1
|
Hamidi M, Nagarajan SN, Ravikumar V, Gueguen-Chaignon V, Laguri C, Freton C, Mijakovic I, Simorre JP, Ravaud S, Grangeasse C. The juxtamembrane domain of StkP is phosphorylated and influences cell division in Streptococcus pneumoniae. mBio 2025; 16:e0379924. [PMID: 40197031 PMCID: PMC12077195 DOI: 10.1128/mbio.03799-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 03/07/2025] [Indexed: 04/09/2025] Open
Abstract
Eukaryotic-like membrane Ser/Thr protein kinases play a pivotal role in different aspects of bacterial physiology. In contrast to the diversity of their extracellular domains, their cytoplasmic catalytic domains are highly conserved. However, the function of a long juxtamembrane domain (JMD), which connects the catalytic domain to the transmembrane helix, remains elusive. In this study, we investigated the function of the JMD of the Ser/Thr protein kinase StkP in the cell division of Streptococcus pneumoniae. We observed that the deletion of the JMD affected the ability of StkP to phosphorylate some of its endogenous substrates, thereby resulting in significant cell morphogenesis defects. Furthermore, multiple threonine residues were identified as being phosphorylated in the JMD. To investigate the functional significance of these phosphorylation sites, we conducted an integrative analysis, combining structural biology, proteomics, and bacterial cell imaging. Our results revealed that the phosphorylation of the JMD did not perturb the phosphorylation of StkP substrates. However, we observed that it modulated the timing of StkP localization to the division septum and the dynamics of cell constriction. We further demonstrated that phosphorylation of the JMD facilitated the recruitment of several cell division proteins, suggesting that it is required to assemble the division machinery at the division septum. In conclusion, this study demonstrates that the function of the JMD of StkP is modulated by phosphorylation and is critical for the cell division of S. pneumoniae. These observations may serve as a model for understanding the regulatory function of other bacterial Ser/Thr protein kinases.IMPORTANCEHow bacterial serine/threonine protein kinases are activated remains highly debated. In particular, models rely on the observations made with their eukaryotic counterparts, and only a few studies have investigated the molecular activation mechanism of bacterial serine/threonine protein kinases. This is particularly the case with regard to the juxtamembrane domain (JMD), which is proposed to contribute to kinase activation in numerous eukaryotic kinases. This study demonstrates that the juxtamembrane domain is likely not essential for the activation of the serine/threonine protein kinase StkP of S. pneumoniae. Rather, our findings reveal that it is required for cell division, where its phosphorylation affects the assembly of the division machinery at the division septum. These observations allow us to assign a function to the JMD in StkP-mediated regulation of pneumococcal cell division, thereby providing a new avenue for understanding the contribution of membrane serine/threonine protein kinases in the physiology of other bacteria.
Collapse
Affiliation(s)
- Mélisse Hamidi
- Molecular Microbiology and Structural Biochemistry, UMR 5086, Université Claude Bernard Lyon 1, CNRS, Lyon, Auvergne-Rhône-Alpes, France
| | - Sathya Narayanan Nagarajan
- Molecular Microbiology and Structural Biochemistry, UMR 5086, Université Claude Bernard Lyon 1, CNRS, Lyon, Auvergne-Rhône-Alpes, France
| | - Vaishnavi Ravikumar
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Västra Götaland County, Sweden
| | - Virginie Gueguen-Chaignon
- Protein Science Facility, CNRS UAR3444, INSERM US8, Université Claude Bernard Lyon 1, Ecole Normale Supérieur de Lyon, Lyon, Auvergne-Rhône-Alpes, France
| | - Cédric Laguri
- Institut de Biologie Structurale, CEA, CNRS UMR 5075, Université Grenoble Alpes, Grenoble, Auvergne-Rhône-Alpes, France
| | - Céline Freton
- Molecular Microbiology and Structural Biochemistry, UMR 5086, Université Claude Bernard Lyon 1, CNRS, Lyon, Auvergne-Rhône-Alpes, France
| | - Ivan Mijakovic
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Västra Götaland County, Sweden
| | - Jean-Pierre Simorre
- Institut de Biologie Structurale, CEA, CNRS UMR 5075, Université Grenoble Alpes, Grenoble, Auvergne-Rhône-Alpes, France
| | - Stéphanie Ravaud
- Molecular Microbiology and Structural Biochemistry, UMR 5086, Université Claude Bernard Lyon 1, CNRS, Lyon, Auvergne-Rhône-Alpes, France
| | - Christophe Grangeasse
- Molecular Microbiology and Structural Biochemistry, UMR 5086, Université Claude Bernard Lyon 1, CNRS, Lyon, Auvergne-Rhône-Alpes, France
| |
Collapse
|
2
|
Zhang Z, Shen Z, Xie S, Li J, Zhang Z, Zhang S, Peng B, Huang Q, Li M, Ma S, Huang Q. Rapamycin exerts neuroprotective effects by inhibiting FKBP12 instead of mTORC1 in the mouse model of Parkinson's disease. Neuropharmacology 2025; 275:110504. [PMID: 40345576 DOI: 10.1016/j.neuropharm.2025.110504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 04/28/2025] [Accepted: 05/05/2025] [Indexed: 05/11/2025]
Abstract
Parkinson's disease (PD), characterized by the selective loss of nigral dopaminergic neurons, is a common neurodegenerative disorder for which effective disease-modifying therapies remain unavailable. Rapamycin, a clinical immunosuppressant used for decades, has demonstrated neuroprotective effects in various animal models of neurological diseases, including PD. These effects are believed to be mediated through the inhibition of mammalian target of rapamycin (mTOR) complex 1 (mTORC1) signaling, with rapamycin binding to FKBP12. However, recent studies have suggested that mTOR activation can be neuroprotective in degenerating dopaminergic neurons, presenting a paradox to the neuroprotective mechanism of rapamycin via mTORC1 inhibition. In this study, we showed that mTORC1 signaling was inactivated in nigral dopaminergic neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. Notably, the optimal neuroprotective dose of rapamycin did not inhibit mTORC1 signaling nor restore autophagy defects in nigral dopaminergic neurons of MPTP-treated male C57BL/6 mice. Furthermore, acute Raptor knockout in dopaminergic neurons, which abolishes mTORC1 activity, did not diminish rapamycin's neuroprotective effects, suggesting that its protection is independent of mTORC1 inhibition. Importantly, rapamycin is also a potent inhibitor of FKBP12, a peptidyl-prolyl cis-trans isomerase highly expressed in the brain. Selective knockdown of FKBP12 in nigral dopaminergic neurons confers neuroprotective effects comparable to that of rapamycin, with no synergism observed when the two are combined. Collectively, our results indicate that rapamycin exerts neuroprotective effects in parkinsonian mice through inhibition of FKBP12 rather than mTORC1 signaling. These findings suggest that FKBP12 may serve as a novel target for disease-modifying therapies in PD.
Collapse
Affiliation(s)
- Zeyan Zhang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Ziyue Shen
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Shiming Xie
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Junyu Li
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Zeyu Zhang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Sheng Zhang
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Bo Peng
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai, 200032, China
| | - Qianchu Huang
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Mingtao Li
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Shanshan Ma
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan 2nd Road, Guangzhou, 510080, China.
| | - Qiaoying Huang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan 2nd Road, Guangzhou, 510080, China.
| |
Collapse
|
3
|
Jiang XL, Liu C, Zhan ZY, Lan XQ, Wu YL, Nan JX, Jin CH, Lian LH. Thiazole isomers as potential ALK5 inhibitors alleviate P2X7R-mediated inflammation during liver fibrosis. Int Immunopharmacol 2025; 153:114472. [PMID: 40117804 DOI: 10.1016/j.intimp.2025.114472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/24/2025] [Accepted: 03/09/2025] [Indexed: 03/23/2025]
Abstract
Liver fibrosis is a critical precursor to the progression of cirrhosis and liver cancer. However, the development of precision therapies for this condition has been impeded by incompletely elucidated molecular mechanisms. Activin receptor like kinase 5 (ALK5), termed TGF-β type I receptor (TGF-βRI), has been identified as a promising therapeutic target for antifibrotic drug development. In this study, we designed and synthesized two novel thiazole derivatives (J-1155 and J-1156) featuring enantiomeric amino acid moieties to selectively target ALK5 for hepatic fibrosis treatment. Our data demonstrated that both compounds effectively attenuate hepatic fibrosis and associated inflammation through dual inhibition of the TGF-β/Smad signaling pathway and blockade of the P2X7R-NLRP3 inflammasome axis. In comparison, J-1156 demonstrated superior overall therapeutic efficacy to J-1155 in terms of anti-fibrotic efficacy, while J-1155 exhibited superior modulation of Smurf2. Collectively, our observations demonstrate the potential of J-1155 and J-1156 as dual novel therapeutic agents targeting hepatic fibrosis.
Collapse
Affiliation(s)
- Xue-Li Jiang
- Key Laboratory of Traditional Chinese Korean Medicine Research of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Chuang Liu
- Key Laboratory of Traditional Chinese Korean Medicine Research of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Zi-Ying Zhan
- Key Laboratory of Traditional Chinese Korean Medicine Research of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Xiao-Qi Lan
- Key Laboratory of Traditional Chinese Korean Medicine Research of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Yan-Ling Wu
- Key Laboratory of Traditional Chinese Korean Medicine Research of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Ji-Xing Nan
- Key Laboratory of Traditional Chinese Korean Medicine Research of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| | - Cheng-Hua Jin
- Key Laboratory of Traditional Chinese Korean Medicine Research of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| | - Li-Hua Lian
- Key Laboratory of Traditional Chinese Korean Medicine Research of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| |
Collapse
|
4
|
Aftabi S, Barzegar Behrooz A, Cordani M, Rahiman N, Sadeghdoust M, Aligolighasemabadi F, Pistorius S, Alavizadeh SH, Taefehshokr N, Ghavami S. Therapeutic targeting of TGF-β in lung cancer. FEBS J 2025; 292:1520-1557. [PMID: 39083441 PMCID: PMC11970718 DOI: 10.1111/febs.17234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 05/22/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024]
Abstract
Transforming growth factor-β (TGF-β) plays a complex role in lung cancer pathophysiology, initially acting as a tumor suppressor by inhibiting early-stage tumor growth. However, its role evolves in the advanced stages of the disease, where it contributes to tumor progression not by directly promoting cell proliferation but by enhancing epithelial-mesenchymal transition (EMT) and creating a conducive tumor microenvironment. While EMT is typically associated with enhanced migratory and invasive capabilities rather than proliferation per se, TGF-β's influence on this process facilitates the complex dynamics of tumor metastasis. Additionally, TGF-β impacts the tumor microenvironment by interacting with immune cells, a process influenced by genetic and epigenetic changes within tumor cells. This interaction highlights its role in immune evasion and chemoresistance, further complicating lung cancer therapy. This review provides a critical overview of recent findings on TGF-β's involvement in lung cancer, its contribution to chemoresistance, and its modulation of the immune response. Despite the considerable challenges encountered in clinical trials and the development of new treatments targeting the TGF-β pathway, this review highlights the necessity for continued, in-depth investigation into the roles of TGF-β. A deeper comprehension of these roles may lead to novel, targeted therapies for lung cancer. Despite the intricate behavior of TGF-β signaling in tumors and previous challenges, further research could yield innovative treatment strategies.
Collapse
Affiliation(s)
- Sajjad Aftabi
- Department of Human Anatomy and Cell ScienceUniversity of Manitoba College of MedicineWinnipegCanada
- Paul Albrechtsen Research Institute, CancerCare ManitobaUniversity of ManitobaWinnipegCanada
- Department of Physics and AstronomyUniversity of ManitobaWinnipegCanada
| | - Amir Barzegar Behrooz
- Department of Human Anatomy and Cell ScienceUniversity of Manitoba College of MedicineWinnipegCanada
- Electrophysiology Research Center, Neuroscience InstituteTehran University of Medical SciencesIran
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of BiologyComplutense UniversityMadridSpain
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC)MadridSpain
| | - Niloufar Rahiman
- Nanotechnology Research Center, Pharmaceutical Technology InstituteMashhad University of Medical SciencesIran
- Department of Pharmaceutical Nanotechnology, School of PharmacyMashhad University of Medical SciencesIran
| | - Mohammadamin Sadeghdoust
- Division of BioMedical Sciences, Faculty of MedicineMemorial University of NewfoundlandSt. John'sCanada
| | - Farnaz Aligolighasemabadi
- Department of Human Anatomy and Cell ScienceUniversity of Manitoba College of MedicineWinnipegCanada
| | - Stephen Pistorius
- Department of Human Anatomy and Cell ScienceUniversity of Manitoba College of MedicineWinnipegCanada
- Paul Albrechtsen Research Institute, CancerCare ManitobaUniversity of ManitobaWinnipegCanada
- Department of Physics and AstronomyUniversity of ManitobaWinnipegCanada
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology InstituteMashhad University of Medical SciencesIran
- Department of Pharmaceutical Nanotechnology, School of PharmacyMashhad University of Medical SciencesIran
| | - Nima Taefehshokr
- Apoptosis Research CentreChildren's Hospital of Eastern Ontario Research InstituteOttawaCanada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell ScienceUniversity of Manitoba College of MedicineWinnipegCanada
- Paul Albrechtsen Research Institute, CancerCare ManitobaUniversity of ManitobaWinnipegCanada
- Faculty Academy of Silesia, Faculty of MedicineKatowicePoland
- Children Hospital Research Institute of ManitobaUniversity of ManitobaWinnipegCanada
| |
Collapse
|
5
|
Leonardo-Sousa C, Barriga R, Florindo HF, Acúrcio RC, Guedes RC. Structural insights and clinical advances in small-molecule inhibitors targeting TGF-β receptor I. MOLECULAR THERAPY. ONCOLOGY 2025; 33:200945. [PMID: 40115728 PMCID: PMC11923830 DOI: 10.1016/j.omton.2025.200945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
The dysregulation of the transforming growth factor β (TGF-β) signaling pathway plays a critical role in the onset and progression of several diseases, including cancer. Notably, TGF-β has emerged as a significant barrier to effective outcomes in cancer immunotherapies, particularly those using immune checkpoint inhibitors. In response to this challenge, small-molecule inhibitors targeting the TGF-β receptor I (TGF-βRI) have garnered attention as promising candidates for modulating the TGF-β signaling pathway. This comprehensive review focuses on the development of small-molecule inhibitors targeting TGF-βRI. We provide a detailed analysis of the structural biology of TGF-βRI, highlighting key binding interactions and structural insights derived from high-resolution X-ray crystal structures. Additionally, we review the current landscape of TGF-βRI inhibitors in clinical trials, including eight promising inhibitors, and discuss their mechanisms of action, selectivity, and therapeutic potential. Our investigation extends to the patent literature, summarizing over 2 decades of innovation from leading pharmaceutical companies, spanning January 2000-May 2024. This consolidated structural and biochemical knowledge aims to facilitate the design of next-generation TGF-βRI inhibitors, addressing unmet clinical needs in oncology and fibrosis treatment. The synergistic potential of combining TGF-βRI and immune checkpoint inhibitors is also explored, offering promising avenues for enhancing cancer immunotherapy efficacy.
Collapse
Affiliation(s)
- Carlota Leonardo-Sousa
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Rodrigo Barriga
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Helena F Florindo
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Rita C Acúrcio
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Rita C Guedes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| |
Collapse
|
6
|
Chen K, Zhang Y, Pan Y, Xiang X, Peng C, He J, Huang G, Wang Z, Zhao P. Genomic insights into demographic history, structural variation landscape, and complex traits from 514 Hu sheep genomes. J Genet Genomics 2025; 52:245-257. [PMID: 39643267 DOI: 10.1016/j.jgg.2024.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/21/2024] [Accepted: 11/24/2024] [Indexed: 12/09/2024]
Abstract
Hu sheep is an indigenous breed from the Taihu Lake Plain in China, known for its high fertility. Although Hu sheep belong to the Mongolian group, their demographic history and genetic architecture remain inconclusive. Here, we analyze 697 sheep genomes from representatives of Mongolian sheep breeds. Our study suggests that the ancestral Hu sheep first separated from the Mongolian group approximately 3000 years ago. As Hu sheep migrated from the north and flourished in the Taihu Lake Plain around 1000 years ago, they developed a unique genetic foundation and phenotypic characteristics, which are evident in the genomic footprints of selective sweeps and structural variation landscape. Genes associated with reproductive traits (BMPR1B and TDRD10) and horn phenotype (RXFP2) exhibit notable selective sweeps in the genome of Hu sheep. A genome-wide association analysis reveals that structural variations at LOC101110773, MAST2, and ZNF385B may significantly impact polledness, teat number, and early growth in Hu sheep, respectively. Our study offers insights into the evolutionary history of Hu sheep and may serve as a valuable genetic resource to enhance the understanding of complex traits in Hu sheep.
Collapse
Affiliation(s)
- Kaiyu Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yuelang Zhang
- Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China
| | - Yizhe Pan
- Agricultural Product Quality and Safety Research Center of Huzhou City, Huzhou, Zhejiang 313000, China
| | - Xin Xiang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Chen Peng
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China
| | - Jiayi He
- Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China
| | - Guiqing Huang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China
| | - Zhengguang Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China.
| | - Pengju Zhao
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China.
| |
Collapse
|
7
|
Wang Z, Li H, Weng Y. OsFKBP12 transduces the sucrose signal from OsNIN8 to the OsTOR pathway in a loosely binding manner for cell division. iScience 2025; 28:111555. [PMID: 39811636 PMCID: PMC11732086 DOI: 10.1016/j.isci.2024.111555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 09/17/2024] [Accepted: 12/05/2024] [Indexed: 01/16/2025] Open
Abstract
Previously, OsNIN8 initiated a sucrose signal for cell division in radicle and seed development in rice. Here, a set of genes was induced in starved sprouts after sucrose treatment, and 14 genes were screened between ZH11 and nin8 as reporters of sucrose signal. Expressions of reporter depended on levels of OsNIN8 in overexpression and RNAi lines. Further, OsNIN8 interacted with OsFKBP12, a regulator of TOR signal for cell division, and OsFKBP12 interacted with OsTOR (OsTORKD). However, interactions of OsFKBP12 with OsNIN8 or OsTORKD were a loose binding depending on the hydrophobicity of OsFKBP12 C-terminus in Y2H. In addition, OsFKBP12 associating with OsNIN8 was endothermic but with OsNIN8m was exothermic. Knockout OsFKBP12 reappeared nin8 phenotypes and the complementation of the knockout with C-termini of OsFKBP12 worsened the phenotypes. Treatment with TOR inhibitors caused short radicle and OsTOR RNAi repeated low seed-setting of the phenotypes. So, OsFKBP12 transduced sucrose signal from OsNIN8 to the TOR pathway.
Collapse
Affiliation(s)
- Zizhang Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Hao Li
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuxiang Weng
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
8
|
Harmalkar A, Lyskov S, Gray JJ. Reliable protein-protein docking with AlphaFold, Rosetta, and replica-exchange. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.07.28.551063. [PMID: 37546760 PMCID: PMC10402144 DOI: 10.1101/2023.07.28.551063] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Despite the recent breakthrough of AlphaFold (AF) in the field of protein sequence-to-structure prediction, modeling protein interfaces and predicting protein complex structures remains challenging, especially when there is a significant conformational change in one or both binding partners. Prior studies have demonstrated that AF-multimer (AFm) can predict accurate protein complexes in only up to 43% of cases.1 In this work, we combine AlphaFold as a structural template generator with a physics-based replica exchange docking algorithm to better sample conformational changes. Using a curated collection of 254 available protein targets with both unbound and bound structures, we first demonstrate that AlphaFold confidence measures (pLDDT) can be repurposed for estimating protein flexibility and docking accuracy for multimers. We incorporate these metrics within our ReplicaDock 2.0 protocol2to complete a robust in-silico pipeline for accurate protein complex structure prediction. AlphaRED (AlphaFold-initiated Replica Exchange Docking) successfully docks failed AF predictions including 97 failure cases in Docking Benchmark Set 5.5. AlphaRED generates CAPRI acceptable-quality or better predictions for 63% of benchmark targets. Further, on a subset of antigen-antibody targets, which is challenging for AFm (20% success rate), AlphaRED demonstrates a success rate of 43%. This new strategy demonstrates the success possible by integrating deep-learning based architectures trained on evolutionary information with physics-based enhanced sampling. The pipeline is available at github.com/Graylab/AlphaRED.
Collapse
Affiliation(s)
- Ameya Harmalkar
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sergey Lyskov
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jeffrey J Gray
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
- Program in Molecular Biophysics, The Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
9
|
Rahayu P, Dermawan D, Nailufar F, Sulistyaningrum E, Tjandrawinata RR. Unlocking the wound-healing potential: An integrative in silico proteomics and in vivo analysis of Tacorin, a bioactive protein fraction from Ananas comosus (L.) Merr. Stem. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2025; 1873:141060. [PMID: 39608696 DOI: 10.1016/j.bbapap.2024.141060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/14/2024] [Accepted: 11/23/2024] [Indexed: 11/30/2024]
Abstract
Tacorin, a bioactive protein fraction derived from pineapple stem (Ananas comosus), has emerged as a promising therapeutic agent for wound healing. This study employs an integrated approach, combining in silico proteomics and in vivo investigations, to unravel the molecular mechanisms underlying Tacorin's wound healing properties. In the domain of in silico proteomics, the composition of Tacorin is elucidated through LC/MS-MS protein sequencing, revealing ananain (23.77 kDa) and Jacalin-like lectin (14.99 kDa) as its predominant constituents. Molecular protein-protein docking simulations unveil favorable interactions between Tacorin's components and key regulators of wound healing, including TGF-β, TNF-α, and MMP-2. The calculated free binding energies indicate strong binding affinities between Tacorin proteins and their target receptors. Specifically, ananain demonstrates a binding affinity of -12.2 kcal/mol with TGF-β, suggesting its potential as a potent activator of TGF-β-mediated signaling, while Jacalin-like lectin exhibits the most favorable binding affinity of -8.7 kcal/mol with TNF-α. Subsequent 100 ns molecular dynamics (MD) simulations provide insights into the dynamic behavior and stability of Tacorin-receptor complexes, shedding light on the molecular determinants of Tacorin's therapeutic effects. Complementing the in silico analyses, in vivo studies evaluate Tacorin's efficacy in wound healing using skin and uterine incision models. Tacorin treatment accelerates wound closure and promotes tissue repair in both models, as evidenced by macroscopic observations and histological assessments. Overall, this study provides compelling evidence of Tacorin's therapeutic potential in wound healing and underscores the importance of elucidating its molecular mechanisms for further development and clinical translation.
Collapse
Affiliation(s)
- Puji Rahayu
- Dexa Laboratories of Biomolecular Sciences, PT Dexa Medica, Jababeka Industrial Estate II, Jl. Industri Selatan V Blok PP No. 7 Cikarang, 17550, Indonesia
| | - Doni Dermawan
- Dexa Laboratories of Biomolecular Sciences, PT Dexa Medica, Jababeka Industrial Estate II, Jl. Industri Selatan V Blok PP No. 7 Cikarang, 17550, Indonesia
| | - Florensia Nailufar
- Dexa Laboratories of Biomolecular Sciences, PT Dexa Medica, Jababeka Industrial Estate II, Jl. Industri Selatan V Blok PP No. 7 Cikarang, 17550, Indonesia
| | - Erna Sulistyaningrum
- Dexa Laboratories of Biomolecular Sciences, PT Dexa Medica, Jababeka Industrial Estate II, Jl. Industri Selatan V Blok PP No. 7 Cikarang, 17550, Indonesia
| | - Raymond R Tjandrawinata
- Dexa Laboratories of Biomolecular Sciences, PT Dexa Medica, Jababeka Industrial Estate II, Jl. Industri Selatan V Blok PP No. 7 Cikarang, 17550, Indonesia; Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, South Jakarta 12930, Indonesia.
| |
Collapse
|
10
|
Musliha A, Dermawan D, Rahayu P, Tjandrawinata RR. Unraveling modulation effects on albumin synthesis and inflammation by Striatin, a bioactive protein fraction isolated from Channa striata: In silico proteomics and in vitro approaches. Heliyon 2024; 10:e38386. [PMID: 39398063 PMCID: PMC11467539 DOI: 10.1016/j.heliyon.2024.e38386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024] Open
Abstract
Hypoalbuminemia, associated with inflammation in severely ill patients, can emerge due to decreased albumin production. Transforming growth factor-beta (TGF-β) and nuclear factor-kappa B (NF-κB) are critical signaling pathways responsible for decreased albumin expression. This study explores the protein content and modulation effects of Striatin on albumin synthesis and inflammation, employing in silico proteomics and in vitro investigations. In the in silico proteomics realm, LC/MS-MS protein sequencing, 3D modeling, protein-protein docking simulations, 100 ns molecular dynamics (MD) simulations, and MM/PBSA binding free energy calculations were carried out. Complementing this, in vitro studies examined Albumin gene expression and extracellular secretion in HepG2 cells subjected to lipopolysaccharides-induced hypoalbuminemia. Furthermore, the study probed Striatin's influence on the NF-ᴋB expression, given albumin's role as a negative acute-phase protein. The results unveiled nucleoside diphosphate kinase (NdK) and parvalbumin (PV) as the prominent constituents within Striatin. Notably, NdK and PV exhibited the ability to disrupt hydrogen bonds with specific residues in both TGF-β and NF-κB complexes, thereby enhancing their flexibility, akin to the action of the FKBP12 complex (antagonist complex). In the in vitro experiments, Striatin demonstrated a dose and time-dependent inhibition of hypoalbuminemia, with peak efficacy observed at a concentration of 20 μg/mL. At this concentration, Striatin also suppressed NF-κB expression when co-incubated with lipopolysaccharides. While these findings suggest potential inhibitory effects of Striatin on TGF-β and NF-κB activities, they are preliminary and warrant further investigation. This study highlights Striatin's potential as a therapeutic agent for inflammation-related hypoalbuminemia, though additional research is needed to fully validate these results.
Collapse
Affiliation(s)
- Affina Musliha
- Dexa Laboratories of Biomolecular Sciences, PT Dexa Medica, Jababeka Industrial Estate II, Jl. Industri Selatan V Blok PP No. 7 Cikarang, 17550, Indonesia
| | - Doni Dermawan
- Dexa Laboratories of Biomolecular Sciences, PT Dexa Medica, Jababeka Industrial Estate II, Jl. Industri Selatan V Blok PP No. 7 Cikarang, 17550, Indonesia
| | - Puji Rahayu
- Dexa Laboratories of Biomolecular Sciences, PT Dexa Medica, Jababeka Industrial Estate II, Jl. Industri Selatan V Blok PP No. 7 Cikarang, 17550, Indonesia
| | - Raymond R. Tjandrawinata
- Dexa Laboratories of Biomolecular Sciences, PT Dexa Medica, Jababeka Industrial Estate II, Jl. Industri Selatan V Blok PP No. 7 Cikarang, 17550, Indonesia
- Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, South Jakarta 12930, Indonesia
| |
Collapse
|
11
|
Liu L, Yi P, Jiang C, Hu B. Cloning and Expression Analysis of TGF-β Type I Receptor Gene in Hyriopsis cumingii. Zoolog Sci 2024; 41:436-447. [PMID: 39436005 DOI: 10.2108/zs240031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/02/2024] [Indexed: 10/23/2024]
Abstract
The TGF-β signaling pathway plays an important role in wound healing and immune response. In this study, a TGF-β type I receptor (TGF-βRI) homolog was cloned and characterized from freshwater mussel Hyriopsis cumingii. The full-length cDNA of the TGF-β RI gene was 2017 bp, with a 1554 bp open reading frame (ORF), and encoded 517 amino acids. The predictive analysis further identified distinct regions within the TGF-βRI protein: a signal peptide, a membrane outer region, a transmembrane region, and an intracellular region. Real-time quantitative PCR results showed that the TGF-β RI gene was expressed in all tissues of healthy mussels. The transcripts of TGF-β RI in hemocytes and hepatopancreas were significantly up-regulated at different periods after stimulation with Aeromonas hydrophila and peptidoglycan (PGN) (P < 0.05). The mRNA expression of TGF-β RI progressively increased from day 1 to day 10 after trauma (P < 0.05), and it returned to the initial level by day 15. The expression levels of TGF-β , Smad5, MMP1/19, and TIMP1/2, but not Smad3/4, were significantly up-regulated at different time points after trauma. However, the expression levels of TGF-β , MMP1/19, and TIMP2 were decreased after treatment with the inhibitor SB431542. Furthermore, the recombinant TGF-βRI proteins were expressed in vitro and existed in the form of inclusion bodies. Western blotting results showed that TGF-βRI proteins were expressed constitutively in various tissues of mussels, and their expression was up-regulated after trauma, which was consistent with the mRNA expression trend. These results indicate that TGF-β RI is involved in the process of wound repair and immune response.
Collapse
Affiliation(s)
- Linying Liu
- Life Science College, Nanchang University, Nanchang 330031, China
| | - Peipei Yi
- Jiangxi Aquatic Biological Conservation and Rescue Center, Nanchang 330000, China
| | - Chengyi Jiang
- Life Science College, Nanchang University, Nanchang 330031, China
| | - Baoqing Hu
- Life Science College, Nanchang University, Nanchang 330031, China,
| |
Collapse
|
12
|
Yang S, Cui R, Li J, Dai R. Challenges in the diagnosis of fibrodysplasia ossificans progressiva with the ACVR1 mutation (c.774G > C, p.R258S): a case report and review of literature. Orphanet J Rare Dis 2024; 19:360. [PMID: 39350127 PMCID: PMC11443894 DOI: 10.1186/s13023-024-03363-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
The diagnosis of fibrodysplasia ossificans progressiva is missed or delayed because of its insidious precursors, especially in uncharacteristic cases. Fibrodysplasia ossificans progressiva, which mostly displayed the mutation c.617G > A, p.R206H, is characterized by congenital malformation of the great toe and progressive extra-skeletal ossification of ligaments, tendons and muscles. The mutation c.774G > C, p.R258S (HGVS: NC_000002.11:g.158626896 C > G) in activin A receptor type I is an infrequent etiology of fibrodysplasia ossificans progressiva and can present different clinical features. Awareness of these multiple clinical features will help endocrinologists in the early diagnosis of fibrodysplasia ossificans progressiva. We report a case of fibrodysplasia ossificans progressiva with the activin A receptor type I mutation c.774G > C, p.R258S, which was diagnosed before its ossifying period.
Collapse
Affiliation(s)
- Siqi Yang
- National Clinical Research Center for Metabolic Diseases, Institute of Metabolism and Endocrinology, Central South University, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, China
| | - Rongrong Cui
- National Clinical Research Center for Metabolic Diseases, Institute of Metabolism and Endocrinology, Central South University, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, China
| | - Jialin Li
- National Clinical Research Center for Metabolic Diseases, Institute of Metabolism and Endocrinology, Central South University, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, China
| | - Ruchun Dai
- National Clinical Research Center for Metabolic Diseases, Institute of Metabolism and Endocrinology, Central South University, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, China.
| |
Collapse
|
13
|
Zelisko N, Lesyk R, Stoika R. Structure, unique biological properties, and mechanisms of action of transforming growth factor β. Bioorg Chem 2024; 150:107611. [PMID: 38964148 DOI: 10.1016/j.bioorg.2024.107611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/07/2024] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
Transforming growth factor β (TGF-β) is a ubiquitous molecule that is extremely conserved structurally and plays a systemic role in human organism. TGF-β is a homodimeric molecule consisting of two subunits joined through a disulphide bond. In mammals, three genes code for TGF-β1, TGF-β2, and TGF-β3 isoforms of this cytokine with a dominating expression of TGF-β1. Virtually, all normal cells contain TGF-β and its specific receptors. Considering the exceptional role of fine balance played by the TGF-β in anumber of physiological and pathological processes in human body, this cytokine may be proposed for use in medicine as an immunosuppressant in transplantology, wound healing and bone repair. TGFb itself is an important target in oncology. Strategies for blocking members of TGF-β signaling pathway as therapeutic targets have been considered. In this review, signalling mechanisms of TGF-β1 action are addressed, and their role in physiology and pathology with main focus on carcinogenesis are described.
Collapse
Affiliation(s)
- Nataliya Zelisko
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine.
| | - Rostyslav Stoika
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology of National Academy of Sciences of Ukraine, Drahomanov 14/16, 79005 Lviv, Ukraine
| |
Collapse
|
14
|
Du J, Shui H, Chen R, Dong Y, Xiao C, Hu Y, Wong NK. Neuraminidase-1 (NEU1): Biological Roles and Therapeutic Relevance in Human Disease. Curr Issues Mol Biol 2024; 46:8031-8052. [PMID: 39194692 DOI: 10.3390/cimb46080475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
Neuraminidases catalyze the desialylation of cell-surface glycoconjugates and play crucial roles in the development and function of tissues and organs. In both physiological and pathophysiological contexts, neuraminidases mediate diverse biological activities via the catalytic hydrolysis of terminal neuraminic, or sialic acid residues in glycolipid and glycoprotein substrates. The selective modulation of neuraminidase activity constitutes a promising strategy for treating a broad spectrum of human pathologies, including sialidosis and galactosialidosis, neurodegenerative disorders, cancer, cardiovascular diseases, diabetes, and pulmonary disorders. Structurally distinct as a large family of mammalian proteins, neuraminidases (NEU1 through NEU4) possess dissimilar yet overlapping profiles of tissue expression, cellular/subcellular localization, and substrate specificity. NEU1 is well characterized for its lysosomal catabolic functions, with ubiquitous and abundant expression across such tissues as the kidney, pancreas, skeletal muscle, liver, lungs, placenta, and brain. NEU1 also exhibits a broad substrate range on the cell surface, where it plays hitherto underappreciated roles in modulating the structure and function of cellular receptors, providing a basis for it to be a potential drug target in various human diseases. This review seeks to summarize the recent progress in the research on NEU1-associated diseases and highlight the mechanistic implications of NEU1 in disease pathogenesis. An improved understanding of NEU1-associated diseases should help accelerate translational initiatives to develop novel or better therapeutics.
Collapse
Affiliation(s)
- Jingxia Du
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471023, China
| | - Hanqi Shui
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471023, China
| | - Rongjun Chen
- Clinical Pharmacology Section, Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Yibo Dong
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471023, China
| | - Chengyao Xiao
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471023, China
| | - Yue Hu
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471023, China
| | - Nai-Kei Wong
- Clinical Pharmacology Section, Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
15
|
Aydemir MC, Yaman İ, Kilic MA. Membrane Receptor-Mediated Disruption of Cellular Homeostasis: Changes in Intracellular Signaling Pathways Increase the Toxicity of Ochratoxin A. Mol Nutr Food Res 2024; 68:e2300777. [PMID: 38880772 DOI: 10.1002/mnfr.202300777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/29/2024] [Indexed: 06/18/2024]
Abstract
Organisms maintain their cellular homeostatic balance by interacting with their environment through the use of their cell surface receptors. Membrane based receptors such as the transforming growth factor β receptor (TGFR), the prolactin receptor (PRLR), and hepatocyte growth factor receptor (HGFR), along with their associated signaling cascade, play significant roles in retaining cellular homeostasis. While these receptors and related signaling pathways are essential for health of cell and organism, their dysregulation can lead to imbalance in cell function with severe pathological conditions such as cell death or cancer. Ochratoxin A (OTA) can disrupt cellular homeostasis by altering expression levels of these receptors and/or receptor-associated intracellular downstream signaling modulators and/or pattern and levels of their phosphorylation/dephosphorylation. Recent studies have shown that the activity of the TGFR, the PRLR, and HGFR and their associated signaling cascades change upon OTA exposure. A critical evaluation of these findings suggests that while increased activity of the HGFR and TGFR signaling pathways leads to an increase in cell survival and fibrosis, decreased activity of the PRLR signaling pathway leads to tissue damage. This review explores the roles of these receptors in OTA-related pathologies and effects on cellular homeostasis.
Collapse
Affiliation(s)
- Mesut Cihan Aydemir
- Department of Biology, Institute of Natural and Applied Sciences, Akdeniz University, Antalya, 07070, Turkey
| | - İbrahim Yaman
- Molecular Toxicology and Cancer Research Laboratory, Department of Molecular Biology and Genetics, Bogazici University, Istanbul, Bebek, 34342, Turkey
| | - Mehmet Akif Kilic
- Department of Biology, Molecular Biology Section, Akdeniz University, Antalya, 07070, Turkey
| |
Collapse
|
16
|
Mansour MA, Hassan GS, Serya RAT, Jaballah MY, Abouzid KAM. Advances in the discovery of activin receptor-like kinase 5 (ALK5) inhibitors. Bioorg Chem 2024; 147:107332. [PMID: 38581966 DOI: 10.1016/j.bioorg.2024.107332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/08/2024]
Abstract
Activin receptor‑like kinase-5 (ALK5) is an outstanding member of the transforming growth factor-β (TGF-β) family. (TGF-β) signaling pathway integrates pleiotropic proteins that regulate various cellular processes such as growth, proliferation, and differentiation. Dysregulation within the signaling pathway can cause variety of diseases, such as fibrosis, cardiovascular disease, and especially cancer, rendering ALK5 a potential drug target. Hence, various small molecules have been designed and synthesized as potent ALK5 inhibitors. In this review, we shed light on the current ATP-competitive inhibitors of ALK5 through diverse heterocyclic based scaffolds that are in clinical or pre-clinical phases of development. Moreover, we focused on the binding interactions of the compounds to the ATP binding site and the structure-activity relationship (SAR) of each scaffold, revealing new scopes for designing novel candidates with enhanced selectivity and metabolic profiles.
Collapse
Affiliation(s)
- Mai A Mansour
- Pharmaceutical Chemistry Department, School of Pharmacy, Badr University in Cairo, Egypt.
| | - Ghaneya S Hassan
- Pharmaceutical Chemistry Department, School of Pharmacy, Badr University in Cairo, Egypt; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Egypt
| | - Rabah A T Serya
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Egypt
| | - Maiy Y Jaballah
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Egypt
| | - Khaled A M Abouzid
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Egypt.
| |
Collapse
|
17
|
Gottumukkala SB, Ganesan TS, Palanisamy A. Comprehensive molecular interaction map of TGFβ induced epithelial to mesenchymal transition in breast cancer. NPJ Syst Biol Appl 2024; 10:53. [PMID: 38760412 PMCID: PMC11101644 DOI: 10.1038/s41540-024-00378-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/29/2024] [Indexed: 05/19/2024] Open
Abstract
Breast cancer is one of the prevailing cancers globally, with a high mortality rate. Metastatic breast cancer (MBC) is an advanced stage of cancer, characterised by a highly nonlinear, heterogeneous process involving numerous singling pathways and regulatory interactions. Epithelial-mesenchymal transition (EMT) emerges as a key mechanism exploited by cancer cells. Transforming Growth Factor-β (TGFβ)-dependent signalling is attributed to promote EMT in advanced stages of breast cancer. A comprehensive regulatory map of TGFβ induced EMT was developed through an extensive literature survey. The network assembled comprises of 312 distinct species (proteins, genes, RNAs, complexes), and 426 reactions (state transitions, nuclear translocations, complex associations, and dissociations). The map was developed by following Systems Biology Graphical Notation (SBGN) using Cell Designer and made publicly available using MINERVA ( http://35.174.227.105:8080/minerva/?id=Metastatic_Breast_Cancer_1 ). While the complete molecular mechanism of MBC is still not known, the map captures the elaborate signalling interplay of TGFβ induced EMT-promoting MBC. Subsequently, the disease map assembled was translated into a Boolean model utilising CaSQ and analysed using Cell Collective. Simulations of these have captured the known experimental outcomes of TGFβ induced EMT in MBC. Hub regulators of the assembled map were identified, and their transcriptome-based analysis confirmed their role in cancer metastasis. Elaborate analysis of this map may help in gaining additional insights into the development and progression of metastatic breast cancer.
Collapse
Affiliation(s)
| | - Trivadi Sundaram Ganesan
- Department of Medical Oncology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Anbumathi Palanisamy
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, India.
| |
Collapse
|
18
|
Le HT, Tran LH, Phung HTT. SARS-CoV-2 omicron RBD forms a weaker binding affinity to hACE2 compared to Delta RBD in in-silico studies. J Biomol Struct Dyn 2024; 42:4087-4096. [PMID: 37345564 DOI: 10.1080/07391102.2023.2222827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/21/2023] [Indexed: 06/23/2023]
Abstract
The COVID-19 pandemic sparked an unprecedented race in biotechnology in a search for effective therapies and a preventive vaccine. The continued appearance of SARS-CoV-2 variants of concern (VoCs) further swept the world. The entry of SARS-CoV-2 into cells is mediated by binding the receptor-binding domain (RBD) of the S protein to the cell-surface receptor, human angiotensin-converting enzyme 2 (hACE2). In this study, using a coarse-grained force field to parameterize the system, we employed steered-molecular dynamics (SMD) simulations to reveal the binding of SARS-CoV-2 Delta/Omicron RBD to hACE2. Our benchmarked results demonstrate a good correlation between computed rupture force and experimental binding free energy for known protein-protein systems. Moreover, our findings show that the Omicron RBD has a weaker binding affinity to hACE2, consistent with the respective experimental results. This indicates that our method can effectively be applied to other emerging SARS-CoV-2 strains.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hoa Thanh Le
- Laboratory of Theoretical and Computational Biophysics, Advanced Institute of Materials Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Linh Hoang Tran
- Faculty of Civil Engineering, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Huong Thi Thu Phung
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| |
Collapse
|
19
|
Tangseefa P, Jin H, Zhang H, Xie M, Ibáñez CF. Human ACVR1C missense variants that correlate with altered body fat distribution produce metabolic alterations of graded severity in knock-in mutant mice. Mol Metab 2024; 81:101890. [PMID: 38307384 PMCID: PMC10863331 DOI: 10.1016/j.molmet.2024.101890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND & AIMS Genome-wide studies have identified three missense variants in the human gene ACVR1C, encoding the TGF-β superfamily receptor ALK7, that correlate with altered waist-to-hip ratio adjusted for body mass index (WHR/BMI), a measure of body fat distribution. METHODS To move from correlation to causation and understand the effects of these variants on fat accumulation and adipose tissue function, we introduced each of the variants in the mouse Acvr1c locus and investigated metabolic phenotypes in comparison with a null mutation. RESULTS Mice carrying the I195T variant showed resistance to high fat diet (HFD)-induced obesity, increased catecholamine-induced adipose tissue lipolysis and impaired ALK7 signaling, phenocopying the null mutants. Mice with the I482V variant displayed an intermediate phenotype, with partial resistance to HFD-induced obesity, reduction in subcutaneous, but not visceral, fat mass, decreased systemic lipolysis and reduced ALK7 signaling. Surprisingly, mice carrying the N150H variant were metabolically indistinguishable from wild type under HFD, although ALK7 signaling was reduced at low ligand concentrations. CONCLUSION Together, these results validate ALK7 as an attractive drug target in human obesity and suggest a lower threshold for ALK7 function in humans compared to mice.
Collapse
Affiliation(s)
- Pawanrat Tangseefa
- Chinese Institute for Brain Research, Zhongguancun Life Science Park, 102206 Beijing, China; Peking University School of Life Sciences, Peking-Tsinghua Center for Life Sciences, 100871 Beijing, China; PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Hong Jin
- Peking University School of Life Sciences, Peking-Tsinghua Center for Life Sciences, 100871 Beijing, China; PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Houyu Zhang
- Chinese Institute for Brain Research, Zhongguancun Life Science Park, 102206 Beijing, China; Peking University School of Psychological and Cognitive Sciences, 100871 Beijing, China
| | - Meng Xie
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China; Peking University School of Psychological and Cognitive Sciences, 100871 Beijing, China; Department of Biosciences and Nutrition, Karolinska Institute, Huddinge 14157, Sweden
| | - Carlos F Ibáñez
- Chinese Institute for Brain Research, Zhongguancun Life Science Park, 102206 Beijing, China; Peking University School of Life Sciences, Peking-Tsinghua Center for Life Sciences, 100871 Beijing, China; PKU-IDG/McGovern Institute for Brain Research, Beijing, China; Department of Neuroscience, Karolinska Institute, Stockholm 17177, Sweden; Stellenbosch Institute for Advanced Study, Wallenberg Research Centre at Stellenbosch University, Stellenbosch 7600, South Africa.
| |
Collapse
|
20
|
Han B, Tian D, Li X, Liu S, Tian F, Liu D, Wang S, Zhao K. Multiomics Analyses Provide New Insight into Genetic Variation of Reproductive Adaptability in Tibetan Sheep. Mol Biol Evol 2024; 41:msae058. [PMID: 38552245 PMCID: PMC10980521 DOI: 10.1093/molbev/msae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/13/2024] [Accepted: 03/12/2024] [Indexed: 04/02/2024] Open
Abstract
Domestication and artificial selection during production-oriented breeding have greatly shaped the level of genomic variability in sheep. However, the genetic variation associated with increased reproduction remains elusive. Here, two groups of samples from consecutively monotocous and polytocous sheep were collected for genome-wide association, transcriptomic, proteomic, and metabolomic analyses to explore the genetic variation in fecundity in Tibetan sheep. Genome-wide association study revealed strong associations between BMPR1B (p.Q249R) and litter size, as well as between PAPPA and lambing interval; these findings were validated in 1,130 individuals. Furthermore, we constructed the first single-cell atlas of Tibetan sheep ovary tissues and identified a specific mural granulosa cell subtype with PAPPA-specific expression and differential expression of BMPR1B between the two groups. Bulk RNA-seq indicated that BMPR1B and PAPPA expressions were similar between the two groups of sheep. 3D protein structure prediction and coimmunoprecipitation analysis indicated that mutation and mutually exclusive exons of BMPR1B are the main mechanisms for prolific Tibetan sheep. We propose that PAPPA is a key gene for stimulating ovarian follicular growth and development, and steroidogenesis. Our work reveals the genetic variation in reproductive performance in Tibetan sheep, providing insights and valuable genetic resources for the discovery of genes and regulatory mechanisms that improve reproductive success.
Collapse
Affiliation(s)
- Buying Han
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Dehong Tian
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Xue Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Sijia Liu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Fei Tian
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Dehui Liu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Song Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Kai Zhao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| |
Collapse
|
21
|
Duminuco A, Chifotides HT, Giallongo S, Giallongo C, Tibullo D, Palumbo GA. ACVR1: A Novel Therapeutic Target to Treat Anemia in Myelofibrosis. Cancers (Basel) 2023; 16:154. [PMID: 38201581 PMCID: PMC10778144 DOI: 10.3390/cancers16010154] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Activin receptor type I (ACVR1) is a transmembrane kinase receptor belonging to bone morphogenic protein receptors (BMPs). ACVR1 plays an important role in hematopoiesis and anemia via the BMP6/ACVR1/SMAD pathway, which regulates expression of hepcidin, the master regulator of iron homeostasis. Elevated hepcidin levels are inversely associated with plasma iron levels, and chronic hepcidin expression leads to iron-restricted anemia. Anemia is one of the hallmarks of myelofibrosis (MF), a bone marrow (BM) malignancy characterized by BM scarring resulting in impaired hematopoiesis, splenomegaly, and systemic symptoms. Anemia and red blood cell transfusions negatively impact MF prognosis. Among the approved JAK inhibitors (ruxolitinib, fedratinib, momelotinib, and pacritinib) for MF, momelotinib and pacritinib are preferably used in cytopenic patients; both agents are potent ACVR1 inhibitors that suppress hepcidin expression via the BMP6/ACVR1/SMAD pathway and restore iron homeostasis/erythropoiesis. In September 2023, momelotinib was approved as a treatment for patients with MF and anemia. Zilurgisertib (ACVR1 inhibitor) and DISC-0974 (anti-hemojuvelin monoclonal antibody) are evaluated in early phase clinical trials in patients with MF and anemia. Luspatercept (ACVR2B ligand trap) is assessed in transfusion-dependent MF patients in a registrational phase 3 trial. Approved ACVR1 inhibitors and novel agents in development are poised to improve the outcomes of anemic MF patients.
Collapse
Affiliation(s)
- Andrea Duminuco
- Hematology Unit with BMT, A.O.U. Policlinico “G.Rodolico-San Marco”, 95123 Catania, Italy;
| | - Helen T. Chifotides
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Blvd., Houston, TX 77030, USA;
| | - Sebastiano Giallongo
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (S.G.); (C.G.)
| | - Cesarina Giallongo
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (S.G.); (C.G.)
| | - Daniele Tibullo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
| | - Giuseppe A. Palumbo
- Hematology Unit with BMT, A.O.U. Policlinico “G.Rodolico-San Marco”, 95123 Catania, Italy;
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (S.G.); (C.G.)
| |
Collapse
|
22
|
Zhou W, Yan K, Xi Q. BMP signaling in cancer stemness and differentiation. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:37. [PMID: 38049682 PMCID: PMC10695912 DOI: 10.1186/s13619-023-00181-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/06/2023] [Indexed: 12/06/2023]
Abstract
The BMP (Bone morphogenetic protein) signaling pathway plays a central role in metazoan biology, intricately shaping embryonic development, maintaining tissue homeostasis, and influencing disease progression. In the context of cancer, BMP signaling exhibits context-dependent dynamics, spanning from tumor suppression to promotion. Cancer stem cells (CSCs), a modest subset of neoplastic cells with stem-like attributes, exert substantial influence by steering tumor growth, orchestrating therapy resistance, and contributing to relapse. A comprehensive grasp of the intricate interplay between CSCs and their microenvironment is pivotal for effective therapeutic strategies. Among the web of signaling pathways orchestrating cellular dynamics within CSCs, BMP signaling emerges as a vital conductor, overseeing CSC self-renewal, differentiation dynamics, and the intricate symphony within the tumor microenvironment. Moreover, BMP signaling's influence in cancer extends beyond CSCs, intricately regulating cellular migration, invasion, and metastasis. This multifaceted role underscores the imperative of comprehending BMP signaling's contributions to cancer, serving as the foundation for crafting precise therapies to navigate multifaceted challenges posed not only by CSCs but also by various dimensions of cancer progression. This article succinctly encapsulates the diverse roles of the BMP signaling pathway across different cancers, spanning glioblastoma multiforme (GBM), diffuse intrinsic pontine glioma (DIPG), colorectal cancer, acute myeloid leukemia (AML), lung cancer, prostate cancer, and osteosarcoma. It underscores the necessity of unraveling underlying mechanisms and molecular interactions. By delving into the intricate tapestry of BMP signaling's engagement in cancers, researchers pave the way for meticulously tailored therapies, adroitly leveraging its dualistic aspects-whether as a suppressor or promoter-to effectively counter the relentless march of tumor progression.
Collapse
Affiliation(s)
- Wei Zhou
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Kun Yan
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Qiaoran Xi
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Joint Graduate Program of Peking-Tsinghua-NIBS, Tsinghua University, Beijing, China.
| |
Collapse
|
23
|
Reza R, Morshed N, Samdani MN, Reza MS. Pharmacophore mapping approach to find anti-cancer phytochemicals with metformin-like activities against transforming growth factor (TGF)-beta receptor I kinase: An in silico study. PLoS One 2023; 18:e0288208. [PMID: 37943796 PMCID: PMC10635513 DOI: 10.1371/journal.pone.0288208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/21/2023] [Indexed: 11/12/2023] Open
Abstract
The most frequently prescribed first-line treatment for type II diabetes mellitus is metformin. Recent reports asserted that this diabetes medication can also shield users from cancer. Metformin induces cell cycle arrest in cancer cells. However, the exact mechanism by which this occurs in the cancer system is yet to be elucidated. Here, we investigated the impact of metformin on cell cycle arrest in cancer cells utilizing transforming growth factor (TGF)-beta pathway. TGF-ß pathway has significant effect on cell progression and growth. In order to gain an insight on the underlying molecular mechanism of metformin's effect on TGF beta receptor 1 kinase, molecular docking was performed. Metformin was predicted to interact with transforming growth factor (TGF)-beta receptor I kinase based on molecular docking and molecular dynamics simulations. Furthermore, pharmacophore was generated for metformin-TGF-ßR1 complex to hunt for novel compounds having similar pharmacophore as metformin with enhanced anti-cancer potentials. Virtual screening with 29,000 natural compounds from NPASS database was conducted separately for the generated pharmacophores in Ligandscout® software. Pharmacophore mapping showed 60 lead compounds for metformin-TGF-ßR1 complex. Molecular docking, molecular dynamics simulation for 100 ns and ADMET analysis were performed on these compounds. Compounds with CID 72473, 10316977 and 45140078 showed promising binding affinities and formed stable complexes during dynamics simulation with aforementioned protein and thus have potentiality to be developed into anti-cancer medicaments.
Collapse
Affiliation(s)
- Rumman Reza
- Department of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Niaz Morshed
- Department of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | | | - Md. Selim Reza
- Department of Pharmaceutical Technology, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|
24
|
Liu T, Gao H, Ren X, Xu G, Liu B, Wu N, Luo H, Wang Y, Tu T, Yao B, Guan F, Teng Y, Huang H, Tian J. Protein-protein interaction and site prediction using transfer learning. Brief Bioinform 2023; 24:bbad376. [PMID: 37870286 DOI: 10.1093/bib/bbad376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/14/2023] [Accepted: 10/02/2023] [Indexed: 10/24/2023] Open
Abstract
The advanced language models have enabled us to recognize protein-protein interactions (PPIs) and interaction sites using protein sequences or structures. Here, we trained the MindSpore ProteinBERT (MP-BERT) model, a Bidirectional Encoder Representation from Transformers, using protein pairs as inputs, making it suitable for identifying PPIs and their respective interaction sites. The pretrained model (MP-BERT) was fine-tuned as MPB-PPI (MP-BERT on PPI) and demonstrated its superiority over the state-of-the-art models on diverse benchmark datasets for predicting PPIs. Moreover, the model's capability to recognize PPIs among various organisms was evaluated on multiple organisms. An amalgamated organism model was designed, exhibiting a high level of generalization across the majority of organisms and attaining an accuracy of 92.65%. The model was also customized to predict interaction site propensity by fine-tuning it with PPI site data as MPB-PPISP. Our method facilitates the prediction of both PPIs and their interaction sites, thereby illustrating the potency of transfer learning in dealing with the protein pair task.
Collapse
Affiliation(s)
- Tuoyu Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Han Gao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaopu Ren
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guoshun Xu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bo Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ningfeng Wu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Huiying Luo
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuan Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tao Tu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bin Yao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Feifei Guan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yue Teng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Huoqing Huang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jian Tian
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
25
|
Massagué J, Sheppard D. TGF-β signaling in health and disease. Cell 2023; 186:4007-4037. [PMID: 37714133 PMCID: PMC10772989 DOI: 10.1016/j.cell.2023.07.036] [Citation(s) in RCA: 251] [Impact Index Per Article: 125.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/21/2023] [Accepted: 07/28/2023] [Indexed: 09/17/2023]
Abstract
The TGF-β regulatory system plays crucial roles in the preservation of organismal integrity. TGF-β signaling controls metazoan embryo development, tissue homeostasis, and injury repair through coordinated effects on cell proliferation, phenotypic plasticity, migration, metabolic adaptation, and immune surveillance of multiple cell types in shared ecosystems. Defects of TGF-β signaling, particularly in epithelial cells, tissue fibroblasts, and immune cells, disrupt immune tolerance, promote inflammation, underlie the pathogenesis of fibrosis and cancer, and contribute to the resistance of these diseases to treatment. Here, we review how TGF-β coordinates multicellular response programs in health and disease and how this knowledge can be leveraged to develop treatments for diseases of the TGF-β system.
Collapse
Affiliation(s)
- Joan Massagué
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Dean Sheppard
- Department of Medicine and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
26
|
Groppe JC, Lu G, Tandang-Silvas MR, Pathi A, Konda S, Wu J, Le VQ, Culbert AL, Shore EM, Wharton KA, Kaplan FS. Polypeptide Substrate Accessibility Hypothesis: Gain-of-Function R206H Mutation Allosterically Affects Activin Receptor-like Protein Kinase Activity. Biomolecules 2023; 13:1129. [PMID: 37509165 PMCID: PMC10376983 DOI: 10.3390/biom13071129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Although structurally similar to type II counterparts, type I or activin receptor-like kinases (ALKs) are set apart by a metastable helix-loop-helix (HLH) element preceding the protein kinase domain that, according to a longstanding paradigm, serves passive albeit critical roles as an inhibitor-to-substrate-binding switch. A single recurrent mutation in the codon of the penultimate residue, directly adjacent the position of a constitutively activating substitution, causes milder activation of ACVR1/ALK2 leading to sporadic heterotopic bone deposition in patients presenting with fibrodysplasia ossificans progressiva, or FOP. To determine the protein structural-functional basis for the gain of function, R206H mutant, Q207D (aspartate-substituted caALK2) and HLH subdomain-truncated (208 Ntrunc) forms were compared to one another and the wild-type enzyme through in vitro kinase and protein-protein interaction analyses that were complemented by signaling read-out (p-Smad) in primary mouse embryonic fibroblasts and Drosophila S2 cells. Contrary to the paradigm, the HLH subdomain actively suppressed the phosphotransferase activity of the enzyme, even in the absence of FKBP12. Unexpectedly, perturbation of the HLH subdomain elevated kinase activity at a distance, i.e., allosterically, at the ATP-binding and polypeptide-interacting active site cleft. Accessibility to polypeptide substrate (BMP Smad C-terminal tails) due to allosterically altered conformations of type I active sites within heterohexameric cytoplasmic signaling complexes-assembled noncanonically by activin-type II receptors extracellularly-is hypothesized to produce a gain of function of the R206H mutant protein responsible for episodic heterotopic ossification in FOP.
Collapse
Affiliation(s)
- Jay C. Groppe
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, 3302 Gaston Ave, Dallas, TX 75246, USA
| | - Guorong Lu
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, 3302 Gaston Ave, Dallas, TX 75246, USA
| | - Mary R. Tandang-Silvas
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, 3302 Gaston Ave, Dallas, TX 75246, USA
| | - Anupama Pathi
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, 3302 Gaston Ave, Dallas, TX 75246, USA
| | - Shruti Konda
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, 3302 Gaston Ave, Dallas, TX 75246, USA
| | - Jingfeng Wu
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, 3302 Gaston Ave, Dallas, TX 75246, USA
| | - Viet Q. Le
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
- Program in Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Andria L. Culbert
- Department of Orthopaedics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Eileen M. Shore
- Department of Orthopaedics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Kristi A. Wharton
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Frederick S. Kaplan
- Department of Orthopaedics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
27
|
Chen PY, Qin L, Simons M. TGFβ signaling pathways in human health and disease. Front Mol Biosci 2023; 10:1113061. [PMID: 37325472 PMCID: PMC10267471 DOI: 10.3389/fmolb.2023.1113061] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/27/2023] [Indexed: 06/17/2023] Open
Abstract
Transforming growth factor beta (TGFβ) is named for the function it was originally discovered to perform-transformation of normal cells into aggressively growing malignant cells. It became apparent after more than 30 years of research, however, that TGFβ is a multifaceted molecule with a myriad of different activities. TGFβs are widely expressed with almost every cell in the human body producing one or another TGFβ family member and expressing its receptors. Importantly, specific effects of this growth factor family differ in different cell types and under different physiologic and pathologic conditions. One of the more important and critical TGFβ activities is the regulation of cell fate, especially in the vasculature, that will be the focus of this review.
Collapse
Affiliation(s)
- Pei-Yu Chen
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Lingfeng Qin
- Department of Surgery, Yale University School of Medicine, New Haven, CT, United States
| | - Michael Simons
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
28
|
Katagiri T, Tsukamoto S, Kuratani M, Tsuji S, Nakamura K, Ohte S, Kawaguchi Y, Takaishi K. A blocking monoclonal antibody reveals dimerization of intracellular domains of ALK2 associated with genetic disorders. Nat Commun 2023; 14:2960. [PMID: 37231012 PMCID: PMC10212922 DOI: 10.1038/s41467-023-38746-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/15/2023] [Indexed: 05/27/2023] Open
Abstract
Mutations in activin receptor-like kinase 2 (ALK2) can cause the pathological osteogenic signaling seen in some patients with fibrodysplasia ossificans progressiva and other conditions such as diffuse intrinsic pontine glioma. Here, we report that intracellular domain of wild-type ALK2 readily dimerizes in response to BMP7 binding to drive osteogenic signaling. This osteogenic signaling is pathologically triggered by heterotetramers of type II receptor kinases and ALK2 mutant forms, which form intracellular domain dimers in response to activin A binding. We develop a blocking monoclonal antibody, Rm0443, that can suppress ALK2 signaling. We solve the crystal structure of the ALK2 extracellular domain complex with a Fab fragment of Rm0443 and show that Rm0443 induces dimerization of ALK2 extracellular domains in a back-to-back orientation on the cell membrane by binding the residues H64 and F63 on opposite faces of the ligand-binding site. Rm0443 could prevent heterotopic ossification in a mouse model of fibrodysplasia ossificans progressiva that carries the human R206H pathogenic mutant.
Collapse
Affiliation(s)
- Takenobu Katagiri
- Division of Biomedical Sciences, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama, 350-1241, Japan.
- Project of Clinical and Basic Research for FOP, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama, 350-1241, Japan.
| | - Sho Tsukamoto
- Division of Biomedical Sciences, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama, 350-1241, Japan
- Project of Clinical and Basic Research for FOP, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama, 350-1241, Japan
| | - Mai Kuratani
- Division of Biomedical Sciences, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama, 350-1241, Japan
| | - Shinnosuke Tsuji
- Specialty Medicine Research Laboratories I, R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo, 140-8710, Japan
| | - Kensuke Nakamura
- Modality Research Laboratories, Biologics Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo, 140-8710, Japan
| | - Satoshi Ohte
- Division of Biomedical Sciences, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama, 350-1241, Japan
- Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Yoshiro Kawaguchi
- Modality Research Laboratories, Biologics Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo, 140-8710, Japan
| | - Kiyosumi Takaishi
- Specialty Medicine Research Laboratories I, R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo, 140-8710, Japan
| |
Collapse
|
29
|
Ume AC, Wenegieme TY, Shelby JN, Paul-Onyia CDB, Waite AMJ, Kamau JK, Adams DN, Susuki K, Bennett ES, Ren H, Williams CR. Tacrolimus induces fibroblast-to-myofibroblast transition via a TGF-β-dependent mechanism to contribute to renal fibrosis. Am J Physiol Renal Physiol 2023; 324:F433-F445. [PMID: 36927118 PMCID: PMC10085566 DOI: 10.1152/ajprenal.00226.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 02/07/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Use of immunosuppressant calcineurin inhibitors (CNIs) is limited by irreversible kidney damage, hallmarked by renal fibrosis. CNIs directly damage many renal cell types. Given the diverse renal cell populations, additional targeted cell types and signaling mechanisms warrant further investigation. We hypothesized that fibroblasts contribute to CNI-induced renal fibrosis and propagate profibrotic effects via the transforming growth factor-β (TGF-β)/Smad signaling axis. To test this, kidney damage-resistant mice (C57BL/6) received tacrolimus (10 mg/kg) or vehicle for 21 days. Renal damage markers and signaling mediators were assessed. To investigate their role in renal damage, mouse renal fibroblasts were exposed to tacrolimus (1 nM) or vehicle for 24 h. Morphological and functional changes in addition to downstream signaling events were assessed. Tacrolimus-treated kidneys displayed evidence of renal fibrosis. Moreover, α-smooth muscle actin expression was significantly increased, suggesting the presence of fibroblast activation. TGF-β receptor activation and downstream Smad2/3 signaling were also upregulated. Consistent with in vivo findings, tacrolimus-treated renal fibroblasts displayed a phenotypic switch known as fibroblast-to-myofibroblast transition (FMT), as α-smooth muscle actin, actin stress fibers, cell motility, and collagen type IV expression were significantly increased. These findings were accompanied by concomitant induction of TGF-β signaling. Pharmacological inhibition of the downstream TGF-β effector Smad3 attenuated tacrolimus-induced phenotypic changes. Collectively, these findings suggest that 1) tacrolimus inhibits the calcineurin/nuclear factor of activated T cells axis while inducing TGF-β1 ligand secretion and receptor activation in renal fibroblasts; 2) aberrant TGF-β receptor activation stimulates Smad-mediated production of myofibroblast markers, notable features of FMT; and 3) FMT contributes to extracellular matrix expansion in tacrolimus-induced renal fibrosis. These results incorporate renal fibroblasts into the growing list of CNI-targeted cell types and identify renal FMT as a process mediated via a TGF-β-dependent mechanism.NEW & NOTEWORTHY Renal fibrosis, a detrimental feature of irreversible kidney damage, remains a sinister consequence of long-term calcineurin inhibitor (CNI) immunosuppressive therapy. Our study not only incorporates renal fibroblasts into the growing list of cell types negatively impacted by CNIs but also identifies renal fibroblast-to-myofibroblast transition as a process mediated via a TGF-β-dependent mechanism. This insight will direct future studies investigating the feasibility of inhibiting TGF-β signaling to maintain CNI-mediated immunosuppression while ultimately preserving kidney health.
Collapse
Affiliation(s)
- Adaku C Ume
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, Ohio, United States
| | - Tara Y Wenegieme
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, Ohio, United States
| | - Jennae N Shelby
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, Ohio, United States
| | - Chiagozie D B Paul-Onyia
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, Ohio, United States
| | - Aston M J Waite
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, Ohio, United States
| | - John K Kamau
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, Ohio, United States
| | - Danielle N Adams
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, Ohio, United States
| | - Keiichiro Susuki
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, Ohio, United States
| | - Eric S Bennett
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, Ohio, United States
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, Ohio, United States
| | - Hongmei Ren
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, Ohio, United States
| | - Clintoria R Williams
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, Ohio, United States
| |
Collapse
|
30
|
Madamanchi A, Ingle M, Hinck AP, Umulis DM. Computational modeling of TGF-β2:TβRI:TβRII receptor complex assembly as mediated by the TGF-β coreceptor betaglycan. Biophys J 2023; 122:1342-1354. [PMID: 36869592 PMCID: PMC10111353 DOI: 10.1016/j.bpj.2023.02.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/16/2022] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
Transforming growth factor-β1, -β2, and -β3 (TGF-β1, -β2, and -β3) are secreted signaling ligands that play essential roles in tissue development, tissue maintenance, immune response, and wound healing. TGF-β ligands form homodimers and signal by assembling a heterotetrameric receptor complex comprised of two type I receptor (TβRI):type II receptor (TβRII) pairs. TGF-β1 and TGF-β3 ligands signal with high potency due to their high affinity for TβRII, which engenders high-affinity binding of TβRI through a composite TGF-β:TβRII binding interface. However, TGF-β2 binds TβRII 200-500 more weakly than TGF-β1 and TGF-β3 and signals with lower potency compared with these ligands. Remarkably, the presence of an additional membrane-bound coreceptor, known as betaglycan, increases TGF-β2 signaling potency to levels similar to TGF-β1 and -β3. The mediating effect of betaglycan occurs even though it is displaced from and not present in the heterotetrameric receptor complex through which TGF-β2 signals. Published biophysics studies have experimentally established the kinetic rates of the individual ligand-receptor and receptor-receptor interactions that initiate heterotetrameric receptor complex assembly and signaling in the TGF-β system; however, current experimental approaches are not able to directly measure kinetic rates for the intermediate and latter steps of assembly. To characterize these steps in the TGF-β system and determine the mechanism of betaglycan in the potentiation of TGF-β2 signaling, we developed deterministic computational models with different modes of betaglycan binding and varying cooperativity between receptor subtypes. The models identified conditions for selective enhancement of TGF-β2 signaling. The models provide support for additional receptor binding cooperativity that has been hypothesized but not evaluated in the literature. The models further showed that betaglycan binding to the TGF-β2 ligand through two domains provides an effective mechanism for transfer to the signaling receptors that has been tuned to efficiently promote assembly of the TGF-β2(TβRII)2(TβRI)2 signaling complex.
Collapse
Affiliation(s)
- Aasakiran Madamanchi
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana
| | - Michelle Ingle
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana
| | - Andrew P Hinck
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - David M Umulis
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana.
| |
Collapse
|
31
|
Chen QQ, Liu K, Shi N, Ma G, Wang P, Xie HM, Jin SJ, Wei TT, Yu XY, Wang Y, Zhang JY, Li P, Qi LW, Zhang L. Neuraminidase 1 promotes renal fibrosis development in male mice. Nat Commun 2023; 14:1713. [PMID: 36973294 PMCID: PMC10043283 DOI: 10.1038/s41467-023-37450-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
The functions of the influenza virus neuraminidase has been well documented but those of the mammalian neuraminidases remain less explored. Here, we characterize the role of neuraminidase 1 (NEU1) in unilateral ureteral obstruction (UUO) and folic acid (FA)-induced renal fibrosis mouse models. We find that NEU1 is significantly upregulated in the fibrotic kidneys of patients and mice. Functionally, tubular epithelial cell-specific NEU1 knockout inhibits epithelial-to-mesenchymal transition, inflammatory cytokines production, and collagen deposition in mice. Conversely, NEU1 overexpression exacerbates progressive renal fibrosis. Mechanistically, NEU1 interacts with TGFβ type I receptor ALK5 at the 160-200aa region and stabilizes ALK5 leading to SMAD2/3 activation. Salvianolic acid B, a component of Salvia miltiorrhiza, is found to strongly bind to NEU1 and effectively protect mice from renal fibrosis in a NEU1-dependent manner. Collectively, this study characterizes a promotor role for NEU1 in renal fibrosis and suggests a potential avenue of targeting NEU1 to treat kidney diseases.
Collapse
Affiliation(s)
- Qian-Qian Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Kang Liu
- Department of Nephrology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Ning Shi
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Gaoxiang Ma
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, 211198, China
| | - Peipei Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Hua-Mei Xie
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, 211198, China
| | - Si-Jia Jin
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Ting-Ting Wei
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiang-Yu Yu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Yi Wang
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, 211198, China
| | - Jun-Yuan Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Lian-Wen Qi
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, 211198, China.
| | - Lei Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
32
|
Zhang ZY, Ju CY, Wu LZ, Yan H, Hong WB, Chen HZ, Yang PB, Wang BR, Gou T, Chen XY, Jiang ZH, Wang WJ, Lin T, Li FN, Wu Q. Therapeutic potency of compound RMY-205 for pulmonary fibrosis induced by SARS-CoV-2 nucleocapsid protein. Cell Chem Biol 2023; 30:261-277.e8. [PMID: 36889311 PMCID: PMC9990178 DOI: 10.1016/j.chembiol.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/22/2022] [Accepted: 02/07/2023] [Indexed: 03/09/2023]
Abstract
Pulmonary fibrosis is a typical sequela of coronavirus disease 2019 (COVID-19), which is linked with a poor prognosis for COVID-19 patients. However, the underlying mechanism of pulmonary fibrosis induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is unclear. Here, we demonstrated that the nucleocapsid (N) protein of SARS-CoV-2 induced pulmonary fibrosis by activating pulmonary fibroblasts. N protein interacted with the transforming growth factor β receptor I (TβRI), to disrupt the interaction of TβRI-FK506 Binding Protein12 (FKBP12), which led to activation of TβRI to phosphorylate Smad3 and boost expression of pro-fibrotic genes and secretion of cytokines to promote pulmonary fibrosis. Furthermore, we identified a compound, RMY-205, that bound to Smad3 to disrupt TβRI-induced Smad3 activation. The therapeutic potential of RMY-205 was strengthened in mouse models of N protein-induced pulmonary fibrosis. This study highlights a signaling pathway of pulmonary fibrosis induced by N protein and demonstrates a novel therapeutic strategy for treating pulmonary fibrosis by a compound targeting Smad3.
Collapse
Affiliation(s)
- Zhi-Yuan Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Cui-Yu Ju
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Liu-Zheng Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Han Yan
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Wen-Bin Hong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Hang-Zi Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Peng-Bo Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Bao-Rui Wang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Tong Gou
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Xiao-Yan Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Zhi-Hong Jiang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Wei-Jia Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Tianwei Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China.
| | - Fu-Nan Li
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Qiao Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
33
|
Bilbrough T, Piemontese E, Seitz O. Dissecting the role of protein phosphorylation: a chemical biology toolbox. Chem Soc Rev 2022; 51:5691-5730. [PMID: 35726784 DOI: 10.1039/d1cs00991e] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Protein phosphorylation is a crucial regulator of protein and cellular function, yet, despite identifying an enormous number of phosphorylation sites, the role of most is still unclear. Each phosphoform, the particular combination of phosphorylations, of a protein has distinct and diverse biological consequences. Aberrant phosphorylation is implicated in the development of many diseases. To investigate their function, access to defined protein phosphoforms is essential. Materials obtained from cells often are complex mixtures. Recombinant methods can provide access to defined phosphoforms if site-specifically acting kinases are known, but the methods fail to provide homogenous material when several amino acid side chains compete for phosphorylation. Chemical and chemoenzymatic synthesis has provided an invaluable toolbox to enable access to previously unreachable phosphoforms of proteins. In this review, we selected important tools that enable access to homogeneously phosphorylated protein and discuss examples that demonstrate how they can be applied. Firstly, we discuss the synthesis of phosphopeptides and proteins through chemical and enzymatic means and their advantages and limitations. Secondly, we showcase illustrative examples that applied these tools to answer biological questions pertaining to proteins involved in signal transduction, control of transcription, neurodegenerative diseases and aggregation, apoptosis and autophagy, and transmembrane proteins. We discuss the opportunities and challenges in the field.
Collapse
Affiliation(s)
- Tim Bilbrough
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
| | - Emanuele Piemontese
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
| | - Oliver Seitz
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
| |
Collapse
|
34
|
Meng X, Wang H, Hao J. Recent progress in drug development for fibrodysplasia ossificans progressiva. Mol Cell Biochem 2022; 477:2327-2334. [PMID: 35536530 PMCID: PMC9499916 DOI: 10.1007/s11010-022-04446-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/08/2022] [Indexed: 12/13/2022]
Abstract
Fibrodysplasia Ossificans Progressiva (FOP) is a rare genetic disease caused by heterozygous missense mutations in Activin A receptor type I which is also known as Activin-like kinase 2 (ALK2), a type I receptor of Bone Morphogenetic Proteins(BMP). Patients with FOP usually undergo episodic flare-ups and the heterotopic ossification in soft and connective tissues. Molecular mechanism study indicates that Activin A, the ligand which normally transduces Transforming Growth Factor Beta signaling, abnormally activates BMP signaling through ALK2 mutants in FOP, leading to heterotopic bone formation. To date, effective therapies to FOP are unavailable. However, significant advances have recently been made in the development of FOP drugs. In this article, we review the recent advances in understanding the FOP mechanism and drug development, with a focus on the small-molecular and antibody drugs currently in the clinical trials for FOP treatment.
Collapse
Affiliation(s)
- Xinmiao Meng
- College of Arts and Sciences, Cornell University, Ithaca, NY, 14850, USA
| | - Haotian Wang
- College of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 191041, USA
| | - Jijun Hao
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, 91766, USA.
| |
Collapse
|
35
|
Liu H, Chen YG. The Interplay Between TGF-β Signaling and Cell Metabolism. Front Cell Dev Biol 2022; 10:846723. [PMID: 35359452 PMCID: PMC8961331 DOI: 10.3389/fcell.2022.846723] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/14/2022] [Indexed: 12/15/2022] Open
Abstract
The transforming growth factor-β (TGF-β) signaling plays a critical role in the development and tissue homeostasis in metazoans, and deregulation of TGF-β signaling leads to many pathological conditions. Mounting evidence suggests that TGF-β signaling can actively alter metabolism in diverse cell types. Furthermore, metabolic pathways, beyond simply regarded as biochemical reactions, are closely intertwined with signal transduction. Here, we discuss the role of TGF-β in glucose, lipid, amino acid, redox and polyamine metabolism with an emphasis on how TGF-β can act as a metabolic modulator and how metabolic changes can influence TGF-β signaling. We also describe how interplay between TGF-β signaling and cell metabolism regulates cellular homeostasis as well as the progression of multiple diseases, including cancer.
Collapse
|
36
|
Medina-Jover F, Riera-Mestre A, Viñals F. Rethinking growth factors: the case of BMP9 during vessel maturation. VASCULAR BIOLOGY (BRISTOL, ENGLAND) 2022; 4:R1-R14. [PMID: 35350597 PMCID: PMC8942324 DOI: 10.1530/vb-21-0019] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/07/2022] [Indexed: 12/21/2022]
Abstract
Angiogenesis is an essential process for correct development and physiology. This mechanism is tightly regulated by many signals that activate several pathways, which are constantly interacting with each other. There is mounting evidence that BMP9/ALK1 pathway is essential for a correct vessel maturation. Alterations in this pathway lead to the development of hereditary haemorrhagic telangiectasias. However, little was known about the BMP9 signalling cascade until the last years. Recent reports have shown that while BMP9 arrests cell cycle, it promotes the activation of anabolic pathways to enhance endothelial maturation. In light of this evidence, a new criterion for the classification of cytokines is proposed here, based on the physiological objective of the activation of anabolic routes. Whether this activation by a growth factor is needed to sustain mitosis or to promote a specific function such as matrix formation is a critical characteristic that needs to be considered to classify growth factors. Hence, the state-of-the-art of BMP9/ALK1 signalling is reviewed here, as well as its implications in normal and pathogenic angiogenesis.
Collapse
Affiliation(s)
- Ferran Medina-Jover
- Program Against Cancer Therapeutic Resistance (ProCURE), Institut Català d’Oncologia, Hospital Duran i Reynals, L’Hospitalet de Llobregat, Barcelona, Spain
- Molecular Mechanisms and Experimental Therapy in Oncology Program (Oncobell), Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut (Campus de Bellvitge), Universitat de Barcelona, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Antoni Riera-Mestre
- Hereditary Hemorrhagic Telangiectasia Unit, Internal Medicine Department, Hospital Universitari de Bellvitge, L’Hospitalet de Llobregat, Barcelona, Spain
- Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Faculty of Medicine and Health Sciences, Universitat de Barcelona, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Francesc Viñals
- Program Against Cancer Therapeutic Resistance (ProCURE), Institut Català d’Oncologia, Hospital Duran i Reynals, L’Hospitalet de Llobregat, Barcelona, Spain
- Molecular Mechanisms and Experimental Therapy in Oncology Program (Oncobell), Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut (Campus de Bellvitge), Universitat de Barcelona, L’Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
37
|
Kulikauskas MR, X S, Bautch VL. The versatility and paradox of BMP signaling in endothelial cell behaviors and blood vessel function. Cell Mol Life Sci 2022; 79:77. [PMID: 35044529 PMCID: PMC8770421 DOI: 10.1007/s00018-021-04033-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 10/20/2021] [Accepted: 11/09/2021] [Indexed: 12/15/2022]
Abstract
Blood vessels expand via sprouting angiogenesis, and this process involves numerous endothelial cell behaviors, such as collective migration, proliferation, cell–cell junction rearrangements, and anastomosis and lumen formation. Subsequently, blood vessels remodel to form a hierarchical network that circulates blood and delivers oxygen and nutrients to tissue. During this time, endothelial cells become quiescent and form a barrier between blood and tissues that regulates transport of liquids and solutes. Bone morphogenetic protein (BMP) signaling regulates both proangiogenic and homeostatic endothelial cell behaviors as blood vessels form and mature. Almost 30 years ago, human pedigrees linked BMP signaling to diseases associated with blood vessel hemorrhage and shunts, and recent work greatly expanded our knowledge of the players and the effects of vascular BMP signaling. Despite these gains, there remain paradoxes and questions, especially with respect to how and where the different and opposing BMP signaling outputs are regulated. This review examines endothelial cell BMP signaling in vitro and in vivo and discusses the paradox of BMP signals that both destabilize and stabilize endothelial cell behaviors.
Collapse
Affiliation(s)
- Molly R Kulikauskas
- Curriculum in Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Shaka X
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Victoria L Bautch
- Curriculum in Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
38
|
Kaplan FS, Groppe JC, Xu M, Towler OW, Grunvald E, Kalunian K, Kallish S, Al Mukaddam M, Pignolo RJ, Shore EM. An ACVR1 R375P pathogenic variant in two families with mild fibrodysplasia ossificans progressiva. Am J Med Genet A 2021; 188:806-817. [PMID: 34854557 DOI: 10.1002/ajmg.a.62585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/06/2021] [Accepted: 11/02/2021] [Indexed: 11/11/2022]
Abstract
Genetic variants are vital in informing clinical phenotypes, aiding physical diagnosis, guiding genetic counseling, understanding the molecular basis of disease, and potentially stimulating drug development. Here we describe two families with an ultrarare ACVR1 gain-of-function pathogenic variant (codon 375, Arginine > Proline; ACVR1R375P ) responsible for a mild nonclassic fibrodysplasia ossificans progressiva (FOP) phenotype. Both families include people with the ultrarare ACVR1R375P variant who exhibit features of FOP while other individuals currently do not express any clinical signs of FOP. Thus, the mild ACVR1R375P variant greatly expands the scope and understanding of this rare disorder.
Collapse
Affiliation(s)
- Frederick S Kaplan
- Department of Orthopaedic Surgery, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Medicine, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.,The Center for Research in FOP & Related Disorders, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jay C Groppe
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas, USA
| | - Meiqi Xu
- Department of Orthopaedic Surgery, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.,The Center for Research in FOP & Related Disorders, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - O Will Towler
- Department of Orthopaedic Surgery, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.,The Center for Research in FOP & Related Disorders, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Eduardo Grunvald
- Division of General Internal Medicine, The Department of Medicine, The University of California San Diego, San Diego, California, USA
| | - Kenneth Kalunian
- Division of Rheumatology, Allergy and Immunology, The Department of Medicine, UC San Diego School of Medicine, La Jolla, California, USA
| | - Staci Kallish
- The Center for Research in FOP & Related Disorders, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Division of Translational Medicine and Human Genetics, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mona Al Mukaddam
- Department of Orthopaedic Surgery, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Medicine, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.,The Center for Research in FOP & Related Disorders, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Robert J Pignolo
- The Department of Medicine, The Mayo Clinic, Rochester, Minnesota, USA
| | - Eileen M Shore
- Department of Orthopaedic Surgery, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.,The Center for Research in FOP & Related Disorders, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Genetics, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
39
|
Bertolio MS, La Colla A, Carrea A, Romo A, Canziani G, Echarte SM, Campisano S, Barletta GP, Monzon AM, Rodríguez TM, Chisari AN, Dewey RA. A Novel Splice Variant of Human TGF-β Type II Receptor Encodes a Soluble Protein and Its Fc-Tagged Version Prevents Liver Fibrosis in vivo. Front Cell Dev Biol 2021; 9:690397. [PMID: 34568316 PMCID: PMC8461249 DOI: 10.3389/fcell.2021.690397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 08/02/2021] [Indexed: 11/22/2022] Open
Abstract
We describe, for the first time, a new splice variant of the human TGF-β type II receptor (TβRII). The new transcript lacks 149 nucleotides, resulting in a frameshift and the emergence of an early stop codon, rendering a truncated mature protein of 57 amino acids. The predicted protein, lacking the transmembrane domain and with a distinctive 13-amino-acid stretch at its C-terminus, was named TβRII-Soluble Endogenous (TβRII-SE). Binding predictions indicate that the novel 13-amino-acid stretch interacts with all three TGF-β cognate ligands and generates a more extensive protein–protein interface than TβRII. TβRII-SE and human IgG1 Fc domain were fused in frame in a lentiviral vector (Lv) for further characterization. With this vector, we transduced 293T cells and purified TβRII-SE/Fc by A/G protein chromatography from conditioned medium. Immunoblotting revealed homogeneous bands of approximately 37 kDa (reduced) and 75 kDa (non-reduced), indicating that TβRII-SE/Fc is secreted as a disulfide-linked homodimer. Moreover, high-affinity binding of TβRII-SE to the three TGF-β isoforms was confirmed by surface plasmon resonance (SPR) analysis. Also, intrahepatic delivery of Lv.TβRII-SE/Fc in a carbon tetrachloride-induced liver fibrosis model revealed amelioration of liver injury and fibrosis. Our results indicate that TβRII-SE is a novel member of the TGF-β signaling pathway with distinctive characteristics. This novel protein offers an alternative for the prevention and treatment of pathologies caused by the overproduction of TGF-β ligands.
Collapse
Affiliation(s)
- Marcela Soledad Bertolio
- Laboratorio de Terapia Génica y Células Madre, Instituto Tecnológico de Chascomús (INTECH), CONICET-UNSAM, Buenos Aires, Argentina
| | - Anabela La Colla
- Departamento de Química y Bioquímica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Buenos Aires, Argentina
| | - Alejandra Carrea
- Laboratorio de Terapia Génica y Células Madre, Instituto Tecnológico de Chascomús (INTECH), CONICET-UNSAM, Buenos Aires, Argentina
| | - Ana Romo
- Laboratorio de Terapia Génica y Células Madre, Instituto Tecnológico de Chascomús (INTECH), CONICET-UNSAM, Buenos Aires, Argentina
| | - Gabriela Canziani
- Drexel U-Sidney Kimmel Cancer Center, Thomas Jefferson U S200 Biosensor Shared Resource, Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Stella Maris Echarte
- Departamento de Química y Bioquímica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Buenos Aires, Argentina
| | - Sabrina Campisano
- Departamento de Química y Bioquímica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Buenos Aires, Argentina
| | - German Patricio Barletta
- Molecular Physics and Biophysics Group, Department of Science and Technology, National University of Quilmes, CONICET, Bernal, Argentina
| | | | - Tania Melina Rodríguez
- Laboratorio de Terapia Génica y Células Madre, Instituto Tecnológico de Chascomús (INTECH), CONICET-UNSAM, Buenos Aires, Argentina
| | - Andrea Nancy Chisari
- Departamento de Química y Bioquímica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Buenos Aires, Argentina
| | - Ricardo Alfredo Dewey
- Laboratorio de Terapia Génica y Células Madre, Instituto Tecnológico de Chascomús (INTECH), CONICET-UNSAM, Buenos Aires, Argentina
| |
Collapse
|
40
|
Zakrzewski PK. Canonical TGFβ Signaling and Its Contribution to Endometrial Cancer Development and Progression-Underestimated Target of Anticancer Strategies. J Clin Med 2021; 10:3900. [PMID: 34501347 PMCID: PMC8432036 DOI: 10.3390/jcm10173900] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 02/08/2023] Open
Abstract
Endometrial cancer is one of the leading gynecological cancers diagnosed among women in their menopausal and postmenopausal age. Despite the progress in molecular biology and medicine, no efficient and powerful diagnostic and prognostic marker is dedicated to endometrial carcinogenesis. The canonical TGFβ pathway is a pleiotropic signaling cascade orchestrating a variety of cellular and molecular processes, whose alterations are responsible for carcinogenesis that originates from different tissue types. This review covers the current knowledge concerning the canonical TGFβ pathway (Smad-dependent) induced by prototypical TGFβ isoforms and the involvement of pathway alterations in the development and progression of endometrial neoplastic lesions. Since Smad-dependent signalization governs opposed cellular processes, such as growth arrest, apoptosis, tumor cells growth and differentiation, as well as angiogenesis and metastasis, TGFβ cascade may act both as a tumor suppressor or tumor promoter. However, the final effect of TGFβ signaling on endometrial cancer cells depends on the cancer disease stage. The multifunctional role of the TGFβ pathway indicates the possible utilization of alterations in the TGFβ cascade as a potential target of novel anticancer strategies.
Collapse
Affiliation(s)
- Piotr K Zakrzewski
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
41
|
Agnew C, Ayaz P, Kashima R, Loving HS, Ghatpande P, Kung JE, Underbakke ES, Shan Y, Shaw DE, Hata A, Jura N. Structural basis for ALK2/BMPR2 receptor complex signaling through kinase domain oligomerization. Nat Commun 2021; 12:4950. [PMID: 34400635 PMCID: PMC8368100 DOI: 10.1038/s41467-021-25248-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 07/30/2021] [Indexed: 01/10/2023] Open
Abstract
Upon ligand binding, bone morphogenetic protein (BMP) receptors form active tetrameric complexes, comprised of two type I and two type II receptors, which then transmit signals to SMAD proteins. The link between receptor tetramerization and the mechanism of kinase activation, however, has not been elucidated. Here, using hydrogen deuterium exchange mass spectrometry (HDX-MS), small angle X-ray scattering (SAXS) and molecular dynamics (MD) simulations, combined with analysis of SMAD signaling, we show that the kinase domain of the type I receptor ALK2 and type II receptor BMPR2 form a heterodimeric complex via their C-terminal lobes. Formation of this dimer is essential for ligand-induced receptor signaling and is targeted by mutations in BMPR2 in patients with pulmonary arterial hypertension (PAH). We further show that the type I/type II kinase domain heterodimer serves as the scaffold for assembly of the active tetrameric receptor complexes to enable phosphorylation of the GS domain and activation of SMADs.
Collapse
Affiliation(s)
- Christopher Agnew
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | | | - Risa Kashima
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Hanna S Loving
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Prajakta Ghatpande
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Jennifer E Kung
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
- Department of Structural Biology, Genentech, Inc., South San Francisco, USA
| | - Eric S Underbakke
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, USA.
| | | | - David E Shaw
- D. E. Shaw Research, New York, NY, USA.
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| | - Akiko Hata
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Natalia Jura
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA.
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
42
|
Qiu W, Kuo CY, Tian Y, Su GH. Dual Roles of the Activin Signaling Pathway in Pancreatic Cancer. Biomedicines 2021; 9:biomedicines9070821. [PMID: 34356885 PMCID: PMC8301451 DOI: 10.3390/biomedicines9070821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/29/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
Activin, a member of the TGF-β superfamily, is involved in many physiological processes, such as embryonic development and follicle development, as well as in multiple human diseases including cancer. Genetic mutations in the activin signaling pathway have been reported in many cancer types, indicating that activin signaling plays a critical role in tumorigenesis. Recent evidence reveals that activin signaling may function as a tumor-suppressor in tumor initiation, and a promoter in the later progression and metastasis of tumors. This article reviews many aspects of activin, including the signaling cascade of activin, activin-related proteins, and its role in tumorigenesis, particularly in pancreatic cancer development. The mechanisms regulating its dual roles in tumorigenesis remain to be elucidated. Further understanding of the activin signaling pathway may identify potential therapeutic targets for human cancers and other diseases.
Collapse
Affiliation(s)
- Wanglong Qiu
- The Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; (W.Q.); (C.K.); (Y.T.)
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Chia-Yu Kuo
- The Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; (W.Q.); (C.K.); (Y.T.)
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Yu Tian
- The Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; (W.Q.); (C.K.); (Y.T.)
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Gloria H. Su
- The Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; (W.Q.); (C.K.); (Y.T.)
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Otolaryngology and Head and Neck Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
- Correspondence:
| |
Collapse
|
43
|
He M, Lv W, Rao Y. Opportunities and Challenges of Small Molecule Induced Targeted Protein Degradation. Front Cell Dev Biol 2021; 9:685106. [PMID: 34249939 PMCID: PMC8261656 DOI: 10.3389/fcell.2021.685106] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/24/2021] [Indexed: 12/21/2022] Open
Abstract
Proteolysis targeting chimeras (PROTAC) represents a new type of small molecule induced protein degradation technology that has emerged in recent years. PROTAC uses bifunctional small molecules to induce ubiquitination of target proteins and utilizes intracellular proteasomes for chemical knockdown. It complements the gene editing and RNA interference for protein knockdown. Compared with small molecule inhibitors, PROTAC has shown great advantages in overcoming tumor resistance, affecting the non-enzymatic function of target proteins, degrading undruggable targets, and providing new rapid and reversible chemical knockout tools. At the same time, its challenges and problems also need to be resolved as a fast-developing newchemical biology technology.
Collapse
Affiliation(s)
- Ming He
- MOE Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, China
| | - Wenxing Lv
- MOE Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, China
| | - Yu Rao
- MOE Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, China
| |
Collapse
|
44
|
Larraufie MH, Gao X, Xia X, Devine PJ, Kallen J, Liu D, Michaud G, Harsch A, Savage N, Ding J, Tan K, Mihalic M, Roggo S, Canham SM, Bushell SM, Krastel P, Gao J, Izaac A, Altinoglu E, Lustenberger P, Salcius M, Harbinski F, Williams ET, Zeng L, Loureiro J, Cong F, Fryer CJ, Klickstein L, Tallarico JA, Jain RK, Rothman DM, Wang S. Phenotypic screen identifies calcineurin-sparing FK506 analogs as BMP potentiators for treatment of acute kidney injury. Cell Chem Biol 2021; 28:1271-1282.e12. [PMID: 33894161 DOI: 10.1016/j.chembiol.2021.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 01/29/2021] [Accepted: 04/05/2021] [Indexed: 12/12/2022]
Abstract
Acute kidney injury (AKI) is a life-threatening disease with no known curative or preventive therapies. Data from multiple animal models and human studies have linked dysregulation of bone morphogenetic protein (BMP) signaling to AKI. Small molecules that potentiate endogenous BMP signaling should have a beneficial effect in AKI. We performed a high-throughput phenotypic screen and identified a series of FK506 analogs that act as potent BMP potentiators by sequestering FKBP12 from BMP type I receptors. We further showed that calcineurin inhibition was not required for this activity. We identified a calcineurin-sparing FK506 analog oxtFK through late-stage functionalization and structure-guided design. OxtFK demonstrated an improved safety profile in vivo relative to FK506. OxtFK stimulated BMP signaling in vitro and in vivo and protected the kidneys in an AKI mouse model, making it a promising candidate for future development as a first-in-class therapeutic for diseases with dysregulated BMP signaling.
Collapse
Affiliation(s)
| | - Xiaolin Gao
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Xiaobo Xia
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | | | - Joerg Kallen
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Dong Liu
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Gregory Michaud
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Andreas Harsch
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Nik Savage
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Jian Ding
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Kian Tan
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Manuel Mihalic
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Silvio Roggo
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | | | - Simon M Bushell
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Philipp Krastel
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Jinhai Gao
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Aude Izaac
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Erhan Altinoglu
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | | | - Michael Salcius
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Fred Harbinski
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Eric T Williams
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Liling Zeng
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Joseph Loureiro
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Feng Cong
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Christy J Fryer
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | | | | | - Rishi K Jain
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | | | - Shaowen Wang
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA.
| |
Collapse
|
45
|
Ventura F, Williams E, Ikeya M, Bullock AN, ten Dijke P, Goumans MJ, Sanchez-Duffhues G. Challenges and Opportunities for Drug Repositioning in Fibrodysplasia Ossificans Progressiva. Biomedicines 2021; 9:biomedicines9020213. [PMID: 33669809 PMCID: PMC7922784 DOI: 10.3390/biomedicines9020213] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/08/2021] [Accepted: 02/15/2021] [Indexed: 01/05/2023] Open
Abstract
Fibrodysplasia ossificans progressiva (FOP) is an ultrarare congenital disease that progresses through intermittent episodes of bone formation at ectopic sites. FOP patients carry heterozygous gene point mutations in activin A receptor type I ACVR1, encoding the bone morphogenetic protein (BMP) type I serine/threonine kinase receptor ALK2, termed activin receptor-like kinase (ALK)2. The mutant ALK2 displays neofunctional responses to activin, a closely related BMP cytokine that normally inhibits regular bone formation. Moreover, the mutant ALK2 becomes hypersensitive to BMPs. Both these activities contribute to enhanced ALK2 signalling and endochondral bone formation in connective tissue. Being a receptor with an extracellular ligand-binding domain and intrinsic intracellular kinase activity, the mutant ALK2 is a druggable target. Although there is no approved cure for FOP yet, a number of clinical trials have been recently initiated, aiming to identify a safe and effective treatment for FOP. Among other targeted approaches, several repurposed drugs have shown promising results. In this review, we describe the molecular mechanisms underlying ALK2 mutation-induced aberrant signalling and ectopic bone formation. In addition, we recapitulate existing in vitro models to screen for novel compounds with a potential application in FOP. We summarize existing therapeutic alternatives and focus on repositioned drugs in FOP, at preclinical and clinical stages.
Collapse
Affiliation(s)
- Francesc Ventura
- Department de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L’Hospitalet de Llobregat, 08907 Barcelona, Spain;
| | - Eleanor Williams
- Centre for Medicines Discovery, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK; (E.W.); (A.N.B.)
| | - Makoto Ikeya
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan;
| | - Alex N. Bullock
- Centre for Medicines Discovery, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK; (E.W.); (A.N.B.)
| | - Peter ten Dijke
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands;
| | - Marie-José Goumans
- Department of Cell and Chemical Biology, Cardiovascular Cell Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands;
| | - Gonzalo Sanchez-Duffhues
- Department of Cell and Chemical Biology, Cardiovascular Cell Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands;
- Correspondence:
| |
Collapse
|
46
|
ALK2 Receptor Kinase Association with FKBP12.6 Is Structurally Conserved with the ALK2-FKBP12 Complex. Biomedicines 2021; 9:biomedicines9020129. [PMID: 33572801 PMCID: PMC7911104 DOI: 10.3390/biomedicines9020129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 01/27/2023] Open
Abstract
The immunophilin FKBP12 is a known inhibitor of type I BMP and TGF-β receptors that competes for binding with their substrate SMADs. FKBP12 and the close paralog FKBP12.6 additionally assemble with ryanodine receptors to control Ca2+ release. Binding of FKBP12.6 to BMP/TGF-β receptors has yet to be investigated, but appears plausible given its high sequence similarity to FKBP12. Here, we found that FKBP12.6 can assemble with BMP and TGF-β-family type I receptors, but not with type II receptors. Cellular immunoprecipitation confirmed similar binding of FKBP12 and FKBP12.6 to the BMP receptor ALK2 (ACVR1), a known target of mutations in the congenital syndrome fibrodysplasia ossificans progressiva (FOP), as well as the pediatric brain tumor diffuse intrinsic pontine glioma (DIPG). SEC-MALS analyses using purified proteins indicated a direct 1:1 interaction between FKBP12.6 and the receptor's cytoplasmic domains. The 2.17 Å structure of this ALK2-FKBP12.6 complex bound to the inhibitor dorsomorphin showed FKBP12.6 binding to the GS domain of ALK2 in a manner equivalent to the FKBP12 complex, with ALK2 residues Phe198 and Leu199 extending into the FK506-binding pocket of FKBP12.6. These findings suggest a level of redundancy in FKBP-family regulation of BMP and TGF-β signaling.
Collapse
|
47
|
Gipson GR, Goebel EJ, Hart KN, Kappes EC, Kattamuri C, McCoy JC, Thompson TB. Structural perspective of BMP ligands and signaling. Bone 2020; 140:115549. [PMID: 32730927 PMCID: PMC7502536 DOI: 10.1016/j.bone.2020.115549] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 06/30/2020] [Accepted: 07/03/2020] [Indexed: 12/13/2022]
Abstract
The Bone Morphogenetic Proteins (BMPs) are the largest class signaling molecules within the greater Transforming Growth Factor Beta (TGFβ) family, and are responsible for a wide array of biological functions, including dorsal-ventral patterning, skeletal development and maintenance, as well as cell homeostasis. As such, dysregulation of BMPs results in a number of diseases, including fibrodysplasia ossificans progressiva (FOP) and pulmonary arterial hypertension (PAH). Therefore, understanding BMP signaling and regulation at the molecular level is essential for targeted therapeutic intervention. This review discusses the recent advances in the structural and biochemical characterization of BMPs, from canonical ligand-receptor interactions to co-receptors and antagonists. This work aims to highlight how BMPs differ from other members of the TGFβ family, and how that information can be used to further advance the field. Lastly, this review discusses several gaps in the current understanding of BMP structures, with the aim that discussion of these gaps will lead to advancements in the field.
Collapse
Affiliation(s)
- Gregory R Gipson
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Medical Sciences Building, Cincinnati, OH 45267, USA
| | - Erich J Goebel
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Medical Sciences Building, Cincinnati, OH 45267, USA
| | - Kaitlin N Hart
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Medical Sciences Building, Cincinnati, OH 45267, USA
| | - Emily C Kappes
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Medical Sciences Building, Cincinnati, OH 45267, USA
| | - Chandramohan Kattamuri
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Medical Sciences Building, Cincinnati, OH 45267, USA
| | - Jason C McCoy
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Medical Sciences Building, Cincinnati, OH 45267, USA
| | - Thomas B Thompson
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Medical Sciences Building, Cincinnati, OH 45267, USA.
| |
Collapse
|
48
|
Gariballa N, Ali BR. Endoplasmic Reticulum Associated Protein Degradation (ERAD) in the Pathology of Diseases Related to TGFβ Signaling Pathway: Future Therapeutic Perspectives. Front Mol Biosci 2020; 7:575608. [PMID: 33195419 PMCID: PMC7658374 DOI: 10.3389/fmolb.2020.575608] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/29/2020] [Indexed: 02/05/2023] Open
Abstract
The transforming growth factor signaling pathway (TGFβ) controls a wide range of cellular activities in adulthood as well as during embryogenesis including cell growth, differentiation, apoptosis, immunological responses and other cellular functions. Therefore, germline mutations in components of the pathway have given rise to a heterogeneous spectrum of hereditary diseases with variable phenotypes associated with malformations in the cardiovascular, muscular and skeletal systems. Our extensive literature and database searches revealed 47 monogenic diseases associated with germline mutations in 24 out of 41 gene variant encoding for TGFβ components. Most of the TGFβ components are membrane or secretory proteins and they are therefore expected to pass through the endoplasmic reticulum (ER), where fidelity of proteins folding is stringently monitored via the ER quality control machineries. Elucidation of the molecular mechanisms of mutant proteins' folding and trafficking showed the implication of ER associated protein degradation (ERAD) in the pathogenesis of some of the diseases. For example, hereditary hemorrhagic telangiectasia types 1 and 2 (HHT1 and HHT2) and familial pulmonary arterial hypertension (FPAH) associated with mutations in Endoglin, ALK1 and BMPR2 components of the signaling pathway, respectively, have all exhibited loss of function phenotype as a result of ER retention of some of their disease-causing variants. In some cases, this has led to premature protein degradation through the proteasomal pathway. We anticipate that ERAD will be involved in the mechanisms of other TGFβ signaling components and therefore warrants further research. In this review, we highlight advances in ER quality control mechanisms and their modulation as a potential therapeutic target in general with particular focus on prospect of their implementation in the treatment of monogenic diseases associated with TGFβ components including HHT1, HHT2, and PAH. In particular, we emphasis the need to establish disease mechanisms and to implement such novel approaches in modulating the molecular pathway of mutant TGFβ components in the quest for restoring protein folding and trafficking as a therapeutic approach.
Collapse
Affiliation(s)
- Nesrin Gariballa
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bassam R. Ali
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
49
|
Allen RS, Tajer B, Shore EM, Mullins MC. Fibrodysplasia ossificans progressiva mutant ACVR1 signals by multiple modalities in the developing zebrafish. eLife 2020; 9:53761. [PMID: 32897189 PMCID: PMC7478894 DOI: 10.7554/elife.53761] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 08/12/2020] [Indexed: 12/14/2022] Open
Abstract
Fibrodysplasia ossificans progressiva (FOP) is a rare human genetic disorder characterized by altered skeletal development and extraskeletal ossification. All cases of FOP are caused by activating mutations in the type I BMP/TGFβ cell surface receptor ACVR1, which over-activates signaling through phospho-Smad1/5 (pSmad1/5). To investigate the mechanism by which FOP-ACVR1 enhances pSmad1/5 activation, we used zebrafish embryonic dorsoventral (DV) patterning as an assay for BMP signaling. We determined that the FOP mutants ACVR1-R206H and -G328R do not require their ligand binding domain to over-activate BMP signaling in DV patterning. However, intact ACVR1-R206H has the ability to respond to both Bmp7 and Activin A ligands. Additionally, BMPR1, a type I BMP receptor normally required for BMP-mediated patterning of the embryo, is dispensable for both ligand-independent signaling pathway activation and ligand-responsive signaling hyperactivation by ACVR1-R206H. These results demonstrate that FOP-ACVR1 is not constrained by the same receptor/ligand partner requirements as WT-ACVR1.
Collapse
Affiliation(s)
- Robyn S Allen
- Department of Cell and Developmental Biology University of Pennsylvania Perelman School of Medicine, Philadelphia, United States.,Departments of Orthopaedic Surgery and Genetics University of Pennsylvania Perelman School of Medicine, Philadelphia, United States
| | - Benjamin Tajer
- Department of Cell and Developmental Biology University of Pennsylvania Perelman School of Medicine, Philadelphia, United States
| | - Eileen M Shore
- Departments of Orthopaedic Surgery and Genetics University of Pennsylvania Perelman School of Medicine, Philadelphia, United States
| | - Mary C Mullins
- Department of Cell and Developmental Biology University of Pennsylvania Perelman School of Medicine, Philadelphia, United States
| |
Collapse
|
50
|
Nguyen TH, Han TH, Newfeld SJ, Serpe M. Selective Disruption of Synaptic BMP Signaling by a Smad Mutation Adjacent to the Highly Conserved H2 Helix. Genetics 2020; 216:159-175. [PMID: 32737119 PMCID: PMC7463279 DOI: 10.1534/genetics.120.303484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 07/16/2020] [Indexed: 01/08/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) shape normal development and function via canonical and noncanonical signaling pathways. BMPs initiate canonical signaling by binding to transmembrane receptors that phosphorylate Smad proteins and induce their translocation into the nucleus and regulation of target genes. Phosphorylated Smads also accumulate at cellular junctions, but this noncanonical, local BMP signaling modality remains less defined. We have recently reported that phosphorylated Smad (pMad in Drosophila) accumulates at synaptic junctions in protein complexes with genetically distinct composition and regulation. Here, we examined a wide collection of DrosophilaMad alleles and searched for molecular features relevant to pMad accumulation at synaptic junctions. We found that strong Mad alleles generally disrupt both synaptic and nuclear pMad, whereas moderate Mad alleles have a wider range of phenotypes and can selectively impact different BMP signaling pathways. Interestingly, regulatory Mad mutations reveal that synaptic pMad appears to be more sensitive to a net reduction in Mad levels than nuclear pMad. Importantly, a previously uncharacterized allele, Mad8 , showed markedly reduced synaptic pMad but only moderately diminished nuclear pMad. The postsynaptic composition and electrophysiological properties of Mad8 neuromuscular junctions (NMJs) were also altered. Using biochemical approaches, we examined how a single point mutation in Mad8 could influence the Mad-receptor interface and identified a key motif, the H2 helix. Our study highlights the biological relevance of Smad-dependent, synaptic BMP signaling and uncovers a highly conserved structural feature of Smads, critical for normal development and function.
Collapse
Affiliation(s)
- Tho Huu Nguyen
- Section on Cellular Communication, Eunice Kennedy Shiver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Tae Hee Han
- Section on Cellular Communication, Eunice Kennedy Shiver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Stuart J Newfeld
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287-4501
| | - Mihaela Serpe
- Section on Cellular Communication, Eunice Kennedy Shiver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|