan, FM2) or selected cannabinoids (Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD), and cannabigerol) in rat organotypic hippocampal slices exposed to oxygen-glucose deprivation (OGD), an in vitro model of forebrain global ischemia. Cell death in the CA1 subregion of slices was quantified by propidium iodide fluorescence, and morphological analysis and tissue organization were examined by immunohistochemistry and confocal microscopy. (3) Results: Incubation with the Bedrocan extract or THC exacerbated, whereas incubation with the FM2 extract or cannabidiol attenuated CA1 injury induced by OGD. Δ9-THC toxicity was prevented by CB1 receptor antagonists, the neuroprotective effect of cannabidiol was blocked by TRPV2, 5-HT1A, and PPARγ antagonists. Confocal microscopy confirmed that CBD, but not THC, had a significant protective effect toward neuronal damage and tissue disorganization caused by OGD in organotypic hippocampal slices. (4) Conclusions: Our results suggest that cannabinoids play different roles in the mechanisms of post-ischemic neuronal death. In particular, appropriate concentrations of CBD or CBD/THC ratios may represent a valid therapeutic intervention in the treatment of post-ischemic neuronal death.
Collapse
Affiliation(s)
- Elisa Landucci
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.M.); (D.L.); (M.G.G.); (D.E.P.-G.)
- Correspondence: ; Tel.: +39-055-2758378
| | - Costanza Mazzantini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.M.); (D.L.); (M.G.G.); (D.E.P.-G.)
| | - Daniele Lana
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.M.); (D.L.); (M.G.G.); (D.E.P.-G.)
| | | | - Maria Grazia Giovannini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.M.); (D.L.); (M.G.G.); (D.E.P.-G.)
| | - Domenico E. Pellegrini-Giampietro
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.M.); (D.L.); (M.G.G.); (D.E.P.-G.)
| |
Collapse
|
21
|
Moore EE, Liu D, Li J, Schimmel SJ, Cambronero FE, Terry JG, Nair S, Pechman KR, Moore ME, Bell SP, Beckman JA, Gifford KA, Hohman TJ, Blennow K, Zetterberg H, Carr JJ, Jefferson AL. Association of Aortic Stiffness With Biomarkers of Neuroinflammation, Synaptic Dysfunction, and Neurodegeneration. Neurology 2021; 97:e329-e340. [PMID: 34031194 PMCID: PMC8362359 DOI: 10.1212/wnl.0000000000012257] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 04/21/2021] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVES To test the hypothesis that increased aortic stiffening is associated with greater CSF evidence of core Alzheimer disease pathology (β-amyloid [Aβ], phosphorylated tau [p-tau]), neurodegeneration (total tau [t-tau]), synaptic dysfunction (neurogranin), neuroaxonal injury (neurofilament light [NFL]), and neuroinflammation (YKL-40, soluble triggering receptor expressed on myeloid cells 2 [sTREM2]), we analyzed pulse wave velocity (PWV) data and CSF data among older adults. METHODS Participants free of stroke and dementia from the Vanderbilt Memory and Aging Project, an observational community-based study, underwent cardiac magnetic resonance to assess aortic PWV (meters per second) and lumbar puncture to obtain CSF. Linear regressions related aortic PWV to CSF Aβ, p-tau, t-tau, neurogranin, NFL, YKL-40, and sTREM2 concentrations after adjustment for age, race/ethnicity, education, apolipoprotein (APOE) ε4 status, Framingham Stroke Risk Profile, and cognitive diagnosis. Models were repeated testing PWV interactions with age, diagnosis, APOE ε4, and hypertension on each biomarker. RESULTS One hundred forty-six participants were examined (age 72 ± 6 years). Aortic PWV interacted with age on p-tau (β = 0.31, p = 0.04), t-tau, (β = 2.67, p = 0.05), neurogranin (β = 0.94, p = 0.04), and sTREM2 (β = 20.4, p = 0.05). Among participants >73 years of age, higher aortic PWV related to higher p-tau (β = 2.4, p = 0.03), t-tau (β = 19.3, p = 0.05), neurogranin (β = 8.4, p = 0.01), and YKL-40 concentrations (β = 7,880, p = 0.005). Aortic PWV had modest interactions with diagnosis on neurogranin (β = -10.76, p = 0.03) and hypertension status on YKL-40 (β = 18,020, p < 0.001). CONCLUSIONS Among our oldest participants, ≥74 years of age, greater aortic stiffening is associated with in vivo biomarker evidence of neuroinflammation, tau phosphorylation, synaptic dysfunction, and neurodegeneration, but not amyloidosis. Central arterial stiffening may lead to cumulative cerebral microcirculatory damage and reduced blood flow delivery to tissue, resulting in neuroinflammation and neurodegeneration in more advanced age.
Collapse
Affiliation(s)
- Elizabeth E Moore
- From the Vanderbilt Memory & Alzheimer's Center (E.E.M., D.L., J.L., S.J.S., F.E.C., K.R.P., M.E.M., K.A.G., T.J.H., A.L.J.), Department of Biostatistics (D.L.), Radiology & Radiological Sciences (J.G.T., S.N., J.J.C.), Department of Neurology (K.R.P., M.E.M., K.A.G., T.J.H., A.L.J.), Division of Cardiovascular Medicine (S.P.B., J.A.B., A.L.J.), Department of Medicine, and Vanderbilt Genetics Institute (T.J.H.), Vanderbilt University Medical Center, Nashville, TN; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Molndal, Sweden; Department of Neurodegenerative Disease (H.Z.), University College London Institute of Neurology, Queen Square; and United Kingdom Dementia Research Institute at University College London (H.Z.), UK
| | - Dandan Liu
- From the Vanderbilt Memory & Alzheimer's Center (E.E.M., D.L., J.L., S.J.S., F.E.C., K.R.P., M.E.M., K.A.G., T.J.H., A.L.J.), Department of Biostatistics (D.L.), Radiology & Radiological Sciences (J.G.T., S.N., J.J.C.), Department of Neurology (K.R.P., M.E.M., K.A.G., T.J.H., A.L.J.), Division of Cardiovascular Medicine (S.P.B., J.A.B., A.L.J.), Department of Medicine, and Vanderbilt Genetics Institute (T.J.H.), Vanderbilt University Medical Center, Nashville, TN; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Molndal, Sweden; Department of Neurodegenerative Disease (H.Z.), University College London Institute of Neurology, Queen Square; and United Kingdom Dementia Research Institute at University College London (H.Z.), UK
| | - Judy Li
- From the Vanderbilt Memory & Alzheimer's Center (E.E.M., D.L., J.L., S.J.S., F.E.C., K.R.P., M.E.M., K.A.G., T.J.H., A.L.J.), Department of Biostatistics (D.L.), Radiology & Radiological Sciences (J.G.T., S.N., J.J.C.), Department of Neurology (K.R.P., M.E.M., K.A.G., T.J.H., A.L.J.), Division of Cardiovascular Medicine (S.P.B., J.A.B., A.L.J.), Department of Medicine, and Vanderbilt Genetics Institute (T.J.H.), Vanderbilt University Medical Center, Nashville, TN; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Molndal, Sweden; Department of Neurodegenerative Disease (H.Z.), University College London Institute of Neurology, Queen Square; and United Kingdom Dementia Research Institute at University College London (H.Z.), UK
| | - Samantha J Schimmel
- From the Vanderbilt Memory & Alzheimer's Center (E.E.M., D.L., J.L., S.J.S., F.E.C., K.R.P., M.E.M., K.A.G., T.J.H., A.L.J.), Department of Biostatistics (D.L.), Radiology & Radiological Sciences (J.G.T., S.N., J.J.C.), Department of Neurology (K.R.P., M.E.M., K.A.G., T.J.H., A.L.J.), Division of Cardiovascular Medicine (S.P.B., J.A.B., A.L.J.), Department of Medicine, and Vanderbilt Genetics Institute (T.J.H.), Vanderbilt University Medical Center, Nashville, TN; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Molndal, Sweden; Department of Neurodegenerative Disease (H.Z.), University College London Institute of Neurology, Queen Square; and United Kingdom Dementia Research Institute at University College London (H.Z.), UK
| | - Francis E Cambronero
- From the Vanderbilt Memory & Alzheimer's Center (E.E.M., D.L., J.L., S.J.S., F.E.C., K.R.P., M.E.M., K.A.G., T.J.H., A.L.J.), Department of Biostatistics (D.L.), Radiology & Radiological Sciences (J.G.T., S.N., J.J.C.), Department of Neurology (K.R.P., M.E.M., K.A.G., T.J.H., A.L.J.), Division of Cardiovascular Medicine (S.P.B., J.A.B., A.L.J.), Department of Medicine, and Vanderbilt Genetics Institute (T.J.H.), Vanderbilt University Medical Center, Nashville, TN; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Molndal, Sweden; Department of Neurodegenerative Disease (H.Z.), University College London Institute of Neurology, Queen Square; and United Kingdom Dementia Research Institute at University College London (H.Z.), UK
| | - James G Terry
- From the Vanderbilt Memory & Alzheimer's Center (E.E.M., D.L., J.L., S.J.S., F.E.C., K.R.P., M.E.M., K.A.G., T.J.H., A.L.J.), Department of Biostatistics (D.L.), Radiology & Radiological Sciences (J.G.T., S.N., J.J.C.), Department of Neurology (K.R.P., M.E.M., K.A.G., T.J.H., A.L.J.), Division of Cardiovascular Medicine (S.P.B., J.A.B., A.L.J.), Department of Medicine, and Vanderbilt Genetics Institute (T.J.H.), Vanderbilt University Medical Center, Nashville, TN; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Molndal, Sweden; Department of Neurodegenerative Disease (H.Z.), University College London Institute of Neurology, Queen Square; and United Kingdom Dementia Research Institute at University College London (H.Z.), UK
| | - Sangeeta Nair
- From the Vanderbilt Memory & Alzheimer's Center (E.E.M., D.L., J.L., S.J.S., F.E.C., K.R.P., M.E.M., K.A.G., T.J.H., A.L.J.), Department of Biostatistics (D.L.), Radiology & Radiological Sciences (J.G.T., S.N., J.J.C.), Department of Neurology (K.R.P., M.E.M., K.A.G., T.J.H., A.L.J.), Division of Cardiovascular Medicine (S.P.B., J.A.B., A.L.J.), Department of Medicine, and Vanderbilt Genetics Institute (T.J.H.), Vanderbilt University Medical Center, Nashville, TN; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Molndal, Sweden; Department of Neurodegenerative Disease (H.Z.), University College London Institute of Neurology, Queen Square; and United Kingdom Dementia Research Institute at University College London (H.Z.), UK
| | - Kimberly R Pechman
- From the Vanderbilt Memory & Alzheimer's Center (E.E.M., D.L., J.L., S.J.S., F.E.C., K.R.P., M.E.M., K.A.G., T.J.H., A.L.J.), Department of Biostatistics (D.L.), Radiology & Radiological Sciences (J.G.T., S.N., J.J.C.), Department of Neurology (K.R.P., M.E.M., K.A.G., T.J.H., A.L.J.), Division of Cardiovascular Medicine (S.P.B., J.A.B., A.L.J.), Department of Medicine, and Vanderbilt Genetics Institute (T.J.H.), Vanderbilt University Medical Center, Nashville, TN; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Molndal, Sweden; Department of Neurodegenerative Disease (H.Z.), University College London Institute of Neurology, Queen Square; and United Kingdom Dementia Research Institute at University College London (H.Z.), UK
| | - Marissa E Moore
- From the Vanderbilt Memory & Alzheimer's Center (E.E.M., D.L., J.L., S.J.S., F.E.C., K.R.P., M.E.M., K.A.G., T.J.H., A.L.J.), Department of Biostatistics (D.L.), Radiology & Radiological Sciences (J.G.T., S.N., J.J.C.), Department of Neurology (K.R.P., M.E.M., K.A.G., T.J.H., A.L.J.), Division of Cardiovascular Medicine (S.P.B., J.A.B., A.L.J.), Department of Medicine, and Vanderbilt Genetics Institute (T.J.H.), Vanderbilt University Medical Center, Nashville, TN; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Molndal, Sweden; Department of Neurodegenerative Disease (H.Z.), University College London Institute of Neurology, Queen Square; and United Kingdom Dementia Research Institute at University College London (H.Z.), UK
| | - Susan P Bell
- From the Vanderbilt Memory & Alzheimer's Center (E.E.M., D.L., J.L., S.J.S., F.E.C., K.R.P., M.E.M., K.A.G., T.J.H., A.L.J.), Department of Biostatistics (D.L.), Radiology & Radiological Sciences (J.G.T., S.N., J.J.C.), Department of Neurology (K.R.P., M.E.M., K.A.G., T.J.H., A.L.J.), Division of Cardiovascular Medicine (S.P.B., J.A.B., A.L.J.), Department of Medicine, and Vanderbilt Genetics Institute (T.J.H.), Vanderbilt University Medical Center, Nashville, TN; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Molndal, Sweden; Department of Neurodegenerative Disease (H.Z.), University College London Institute of Neurology, Queen Square; and United Kingdom Dementia Research Institute at University College London (H.Z.), UK
| | - Joshua A Beckman
- From the Vanderbilt Memory & Alzheimer's Center (E.E.M., D.L., J.L., S.J.S., F.E.C., K.R.P., M.E.M., K.A.G., T.J.H., A.L.J.), Department of Biostatistics (D.L.), Radiology & Radiological Sciences (J.G.T., S.N., J.J.C.), Department of Neurology (K.R.P., M.E.M., K.A.G., T.J.H., A.L.J.), Division of Cardiovascular Medicine (S.P.B., J.A.B., A.L.J.), Department of Medicine, and Vanderbilt Genetics Institute (T.J.H.), Vanderbilt University Medical Center, Nashville, TN; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Molndal, Sweden; Department of Neurodegenerative Disease (H.Z.), University College London Institute of Neurology, Queen Square; and United Kingdom Dementia Research Institute at University College London (H.Z.), UK
| | - Katherine A Gifford
- From the Vanderbilt Memory & Alzheimer's Center (E.E.M., D.L., J.L., S.J.S., F.E.C., K.R.P., M.E.M., K.A.G., T.J.H., A.L.J.), Department of Biostatistics (D.L.), Radiology & Radiological Sciences (J.G.T., S.N., J.J.C.), Department of Neurology (K.R.P., M.E.M., K.A.G., T.J.H., A.L.J.), Division of Cardiovascular Medicine (S.P.B., J.A.B., A.L.J.), Department of Medicine, and Vanderbilt Genetics Institute (T.J.H.), Vanderbilt University Medical Center, Nashville, TN; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Molndal, Sweden; Department of Neurodegenerative Disease (H.Z.), University College London Institute of Neurology, Queen Square; and United Kingdom Dementia Research Institute at University College London (H.Z.), UK
| | - Timothy J Hohman
- From the Vanderbilt Memory & Alzheimer's Center (E.E.M., D.L., J.L., S.J.S., F.E.C., K.R.P., M.E.M., K.A.G., T.J.H., A.L.J.), Department of Biostatistics (D.L.), Radiology & Radiological Sciences (J.G.T., S.N., J.J.C.), Department of Neurology (K.R.P., M.E.M., K.A.G., T.J.H., A.L.J.), Division of Cardiovascular Medicine (S.P.B., J.A.B., A.L.J.), Department of Medicine, and Vanderbilt Genetics Institute (T.J.H.), Vanderbilt University Medical Center, Nashville, TN; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Molndal, Sweden; Department of Neurodegenerative Disease (H.Z.), University College London Institute of Neurology, Queen Square; and United Kingdom Dementia Research Institute at University College London (H.Z.), UK
| | - Kaj Blennow
- From the Vanderbilt Memory & Alzheimer's Center (E.E.M., D.L., J.L., S.J.S., F.E.C., K.R.P., M.E.M., K.A.G., T.J.H., A.L.J.), Department of Biostatistics (D.L.), Radiology & Radiological Sciences (J.G.T., S.N., J.J.C.), Department of Neurology (K.R.P., M.E.M., K.A.G., T.J.H., A.L.J.), Division of Cardiovascular Medicine (S.P.B., J.A.B., A.L.J.), Department of Medicine, and Vanderbilt Genetics Institute (T.J.H.), Vanderbilt University Medical Center, Nashville, TN; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Molndal, Sweden; Department of Neurodegenerative Disease (H.Z.), University College London Institute of Neurology, Queen Square; and United Kingdom Dementia Research Institute at University College London (H.Z.), UK
| | - Henrik Zetterberg
- From the Vanderbilt Memory & Alzheimer's Center (E.E.M., D.L., J.L., S.J.S., F.E.C., K.R.P., M.E.M., K.A.G., T.J.H., A.L.J.), Department of Biostatistics (D.L.), Radiology & Radiological Sciences (J.G.T., S.N., J.J.C.), Department of Neurology (K.R.P., M.E.M., K.A.G., T.J.H., A.L.J.), Division of Cardiovascular Medicine (S.P.B., J.A.B., A.L.J.), Department of Medicine, and Vanderbilt Genetics Institute (T.J.H.), Vanderbilt University Medical Center, Nashville, TN; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Molndal, Sweden; Department of Neurodegenerative Disease (H.Z.), University College London Institute of Neurology, Queen Square; and United Kingdom Dementia Research Institute at University College London (H.Z.), UK
| | - John Jeffrey Carr
- From the Vanderbilt Memory & Alzheimer's Center (E.E.M., D.L., J.L., S.J.S., F.E.C., K.R.P., M.E.M., K.A.G., T.J.H., A.L.J.), Department of Biostatistics (D.L.), Radiology & Radiological Sciences (J.G.T., S.N., J.J.C.), Department of Neurology (K.R.P., M.E.M., K.A.G., T.J.H., A.L.J.), Division of Cardiovascular Medicine (S.P.B., J.A.B., A.L.J.), Department of Medicine, and Vanderbilt Genetics Institute (T.J.H.), Vanderbilt University Medical Center, Nashville, TN; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Molndal, Sweden; Department of Neurodegenerative Disease (H.Z.), University College London Institute of Neurology, Queen Square; and United Kingdom Dementia Research Institute at University College London (H.Z.), UK
| | - Angela L Jefferson
- From the Vanderbilt Memory & Alzheimer's Center (E.E.M., D.L., J.L., S.J.S., F.E.C., K.R.P., M.E.M., K.A.G., T.J.H., A.L.J.), Department of Biostatistics (D.L.), Radiology & Radiological Sciences (J.G.T., S.N., J.J.C.), Department of Neurology (K.R.P., M.E.M., K.A.G., T.J.H., A.L.J.), Division of Cardiovascular Medicine (S.P.B., J.A.B., A.L.J.), Department of Medicine, and Vanderbilt Genetics Institute (T.J.H.), Vanderbilt University Medical Center, Nashville, TN; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Molndal, Sweden; Department of Neurodegenerative Disease (H.Z.), University College London Institute of Neurology, Queen Square; and United Kingdom Dementia Research Institute at University College London (H.Z.), UK.
| |
Collapse
|
22
|
Plasminogen Activators in Neurovascular and Neurodegenerative Disorders. Int J Mol Sci 2021; 22:ijms22094380. [PMID: 33922229 PMCID: PMC8122722 DOI: 10.3390/ijms22094380] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/14/2021] [Accepted: 04/20/2021] [Indexed: 12/14/2022] Open
Abstract
The neurovascular unit (NVU) is a dynamic structure assembled by endothelial cells surrounded by a basement membrane, pericytes, astrocytes, microglia and neurons. A carefully coordinated interplay between these cellular and non-cellular components is required to maintain normal neuronal function, and in line with these observations, a growing body of evidence has linked NVU dysfunction to neurodegeneration. Plasminogen activators catalyze the conversion of the zymogen plasminogen into the two-chain protease plasmin, which in turn triggers a plethora of physiological events including wound healing, angiogenesis, cell migration and inflammation. The last four decades of research have revealed that the two mammalian plasminogen activators, tissue-type plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA), are pivotal regulators of NVU function during physiological and pathological conditions. Here, we will review the most relevant data on their expression and function in the NVU and their role in neurovascular and neurodegenerative disorders.
Collapse
|
23
|
Shavit-Stein E, Mindel E, Gofrit SG, Chapman J, Maggio N. Ischemic stroke in PAR1 KO mice: Decreased brain plasmin and thrombin activity along with decreased infarct volume. PLoS One 2021; 16:e0248431. [PMID: 33720950 PMCID: PMC7959388 DOI: 10.1371/journal.pone.0248431] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 02/25/2021] [Indexed: 12/01/2022] Open
Abstract
Background Ischemic stroke is a common and debilitating disease with limited treatment options. Protease activated receptor 1 (PAR1) is a fundamental cell signaling mediator in the central nervous system (CNS). It can be activated by many proteases including thrombin and plasmin, with various down-stream effects, following brain ischemia. Methods A permanent middle cerebral artery occlusion (PMCAo) model was used in PAR1 KO and WT C57BL/6J male mice. Mice were evaluated for neurological deficits (neurological severity score, NSS), infarct volume (Tetrazolium Chloride, TTC), and for plasmin and thrombin activity in brain slices. Results Significantly low levels of plasmin and thrombin activities were found in PAR1 KO compared to WT (1.6±0.4 vs. 3.2±0.6 ng/μl, p<0.05 and 17.2±1.0 vs. 21.2±1.0 mu/ml, p<0.01, respectively) along with a decreased infarct volume (178.9±14.3, 134.4±13.3 mm3, p<0.05). Conclusions PAR1 KO mice have smaller infarcts, with lower thrombin and plasmin activity levels. These findings may suggest that modulation of PAR1 is a potential target for future pharmacological treatment of ischemic stroke.
Collapse
Affiliation(s)
- Efrat Shavit-Stein
- Department of Neurology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel
- * E-mail:
| | - Ekaterina Mindel
- Department of Neurology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shany Guly Gofrit
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Joab Chapman
- Department of Neurology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Robert and Martha Harden Chair in Mental and Neurological Diseases, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nicola Maggio
- Department of Neurology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
24
|
Assessing Plasmin Generation in Health and Disease. Int J Mol Sci 2021; 22:ijms22052758. [PMID: 33803235 PMCID: PMC7963172 DOI: 10.3390/ijms22052758] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/20/2021] [Accepted: 03/05/2021] [Indexed: 12/13/2022] Open
Abstract
Fibrinolysis is an important process in hemostasis responsible for dissolving the clot during wound healing. Plasmin is a central enzyme in this process via its capacity to cleave fibrin. The kinetics of plasmin generation (PG) and inhibition during fibrinolysis have been poorly understood until the recent development of assays to quantify these metrics. The assessment of plasmin kinetics allows for the identification of fibrinolytic dysfunction and better understanding of the relationships between abnormal fibrin dissolution and disease pathogenesis. Additionally, direct measurement of the inhibition of PG by antifibrinolytic medications, such as tranexamic acid, can be a useful tool to assess the risks and effectiveness of antifibrinolytic therapy in hemorrhagic diseases. This review provides an overview of available PG assays to directly measure the kinetics of plasmin formation and inhibition in human and mouse plasmas and focuses on their applications in defining the role of plasmin in diseases, including angioedema, hemophilia, rare bleeding disorders, COVID-19, or diet-induced obesity. Moreover, this review introduces the PG assay as a promising clinical and research method to monitor antifibrinolytic medications and screen for genetic or acquired fibrinolytic disorders.
Collapse
|
25
|
Meng X, Li J, Zhang Q, Chen F, Bian C, Yao X, Yan J, Xu Z, Risacher SL, Saykin AJ, Liang H, Shen L. Multivariate genome wide association and network analysis of subcortical imaging phenotypes in Alzheimer's disease. BMC Genomics 2020; 21:896. [PMID: 33372590 PMCID: PMC7771059 DOI: 10.1186/s12864-020-07282-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 11/25/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genome-wide association studies (GWAS) have identified many individual genes associated with brain imaging quantitative traits (QTs) in Alzheimer's disease (AD). However single marker level association discovery may not be able to address the underlying biological interactions with disease mechanism. RESULTS In this paper, we used the MGAS (Multivariate Gene-based Association test by extended Simes procedure) tool to perform multivariate GWAS on eight AD-relevant subcortical imaging measures. We conducted multiple iPINBPA (integrative Protein-Interaction-Network-Based Pathway Analysis) network analyses on MGAS findings using protein-protein interaction (PPI) data, and identified five Consensus Modules (CMs) from the PPI network. Functional annotation and network analysis were performed on the identified CMs. The MGAS yielded significant hits within APOE, TOMM40 and APOC1 genes, which were known AD risk factors, as well as a few new genes such as LAMA1, XYLB, HSD17B7P2, and NPEPL1. The identified five CMs were enriched by biological processes related to disorders such as Alzheimer's disease, Legionellosis, Pertussis, and Serotonergic synapse. CONCLUSIONS The statistical power of coupling MGAS with iPINBPA was higher than traditional GWAS method, and yielded new findings that were missed by GWAS. This study provides novel insights into the molecular mechanism of Alzheimer's Disease and will be of value to novel gene discovery and functional genomic studies.
Collapse
Affiliation(s)
- Xianglian Meng
- School of Computer Information & Engineering, Changzhou Institute of Technology, Changzhou, 213032, China
| | - Jin Li
- College of Automation, Harbin Engineering University, Harbin, 150001, China
| | - Qiushi Zhang
- School of Computer Science, Northeast Electric Power University, Jilin, 132012, China
| | - Feng Chen
- College of Automation, Harbin Engineering University, Harbin, 150001, China
| | - Chenyuan Bian
- College of Automation, Harbin Engineering University, Harbin, 150001, China
| | - Xiaohui Yao
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Jingwen Yan
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of BioHealth Informatics, Indiana University School of Informatics and Computing, Indianapolis, IN, 46202, USA
| | - Zhe Xu
- School of Computer Information & Engineering, Changzhou Institute of Technology, Changzhou, 213032, China
| | - Shannon L Risacher
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Hong Liang
- College of Automation, Harbin Engineering University, Harbin, 150001, China.
| | - Li Shen
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|
26
|
Mindel E, Weiss R, Bushi D, Gera O, Orion D, Chapman J, Shavit-Stein E. Increased brain plasmin levels following experimental ischemic stroke in male mice. J Neurosci Res 2020; 99:966-976. [PMID: 33296953 DOI: 10.1002/jnr.24764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 10/29/2020] [Accepted: 11/15/2020] [Indexed: 12/19/2022]
Abstract
Many coagulation factor proteases are increased in the brain during ischemic stroke. One of these proteases is plasmin. In this study we established a novel method for direct quantitative measurement of plasmin activity in male mouse brain slices using a sensitive fluorescent substrate in the presence of specific protease inhibitors. In both the ischemic and contralateral hemispheres, plasmin activity increased 3, 6, and 24 hr following stroke in comparison to healthy mice (F(3, 72) = 39.5, p < 0.0001, repeated measures ANOVA) after the induction of permanent middle cerebral artery occlusion (PMCAo). Plasmin activity was higher in the ischemic hemisphere (F(1,36) = 9.1, p = 0.005) and there was a significant interaction between time and ischemic hemisphere (F(3,36) = 4.4, p = 0.009). Plasmin activity was correlated with infarct volume (R2 = 0.5289, p = 0.0009 by Spearman). The specificity of the assay was verified utilizing tissue-type plasminogen activator (tPA)-deficient mice which, as expected, had significantly lower levels of plasmin 24 hr following ischemia compared to wild-type mice (ischemic (0.6 ± 0.23 and 1.94 ± 0.5, respectively), p = 0.049 and contralateral hemispheres (0.13 ± 0.14 and 0.75 ± 0.10, respectively), p = 0.018 by t test). There is a time-dependent increase in plasmin levels and an association of higher levels of plasmin with larger infarct volumes in an experimental stroke model. This suggests caution in the use of recombinant tPA (rtPA) and that plasmin inhibition in the brain may be a therapeutic target in acute ischemic stroke.
Collapse
Affiliation(s)
- Ekaterina Mindel
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel.,Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ronen Weiss
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Doron Bushi
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel.,Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Comprehensive Stroke Center, Department of Neurology, Sackler Faculty of Medicine, Sheba Medical Center, Ramat Gan, Israel
| | - Orna Gera
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel.,Department of Physical Therapy, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - David Orion
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel.,Comprehensive Stroke Center, Department of Neurology, Sackler Faculty of Medicine, Sheba Medical Center, Ramat Gan, Israel
| | - Joab Chapman
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel.,Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Robert and Martha Harden Chair in Mental and Neurological Diseases, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Efrat Shavit-Stein
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel.,Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
27
|
Tao T, Liu M, Chen M, Luo Y, Wang C, Xu T, Jiang Y, Guo Y, Zhang JH. Natural medicine in neuroprotection for ischemic stroke: Challenges and prospective. Pharmacol Ther 2020; 216:107695. [DOI: 10.1016/j.pharmthera.2020.107695] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022]
|
28
|
Ehteshamfar S, Akhbari M, Afshari JT, Seyedi M, Nikfar B, Shapouri‐Moghaddam A, Ghanbarzadeh E, Momtazi‐Borojeni AA. Anti-inflammatory and immune-modulatory impacts of berberine on activation of autoreactive T cells in autoimmune inflammation. J Cell Mol Med 2020; 24:13573-13588. [PMID: 33135395 PMCID: PMC7754052 DOI: 10.1111/jcmm.16049] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/29/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
Autoreactive inflammatory CD4+ T cells, such as T helper (Th)1 and Th17 subtypes, have been found to associate with the pathogenesis of autoimmune disorders. On the other hand, CD4+ Foxp3+ T regulatory (Treg) cells are crucial for the immune tolerance and have a critical role in the suppression of the excessive immune and inflammatory response promoted by these Th cells. In contrast, dendritic cells (DCs) and macrophages are immune cells that through their inflammatory functions promote autoreactive T-cell responses in autoimmune conditions. In recent years, there has been increasing attention to exploring effective immunomodulatory or anti-inflammatory agents from the herbal collection of traditional medicine. Berberine, an isoquinoline alkaloid, is one of the main active ingredients extracted from medicinal herbs and has been shown to exert various biological and pharmacological effects that are suggested to be mainly attributed to its anti-inflammatory and immunomodulatory properties. Several lines of experimental study have recently investigated the therapeutic potential of berberine for treating autoimmune conditions in animal models of human autoimmune diseases. Here, we aimed to seek mechanisms underlying immunomodulatory and anti-inflammatory effects of berberine on autoreactive inflammatory responses in autoimmune conditions. Reported data reveal that berberine can directly suppress functions and differentiation of pro-inflammatory Th1 and Th17 cells, and indirectly decrease Th cell-mediated inflammation through modulating or suppressing other cells assisting autoreactive inflammation, such as Tregs, DCs and macrophages.
Collapse
Affiliation(s)
- Seyed‐Morteza Ehteshamfar
- Department of ImmunologyFaculty of MedicineBuAli Research InstituteMashhad University of Medical SciencesMashhadIran
| | - Masoume Akhbari
- Department of Molecular MedicineSchool of MedicineQazvin University of Medical SciencesQazvinIran
| | - Jalil Tavakol Afshari
- Department of ImmunologyFaculty of MedicineBuAli Research InstituteMashhad University of Medical SciencesMashhadIran
| | | | - Banafsheh Nikfar
- Pars Advanced and Minimally Invasive Medical Manners Research CenterPars HospitalIran University of Medical SciencesTehranIran
| | - Abbas Shapouri‐Moghaddam
- Department of ImmunologyFaculty of MedicineBuAli Research InstituteMashhad University of Medical SciencesMashhadIran
| | | | | |
Collapse
|
29
|
Baker SK, Strickland S. A critical role for plasminogen in inflammation. J Exp Med 2020; 217:133866. [PMID: 32159743 PMCID: PMC7144526 DOI: 10.1084/jem.20191865] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/10/2019] [Accepted: 02/12/2020] [Indexed: 02/06/2023] Open
Abstract
Plasminogen and its active form, plasmin, have diverse functions related to the inflammatory response in mammals. Due to these roles in inflammation, plasminogen has been implicated in the progression of a wide range of diseases with an inflammatory component. In this review, we discuss the functions of plasminogen in inflammatory regulation and how this system plays a role in the pathogenesis of diseases spanning organ systems throughout the body.
Collapse
Affiliation(s)
- Sarah K Baker
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY
| | - Sidney Strickland
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY
| |
Collapse
|
30
|
Kawashita E, Ishihara K, Miyaji H, Tanishima Y, Kiriyama A, Matsuo O, Akiba S. α2-Antiplasmin as a potential regulator of the spatial memory process and age-related cognitive decline. Mol Brain 2020; 13:140. [PMID: 33059734 PMCID: PMC7566027 DOI: 10.1186/s13041-020-00677-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/25/2020] [Indexed: 11/13/2022] Open
Abstract
α2-Antiplasmin (α2AP), a principal physiological plasmin inhibitor, is mainly produced by the liver and kidneys, but it is also expressed in several parts of the brain, including the hippocampus and cerebral cortex. Our previous study demonstrated that α2AP knockout mice exhibit spatial memory impairment in comparison to wild-type mice, suggesting that α2AP is necessary for the fetal and/or neonatal development of the neural network for spatial memory. However, it is still unclear whether α2AP plays a role in the memory process. The present study demonstrated that adult hippocampal neurogenesis and remote spatial memory were enhanced by the injection of an anti-α2AP neutralizing antibody in WT mice, while the injection of α2AP reduced hippocampal neurogenesis and impaired remote spatial memory, suggesting that α2AP is a negative regulator in memory processing. The present study also found that the levels of α2AP in the brains of old mice were higher than those in young mice, and a negative correlation between the α2AP level and spatial working memory. In addition, aging-dependent brain oxidative stress and hippocampal inflammation were attenuated by α2AP deficiency. Thus, an age-related increase in α2AP might cause cognitive decline accompanied by brain oxidative stress and neuroinflammation. Taken together, our findings suggest that α2AP is a key regulator of the spatial memory process, and that it may represent a promising target to effectively regulate healthy brain aging.
Collapse
Affiliation(s)
- Eri Kawashita
- Department of Pathological Biochemistry, Kyoto Pharmaceutical University, 5, Nakauchi-cho Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan.
| | - Keiichi Ishihara
- Department of Pathological Biochemistry, Kyoto Pharmaceutical University, 5, Nakauchi-cho Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Haruko Miyaji
- Department of Pathological Biochemistry, Kyoto Pharmaceutical University, 5, Nakauchi-cho Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Yu Tanishima
- Department of Pathological Biochemistry, Kyoto Pharmaceutical University, 5, Nakauchi-cho Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Akiko Kiriyama
- Department of Pharmacokinetics, Faculty of Pharmaceutical Science, Doshisha Women's College of Liberal Arts, Kodo, Kyotanabe-shi, Kyoto, 610-0395, Japan
| | - Osamu Matsuo
- Faculty of Medicine, Kindai University, 377-2 Ohnohigashi, Osakasayama, 589-8511, Japan
| | - Satoshi Akiba
- Department of Pathological Biochemistry, Kyoto Pharmaceutical University, 5, Nakauchi-cho Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan
| |
Collapse
|
31
|
Lau SF, Cao H, Fu AKY, Ip NY. Single-nucleus transcriptome analysis reveals dysregulation of angiogenic endothelial cells and neuroprotective glia in Alzheimer's disease. Proc Natl Acad Sci U S A 2020; 117:25800-25809. [PMID: 32989152 PMCID: PMC7568283 DOI: 10.1073/pnas.2008762117] [Citation(s) in RCA: 271] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia but has no effective treatment. A comprehensive investigation of cell type-specific responses and cellular heterogeneity in AD is required to provide precise molecular and cellular targets for therapeutic development. Accordingly, we perform single-nucleus transcriptome analysis of 169,496 nuclei from the prefrontal cortical samples of AD patients and normal control (NC) subjects. Differential analysis shows that the cell type-specific transcriptomic changes in AD are associated with the disruption of biological processes including angiogenesis, immune activation, synaptic signaling, and myelination. Subcluster analysis reveals that compared to NC brains, AD brains contain fewer neuroprotective astrocytes and oligodendrocytes. Importantly, our findings show that a subpopulation of angiogenic endothelial cells is induced in the brain in patients with AD. These angiogenic endothelial cells exhibit increased expression of angiogenic growth factors and their receptors (i.e., EGFL7, FLT1, and VWF) and antigen-presentation machinery (i.e., B2M and HLA-E). This suggests that these endothelial cells contribute to angiogenesis and immune response in AD pathogenesis. Thus, our comprehensive molecular profiling of brain samples from patients with AD reveals previously unknown molecular changes as well as cellular targets that potentially underlie the functional dysregulation of endothelial cells, astrocytes, and oligodendrocytes in AD, providing important insights for therapeutic development.
Collapse
Affiliation(s)
- Shun-Fat Lau
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Han Cao
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Amy K Y Fu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Hong Kong University of Science and Technology Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science, 518057 Shenzhen, Guangdong, China
| | - Nancy Y Ip
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, China;
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Hong Kong University of Science and Technology Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science, 518057 Shenzhen, Guangdong, China
| |
Collapse
|
32
|
Ebrahimi Z, Talaei S, Aghamiri S, Goradel NH, Jafarpour A, Negahdari B. Overcoming the blood-brain barrier in neurodegenerative disorders and brain tumours. IET Nanobiotechnol 2020; 14:441-448. [PMID: 32755952 PMCID: PMC8676526 DOI: 10.1049/iet-nbt.2019.0351] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/30/2020] [Accepted: 04/24/2020] [Indexed: 07/31/2023] Open
Abstract
Drug delivery is one of the major challenges in the treatment of central nervous system disorders. The brain needs to be protected from harmful agents, which are done by the capillary network, the so-called blood-brain barrier (BBB). This protective guard also prevents the delivery of therapeutic agents to the brain and limits the effectiveness of treatment. For this reason, various strategies have been explored by scientists for overcoming the BBB from disruption of the BBB to targeted delivery of nanoparticles (NPs) and cells and immunotherapy. In this review, different promising brain drug delivery strategies including disruption of tight junctions in the BBB, enhanced transcellular transport by peptide-based delivery, local delivery strategies, NP delivery, and cell-based delivery have been fully discussed.
Collapse
Affiliation(s)
- Zahra Ebrahimi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sam Talaei
- School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahin Aghamiri
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Nasser Hashemi Goradel
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Jafarpour
- Students' Scientific Research Center, Virology Division, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
33
|
Datta A, Sarmah D, Kalia K, Borah A, Wang X, Dave KR, Yavagal DR, Bhattacharya P. Advances in Studies on Stroke-Induced Secondary Neurodegeneration (SND) and Its Treatment. Curr Top Med Chem 2020; 20:1154-1168. [DOI: 10.2174/1568026620666200416090820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 12/23/2022]
Abstract
Background:
The occurrence of secondary neurodegeneration has exclusively been observed
after the first incidence of stroke. In humans and rodents, post-stroke secondary neurodegeneration
(SND) is an inevitable event that can lead to progressive neuronal loss at a region distant to initial infarct.
SND can lead to cognitive and motor function impairment, finally causing dementia. The exact
pathophysiology of the event is yet to be explored. It is seen that the thalami, in particular, are susceptible
to cause SND. The reason behind this is because the thalamus functioning as the relay center and is
positioned as an interlocked structure with direct synaptic signaling connection with the cortex. As SND
proceeds, accumulation of misfolded proteins and microglial activation are seen in the thalamus. This
leads to increased neuronal loss and worsening of functional and cognitive impairment.
Objective:
There is a necessity of specific interventions to prevent post-stroke SND, which are not properly
investigated to date owing to sparsely reproducible pre-clinical and clinical data. The basis of this
review is to investigate about post-stroke SND and its updated treatment approaches carefully.
Methods:
Our article presents a detailed survey of advances in studies on stroke-induced secondary neurodegeneration
(SND) and its treatment.
Results:
This article aims to put forward the pathophysiology of SND. We have also tabulated the latest
treatment approaches along with different neuroimaging systems that will be helpful for future reference
to explore.
Conclusion:
In this article, we have reviewed the available reports on SND pathophysiology, detection
techniques, and possible treatment modalities that have not been attempted to date.
Collapse
Affiliation(s)
- Aishika Datta
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Deepaneeta Sarmah
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Kiran Kalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Kunjan R. Dave
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Dileep R. Yavagal
- Department of Neurology and Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| |
Collapse
|
34
|
Hashimoto Y, Campbell M. Tight junction modulation at the blood-brain barrier: Current and future perspectives. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183298. [PMID: 32353377 DOI: 10.1016/j.bbamem.2020.183298] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/09/2020] [Accepted: 03/28/2020] [Indexed: 12/14/2022]
Abstract
The blood-brain barrier (BBB) is the one of the most robust physical barriers in the body, comprised of tight junction (TJ) proteins in brain microvascular endothelial cells. The need for drugs to treat central nervous systems diseases is ever increasing, however the presence of the BBB significantly hampers the uptake of drugs into the brain. To overcome or circumvent the barrier, many kinds of techniques are being developed. Modulating the paracellular route by disruption of the TJ complex has been proposed as a potential drug delivery system to treat brain diseases, however, it has several limitations and is still in a developmental stage. However, recent significant advance in medical equipment /tools such as targeted ultra-sound technologies may resolve these limitations. In this review, we introduce recent advances in site- or molecular size-selective BBB disruption/modulation technologies and we include details on pharmacological inhibitory molecules against intercellular TJ proteins to modulate the BBB.
Collapse
Affiliation(s)
- Yosuke Hashimoto
- Trinity College Dublin, Smurfit Institute of Genetics, Dublin 2, Ireland.
| | - Matthew Campbell
- Trinity College Dublin, Smurfit Institute of Genetics, Dublin 2, Ireland.
| |
Collapse
|
35
|
Rodin S, Kozin SA, Kechko OI, Mitkevich VA, Makarov AA. Aberrant interactions between amyloid-beta and alpha5 laminins as possible driver of neuronal disfunction in Alzheimer's disease. Biochimie 2020; 174:44-48. [PMID: 32311425 DOI: 10.1016/j.biochi.2020.04.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/12/2020] [Accepted: 04/12/2020] [Indexed: 12/28/2022]
Abstract
It has been widely accepted that laminins are involved in pathogenesis of Alzheimer's disease (AD). Amyloid plaques in AD patients are associated with immunostaining using antibodies raised against laminin-111, and laminin-111 has been shown to prevent aggregation of amyloid peptides. Although numerous articles describe small peptides from laminin-111 that are capable to disaggregate amyloid buildups and reduce neurotoxicity in in vitro and in vivo models, there is no approved laminin-111-based therapeutic approaches for treatment of AD. Also, it has been shown that immunoreactivity to laminin-111 appears late in development of cerebral amyloidosis. Based on the published data, we hypothesize that aberrant interaction between amyloid-beta and α5-laminins such as laminin-511 prevents the necessary laminin signaling into neurons leading to neurodegeneration and contributing to the early development of AD. Laminin-511 is the key extracellular protein that protects neurons from anoikis, inhibits excitoxicity and provides signaling that stabilizes dendritic spines and synapses in the developed brain. Absence of the signaling from laminin-511 leads to behavioral defects in mice. Laminin-511 and hippocampal neurons are in direct contact and accumulation of amyloid-beta that has been shown to avidly bind laminin-511 may physically decouple the interaction between α5-laminins and the neuronal membrane receptors inhibiting the signaling. Under this hypothesis, protein domains and peptides from laminin α5 chain may have a therapeutic potential in treatment of AD and the appearance of laminin-111 in the amyloid plaques is simply a consequence of the disease.
Collapse
Affiliation(s)
- Sergey Rodin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia; Department of Surgical Sciences, Ångström Laboratory, Uppsala University, 752 37, Uppsala, Sweden.
| | - Sergey A Kozin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Olga I Kechko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Vladimir A Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Alexander A Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| |
Collapse
|
36
|
Kresge HA, Liu D, Gupta DK, Moore EE, Osborn KE, Acosta LMY, Bell SP, Pechman KR, Gifford KA, Mendes LA, Wang TJ, Blennow K, Zetterberg H, Hohman TJ, Jefferson AL. Lower Left Ventricular Ejection Fraction Relates to Cerebrospinal Fluid Biomarker Evidence of Neurodegeneration in Older Adults. J Alzheimers Dis 2020; 74:965-974. [PMID: 32144980 PMCID: PMC7278528 DOI: 10.3233/jad-190813] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Subclinical cardiac dysfunction is associated with decreased cerebral blood flow, placing the aging brain at risk for Alzheimer's disease (AD) pathology and neurodegeneration. OBJECTIVE This study investigates the association between subclinical cardiac dysfunction, measured by left ventricular ejection fraction (LVEF), and cerebrospinal fluid (CSF) biomarkers of AD and neurodegeneration. METHODS Vanderbilt Memory & Aging Project participants free of dementia, stroke, and heart failure (n = 152, 72±6 years, 68% male) underwent echocardiogram to quantify LVEF and lumbar puncture to measure CSF levels of amyloid-β42 (Aβ42), phosphorylated tau (p-tau), and total tau (t-tau). Linear regressions related LVEF to CSF biomarkers, adjusting for age, sex, race/ethnicity, education, Framingham Stroke Risk Profile, cognitive diagnosis, and apolipoprotein E ɛ4 status. Secondary models tested an LVEF x cognitive diagnosis interaction and then stratified by diagnosis (normal cognition (NC), mild cognitive impairment (MCI)). RESULTS Higher LVEF related to decreased CSF Aβ42 levels (β= -6.50, p = 0.04) reflecting greater cerebral amyloid accumulation, but this counterintuitive result was attenuated after excluding participants with cardiovascular disease and atrial fibrillation (p = 0.07). We observed an interaction between LVEF and cognitive diagnosis on CSF t-tau (p = 0.004) and p-tau levels (p = 0.002), whereas lower LVEF was associated with increased CSF t-tau (β= -9.74, p = 0.01) and p-tau in the NC (β= -1.41, p = 0.003) but not MCI participants (p-values>0.13). CONCLUSIONS Among cognitively normal older adults, subclinically lower LVEF relates to greater molecular evidence of tau phosphorylation and neurodegeneration. Modest age-related changes in cardiovascular function may have implications for pathophysiological changes in the brain later in life.
Collapse
Affiliation(s)
- Hailey A. Kresge
- Vanderbilt Memory & Alzheimer’s Center, Department of Neurology, Vanderbilt University Medical Center, Nashville, USA
| | - Dandan Liu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Deepak K. Gupta
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Elizabeth E. Moore
- Vanderbilt Memory & Alzheimer’s Center, Department of Neurology, Vanderbilt University Medical Center, Nashville, USA
| | - Katie E. Osborn
- Vanderbilt Memory & Alzheimer’s Center, Department of Neurology, Vanderbilt University Medical Center, Nashville, USA
| | - Lealani Mae Y. Acosta
- Vanderbilt Memory & Alzheimer’s Center, Department of Neurology, Vanderbilt University Medical Center, Nashville, USA
| | - Susan P. Bell
- Vanderbilt Memory & Alzheimer’s Center, Department of Neurology, Vanderbilt University Medical Center, Nashville, USA
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Quality Aging, Division of General Internal Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kimberly R. Pechman
- Vanderbilt Memory & Alzheimer’s Center, Department of Neurology, Vanderbilt University Medical Center, Nashville, USA
| | - Katherine A. Gifford
- Vanderbilt Memory & Alzheimer’s Center, Department of Neurology, Vanderbilt University Medical Center, Nashville, USA
| | - Lisa A. Mendes
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Thomas J. Wang
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - Timothy J. Hohman
- Vanderbilt Memory & Alzheimer’s Center, Department of Neurology, Vanderbilt University Medical Center, Nashville, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Angela L. Jefferson
- Vanderbilt Memory & Alzheimer’s Center, Department of Neurology, Vanderbilt University Medical Center, Nashville, USA
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
37
|
Gautam J, Miner JH, Yao Y. Loss of Endothelial Laminin α5 Exacerbates Hemorrhagic Brain Injury. Transl Stroke Res 2019; 10:705-718. [PMID: 30693425 PMCID: PMC6663661 DOI: 10.1007/s12975-019-0688-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/08/2019] [Accepted: 01/10/2019] [Indexed: 01/09/2023]
Abstract
Endothelial cells make laminin-411 and laminin-511. Although laminin-411 is well studied, the role of laminin-511 remains largely unknown due to the embryonic lethality of lama5-/- mutants. In this study, we generated endothelium-specific lama5 conditional knockout (α5-TKO) mice and investigated the biological functions of endothelial lama5 in blood-brain barrier (BBB) maintenance under homeostatic conditions and the pathogenesis of intracerebral hemorrhage (ICH). First, the BBB integrity of α5-TKO mice was measured under homeostatic conditions. Next, ICH was induced in α5-TKO mice and their littermate controls using the collagenase model. Various parameters, including injury volume, neuronal death, neurological score, brain edema, BBB integrity, inflammatory cell infiltration, and gliosis, were examined at various time points after injury. Under homeostatic conditions, comparable levels of IgG or exogenous tracers were detected in α5-TKO and control mice. Additionally, no differences in tight junction expression, pericyte coverage, and astrocyte polarity were found in these mice. After ICH, α5-TKO mice displayed enlarged injury volume, increased neuronal death, elevated BBB permeability, exacerbated infiltration of inflammatory cells (leukocytes, neutrophils, and mononuclear cells), aggravated gliosis, unchanged brain edema, and worse neurological function, compared to the controls. These findings suggest that endothelial lama5 is dispensable for BBB maintenance under homeostatic conditions but plays a beneficial role in ICH.
Collapse
Affiliation(s)
- Jyoti Gautam
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 240 W Green Street, Athens, GA, 30602, USA
| | - Jeffrey H Miner
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Yao Yao
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 240 W Green Street, Athens, GA, 30602, USA.
| |
Collapse
|
38
|
Boese AC, Hamblin MH, Lee JP. Neural stem cell therapy for neurovascular injury in Alzheimer's disease. Exp Neurol 2019; 324:113112. [PMID: 31730762 DOI: 10.1016/j.expneurol.2019.113112] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/02/2019] [Accepted: 11/11/2019] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD), the most common form of dementia, is characterized by progressive neurodegeneration leading to severe cognitive decline and eventual death. AD pathophysiology is complex, but neurotoxic accumulation of amyloid-β (Aβ) and hyperphosphorylation of Tau are believed to be main drivers of neurodegeneration in AD. The formation and deposition of Aβ plaques occurs in the brain parenchyma as well as in the cerebral vasculature. Thus, proper blood-brain barrier (BBB) and cerebrovascular functioning are crucial for clearance of Aβ from the brain, and neurovascular dysfunction may be a critical component of AD development. Further, neuroinflammation and dysfunction of angiogenesis, neurogenesis, and neurorestorative capabilities play a role in AD pathophysiology. Currently, there is no effective treatment to prevent or restore loss of brain tissue and cognitive decline in patients with AD. Based on multifactorial and complex pathophysiological cascades in multiple Alzheimer's disease stages, effective AD therapies need to focus on targeting early AD pathology and preserving cerebrovascular function. Neural stem cells (NSCs) participate extensively in mammalian brain homeostasis and repair and exhibit pleiotropic intrinsic properties that likely make them attractive candidates for the treatment of AD. In the review, we summarize the current advances in knowledge regarding neurovascular aspects of AD-related neurodegeneration and discuss multiple actions of NSCs from preclinical studies of AD to evaluate their potential for future clinical treatment of AD.
Collapse
Affiliation(s)
- Austin C Boese
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Milton H Hamblin
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jean-Pyo Lee
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA 70112, USA; Tulane Brain Institute, Tulane University, New Orleans, LA 70112, USA.
| |
Collapse
|
39
|
Castillo X, Castro-Obregón S, Gutiérrez-Becker B, Gutiérrez-Ospina G, Karalis N, Khalil AA, Lopez-Noguerola JS, Rodríguez LL, Martínez-Martínez E, Perez-Cruz C, Pérez-Velázquez J, Piña AL, Rubio K, García HPS, Syeda T, Vanoye-Carlo A, Villringer A, Winek K, Zille M. Re-thinking the Etiological Framework of Neurodegeneration. Front Neurosci 2019; 13:728. [PMID: 31396030 PMCID: PMC6667555 DOI: 10.3389/fnins.2019.00728] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 06/28/2019] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative diseases are among the leading causes of disability and death worldwide. The disease-related socioeconomic burden is expected to increase with the steadily increasing life expectancy. In spite of decades of clinical and basic research, most strategies designed to manage degenerative brain diseases are palliative. This is not surprising as neurodegeneration progresses "silently" for decades before symptoms are noticed. Importantly, conceptual models with heuristic value used to study neurodegeneration have been constructed retrospectively, based on signs and symptoms already present in affected patients; a circumstance that may confound causes and consequences. Hence, innovative, paradigm-shifting views of the etiology of these diseases are necessary to enable their timely prevention and treatment. Here, we outline four alternative views, not mutually exclusive, on different etiological paths toward neurodegeneration. First, we propose neurodegeneration as being a secondary outcome of a primary cardiovascular cause with vascular pathology disrupting the vital homeostatic interactions between the vasculature and the brain, resulting in cognitive impairment, dementia, and cerebrovascular events such as stroke. Second, we suggest that the persistence of senescent cells in neuronal circuits may favor, together with systemic metabolic diseases, neurodegeneration to occur. Third, we argue that neurodegeneration may start in response to altered body and brain trophic interactions established via the hardwire that connects peripheral targets with central neuronal structures or by means of extracellular vesicle (EV)-mediated communication. Lastly, we elaborate on how lifespan body dysbiosis may be linked to the origin of neurodegeneration. We highlight the existence of bacterial products that modulate the gut-brain axis causing neuroinflammation and neuronal dysfunction. As a concluding section, we end by recommending research avenues to investigate these etiological paths in the future. We think that this requires an integrated, interdisciplinary conceptual research approach based on the investigation of the multimodal aspects of physiology and pathophysiology. It involves utilizing proper conceptual models, experimental animal units, and identifying currently unused opportunities derived from human data. Overall, the proposed etiological paths and experimental recommendations will be important guidelines for future cross-discipline research to overcome the translational roadblock and to develop causative treatments for neurodegenerative diseases.
Collapse
Affiliation(s)
- Ximena Castillo
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Institute of Neurobiology, University of Puerto Rico, San Juan, PR, United States
| | - Susana Castro-Obregón
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Benjamin Gutiérrez-Becker
- Artificial Intelligence in Medical Imaging KJP, Ludwig Maximilian University of Munich, Munich, Germany
| | - Gabriel Gutiérrez-Ospina
- Laboratorio de Biología de Sistemas, Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas y Coordinación de Psicobiología y Neurociencias, Facultad de Psicología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Nikolaos Karalis
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Ahmed A. Khalil
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | | | - Liliana Lozano Rodríguez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Eduardo Martínez-Martínez
- Cell Communication & Extracellular Vesicles Laboratory, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Claudia Perez-Cruz
- National Polytechnic Institute, Center of Research in Advanced Studies, Mexico City, Mexico
| | - Judith Pérez-Velázquez
- Departamento de Matemáticas y Mecánica, Instituto de Investigaciones en Matemáticas Aplicadas y Sistemas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Mathematische Modellierung Biologischer Systeme, Fakultät für Mathematik, Technische Universität München, Munich, Germany
| | - Ana Luisa Piña
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Karla Rubio
- Lung Cancer Epigenetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | | | - Tauqeerunnisa Syeda
- National Polytechnic Institute, Center of Research in Advanced Studies, Mexico City, Mexico
| | - America Vanoye-Carlo
- Laboratorio de Neurociencias, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City, Mexico
| | - Arno Villringer
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Katarzyna Winek
- The Shimon Peres Postdoctoral Fellow at the Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Marietta Zille
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
- Institute for Medical and Marine Biotechnology, University of Lübeck, Lübeck, Germany
- Fraunhofer Research Institution for Marine Biotechnology and Cell Technology, Lübeck, Germany
| |
Collapse
|
40
|
Zhu J, Wan Y, Xu H, Wu Y, Hu B, Jin H. The role of endogenous tissue-type plasminogen activator in neuronal survival after ischemic stroke: friend or foe? Cell Mol Life Sci 2019; 76:1489-1506. [PMID: 30656378 PMCID: PMC11105644 DOI: 10.1007/s00018-019-03005-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 12/19/2018] [Accepted: 01/03/2019] [Indexed: 12/29/2022]
Abstract
Endogenous protease tissue-type plasminogen activator (tPA) has highly efficient fibrinolytic activity and its recombinant variants alteplase and tenecteplase are established as highly effective thrombolytic drugs for ischemic stroke. Endogenous tPA is constituted of five functional domains through which it interacts with a variety of substrates, binding proteins and receptors, thus having enzymatic and cytokine-like effects to act on all cell types of the brain. In the past 2 decades, numerous studies have explored the clinical relevance of endogenous tPA in neurological diseases, especially in ischemic stroke. tPA is released from many cells within the brain parenchyma exposed to ischemia conditions in vitro and in vivo, which is believed to control neuronal fate. Some studies proved that tPA could induce blood-brain barrier disruption, neural excitotoxicity and inflammation, while others indicated that tPA also has anti-excitotoxic, neurotrophic and anti-apoptotic effects on neurons. Therefore, more work is needed to elucidate how tPA mediates such opposing functions that may amplify tPA from a therapeutic means into a key therapeutic target in endogenous neuroprotection after stroke. In this review, we summarize the biological characteristics and pleiotropic functions of tPA in the brain. Then we focus on possible hypotheses about why and how endogenous tPA mediates ischemic neuronal death and survival. Finally, we analyze how endogenous tPA affects neuron fate in ischemic stroke in a comprehensive view.
Collapse
Affiliation(s)
- Jiayi Zhu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Yan Wan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Hexiang Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Yulang Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
| | - Huijuan Jin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
| |
Collapse
|
41
|
Singh H, Nain S, Krishnaraj A, Lata S, Dhole TN. Genetic variation of matrix metalloproteinase enzyme in HIV-associated neurocognitive disorder. Gene 2019; 698:41-49. [PMID: 30825593 DOI: 10.1016/j.gene.2019.02.057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/14/2019] [Accepted: 02/17/2019] [Indexed: 01/13/2023]
Abstract
Matrix metalloproteinases (MMPs) play a key role in several diseases such as rheumatoid arthritis, HIV-associated neurological diseases (HAND), multiple sclerosis, osteoporosis, stroke, Alzheimer's disease, certain viral infections of the central nervous system, cancer, and hepatitis C virus. MMPs have been explained with regards to extracellular matrix remodeling, which occurs throughout life and ranges from tissue morphogenesis to wound healing in various processes. MMP are inhibited by endogenous tissue inhibitors of metalloproteinases (TIMPs). Matrix metalloproteases act as an interface between host's attack by Tat protein of HIV-1 virus and extracellular matrix, which causes breaches in the endothelial barriers by degrading ECM. This process initiates the dissemination of virus in tissues which can lead to an increase HIV-1 infection. MMPs are diverse and are highly polymorphic in nature, hence associated with many diseases. The main objective of this review is to study the gene expression of MMPs in HIV-related diseases and whether TIMPs and MMPs could be related with disease progression, HIV vulnerability and HAND. In this review, a brief description on the classification, regulation of MMP and TIMP, the effect of different MMPs and TIMPs gene polymorphisms and its expression on HIV-associated diseases have been provided. Previous studies have shown that MMPs polymorphism (MMP-1, MMP-2 MMP3, and MMP9) plays an important role in HIV vulnerability, disease progression and HAND. Further research is required to explore their role in pathogenesis and therapeutic perspective.
Collapse
Affiliation(s)
- HariOm Singh
- Department of Molecular Biology, National AIDS Research Institute, Pune 411026, India.
| | - Sumitra Nain
- Department of Pharmacy, University of Banasthali, Banasthali Vidyapith, Jaipur 302001, India
| | - Asha Krishnaraj
- Department of Pharmacotherapy, University of Utah, Salt Lake City, UT 84108, USA
| | - Sonam Lata
- Department of Molecular Biology, National AIDS Research Institute, Pune 411026, India
| | - T N Dhole
- Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, India
| |
Collapse
|
42
|
Nirwane A, Yao Y. Laminins and their receptors in the CNS. Biol Rev Camb Philos Soc 2019; 94:283-306. [PMID: 30073746 DOI: 10.1111/brv.12454] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/05/2018] [Accepted: 07/09/2018] [Indexed: 01/24/2023]
Abstract
Laminin, an extracellular matrix protein, is widely expressed in the central nervous system (CNS). By interacting with integrin and non-integrin receptors, laminin exerts a large variety of important functions in the CNS in both physiological and pathological conditions. Due to the existence of many laminin isoforms and their differential expression in various cell types in the CNS, the exact functions of each individual laminin molecule in CNS development and homeostasis remain largely unclear. In this review, we first briefly introduce the structure and biochemistry of laminins and their receptors. Next, the dynamic expression of laminins and their receptors in the CNS during both development and in adulthood is summarized in a cell-type-specific manner, which allows appreciation of their functional redundancy/compensation. Furthermore, we discuss the biological functions of laminins and their receptors in CNS development, blood-brain barrier (BBB) maintenance, neurodegeneration, stroke, and neuroinflammation. Last, key challenges and potential future research directions are summarized and discussed. Our goals are to provide a synthetic review to stimulate future studies and promote the formation of new ideas/hypotheses and new lines of research in this field.
Collapse
Affiliation(s)
- Abhijit Nirwane
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 240 W Green Street, Athens, GA 30602, U.S.A
| | - Yao Yao
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 240 W Green Street, Athens, GA 30602, U.S.A
| |
Collapse
|
43
|
Kolinko Y, Kralickova M, Tonar Z. The impact of pericytes on the brain and approaches for their morphological analysis. J Chem Neuroanat 2018; 91:35-45. [DOI: 10.1016/j.jchemneu.2018.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 04/10/2018] [Accepted: 04/15/2018] [Indexed: 12/15/2022]
|
44
|
Irvine KA, Sahbaie P, Liang DY, Clark JD. Traumatic Brain Injury Disrupts Pain Signaling in the Brainstem and Spinal Cord. J Neurotrauma 2018; 35:1495-1509. [PMID: 29373948 DOI: 10.1089/neu.2017.5411] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Chronic pain is a common consequence of traumatic brain injury (TBI) that can increase the suffering of a patient and pose a significant challenge to rehabilitative efforts. Unfortunately, the mechanisms linking TBI to pain are poorly understood, and specific treatments for TBI-related pain are still lacking. Our laboratory has shown that TBI causes pain sensitization in areas distant to the site of primary injury, and that changes in spinal gene expression may underlie this sensitization. The aim of this study was to examine the roles that pain modulatory pathways descending from the brainstem play in pain after TBI. Deficiencies in one type of descending inhibition, diffuse noxious inhibitory control (DNIC), have been suggested to be responsible for the development of chronic pain by allowing excess and uncontrolled afferent nociceptive inputs. Here we expand our knowledge of pain after TBI in two ways: (1) by outlining the neuropathology in pain-related centers of the brain and spinal cord involved in DNIC using the rat lateral fluid percussion (LFP) model of TBI, and (2) by evaluating the effects of a potent histone acetyl transferase inhibitor, anacardic acid (AA), on LFP-induced pain behaviors and neuropathology when administered for several days after TBI. The results revealed that TBI induces transient mechanical allodynia and a chronic persistent loss of DNIC. Further, while short-term AA treatment can block acute nociceptive sensitization and some early neuropathological changes, this treatment neither prevented the loss of DNIC nor did it alter long-term neuropathological changes in the brain or spinal cord.
Collapse
Affiliation(s)
- Karen-Amanda Irvine
- 1 Department of Anesthesiology, Veterans Affairs Palo Alto Health Care System , Palo Alto, California.,2 Department of Anesthesia, Perioperative Medicine and Pain, Stanford University , Stanford, California
| | - Peyman Sahbaie
- 1 Department of Anesthesiology, Veterans Affairs Palo Alto Health Care System , Palo Alto, California.,2 Department of Anesthesia, Perioperative Medicine and Pain, Stanford University , Stanford, California
| | - De-Yong Liang
- 1 Department of Anesthesiology, Veterans Affairs Palo Alto Health Care System , Palo Alto, California.,2 Department of Anesthesia, Perioperative Medicine and Pain, Stanford University , Stanford, California
| | - J David Clark
- 1 Department of Anesthesiology, Veterans Affairs Palo Alto Health Care System , Palo Alto, California.,2 Department of Anesthesia, Perioperative Medicine and Pain, Stanford University , Stanford, California
| |
Collapse
|
45
|
Sweeney MD, Sagare AP, Zlokovic BV. Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol 2018; 14:133-150. [PMID: 29377008 PMCID: PMC5829048 DOI: 10.1038/nrneurol.2017.188] [Citation(s) in RCA: 1917] [Impact Index Per Article: 273.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The blood-brain barrier (BBB) is a continuous endothelial membrane within brain microvessels that has sealed cell-to-cell contacts and is sheathed by mural vascular cells and perivascular astrocyte end-feet. The BBB protects neurons from factors present in the systemic circulation and maintains the highly regulated CNS internal milieu, which is required for proper synaptic and neuronal functioning. BBB disruption allows influx into the brain of neurotoxic blood-derived debris, cells and microbial pathogens and is associated with inflammatory and immune responses, which can initiate multiple pathways of neurodegeneration. This Review discusses neuroimaging studies in the living human brain and post-mortem tissue as well as biomarker studies demonstrating BBB breakdown in Alzheimer disease, Parkinson disease, Huntington disease, amyotrophic lateral sclerosis, multiple sclerosis, HIV-1-associated dementia and chronic traumatic encephalopathy. The pathogenic mechanisms by which BBB breakdown leads to neuronal injury, synaptic dysfunction, loss of neuronal connectivity and neurodegeneration are described. The importance of a healthy BBB for therapeutic drug delivery and the adverse effects of disease-initiated, pathological BBB breakdown in relation to brain delivery of neuropharmaceuticals are briefly discussed. Finally, future directions, gaps in the field and opportunities to control the course of neurological diseases by targeting the BBB are presented.
Collapse
Affiliation(s)
- Melanie D Sweeney
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, 1501 San Pablo Street, Los Angeles, California 90089, USA
| | - Abhay P Sagare
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, 1501 San Pablo Street, Los Angeles, California 90089, USA
| | - Berislav V Zlokovic
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, 1501 San Pablo Street, Los Angeles, California 90089, USA
| |
Collapse
|
46
|
Garg C, Seo JH, Ramachandran J, Loh JM, Calderon F, Contreras JE. Trovafloxacin attenuates neuroinflammation and improves outcome after traumatic brain injury in mice. J Neuroinflammation 2018; 15:42. [PMID: 29439712 PMCID: PMC5812039 DOI: 10.1186/s12974-018-1069-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 01/17/2018] [Indexed: 12/20/2022] Open
Abstract
Background Trovafloxacin is a broad-spectrum antibiotic, recently identified as an inhibitor of pannexin-1 (Panx1) channels. Panx1 channels are important conduits for the adenosine triphosphate (ATP) release from live and dying cells that enhances the inflammatory response of immune cells. Elevated extracellular levels ATP released upon injury activate purinergic pathways in inflammatory cells that promote migration, proliferation, phagocytosis, and apoptotic signals. Here, we tested whether trovafloxacin administration attenuates the neuroinflammatory response and improves outcomes after brain trauma. Methods The murine controlled cortical impact (CCI) model was used to determine whether in vivo delivery of trovafloxacin has anti-inflammatory and neuroprotective actions after brain trauma. Locomotor deficit was assessed using the rotarod test. Levels of tissue damage markers and inflammation were measured using western blot, qPCR, and immunofluorescence. In vitro assays were used to evaluate whether trovafloxacin blocks ATP release and cell migration in a chemotactic-stimulated microglia cell line. Results Trovafloxacin treatment of CCI-injured mice significantly reduced tissue damage markers and improved locomotor deficits. In addition, trovafloxacin treatment significantly reduced mRNA levels of several pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), which correlates with an overall reduction in the accumulation of inflammatory cell types (neutrophils, microglia/macrophages, and astroglia) at the injury zone. To determine whether trovafloxacin exerted these effects by direct action on immune cells, we evaluated its effect on ATP release and cell migration using a chemotactic-stimulated microglial cell line. We found that trovafloxacin significantly inhibited both ATP release and migration of these cells. Conclusion Our results show that trovafloxacin administration has pronounced anti-inflammatory and neuroprotective effects following brain injury. These findings lay the foundation for future studies to directly test a role for Panx1 channels in pathological inflammation following brain trauma. Electronic supplementary material The online version of this article (10.1186/s12974-018-1069-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Charu Garg
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, 185 South Orange Ave, Newark, NJ, 07103, USA
| | - Joon Ho Seo
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, 185 South Orange Ave, Newark, NJ, 07103, USA
| | - Jayalakshmi Ramachandran
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, 185 South Orange Ave, Newark, NJ, 07103, USA
| | - Ji Meng Loh
- Department of Mathematical Sciences, New Jersey Institute of Technology, University Heights, Newark, NJ, 07102, USA
| | - Frances Calderon
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, 185 South Orange Ave, Newark, NJ, 07103, USA.
| | - Jorge E Contreras
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, 185 South Orange Ave, Newark, NJ, 07103, USA.
| |
Collapse
|
47
|
Dineen RA, Pszczolkowski S, Flaherty K, Law ZK, Morgan PS, Roberts I, Werring DJ, Al-Shahi Salman R, England T, Bath PM, Sprigg N. Does tranexamic acid lead to changes in MRI measures of brain tissue health in patients with spontaneous intracerebral haemorrhage? Protocol for a MRI substudy nested within the double-blind randomised controlled TICH-2 trial. BMJ Open 2018; 8:e019930. [PMID: 29431141 PMCID: PMC5879748 DOI: 10.1136/bmjopen-2017-019930] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/28/2017] [Accepted: 12/12/2017] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVES To test whether administration of the antifibrinolytic drug tranexamic acid (TXA) in patients with spontaneous intracerebral haemorrhage (SICH) leads to increased prevalence of diffusion-weighted MRI-defined hyperintense ischaemic lesions (primary hypothesis) or reduced perihaematomal oedema volume, perihaematomal diffusion restriction and residual MRI-defined SICH-related tissue damage (secondary hypotheses). DESIGN MRI substudy nested within the double-blind randomised controlled Tranexamic Acid for Hyperacute Primary Intracerebral Haemorrhage (TICH)-2 trial (ISRCTN93732214). SETTING International multicentre hospital-based study. PARTICIPANTS Eligible adults consented and randomised in the TICH-2 trial who were also able to undergo MRI scanning. To address the primary hypothesis, a sample size of n=280 will allow detection of a 10% relative increase in prevalence of diffusion-weighted imaging (DWI) hyperintense lesions in the TXA group with 5% significance, 80% power and 5% imaging data rejection. INTERVENTIONS TICH-2 MRI substudy participants will undergo MRI scanning using a standardised protocol at day ~5 and day ~90 after randomisation. Clinical assessments, randomisation to TXA or placebo and participant follow-up will be performed as per the TICH-2 trial protocol. CONCLUSION The TICH-2 MRI substudy will test whether TXA increases the incidence of new DWI-defined ischaemic lesions or reduces perihaematomal oedema or final ICH lesion volume in the context of SICH. ETHICS AND DISSEMINATION The TICH-2 trial obtained ethical approval from East Midlands - Nottingham 2 Research Ethics Committee (12/EM/0369) and an amendment to allow the TICH-2 MRI sub study was approved in April 2015 (amendment number SA02/15). All findings will be published in peer-reviewed journals. The primary outcome results will also be presented at a relevant scientific meeting. TRIAL REGISTRATION NUMBER ISRCTN93732214; Pre-results.
Collapse
Affiliation(s)
- Rob A Dineen
- Radiological Sciences, Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham, UK
| | - Stefan Pszczolkowski
- Radiological Sciences, Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK
- Stroke Trials Unit, Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK
| | - Katie Flaherty
- Stroke Trials Unit, Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK
| | - Zhe K Law
- Stroke Trials Unit, Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK
- Department of Medicine, National University of Malaysia, Kuala Lumpur, Malaysia
| | - Paul S Morgan
- Radiological Sciences, Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, UK
- Medical Physics and Clinical Engineering, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Ian Roberts
- Clinical Trials Unit, London School of Hygiene and Tropical Medicine, London, UK
| | - David J Werring
- Stroke Research Centre, University College London, London, UK
| | | | - Tim England
- Vascular Medicine, Division of Medical Sciences and GEM, University of Nottingham, Nottingham, UK
| | - Philip M Bath
- Stroke Trials Unit, Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK
| | - Nikola Sprigg
- Stroke Trials Unit, Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK
| |
Collapse
|
48
|
Dadas A, Janigro D. The role and diagnostic significance of cellular barriers after concussive head trauma. ACTA ACUST UNITED AC 2018; 3:CNC53. [PMID: 30202595 DOI: 10.2217/cnc-2017-0019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 12/21/2017] [Indexed: 12/15/2022]
Abstract
The onset of concussive head trauma often triggers an intricate sequence of physical consequences and pathophysiological responses. These sequelae can be acute (i.e., hematoma) or chronic (i.e., autoimmune response, neurodegeneration, etc.), and may follow traumas of any severity. A critical factor for prognostication of postconcussion outcome is the pathophysiological response of cellular barriers, which can be measured by several biomarkers of the acute and chronic postinjury phases. We present herein a review on the postconcussion mechanisms of the blood-brain barrier, as well as the diagnostic/prognostic approaches that utilize differential biomarker expression across this boundary. We discuss the role of the blood-saliva cellular barrier as a regulatory filter for brain-derived biomarkers in blood, and its implications for saliva-based diagnostic assays.
Collapse
Affiliation(s)
- Aaron Dadas
- FloTBI, Inc, 4415 Euclid Ave Cleveland, OH 44103, USA.,FloTBI, Inc, 4415 Euclid Ave Cleveland, OH 44103, USA
| | - Damir Janigro
- FloTBI, Inc, 4415 Euclid Ave Cleveland, OH 44103, USA.,Department of Physiology, Case Western Reserve University, Cleveland, OH 44106, USA.,FloTBI, Inc, 4415 Euclid Ave Cleveland, OH 44103, USA.,Department of Physiology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
49
|
Medcalf RL. What drives “fibrinolysis”? Hamostaseologie 2017; 35:303-10. [DOI: 10.5482/hamo-14-10-0050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 12/15/2014] [Indexed: 11/05/2022] Open
Abstract
SummaryThe timely removal of blood clots and fibrin deposits is essential in the regulation of haemostasis. This is achieved by the fibrinolytic system, an enzymatic process that regulates the activation of plasminogen into its proteolytic form, plasmin. This is a self-regulated event as the very presence of fibrin initiates plasminogen activation on the fibrin surface due to the presentation of exposed C-terminal lysine residues in fibrin that allow plasminogen to position itself via its lysine binding sites and to be more efficiently cleaved by tissue-type plasminogen activator (t-PA). Hence fibrin, the ultimate substrate of plasmin during fibrinolysis, is indeed an essential cofactor in the cascade. What has now come to light is that the fibrinolytic system is not solely designed to eliminate fibrin. Indeed, it is a broad acting system that processes a variety of proteins, including many in the brain where there is no fibrin. So what drives t-PA-mediated plasminogen activation when fibrin is not available?This review will describe the broadening role of the fibrinolytic system highlighting the importance of fibrin and other key proteins as facilitators during t-PA-mediated plasminogen activation.
Collapse
|
50
|
Caraci F, Iulita MF, Pentz R, Flores Aguilar L, Orciani C, Barone C, Romano C, Drago F, Cuello AC. Searching for new pharmacological targets for the treatment of Alzheimer's disease in Down syndrome. Eur J Pharmacol 2017; 817:7-19. [DOI: 10.1016/j.ejphar.2017.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/26/2017] [Accepted: 10/04/2017] [Indexed: 11/26/2022]
|