1
|
Li SW, Ren PX, Wang L, Han QL, Li FL, Li HL, Bai F. MAI-TargetFisher: A proteome-wide drug target prediction method synergetically enhanced by artificial intelligence and physical modeling. Acta Pharmacol Sin 2025; 46:1462-1475. [PMID: 39870848 PMCID: PMC12032055 DOI: 10.1038/s41401-024-01444-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 11/24/2024] [Indexed: 01/29/2025]
Abstract
Computational target identification plays a pivotal role in the drug development process. With the significant advancements of deep learning methods for protein structure prediction, the structural coverage of human proteome has increased substantially. This progress inspired the development of the first genome-wide small molecule targets scanning method. Our method aims to localize drug targets and detect potential off-target effects early in the drug discovery process, thereby improving the success rate of drug development. We have constructed a high-quality database of protein structures with annotated potential binding sites, covering 82% of the protein-coding genome. On the basis of this database, to enhance our search capabilities, we have integrated computational techniques, including both artificial intelligence-based and biophysical model-based methods. This integration led to the development of a target identification method called Multi-Algorithm Integrated Target Fisher (MAI-TargetFisher). MAI-TargetFisher leverages the complementary strengths of various methods while minimizing their weaknesses, enabling precise database navigation to generate a reliably ranked set of candidate targets for an active query molecule. Importantly, our work is the first comprehensive scan of protein surfaces across the entire human genome, aimed at evaluating potential small molecule binding sites on each protein. Through a series of evaluations on benchmark and a target identification task, the results demonstrate the high hit rates and good reliability of our method under the validation of wet experiments. We have also made available a freely accessible web server at https://bailab.siais.shanghaitech.edu.cn/mai-targetfisher for non-commercial use.
Collapse
Affiliation(s)
- Shi-Wei Li
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Peng-Xuan Ren
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Lin Wang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Qi-Lei Han
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Feng-Lei Li
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- School of Information Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Hong-Lin Li
- Innovation Center for AI and Drug Discovery, East China Normal University, Shanghai, 200062, China
| | - Fang Bai
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- School of Information Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- Shanghai Clinical Research and Trial Center, Shanghai, 201210, China.
| |
Collapse
|
2
|
Maassen A, Steciuk J, Wilga M, Szurmak J, Garbicz D, Sarnowska E, Sarnowski TJ. SWI/SNF-type complexes-transcription factor interplay: a key regulatory interaction. Cell Mol Biol Lett 2025; 30:30. [PMID: 40065228 PMCID: PMC11895388 DOI: 10.1186/s11658-025-00704-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 02/17/2025] [Indexed: 03/14/2025] Open
Abstract
ATP-dependent switch/sucrose nonfermenting-type chromatin remodeling complexes (SWI/SNF CRCs) are multiprotein machineries altering chromatin structure, thus controlling the accessibility of genomic DNA to various regulatory proteins including transcription factors (TFs). SWI/SNF CRCs are highly evolutionarily conserved among eukaryotes. There are three main subtypes of SWI/SNF CRCs: canonical (cBAF), polybromo (pBAF), and noncanonical (ncBAF) in humans and their functional Arabidopsis counterparts SYD-associated SWI/SNF (SAS), MINU-associated SWI/SNF (MAS), and BRAHMA (BRM)-associated SWI/SNF (BAS). Here, we highlight the importance of interplay between SWI/SNF CRCs and TFs in human and Arabidopsis and summarize recent advances demonstrating their role in controlling important regulatory processes. We discuss possible mechanisms involved in TFs and SWI/SNF CRCs-dependent transcriptional control of gene expression. We indicate that Arabidopsis may serve as a valuable model for the identification of evolutionarily conserved SWI/SNF-TF interactions and postulate that further exploration of the TFs and SWI/SNF CRCs-interplay, especially in the context of the role of particular SWI/SNF CRC subtypes, TF type, as well as cell/tissue and conditions, among others, will help address important questions related to the specificity of SWI/SNF-TF interactions and the sequence of events occurring on their target genes.
Collapse
Affiliation(s)
- Anna Maassen
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | - Jaroslaw Steciuk
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | - Magdalena Wilga
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | - Jakub Szurmak
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | - Damian Garbicz
- Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Elzbieta Sarnowska
- Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Tomasz J Sarnowski
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland.
- Max Planck Institute for Plant Breeding Research, Cologne, Germany.
| |
Collapse
|
3
|
Lin TI, Tseng YR, Dong MJ, Lin CY, Chung WT, Liu CY, Tsai YF, Huang CC, Tseng LM, Chao TC, Lai JI. HDAC inhibitors modulate Hippo pathway signaling in hormone positive breast cancer. Clin Epigenetics 2025; 17:37. [PMID: 40012020 PMCID: PMC11863526 DOI: 10.1186/s13148-025-01834-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 02/04/2025] [Indexed: 02/28/2025] Open
Abstract
Breast cancer has constantly been the leading causes of death in women, and hormone receptor (HR) positive, HER2 negative is the majority subtype. Histone deacetylase (HDAC) inhibitors (HDACi) have shown clinical benefit in HR ( +) breast cancer patients. The Hippo pathway is an important cellular pathway involving proliferation, cell contact, and cancer. Hippo pathway proteins YAP/TAZ are often viewed as pro-tumorigenic; however, recent studies support a role of YAP as a tumor suppressor in HR ( +) breast cancer. Few studies have investigated the link between HDACi and the Hippo pathway. In our study, we demonstrate that HDACi induces transcriptional downregulation of YAP expression, while conversely activating a TEAD-mediated transcriptional program with upregulation of canonical Hippo pathway genes. We subsequently identified four Hippo canonical genes (CCDC80, GADD45A, F3, and TGFB2) that were upregulated by HDACi and associated with significantly improved survival in a HR ( +) breast cancer cohort. We further validated experimentally that HR ( +) breast cancer cells treated with HDACi resulted in upregulation of CCDC80 and GADD45A. A pan-cancer analysis of TCGA database demonstrated lower CCDC80 and GADD45A expression in tumor tissue compared to non-tumor samples in BRCA (breast cancer), LAML (acute myeloid leukemia), and UCS (uterine carcinosarcoma). Further analysis of HR ( +) breast cancer patients in the METABRIC dataset revealed high CCDC80 and/or GADD45A expression associated with significantly better survival outcomes compared to patients with low expression. Our study provides evidence for a novel mechanism of HDACi clinical activity, as well as a potential role for CCDC80 and GADD45A in HR ( +) breast cancer.
Collapse
Affiliation(s)
- Ting-I Lin
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Ru Tseng
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Min-Jyun Dong
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chih-Yi Lin
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wei-Ting Chung
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chun-Yu Liu
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Oncology, Center of Immuno-Oncology, Taipei Veterans General Hospital, Taipei City, Taiwan
| | - Yi-Fang Tsai
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chi-Cheng Huang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ling-Ming Tseng
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ta-Chung Chao
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Oncology, Center of Immuno-Oncology, Taipei Veterans General Hospital, Taipei City, Taiwan
| | - Jiun-I Lai
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan.
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan.
- Department of Oncology, Center of Immuno-Oncology, Taipei Veterans General Hospital, Taipei City, Taiwan.
| |
Collapse
|
4
|
Chen W, Zhou L, Jiang J, Chen J, Geng D, Chen Y, Han X, Xie Q, Guo G, Chen X, Tang S, Zhong X. Induction of the p21/CDK6 pathway and alteration of the immune microenvironment by the stem cell marker CBX3 in melanoma. Stem Cell Res Ther 2025; 16:63. [PMID: 39934923 PMCID: PMC11816572 DOI: 10.1186/s13287-025-04179-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 01/23/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND As one of the stem cell markers, chromobox protein homolog 3 (CBX3) participates in multiple signaling pathways that affect the progression of various tumors. However, the role of CBX3 in melanoma remains unclear, and the mechanisms by which CBX3 may regulate immunotherapy outcome remain largely unknown. METHODS We used the Cancer Genome Atlas, Genotype-Tissue Expression portal, and Gene Expression Omnibus database to estimate CBX3 expression and its prognostic effect in melanoma. The role of CBX3 in proliferation and migration of melanoma cells were examined using the CCK8, cloning, wound healing, and transwell assays. The effect of CBX3 on melanoma tumorigenesis was assessed using an in vivo animal model. The role of CBX3 in cell cycle was examined using flow cytometry, and expression levels of cell cycle-related genes and proteins in cells with altered CBX3 levels were analyzed using qPCR and western blotting. The function of CBX3 in the immune microenvironment of melanoma was studied using single-cell RNA sequencing and public databases. RESULTS We found that CBX3 was highly expressed in melanoma with poor prognosis. CBX3 promoted the proliferation and migration of melanoma cells in vivo and in vitro. Functional analysis revealed that CBX3 regulates cell cycle, as it accelerated the G1 to S transition, decreased p21 expression, and increased CDK6 expression. Finally, single-cell sequencing and immune-related assays showed that CBX3 is immunogenic and can change the immune microenvironment of melanoma. CONCLUSIONS We conclude that the stem cell marker, CBX3 activates the p21/CDK6 pathway and alters the immune microenvironment in melanoma.
Collapse
Affiliation(s)
- Wanxian Chen
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, People's Republic of China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center of Shantou University Medical College, Shantou, China
| | - Linsa Zhou
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, People's Republic of China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center of Shantou University Medical College, Shantou, China
| | - Jingjing Jiang
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, China
| | - Jiasheng Chen
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, People's Republic of China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center of Shantou University Medical College, Shantou, China
| | - Deyi Geng
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, People's Republic of China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center of Shantou University Medical College, Shantou, China
| | - Yaokun Chen
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, People's Republic of China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center of Shantou University Medical College, Shantou, China
| | - Xiaosha Han
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, People's Republic of China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center of Shantou University Medical College, Shantou, China
| | - Qihu Xie
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, People's Republic of China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center of Shantou University Medical College, Shantou, China
| | - Genghong Guo
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, People's Republic of China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center of Shantou University Medical College, Shantou, China
| | - Xuefen Chen
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, People's Republic of China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center of Shantou University Medical College, Shantou, China
| | - Shijie Tang
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, People's Republic of China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center of Shantou University Medical College, Shantou, China
| | - Xiaoping Zhong
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, People's Republic of China.
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center of Shantou University Medical College, Shantou, China.
| |
Collapse
|
5
|
Barrett AK, Shingare MR, Rechtsteiner A, Rodriguez KM, Le QN, Wijeratne TU, Mitchell CE, Membreno MW, Rubin SM, Müller GA. HDAC activity is dispensable for repression of cell-cycle genes by DREAM and E2F:RB complexes. Nat Commun 2024; 15:4450. [PMID: 38789411 PMCID: PMC11126580 DOI: 10.1038/s41467-024-48724-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Histone deacetylases (HDACs) play a crucial role in transcriptional regulation and are implicated in various diseases, including cancer. They are involved in histone tail deacetylation and canonically linked to transcriptional repression. Previous studies suggested that HDAC recruitment to cell-cycle gene promoters via the retinoblastoma (RB) protein or the DREAM complex through SIN3B is essential for G1/S and G2/M gene repression during cell-cycle arrest and exit. Here we investigate the interplay among DREAM, RB, SIN3 proteins, and HDACs in the context of cell-cycle gene repression. Knockout of SIN3B does not globally derepress cell-cycle genes in non-proliferating HCT116 and C2C12 cells. Loss of SIN3A/B moderately upregulates several cell-cycle genes in HCT116 cells but does so independently of DREAM/RB. HDAC inhibition does not induce general upregulation of RB/DREAM target genes in arrested transformed or non-transformed cells. Our findings suggest that E2F:RB and DREAM complexes can repress cell-cycle genes without relying on HDAC activity.
Collapse
Affiliation(s)
- Alison K Barrett
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA
| | - Manisha R Shingare
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA
| | - Andreas Rechtsteiner
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA, USA
| | - Kelsie M Rodriguez
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA
| | - Quynh N Le
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA
| | - Tilini U Wijeratne
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA
| | - Corbin E Mitchell
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA
| | - Miles W Membreno
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA
| | - Seth M Rubin
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA.
| | - Gerd A Müller
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA.
| |
Collapse
|
6
|
Chaudhri A, Lizee G, Hwu P, Rai K. Chromatin Remodelers Are Regulators of the Tumor Immune Microenvironment. Cancer Res 2024; 84:965-976. [PMID: 38266066 DOI: 10.1158/0008-5472.can-23-2244] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/24/2023] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
Immune checkpoint inhibitors show remarkable responses in a wide range of cancers, yet patients develop adaptive resistance. This necessitates the identification of alternate therapies that synergize with immunotherapies. Epigenetic modifiers are potent mediators of tumor-intrinsic mechanisms and have been shown to regulate immune response genes, making them prime targets for therapeutic combinations with immune checkpoint inhibitors. Some success has been observed in early clinical studies that combined immunotherapy with agents targeting DNA methylation and histone modification; however, less is known about chromatin remodeler-targeted therapies. Here, we provide a discussion on the regulation of tumor immunogenicity by the chromatin remodeling SWI/SNF complex through multiple mechanisms associated with immunotherapy response that broadly include IFN signaling, DNA damage, mismatch repair, regulation of oncogenic programs, and polycomb-repressive complex antagonism. Context-dependent targeting of SWI/SNF subunits can elicit opportunities for synthetic lethality and reduce T-cell exhaustion. In summary, alongside the significance of SWI/SNF subunits in predicting immunotherapy outcomes, their ability to modulate the tumor immune landscape offers opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Apoorvi Chaudhri
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Gregory Lizee
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Kunal Rai
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
- MDACC Epigenomics Therapy Initiative, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
7
|
Zhou M, Tang J, Fan J, Wen X, Shen J, Jia R, Chai P, Fan X. Recent progress in retinoblastoma: Pathogenesis, presentation, diagnosis and management. Asia Pac J Ophthalmol (Phila) 2024; 13:100058. [PMID: 38615905 DOI: 10.1016/j.apjo.2024.100058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 04/16/2024] Open
Abstract
Retinoblastoma, the primary ocular malignancy in pediatric patients, poses a substantial threat to mortality without prompt and effective management. The prognosis for survival and preservation of visual acuity hinges upon the disease severity at the time of initial diagnosis. Notably, retinoblastoma has played a crucial role in unraveling the genetic foundations of oncogenesis. The process of tumorigenesis commonly begins with the occurrence of biallelic mutation in the RB1 tumor suppressor gene, which is then followed by a cascade of genetic and epigenetic alterations that correspond to the clinical stage and pathological features of the tumor. The RB1 gene, recognized as a tumor suppressor, encodes the retinoblastoma protein, which plays a vital role in governing cellular replication through interactions with E2F transcription factors and chromatin remodeling proteins. The diagnosis and treatment of retinoblastoma necessitate consideration of numerous factors, including disease staging, germline mutation status, family psychosocial factors, and the resources available within the institution. This review has systematically compiled and categorized the latest developments in the diagnosis and treatment of retinoblastoma which enhanced the quality of care for this pediatric malignancy.
Collapse
Affiliation(s)
- Min Zhou
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20025, People's Republic of China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20025, People's Republic of China
| | - Jieling Tang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20025, People's Republic of China
| | - Jiayan Fan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20025, People's Republic of China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20025, People's Republic of China
| | - Xuyang Wen
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20025, People's Republic of China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20025, People's Republic of China
| | - Jianfeng Shen
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20025, People's Republic of China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20025, People's Republic of China
| | - Renbing Jia
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20025, People's Republic of China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20025, People's Republic of China
| | - Peiwei Chai
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20025, People's Republic of China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20025, People's Republic of China.
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20025, People's Republic of China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20025, People's Republic of China.
| |
Collapse
|
8
|
Barrett A, Shingare MR, Rechtsteiner A, Wijeratne TU, Rodriguez KM, Rubin SM, Müller GA. HDAC activity is dispensable for repression of cell-cycle genes by DREAM and E2F:RB complexes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.28.564489. [PMID: 37961464 PMCID: PMC10634886 DOI: 10.1101/2023.10.28.564489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Histone deacetylases (HDACs) are pivotal in transcriptional regulation, and their dysregulation has been associated with various diseases including cancer. One of the critical roles of HDAC-containing complexes is the deacetylation of histone tails, which is canonically linked to transcriptional repression. Previous research has indicated that HDACs are recruited to cell-cycle gene promoters through the RB protein or the DREAM complex via SIN3B and that HDAC activity is essential for repressing G1/S and G2/M cell-cycle genes during cell-cycle arrest and exit. In this study, we sought to explore the interdependence of DREAM, RB, SIN3 proteins, and HDACs in the context of cell-cycle gene repression. We found that genetic knockout of SIN3B did not lead to derepression of cell-cycle genes in non-proliferating HCT116 and C2C12 cells. A combined loss of SIN3A and SIN3B resulted in a moderate upregulation in mRNA expression of several cell-cycle genes in arrested HCT116 cells, however, these effects appeared to be independent of DREAM or RB. Furthermore, HDAC inhibition did not induce a general upregulation of RB and DREAM target gene expression in arrested transformed or non-transformed cells. Our findings provide evidence that E2F:RB and DREAM complexes can repress cell-cycle genes without reliance on HDAC activity.
Collapse
Affiliation(s)
- Alison Barrett
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
- Current Affiliation: Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, CA 94305, USA
| | - Manisha R. Shingare
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Andreas Rechtsteiner
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Tilini U. Wijeratne
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
- Current Affiliation: Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, CA 94305, USA
| | - Kelsie M. Rodriguez
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Seth M. Rubin
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Gerd A. Müller
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| |
Collapse
|
9
|
Reddy D, Bhattacharya S, Workman JL. (mis)-Targeting of SWI/SNF complex(es) in cancer. Cancer Metastasis Rev 2023; 42:455-470. [PMID: 37093326 PMCID: PMC10349013 DOI: 10.1007/s10555-023-10102-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/05/2023] [Indexed: 04/25/2023]
Abstract
The ATP-dependent chromatin remodeling complex SWI/SNF (also called BAF) is critical for the regulation of gene expression. During the evolution from yeast to mammals, the BAF complex has evolved an enormous complexity that contains a high number of subunits encoded by various genes. Emerging studies highlight the frequent involvement of altered mammalian SWI/SNF chromatin-remodeling complexes in human cancers. Here, we discuss the recent advances in determining the structure of SWI/SNF complexes, highlight the mechanisms by which mutations affecting these complexes promote cancer, and describe the promising emerging opportunities for targeted therapies.
Collapse
Affiliation(s)
- Divya Reddy
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | | | - Jerry L Workman
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA.
| |
Collapse
|
10
|
Krishnan B, Sanidas I, Dyson NJ. Seeing is believing: the impact of RB on nuclear organization. Cell Cycle 2023; 22:1357-1366. [PMID: 37139582 DOI: 10.1080/15384101.2023.2206352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
The retinoblastoma tumor suppressor (RB) prevents G1 to S cell cycle transition by inhibiting E2F activity. This function requires that RB remains un- or underphosphorylated (the so-called active forms of RB). Recently, we showed that active forms of RB cause widespread changes in nuclear architecture that are visible under a microscope. These phenotypes did not correlate with cell cycle arrest or repression of the E2F transcriptional program, but appeared later, and were associated with the appearance of autophagy or in IMR-90 cells with senescence markers. In this perspective, we describe the relative timing of these RB-induced events and discuss the mechanisms that may underlie RB-induced chromatin dispersion. We consider the relationship between RB-induced dispersion, autophagy, and senescence and the potential connection between dispersion and cell cycle exit.
Collapse
Affiliation(s)
- Badri Krishnan
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, USA
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Ioannis Sanidas
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, USA
| | - Nicholas J Dyson
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
11
|
Walhart TA, Vacca B, Hepperla AJ, Hamad SH, Petrongelli J, Wang Y, McKean EL, Moksa M, Cao Q, Yip S, Hirst M, Weissman BE. SMARCB1 Loss in Poorly Differentiated Chordomas Drives Tumor Progression. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:456-473. [PMID: 36657718 PMCID: PMC10123523 DOI: 10.1016/j.ajpath.2022.12.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/08/2022] [Accepted: 12/20/2022] [Indexed: 01/18/2023]
Abstract
Poorly differentiated (PD) chordoma, a rare, aggressive tumor originating from notochordal tissue, shows loss of SMARCB1 expression, a core component of the Switch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complexes. To determine the impact of SMARCB1 re-expression on cell growth and gene expression, two SMARCB1-negative PD chordoma cell lines with an inducible SMARCB1 expression system were generated. After 72 hours of induction of SMARCB1, both SMARCB1-negative PD chordoma cell lines continued to proliferate. This result contrasted with those observed with SMARCB1-negative rhabdoid cell lines in which SMARCB1 re-expression caused the rapid inhibition of growth. We found that the lack of growth inhibition may arise from the loss of CDKN2A (p16INK4A) expression in PD chordoma cell lines. RNA-sequencing of cell lines after SMARCB1 re-expression showed a down-regulation for rRNA and RNA processing as well as metabolic processing and increased expression of genes involved in cell adhesion, cell migration, and development. Taken together, these data establish that SMARCB1 re-expression in PD chordomas alters the repertoire of SWI/SNF complexes, perhaps restoring those associated with cellular differentiation. These novel findings support a model in which SMARCB1 inactivation blocks the conversion of growth-promoting SWI/SNF complexes to differentiation-inducing ones, and they implicate SMARCB1 loss as a late event in tumorigenic progression. Importantly, the absence of growth inhibition after SMARCB1 restoration creates a unique opportunity to identify therapeutic vulnerabilities.
Collapse
Affiliation(s)
- Tara A Walhart
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| | - Bryanna Vacca
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina; Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| | - Austin J Hepperla
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| | - Samera H Hamad
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina; Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| | - James Petrongelli
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| | - Yemin Wang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Department of Molecular Oncology, British Columbia Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Erin L McKean
- Department of Otolaryngology and Neurosurgery, University of Michigan, Ann Arbor, Michigan
| | - Michelle Moksa
- Department of Microbiology & Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, British Columbia, Canada
| | - Qi Cao
- Department of Microbiology & Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, British Columbia, Canada
| | - Stephen Yip
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Department of Molecular Oncology, British Columbia Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Martin Hirst
- Department of Microbiology & Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, British Columbia, Canada
| | - Bernard E Weissman
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina; Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina; Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina.
| |
Collapse
|
12
|
Nguyen VT, Tessema M, Weissman BE. The SWI/SNF Complex: A Frequently Mutated Chromatin Remodeling Complex in Cancer. Cancer Treat Res 2023; 190:211-244. [PMID: 38113003 DOI: 10.1007/978-3-031-45654-1_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The switch/sucrose non-fermenting (SWI/SNF) chromatin remodeling complex is a global regulator of gene expression known to maintain nucleosome-depleted regions at active enhancers and promoters. The mammalian SWI/SNF protein subunits are encoded by 29 genes and 11-15 subunits including an ATPase domain of either SMARCA4 (BRG1) or SMARCA2 (BRM) are assembled into a complex. Based on the distinct subunits, SWI/SNF are grouped into 3 major types (subfamilies): the canonical BRG1/BRM-associated factor (BAF/cBAF), polybromo-associated BAF (PBAF), and non-canonical BAF (GBAF/ncBAF). Pan-cancer genome sequencing studies have shown that nearly 25% of all cancers bear mutations in subunits of the SWI/SNF complex, many of which are loss of function (LOF) mutations, suggesting a tumor suppressor role. Inactivation of SWI/SNF complex subunits causes widespread epigenetic dysfunction, including increased dependence on antagonistic components such as polycomb repressor complexes (PRC1/2) and altered enhancer regulation, likely promoting an oncogenic state leading to cancer. Despite the prevalence of mutations, most SWI/SNF-mutant cancers lack targeted therapeutic strategies. Defining the dependencies created by LOF mutations in SWI/SNF subunits will identify better targets for these cancers.
Collapse
Affiliation(s)
- Vinh The Nguyen
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Mathewos Tessema
- Lung Cancer Program, Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| | - Bernard Ellis Weissman
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA.
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA.
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA.
| |
Collapse
|
13
|
Pieroni S, Castelli M, Piobbico D, Ferracchiato S, Scopetti D, Di-Iacovo N, Della-Fazia MA, Servillo G. The Four Homeostasis Knights: In Balance upon Post-Translational Modifications. Int J Mol Sci 2022; 23:14480. [PMID: 36430960 PMCID: PMC9696182 DOI: 10.3390/ijms232214480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
A cancer outcome is a multifactorial event that comes from both exogenous injuries and an endogenous predisposing background. The healthy state is guaranteed by the fine-tuning of genes controlling cell proliferation, differentiation, and development, whose alteration induces cellular behavioral changes finally leading to cancer. The function of proteins in cells and tissues is controlled at both the transcriptional and translational level, and the mechanism allowing them to carry out their functions is not only a matter of level. A major challenge to the cell is to guarantee that proteins are made, folded, assembled and delivered to function properly, like and even more than other proteins when referring to oncogenes and onco-suppressors products. Over genetic, epigenetic, transcriptional, and translational control, protein synthesis depends on additional steps of regulation. Post-translational modifications are reversible and dynamic processes that allow the cell to rapidly modulate protein amounts and function. Among them, ubiquitination and ubiquitin-like modifications modulate the stability and control the activity of most of the proteins that manage cell cycle, immune responses, apoptosis, and senescence. The crosstalk between ubiquitination and ubiquitin-like modifications and post-translational modifications is a keystone to quickly update the activation state of many proteins responsible for the orchestration of cell metabolism. In this light, the correct activity of post-translational machinery is essential to prevent the development of cancer. Here we summarize the main post-translational modifications engaged in controlling the activity of the principal oncogenes and tumor suppressors genes involved in the development of most human cancers.
Collapse
|
14
|
Wang D, Hao X, Jia L, Jing Y, Jiang B, Xin S. Cellular senescence and abdominal aortic aneurysm: From pathogenesis to therapeutics. Front Cardiovasc Med 2022; 9:999465. [PMID: 36187019 PMCID: PMC9515360 DOI: 10.3389/fcvm.2022.999465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/15/2022] [Indexed: 01/10/2023] Open
Abstract
As China’s population enters the aging stage, the threat of abdominal aortic aneurysm (AAA) mainly in elderly patients is becoming more and more serious. It is of great clinical significance to study the pathogenesis of AAA and explore potential therapeutic targets. The purpose of this paper is to analyze the pathogenesis of AAA from the perspective of cellular senescence: on the basis of clear evidence of cellular senescence in aneurysm wall, we actively elucidate specific molecular and regulatory pathways, and to explore the targeted drugs related to senescence and senescent cells eliminate measures, eventually improve the health of patients with AAA and prolong the life of human beings.
Collapse
Affiliation(s)
- Ding Wang
- Department of Vascular Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Pathogenesis, Prevention and Therapeutics of Aortic Aneurysm, Shenyang, Liaoning, China
| | - Xinyu Hao
- Department of Vascular Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Pathogenesis, Prevention and Therapeutics of Aortic Aneurysm, Shenyang, Liaoning, China
| | - Longyuan Jia
- Department of Vascular Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Pathogenesis, Prevention and Therapeutics of Aortic Aneurysm, Shenyang, Liaoning, China
| | - Yuchen Jing
- Department of Vascular Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Pathogenesis, Prevention and Therapeutics of Aortic Aneurysm, Shenyang, Liaoning, China
| | - Bo Jiang
- Department of Vascular Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Pathogenesis, Prevention and Therapeutics of Aortic Aneurysm, Shenyang, Liaoning, China
| | - Shijie Xin
- Department of Vascular Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Pathogenesis, Prevention and Therapeutics of Aortic Aneurysm, Shenyang, Liaoning, China
- *Correspondence: Shijie Xin,
| |
Collapse
|
15
|
Putta S, Alvarez L, Lüdtke S, Sehr P, Müller GA, Fernandez SM, Tripathi S, Lewis J, Gibson TJ, Chemes LB, Rubin SM. Structural basis for tunable affinity and specificity of LxCxE-dependent protein interactions with the retinoblastoma protein family. Structure 2022; 30:1340-1353.e3. [PMID: 35716663 PMCID: PMC9444907 DOI: 10.1016/j.str.2022.05.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/25/2022] [Accepted: 05/25/2022] [Indexed: 11/25/2022]
Abstract
The retinoblastoma protein (Rb) and its homologs p107 and p130 are critical regulators of gene expression during the cell cycle and are commonly inactivated in cancer. Rb proteins use their "pocket domain" to bind an LxCxE sequence motif in other proteins, many of which function with Rb proteins to co-regulate transcription. Here, we present binding data and crystal structures of the p107 pocket domain in complex with LxCxE peptides from the transcriptional co-repressor proteins HDAC1, ARID4A, and EID1. Our results explain why Rb and p107 have weaker affinity for cellular LxCxE proteins compared with the E7 protein from human papillomavirus, which has been used as the primary model for understanding LxCxE motif interactions. Our structural and mutagenesis data also identify and explain differences in Rb and p107 affinities for some LxCxE-containing sequences. Our study provides new insights into how Rb proteins bind their cell partners with varying affinity and specificity.
Collapse
Affiliation(s)
- Sivasankar Putta
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Lucia Alvarez
- Instituto de Investigaciones Biotecnológicas (IIBiO-CONICET), Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, Av. 25 de Mayo y Francia, Buenos Aires CP1650, Argentina
| | - Stephan Lüdtke
- Belyntic GmbH, Richard-Willstätter-Str. 11, 12489 Berlin, Germany
| | - Peter Sehr
- Chemical Biology Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Gerd A Müller
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Samantha M Fernandez
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Sarvind Tripathi
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Joe Lewis
- Chemical Biology Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Toby J Gibson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Lucia B Chemes
- Instituto de Investigaciones Biotecnológicas (IIBiO-CONICET), Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, Av. 25 de Mayo y Francia, Buenos Aires CP1650, Argentina.
| | - Seth M Rubin
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA.
| |
Collapse
|
16
|
Guo B, Friedland SC, Alexander W, Myers JA, Wang W, O'Dell MR, Getman M, Whitney-Miller CL, Agostini-Vulaj D, Huber AR, Mello SS, Vertino PM, Land HK, Steiner LA, Hezel AF. Arid1a mutation suppresses TGF-β signaling and induces cholangiocarcinoma. Cell Rep 2022; 40:111253. [PMID: 36044839 PMCID: PMC9808599 DOI: 10.1016/j.celrep.2022.111253] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 06/02/2022] [Accepted: 08/01/2022] [Indexed: 01/07/2023] Open
Abstract
Activating KRAS mutations and functional loss of members of the SWI/SNF complex, including ARID1A, are found together in the primary liver tumor cholangiocarcinoma (CC). How these mutations cooperate to promote CC has not been established. Using murine models of hepatocyte and biliary-specific lineage tracing, we show that Kras and Arid1a mutations drive the formation of CC and tumor precursors from the biliary compartment, which are accelerated by liver inflammation. Using cultured cells, we find that Arid1a loss causes cellular proliferation, escape from cell-cycle control, senescence, and widespread changes in chromatin structure. Notably, we show that the biliary proliferative response elicited by Kras/Arid1a cooperation and tissue injury in CC is caused by failed engagement of the TGF-β-Smad4 tumor suppressor pathway. We thus identify an ARID1A-TGF-β-Smad4 axis as essential in limiting the biliary epithelial response to oncogenic insults, while its loss leads to biliary pre-neoplasia and CC.
Collapse
Affiliation(s)
- Bing Guo
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA; Division of Hematology and Oncology, Department of Medicine, Wilmot Cancer Institute, University of Rochester Medical Center, 300 Elmwood Avenue, Rochester, NY 14642, USA
| | - Scott C Friedland
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - William Alexander
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Jacquelyn A Myers
- Genomics Research Center, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Wenjia Wang
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA; Division of Hematology and Oncology, Department of Medicine, Wilmot Cancer Institute, University of Rochester Medical Center, 300 Elmwood Avenue, Rochester, NY 14642, USA
| | - Michael R O'Dell
- Division of Hematology and Oncology, Department of Medicine, Wilmot Cancer Institute, University of Rochester Medical Center, 300 Elmwood Avenue, Rochester, NY 14642, USA
| | - Michael Getman
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Christa L Whitney-Miller
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Diana Agostini-Vulaj
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Aaron R Huber
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Stephano S Mello
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Paula M Vertino
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Hartmut K Land
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA; Division of Hematology and Oncology, Department of Medicine, Wilmot Cancer Institute, University of Rochester Medical Center, 300 Elmwood Avenue, Rochester, NY 14642, USA
| | - Laurie A Steiner
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Aram F Hezel
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA; Division of Hematology and Oncology, Department of Medicine, Wilmot Cancer Institute, University of Rochester Medical Center, 300 Elmwood Avenue, Rochester, NY 14642, USA.
| |
Collapse
|
17
|
Tao B, Hu H, Chen J, Chen L, Luo D, Sun Y, Ge F, Zhu Z, Trudeau VL, Hu W. Sinhcaf‐dependent histone deacetylation is essential for primordial germ cell specification. EMBO Rep 2022; 23:e54387. [PMID: 35532311 PMCID: PMC9171691 DOI: 10.15252/embr.202154387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 11/09/2022] Open
Abstract
Primordial germ cells (PGCs) are the progenitor cells that give rise to sperm and eggs. Sinhcaf is a recently identified subunit of the Sin3 histone deacetylase complex (SIN3A-HDAC). Here, we provide evidence that Sinhcaf-dependent histone deacetylation is essential for germ plasm aggregation and primordial germ cell specification. Specifically, maternal-zygotic sinhcaf zebrafish mutants exhibit germ plasm aggregation defects, decreased PGC abundance and male-biased sex ratio, which can be rescued by re-expressing sinhcaf. Overexpression of sinhcaf results in excess PGCs and a female-biased sex ratio. Sinhcaf binds to the promoter region of kif26ab. Loss of sinhcaf epigenetically switches off kif26ab expression by increasing histone 3 acetylation in the promoter region. Injection of kif26ab mRNA could partially rescue the germ plasm aggregation defects in sinhcaf mutant embryos. Taken together, we demonstrate a role of Sinhcaf in germ plasm aggregation and PGC specialization that is mediated by regulating the histone acetylation status of the kif26ab promoter to activate its transcription. Our findings provide novel insights into the function and regulatory mechanisms of Sinhcaf-mediated histone deacetylation in PGC specification.
Collapse
Affiliation(s)
- Binbin Tao
- State Key Laboratory of Freshwater Ecology and Biotechnology Institute of Hydrobiology The Innovation Academy of Seed Design Chinese Academy of Sciences Wuhan China
| | - Hongling Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology Institute of Hydrobiology The Innovation Academy of Seed Design Chinese Academy of Sciences Wuhan China
| | - Ji Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology Institute of Hydrobiology The Innovation Academy of Seed Design Chinese Academy of Sciences Wuhan China
| | - Lu Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology Institute of Hydrobiology The Innovation Academy of Seed Design Chinese Academy of Sciences Wuhan China
- University of Chinese Academy of Sciences Beijing China
| | - Daji Luo
- State Key Laboratory of Freshwater Ecology and Biotechnology Institute of Hydrobiology The Innovation Academy of Seed Design Chinese Academy of Sciences Wuhan China
| | - Yonghua Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology Institute of Hydrobiology The Innovation Academy of Seed Design Chinese Academy of Sciences Wuhan China
| | - Feng Ge
- State Key Laboratory of Freshwater Ecology and Biotechnology Institute of Hydrobiology The Innovation Academy of Seed Design Chinese Academy of Sciences Wuhan China
| | - Zuoyan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology Institute of Hydrobiology The Innovation Academy of Seed Design Chinese Academy of Sciences Wuhan China
| | | | - Wei Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology Institute of Hydrobiology The Innovation Academy of Seed Design Chinese Academy of Sciences Wuhan China
- University of Chinese Academy of Sciences Beijing China
- Qingdao National Laboratory for Marine Science and Technology Qingdao China
| |
Collapse
|
18
|
Inci N, Kamali D, Akyildiz EO, Tahir Turanli E, Bozaykut P. Translation of Cellular Senescence to Novel Therapeutics: Insights From Alternative Tools and Models. FRONTIERS IN AGING 2022; 3:828058. [PMID: 35821852 PMCID: PMC9261353 DOI: 10.3389/fragi.2022.828058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/12/2022] [Indexed: 01/10/2023]
Abstract
Increasing chronological age is the greatest risk factor for human diseases. Cellular senescence (CS), which is characterized by permanent cell-cycle arrest, has recently emerged as a fundamental mechanism in developing aging-related pathologies. During the aging process, senescent cell accumulation results in senescence-associated secretory phenotype (SASP) which plays an essential role in tissue dysfunction. Although discovered very recently, senotherapeutic drugs have been already involved in clinical studies. This review gives a summary of the molecular mechanisms of CS and its role particularly in the development of cardiovascular diseases (CVD) as the leading cause of death. In addition, it addresses alternative research tools including the nonhuman and human models as well as computational techniques for the discovery of novel therapies. Finally, senotherapeutic approaches that are mainly classified as senolytics and senomorphics are discussed.
Collapse
Affiliation(s)
- Nurcan Inci
- Graduate School of Natural and Applied Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Dilanur Kamali
- Graduate School of Natural and Applied Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Erdogan Oguzhan Akyildiz
- Graduate School of Natural and Applied Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Eda Tahir Turanli
- Graduate School of Natural and Applied Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Perinur Bozaykut
- Graduate School of Natural and Applied Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| |
Collapse
|
19
|
Kurnia I, Rauf S, Hatta M, Arifuddin S, Hidayat YM, Natzir R, Kaelan C, Bukhari A, Pelupessy NU, Patelonggi IJ. Molecular Patho-mechanisms of cervical cancer (MMP1). Ann Med Surg (Lond) 2022; 77:103415. [PMID: 35444805 PMCID: PMC9014365 DOI: 10.1016/j.amsu.2022.103415] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 12/24/2022] Open
Abstract
Cervical cancer mostly caused by Human Papilloma Virus. Staging and therapy have been extensively studied, and highly correlated with the cellular development of oncogenesis. Mutation was caused by E6 and E7 oncoprotein, also inactivation of 2 tumor suppressor factors (pRB and p53). P53 also regulated MMP1, which dysregulation of MMP transcription would promote tumor metastasis, because of its role in extracellular matrix degradation in tumor invasion. Clinical staging of Cervical Cancer was based on Federation International of Gynaecology and Obstetrics (FIGO) classification from 2018. Management was divided into Surgery, Radiotherapy, and Chemotherapy.
Collapse
Affiliation(s)
- Iwan Kurnia
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Syahrul Rauf
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Mochammad Hatta
- Department of Molecular Biology and Immunology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Sharvianty Arifuddin
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Yudi Maulana Hidayat
- Department of Obstetrics and Gynaecology, Faculty of Medicine Universitas Padjajaran, Bandung, Indonesia
| | - Rosdiana Natzir
- Department of Biochemistry, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Cahyo Kaelan
- Department of Anatomical Pathology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Agussalim Bukhari
- Department of Clinical Nutrition, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Nugraha Utama Pelupessy
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Ilham Jaya Patelonggi
- Department of Physiology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| |
Collapse
|
20
|
Witkiewicz AK, Kumarasamy V, Sanidas I, Knudsen ES. Cancer cell cycle dystopia: heterogeneity, plasticity, and therapy. Trends Cancer 2022; 8:711-725. [PMID: 35599231 PMCID: PMC9388619 DOI: 10.1016/j.trecan.2022.04.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 12/20/2022]
Abstract
The mammalian cell cycle has been extensively studied regarding cancer etiology, progression, and therapeutic intervention. The canonical cell cycle framework is supported by a plethora of data pointing to a relatively simple linear pathway in which mitogenic signals are integrated in a stepwise fashion to allow progression through G1/S with coordinate actions of cyclin-dependent kinases (CDK)4/6 and CDK2 on the RB tumor suppressor. Recent work on adaptive mechanisms and intrinsic heterogeneous dependencies indicates that G1/S control of the cell cycle is a variable signaling pathway rather than an invariant engine that drives cell division. These alterations can limit the effectiveness of pharmaceutical agents but provide new avenues for therapeutic interventions. These findings support a dystopian view of the cell cycle in cancer where the canonical utopian cell cycle is often not observed. However, recognizing the extent of cell cycle heterogeneity likely creates new opportunities for precision therapeutic approaches specifically targeting these states.
Collapse
Affiliation(s)
- Agnieszka K Witkiewicz
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA.
| | - Vishnu Kumarasamy
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Ioannis Sanidas
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Erik S Knudsen
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA.
| |
Collapse
|
21
|
Rechberger JS, Nesvick CL, Daniels DJ. Atypical teratoid rhabdoid tumor (ATRT): disease mechanisms and potential drug targets. Expert Opin Ther Targets 2022; 26:187-192. [PMID: 35142587 PMCID: PMC11641519 DOI: 10.1080/14728222.2022.2040017] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/06/2022] [Indexed: 11/04/2022]
Affiliation(s)
- Julian S. Rechberger
- Mayo Clinic Graduate School of Biomedical Sciences, Department of Molecular Pharmacology and Experimental Therapeutics, Rochester, MN, United States
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Cody L. Nesvick
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
| | - David J. Daniels
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
22
|
Chen Y, Ji Y, Liu S, Liu Y, Feng W, Jin L. PTBP3 regulates proliferation of lung squamous cell carcinoma cells via CDC25A-mediated cell cycle progression. Cancer Cell Int 2022; 22:19. [PMID: 35016691 PMCID: PMC8753890 DOI: 10.1186/s12935-022-02448-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/01/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The roles of Polypyrimidine tract-binding protein 3 (PTBP3) in regulating lung squamous cell carcinoma (LUSC) cells progression is unclear. The aim of this study was to investigate the role of PTBP3 in LUSC. METHODS Expression and survival analysis of PTBP3 was firstly investigated using TCGA datasets. Quantitative reverse transcription PCR and Western blot were performed to detect PTBP3 expression in clinical samples. Moreover, cell counting kit 8 (CCK-8) assays, colony formation assays and in vivo tumor formation assays were used to examine the effects of PTBP3 on LUSC cell proliferation. RNA-sequence and analysis explores pathways regulated by PTBP3.Flow cytology was used analyzed cell cycle. Cell cycle-related markers were analyzed by Western blot. RESULTS PTBP3 was found to be overexpressed in LUSC tissues compared with normal tissues. High PTBP3 expression was significantly correlated with poor prognosis. In vitro and vivo experiments demonstrated that PTBP3 knockdown caused a significant decrease in the proliferation rate of cells. Bioinformatics analysis showed that PTBP3 involved in cell cycle pathway regulation in LUSC. Furthermore, PTBP3 knockdown arrested cell cycle progression at S phase via decreasing CDK2/Cyclin A2 complex. In addition, downregulation of PTBP3 significantly decreased the expression of CDC25A. CONCLUSIONS Our results suggest that PTBP3 regulated LUSC cell proliferation via cell cycle and might be a potential target for molecular therapy of LUSC.
Collapse
Affiliation(s)
- Yingji Chen
- Department of Cardiothoracic Surgery, Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha City, Hunan, China
| | - Ying Ji
- Department of Thoracic Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Suo Liu
- Department of Cardiothoracic Surgery, Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha City, Hunan, China
| | - Yicai Liu
- Department of Cardiothoracic Surgery, Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha City, Hunan, China
| | - Wei Feng
- Department of Cardiothoracic Surgery, Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha City, Hunan, China.
| | - Longyu Jin
- Department of Cardiothoracic Surgery, Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha City, Hunan, China.
| |
Collapse
|
23
|
Khan I, Schmidt MO, Kallakury B, Jain S, Mehdikhani S, Levi M, Mendonca M, Welch W, Riegel AT, Wilcox CS, Wellstein A. Low Dose Chronic Angiotensin II Induces Selective Senescence of Kidney Endothelial Cells. Front Cell Dev Biol 2021; 9:782841. [PMID: 34957111 PMCID: PMC8696590 DOI: 10.3389/fcell.2021.782841] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/17/2021] [Indexed: 01/02/2023] Open
Abstract
Angiotensin II can cause oxidative stress and increased blood pressure that result in long term cardiovascular pathologies. Here we evaluated the contribution of cellular senescence to the effect of chronic exposure to low dose angiotensin II in a model that mimics long term tissue damage. We utilized the INK-ATTAC (p16Ink4a–Apoptosis Through Targeted Activation of Caspase 8) transgenic mouse model that allows for conditional elimination of p16Ink4a -dependent senescent cells by administration of AP20187. Angiotensin II treatment for 3 weeks induced ATTAC transgene expression in kidneys but not in lung, spleen and brain tissues. In the kidneys increased expression of ATM, p15 and p21 matched with angiotensin II induction of senescence-associated secretory phenotype genes MMP3, FGF2, IGFBP2, and tPA. Senescent cells in the kidneys were identified as endothelial cells by detection of GFP expressed from the ATTAC transgene and increased expression of angiopoietin 2 and von Willebrand Factor, indicative of endothelial cell damage. Furthermore, angiotensin II induced expression of the inflammation-related glycoprotein versican and immune cell recruitment to the kidneys. AP20187-mediated elimination of p16-dependent senescent cells prevented physiologic, cellular and molecular responses to angiotensin II and provides mechanistic evidence of cellular senescence as a driver of angiotensin II effects.
Collapse
Affiliation(s)
- Irfan Khan
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, DC, United States
| | - Marcel O. Schmidt
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, DC, United States
| | - Bhaskar Kallakury
- Division of Pathology, Georgetown University, Washington, DC, United States
| | - Sidharth Jain
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, DC, United States
| | - Shaunt Mehdikhani
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, DC, United States
| | - Moshe Levi
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC, United States
| | - Margarida Mendonca
- Division of Nephrology and Hypertension, Kidney, and Vascular Research Center, Georgetown University, Washington, DC, United States
| | - William Welch
- Division of Nephrology and Hypertension, Kidney, and Vascular Research Center, Georgetown University, Washington, DC, United States
| | - Anna T. Riegel
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, DC, United States
| | - Christopher S. Wilcox
- Division of Nephrology and Hypertension, Kidney, and Vascular Research Center, Georgetown University, Washington, DC, United States
| | - Anton Wellstein
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, DC, United States
- *Correspondence: Anton Wellstein,
| |
Collapse
|
24
|
Bai M, Cui M, Li M, Yao X, Wu Y, Zheng L, Sun L, Song Q, Wang S, Liu L, Yu C, Huang Y. Discovery of a novel HDACi structure that inhibits the proliferation of ovarian cancer cells in vivo and in vitro. Int J Biol Sci 2021; 17:3493-3507. [PMID: 34512161 PMCID: PMC8416734 DOI: 10.7150/ijbs.62339] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/04/2021] [Indexed: 12/13/2022] Open
Abstract
Histone deacetylases (HDACs) exhibit increased expression in cancer and promote oncogenesis via the acetylation of or interactions with key transcriptional regulators. HDAC inhibitors (HDACis) decrease HDAC activity to selectively inhibit the occurrence and development of tumors. Our study screened and obtained a new HDACi structure. In vitro experiments have showed that among the leads, Z31216525 significantly inhibited the proliferation and induced the apoptosis of epithelial ovarian cancer (EOC) cells. In vivo experiments demonstrated that compared to the control, Z31216525 significantly inhibited tumor growth and showed very low toxicity. Further mechanistic studies revealed that Z31216525 may exert an antitumor effect by inhibiting the expression of the c-Myc gene. Collectively, our studies identified a novel HDACi that is expected to become a new potential therapeutic drug for EOC and has important value for the design of new HDACi structures.
Collapse
Affiliation(s)
- Miao Bai
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Mengqi Cui
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Mingyue Li
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Xinlei Yao
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Yulun Wu
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Lihua Zheng
- Research Center of Agriculture and Medicine gene Engineering of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Luguo Sun
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Qiuhang Song
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Shuyue Wang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Lei Liu
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Chunlei Yu
- Research Center of Agriculture and Medicine gene Engineering of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Yanxin Huang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
25
|
Sharma T, Robinson DCL, Witwicka H, Dilworth FJ, Imbalzano AN. The Bromodomains of the mammalian SWI/SNF (mSWI/SNF) ATPases Brahma (BRM) and Brahma Related Gene 1 (BRG1) promote chromatin interaction and are critical for skeletal muscle differentiation. Nucleic Acids Res 2021; 49:8060-8077. [PMID: 34289068 PMCID: PMC8373147 DOI: 10.1093/nar/gkab617] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/17/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle regeneration is mediated by myoblasts that undergo epigenomic changes to establish the gene expression program of differentiated myofibers. mSWI/SNF chromatin remodeling enzymes coordinate with lineage-determining transcription factors to establish the epigenome of differentiated myofibers. Bromodomains bind to acetylated lysines on histone N-terminal tails and other proteins. The mutually exclusive ATPases of mSWI/SNF complexes, BRG1 and BRM, contain bromodomains with undefined functional importance in skeletal muscle differentiation. Pharmacological inhibition of mSWI/SNF bromodomain function using the small molecule PFI-3 reduced differentiation in cell culture and in vivo through decreased myogenic gene expression, while increasing cell cycle-related gene expression and the number of cells remaining in the cell cycle. Comparative gene expression analysis with data from myoblasts depleted of BRG1 or BRM showed that bromodomain function was required for a subset of BRG1- and BRM-dependent gene expression. Reduced binding of BRG1 and BRM after PFI-3 treatment showed that the bromodomain is required for stable chromatin binding at target gene promoters to alter gene expression. Our findings demonstrate that mSWI/SNF ATPase bromodomains permit stable binding of the mSWI/SNF ATPases to promoters required for cell cycle exit and establishment of muscle-specific gene expression.
Collapse
Affiliation(s)
- Tapan Sharma
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Daniel C L Robinson
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON K1H 8L6, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Hanna Witwicka
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - F Jeffrey Dilworth
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON K1H 8L6, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Anthony N Imbalzano
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
26
|
Warnon C, Bouhjar K, Ninane N, Verhoyen M, Fattaccioli A, Fransolet M, Lambert de Rouvroit C, Poumay Y, Piel G, Mottet D, Debacq-Chainiaux F. HDAC2 and 7 down-regulation induces senescence in dermal fibroblasts. Aging (Albany NY) 2021; 13:17978-18005. [PMID: 34253688 PMCID: PMC8351730 DOI: 10.18632/aging.203304] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022]
Abstract
Originally simply reported to be in a stable and irreversible growth arrest in vitro, senescent cells are now clearly associated with normal and pathological ageing in vivo. They are characterized by several biomarkers and changes in gene expression that may depend on epigenetic factors, such as histone acetylation, involving a balance between histone acetyltransferases (HATs) and histone deacetylases (HDACs). In this study, we investigate the expression and the role of HDACs on the senescent phenotype of dermal fibroblasts. We report that during replicative senescence, most canonical HDACs are less expressed. Moreover, treatment with SAHA, a histone deacetylase inhibitor (HDACi) also known as Vorinostat, or the specific downregulation of HDAC2 or HDAC7 by siRNA, induces the appearance of senescence biomarkers of dermal fibroblasts. Conversely, the ectopic re-expression of HDAC7 by lentiviral transduction in pre-senescent dermal fibroblasts extends their proliferative lifespan. These results demonstrate that HDACs expression can modulate the senescent phenotype, highlighting their pharmaceutical interest in the context of healthy ageing.
Collapse
Affiliation(s)
- Céline Warnon
- URBC, Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Karim Bouhjar
- URBC, Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Noëlle Ninane
- URBC, Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Mathilde Verhoyen
- URBC, Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Antoine Fattaccioli
- URBC, Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Maude Fransolet
- URBC, Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | | | - Yves Poumay
- URPHYM, Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Géraldine Piel
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, University of Liège, Liège, Belgium
| | - Denis Mottet
- University of Liège, GIGA-Molecular Biology of Diseases, Gene Expression and Cancer Laboratory, Liège, Belgium
| | | |
Collapse
|
27
|
Li LX, Li X. Epigenetically Mediated Ciliogenesis and Cell Cycle Regulation, and Their Translational Potential. Cells 2021; 10:cells10071662. [PMID: 34359832 PMCID: PMC8307023 DOI: 10.3390/cells10071662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 12/13/2022] Open
Abstract
Primary cilia biogenesis has been closely associated with cell cycle progression. Cilia assemble when cells exit the cell cycle and enter a quiescent stage at the post-mitosis phase, and disassemble before cells re-enter a new cell cycle. Studies have focused on how the cell cycle coordinates with the cilia assembly/disassembly process, and whether and how cilia biogenesis affects the cell cycle. Appropriate regulation of the functions and/or expressions of ciliary and cell-cycle-associated proteins is pivotal to maintaining bodily homeostasis. Epigenetic mechanisms, including DNA methylation and histone/chromatin modifications, are involved in the regulation of cell cycle progression and cilia biogenesis. In this review, first, we discuss how epigenetic mechanisms regulate cell cycle progression and cilia biogenesis through the regulation of DNA methylation and chromatin structures, to either promote or repress the transcription of genes associated with those processes and the modification of cytoskeleton network, including microtubule and actin. Next, we discuss the crosstalk between the cell cycle and ciliogenesis, and the involvement of epigenetic regulators in this process. In addition, we discuss cilia-dependent signaling pathways in cell cycle regulation. Understanding the mechanisms of how epigenetic regulators contribute to abnormal cell cycle regulation and ciliogenesis defects would lead to developing therapeutic strategies for the treatment of a wide variety of diseases, such as cancers, polycystic kidney disease (PKD), and other ciliopathy-associated disorders.
Collapse
Affiliation(s)
- Linda Xiaoyan Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Correspondence: ; Tel.: +1-507-266-0110
| |
Collapse
|
28
|
Pharmacological relevance of CDK inhibitors in Alzheimer's disease. Neurochem Int 2021; 148:105115. [PMID: 34182065 DOI: 10.1016/j.neuint.2021.105115] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/11/2022]
Abstract
Evidence suggests that cell cycle activation plays a role in the pathophysiology of neurodegenerative diseases. Alzheimer's disease is a progressive, terminal neurodegenerative disease that affects memory and other important mental functions. Intracellular deposition of Tau protein, a hyperphosphorylated form of a microtubule-associated protein, and extracellular aggregation of Amyloid β protein, which manifests as neurofibrillary tangles (NFT) and senile plaques, respectively, characterize this condition. In recent years, however, several studies have concluded that cell cycle re-entry is one of the key causes of neuronal death in the pathogenesis of Alzheimer's disease. The eukaryotic cell cycle is well-coordinated machinery that performs critical functions in cell replenishment, such as DNA replication, cell creation, repair, and the birth of new daughter cells from the mother cell. The complex interplay between the levels of various cyclins and cyclin-dependent kinases (CDKs) at different checkpoints is needed for cell cycle synchronization. CDKIs (cyclin-dependent kinase inhibitors) prevent cyclin degradation and CDK inactivation. Different external and internal factors regulate them differently, and they have different tissue expression and developmental functions. The checkpoints ensure that the previous step is completed correctly before starting the new cell cycle phase, and they protect against the transfer of defects to the daughter cells. Due to the development of more selective and potent ATP-competitive CDK inhibitors, CDK inhibitors appear to be on the verge of having a clinical impact. This avenue is likely to yield new and effective medicines for the treatment of cancer and other neurodegenerative diseases. These new methods for recognizing CDK inhibitors may be used to create non-ATP-competitive agents that target CDK4, CDK5, and other CDKs that have been recognized as important therapeutic targets in Alzheimer's disease treatment.
Collapse
|
29
|
Siraj AK, Parvathareddy SK, Annaiyappanaidu P, Ahmed SO, Siraj N, Tulbah A, Al-Dayel F, Ajarim D, Al-Kuraya KS. High Expression of Cyclin D1 is an Independent Marker for Favorable Prognosis in Middle Eastern Breast Cancer. Onco Targets Ther 2021; 14:3309-3318. [PMID: 34040395 PMCID: PMC8141388 DOI: 10.2147/ott.s309091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/09/2021] [Indexed: 12/24/2022] Open
Abstract
Purpose The cyclin D1 protein regulates cell cycle progression which is mediated by its interactions with cyclin-dependent kinases. Over-expression of cyclin D1 has been observed in several human cancers. This study was conducted to evaluate cyclin D1 expression in a large cohort of Middle Eastern breast cancers and determine its prognostic significance. Patients and Methods Cyclin D1 expression was assessed immunohistochemically and its association with clinico-pathological parameters was analyzed in 1003 breast cancer patients. Results Cyclin D1 was over-expressed in 59.4% (596/1003) of cases and significantly associated with a subset of breast cancers having favorable prognostic features, such as low grade (p < 0.0001), low stage (p = 0.0276), estrogen receptor (p < 0.0001) and progesterone receptor positive (p < 0.0001) tumors. An inverse association was found with triple negative breast cancers (p < 0.0001). More importantly, cyclin D1 expression was an independent predictor of favorable overall survival in our cohort (hazard ratio = 0.70; 95% confidence interval = 0.50–0.98; p = 0.0395). Also, tumors that highly expressed cyclin D1 had a longer recurrence-free survival. However, this significant association was seen only in univariate analysis. We also found cyclin D1 to be associated with phospho-Rb in luminal subtype of breast cancer and co-expression of both these markers was an independent predictor of luminal A breast cancer. Conclusion Our results reinforced the role of cyclin D1 in breast cancer pathology and revealed its expression as a valuable independent prognostic indicator for breast cancer from Middle Eastern ethnicity.
Collapse
Affiliation(s)
- Abdul K Siraj
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | | | - Padmanaban Annaiyappanaidu
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Saeeda O Ahmed
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Nabil Siraj
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Asma Tulbah
- Department of Pathology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Fouad Al-Dayel
- Department of Pathology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Dahish Ajarim
- Department of Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
| | - Khawla S Al-Kuraya
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
30
|
Hanaki S, Habara M, Masaki T, Maeda K, Sato Y, Nakanishi M, Shimada M. PP1 regulatory subunit NIPP1 regulates transcription of E2F1 target genes following DNA damage. Cancer Sci 2021; 112:2739-2752. [PMID: 33939241 PMCID: PMC8253265 DOI: 10.1111/cas.14924] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/14/2021] [Accepted: 04/14/2021] [Indexed: 12/21/2022] Open
Abstract
DNA damage induces transcriptional repression of E2F1 target genes and a reduction in histone H3‐Thr11 phosphorylation (H3‐pThr11) at E2F1 target gene promoters. Dephosphorylation of H3‐pThr11 is partly mediated by Chk1 kinase and protein phosphatase 1γ (PP1γ) phosphatase. Here, we isolated NIPP1 as a regulator of PP1γ‐mediated H3‐pThr11 by surveying nearly 200 PP1 interactor proteins. We found that NIPP1 inhibits PP1γ‐mediated dephosphorylation of H3‐pThr11 both in vivo and in vitro. By generating NIPP1‐depleted cells, we showed that NIPP1 is required for cell proliferation and the expression of E2F1 target genes. Upon DNA damage, activated protein kinase A (PKA) phosphorylated the NIPP1‐Ser199 residue, adjacent to the PP1 binding motif (RVxF), and triggered the dissociation of NIPP1 from PP1γ, leading to the activation of PP1γ. Furthermore, the inhibition of PKA activity led to the activation of E2F target genes. Statistical analysis confirmed that the expression of NIPP1 was positively correlated with E2F target genes. Taken together, these findings demonstrate that the PP1 regulatory subunit NIPP1 modulates E2F1 target genes by linking PKA and PP1γ during DNA damage.
Collapse
Affiliation(s)
- Shunsuke Hanaki
- Department of Biochemistry, Joint Faculty of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| | - Makoto Habara
- Department of Biochemistry, Joint Faculty of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| | - Takahiro Masaki
- Department of Biochemistry, Joint Faculty of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| | - Keisuke Maeda
- Department of Biochemistry, Joint Faculty of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| | - Yuki Sato
- Department of Biochemistry, Joint Faculty of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| | - Makoto Nakanishi
- Division of Cancer Biology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Midori Shimada
- Department of Biochemistry, Joint Faculty of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
31
|
Hegde M, Joshi MB. Comprehensive analysis of regulation of DNA methyltransferase isoforms in human breast tumors. J Cancer Res Clin Oncol 2021; 147:937-971. [PMID: 33604794 PMCID: PMC7954751 DOI: 10.1007/s00432-021-03519-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/10/2021] [Indexed: 12/14/2022]
Abstract
Significant reprogramming of epigenome is widely described during pathogenesis of breast cancer. Transformation of normal cell to hyperplastic cell and to neoplastic phenotype is associated with aberrant DNA (de)methylation, which, through promoter and enhancer methylation changes, activates oncogenes and silence tumor suppressor genes in variety of tumors including breast. DNA methylation, one of the major epigenetic mechanisms is catalyzed by evolutionarily conserved isoforms namely, DNMT1, DNMT3A and DNMT3B in humans. Over the years, studies have demonstrated intricate and complex regulation of DNMT isoforms at transcriptional, translational and post-translational levels. The recent findings of allosteric regulation of DNMT isoforms and regulation by other interacting chromatin modifying proteins emphasizes functional integrity and their contribution for the development of breast cancer and progression. DNMT isoforms are regulated by several intrinsic and extrinsic parameters. In the present review, we have extensively performed bioinformatics analysis of expression of DNMT isoforms along with their transcriptional and post-transcriptional regulators such as transcription factors, interacting proteins, hormones, cytokines and dietary elements along with their significance during pathogenesis of breast tumors. Our review manuscript provides a comprehensive understanding of key factors regulating DNMT isoforms in breast tumor pathology and documents unsolved issues.
Collapse
Affiliation(s)
- Mangala Hegde
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Planetarium Complex, Manipal, 576104, India
| | - Manjunath B Joshi
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Planetarium Complex, Manipal, 576104, India.
| |
Collapse
|
32
|
Kumari R, Jat P. Mechanisms of Cellular Senescence: Cell Cycle Arrest and Senescence Associated Secretory Phenotype. Front Cell Dev Biol 2021; 9:645593. [PMID: 33855023 PMCID: PMC8039141 DOI: 10.3389/fcell.2021.645593] [Citation(s) in RCA: 860] [Impact Index Per Article: 215.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/16/2021] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is a stable cell cycle arrest that can be triggered in normal cells in response to various intrinsic and extrinsic stimuli, as well as developmental signals. Senescence is considered to be a highly dynamic, multi-step process, during which the properties of senescent cells continuously evolve and diversify in a context dependent manner. It is associated with multiple cellular and molecular changes and distinct phenotypic alterations, including a stable proliferation arrest unresponsive to mitogenic stimuli. Senescent cells remain viable, have alterations in metabolic activity and undergo dramatic changes in gene expression and develop a complex senescence-associated secretory phenotype. Cellular senescence can compromise tissue repair and regeneration, thereby contributing toward aging. Removal of senescent cells can attenuate age-related tissue dysfunction and extend health span. Senescence can also act as a potent anti-tumor mechanism, by preventing proliferation of potentially cancerous cells. It is a cellular program which acts as a double-edged sword, with both beneficial and detrimental effects on the health of the organism, and considered to be an example of evolutionary antagonistic pleiotropy. Activation of the p53/p21WAF1/CIP1 and p16INK4A/pRB tumor suppressor pathways play a central role in regulating senescence. Several other pathways have recently been implicated in mediating senescence and the senescent phenotype. Herein we review the molecular mechanisms that underlie cellular senescence and the senescence associated growth arrest with a particular focus on why cells stop dividing, the stability of the growth arrest, the hypersecretory phenotype and how the different pathways are all integrated.
Collapse
Affiliation(s)
- Ruchi Kumari
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
| | - Parmjit Jat
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
| |
Collapse
|
33
|
Giles KA, Gould CM, Achinger-Kawecka J, Page SG, Kafer GR, Rogers S, Luu PL, Cesare AJ, Clark SJ, Taberlay PC. BRG1 knockdown inhibits proliferation through multiple cellular pathways in prostate cancer. Clin Epigenetics 2021; 13:37. [PMID: 33596994 PMCID: PMC7888175 DOI: 10.1186/s13148-021-01023-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 02/04/2021] [Indexed: 12/13/2022] Open
Abstract
Background BRG1 (encoded by SMARCA4) is a catalytic component of the SWI/SNF chromatin remodelling complex, with key roles in modulating DNA accessibility. Dysregulation of BRG1 is observed, but functionally uncharacterised, in a wide range of malignancies. We have probed the functions of BRG1 on a background of prostate cancer to investigate how BRG1 controls gene expression programmes and cancer cell behaviour. Results Our investigation of SMARCA4 revealed that BRG1 is over-expressed in the majority of the 486 tumours from The Cancer Genome Atlas prostate cohort, as well as in a complementary panel of 21 prostate cell lines. Next, we utilised a temporal model of BRG1 depletion to investigate the molecular effects on global transcription programmes. Depleting BRG1 had no impact on alternative splicing and conferred only modest effect on global expression. However, of the transcriptional changes that occurred, most manifested as down-regulated expression. Deeper examination found the common thread linking down-regulated genes was involvement in proliferation, including several known to increase prostate cancer proliferation (KLK2, PCAT1 and VAV3). Interestingly, the promoters of genes driving proliferation were bound by BRG1 as well as the transcription factors, AR and FOXA1. We also noted that BRG1 depletion repressed genes involved in cell cycle progression and DNA replication, but intriguingly, these pathways operated independently of AR and FOXA1. In agreement with transcriptional changes, depleting BRG1 conferred G1 arrest. Conclusions Our data have revealed that BRG1 promotes cell cycle progression and DNA replication, consistent with the increased cell proliferation associated with oncogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01023-7.
Collapse
Affiliation(s)
- Katherine A Giles
- Epigenetics Laboratory, Genomics and Epigenetics Theme, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia.,Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Westmead, NSW, 2145, Australia.,Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, TAS, Hobart, 7000, Australia
| | - Cathryn M Gould
- Epigenetics Laboratory, Genomics and Epigenetics Theme, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia
| | - Joanna Achinger-Kawecka
- Epigenetics Laboratory, Genomics and Epigenetics Theme, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia.,St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, 2000, Australia
| | - Scott G Page
- Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Westmead, NSW, 2145, Australia
| | - Georgia R Kafer
- Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Westmead, NSW, 2145, Australia
| | - Samuel Rogers
- Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Westmead, NSW, 2145, Australia
| | - Phuc-Loi Luu
- Epigenetics Laboratory, Genomics and Epigenetics Theme, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia.,St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, 2000, Australia
| | - Anthony J Cesare
- Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Westmead, NSW, 2145, Australia
| | - Susan J Clark
- Epigenetics Laboratory, Genomics and Epigenetics Theme, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia.,St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, 2000, Australia
| | - Phillippa C Taberlay
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, TAS, Hobart, 7000, Australia.
| |
Collapse
|
34
|
Sur S, Nakanishi H, Steele R, Zhang D, Varvares MA, Ray RB. Long non-coding RNA ELDR enhances oral cancer growth by promoting ILF3-cyclin E1 signaling. EMBO Rep 2020; 21:e51042. [PMID: 33043604 PMCID: PMC7726807 DOI: 10.15252/embr.202051042] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 12/22/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the sixth most common cancer with a 5-year overall survival rate of 50%. Thus, there is a critical need to understand the disease process, and to identify improved therapeutic strategies. Previously, we found the long non-coding RNA (lncRNA) EGFR long non-coding downstream RNA (ELDR) induced in a mouse tongue cancer model; however, its functional role in human oral cancer remained unknown. Here, we show that ELDR is highly expressed in OSCC patient samples and in cell lines. Overexpression of ELDR in normal non-tumorigenic oral keratinocytes induces cell proliferation, colony formation, and PCNA expression. We also show that ELDR depletion reduces OSCC cell proliferation and PCNA expression. Proteomics data identifies the RNA binding protein ILF3 as an interacting partner of ELDR. We further show that the ELDR-ILF3 axis regulates Cyclin E1 expression and phosphorylation of the retinoblastoma (RB) protein. Intratumoral injection of ELDR-specific siRNA reduces OSCC and PDX tumor growth in mice. These findings provide molecular insight into the role of ELDR in oral cancer and demonstrate that targeting ELDR has promising therapeutic potential.
Collapse
Affiliation(s)
- Subhayan Sur
- Department of PathologySaint Louis UniversitySaint LouisMOUSA
| | | | - Robert Steele
- Department of PathologySaint Louis UniversitySaint LouisMOUSA
| | - Dapeng Zhang
- Department of BiologySaint Louis UniversitySaint LouisMOUSA
| | - Mark A Varvares
- Saint Louis University Cancer CenterSaint LouisMOUSA
- Department of Otolaryngology, Head and Neck SurgeryMassachusetts Eye and EarHarvard Medical SchoolBostonMAUSA
| | - Ratna B Ray
- Department of PathologySaint Louis UniversitySaint LouisMOUSA
- Saint Louis University Cancer CenterSaint LouisMOUSA
| |
Collapse
|
35
|
Epstein-Barr Virus Facilitates Expression of KLF14 by Regulating the Cooperative Binding of the E2F-Rb-HDAC Complex in Latent Infection. J Virol 2020; 94:JVI.01209-20. [PMID: 32847849 DOI: 10.1128/jvi.01209-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/23/2020] [Indexed: 12/31/2022] Open
Abstract
Epstein-Barr virus (EBV) was discovered as the first human tumor virus more than 50 years ago. EBV infects more than 90% of the human population worldwide and is associated with numerous hematologic malignancies and epithelial malignancies. EBV establishes latent infection in B cells, which is the typical program seen in lymphomagenesis. Understanding EBV-mediated transcription regulatory networks is one of the current challenges that will uncover new insights into the mechanism of viral-mediated lymphomagenesis. Here, we describe the regulatory profiles of several cellular factors (E2F6, E2F1, Rb, HDAC1, and HDAC2) together with EBV latent nuclear antigens using next-generation sequencing (NGS) analysis. Our results show that the E2F-Rb-HDAC complex exhibits similar distributions in genomic regions of EBV-positive cells and is associated with oncogenic super-enhancers involving long-range regulatory regions. Furthermore, EBV latent antigens cooperatively hijack this complex to bind at KLFs gene loci and facilitate KLF14 gene expression in lymphoblastoid cell lines (LCLs). These results demonstrate that EBV latent antigens can function as master regulators of this multisubunit repressor complex (E2F-Rb-HDAC) to reverse its suppressive activities and facilitate downstream gene expression that can contribute to viral-induced lymphomagenesis. These results provide novel insights into targets for the development of new therapeutic interventions for treating EBV-associated lymphomas.IMPORTANCE Epstein-Barr virus (EBV), as the first human tumor virus, infects more than 90% of the human population worldwide and is associated with numerous human cancers. Exploring EBV-mediated transcription regulatory networks is critical to understand viral-associated lymphomagenesis. However, the detailed mechanism is not fully explored. Now we describe the regulatory profiles of the E2F-Rb-HDAC complex together with EBV latent antigens, and we found that EBV latent antigens cooperatively facilitate KLF14 expression by antagonizing this multisubunit repressor complex in EBV-positive cells. This provides potential therapeutic targets for the treatment of EBV-associated cancers.
Collapse
|
36
|
Surapaneni SK, Bhat ZR, Tikoo K. MicroRNA-941 regulates the proliferation of breast cancer cells by altering histone H3 Ser 10 phosphorylation. Sci Rep 2020; 10:17954. [PMID: 33087811 PMCID: PMC7578795 DOI: 10.1038/s41598-020-74847-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 08/25/2020] [Indexed: 12/25/2022] Open
Abstract
Breast cancer including triple negative breast cancer (TNBC) represents an important clinical challenge, as these tumours often develop resistance to conventional chemotherapeutics. MicroRNAs play a crucial role in cell-cycle regulation, differentiation, apoptosis, and migration. Herein, we performed Affymetrix Gene Chip miRNA 4.0 microarray and observed differential regulation of miRNAs (75 upregulated and 199 downregulated) in metastatic MDA-MB-231 cells as compared to immortalized human non-tumorigenic breast epithelial (MCF-10A) cells. MicroRNA-941 was significantly upregulated in MDA-MB-231 cells (almost nine-fold increase) in comparison to MCF-10A cells. Transfection of MiRNA-941 inhibitor significantly decreased the proliferation and migration of MDA-MB-231 cells by altering the expressions of p21, Cyclin D1, PP2B-B1, E-cadherin and MMP-13. Interestingly, we provide first evidence that inhibiting miR-941 prevents cell proliferation and phosphorylation of histone H3 at Ser10 residue. Xenograft model of breast cancer was developed by subcutaneous injection of MDA-MB-231 cells into the mammary fat pad of female athymic nude mice (Crl:NU-Foxn1nu). The tumours were allowed to grow to around 60 mm3, thereafter which we divided the animals into seven groups (n = 5). Notably, intratumoral injection of miR-941 inhibitor significantly abolished the tumour growth in MDA-MB-231 xenograft model. 5-Fluorouracil (10 mg/kg, i.p.) was used as positive control in our study. To the best of our knowledge, we report for the first time that targeting miR-941 improves the sensitivity of MDA-MB-231 cells to 5-fluorouracil. This can be of profound clinical significance, as it provides novel therapeutic approach for treating variety of cancers (overexpressing miRNA-941) in general and breast cancers in particular.
Collapse
Affiliation(s)
- Sunil Kumar Surapaneni
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) S.A.S. Nagar, Sahibzada Ajit Singh Nagar, India
| | - Zahid Rafiq Bhat
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) S.A.S. Nagar, Sahibzada Ajit Singh Nagar, India
| | - Kulbhushan Tikoo
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) S.A.S. Nagar, Sahibzada Ajit Singh Nagar, India.
| |
Collapse
|
37
|
Retinoblastoma Tumor Suppressor Protein Roles in Epigenetic Regulation. Cancers (Basel) 2020; 12:cancers12102807. [PMID: 33003565 PMCID: PMC7600434 DOI: 10.3390/cancers12102807] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/19/2020] [Accepted: 09/27/2020] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Loss of function of the retinoblastoma gene (RB1) is the rate-limiting step in the initiation of both the hereditary and sporadic forms of retinoblastoma tumor. Furthermore, loss of function of the retinoblastoma tumor suppressor protein (pRB) is frequently found in most human cancers. In retinoblastoma, tumor progression is driven by epigenetic changes following pRB loss. This review focuses on the diverse functions of pRB in epigenetic regulation. Abstract Mutations that result in the loss of function of pRB were first identified in retinoblastoma and since then have been associated with the propagation of various forms of cancer. pRB is best known for its key role as a transcriptional regulator during cell cycle exit. Beyond the ability of pRB to regulate transcription of cell cycle progression genes, pRB can remodel chromatin to exert several of its other biological roles. In this review, we discuss the diverse functions of pRB in epigenetic regulation including nucleosome mobilization, histone modifications, DNA methylation and non-coding RNAs.
Collapse
|
38
|
Lazar JE, Stehling-Sun S, Nandakumar V, Wang H, Chee DR, Howard NP, Acosta R, Dunn D, Diegel M, Neri F, Castillo A, Ibarrientos S, Lee K, Lescano N, Van Biber B, Nelson J, Halow J, Sandstrom R, Bates D, Urnov FD, Stamatoyannopoulos JA, Funnell APW. Global Regulatory DNA Potentiation by SMARCA4 Propagates to Selective Gene Expression Programs via Domain-Level Remodeling. Cell Rep 2020; 31:107676. [PMID: 32460018 DOI: 10.1016/j.celrep.2020.107676] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/23/2019] [Accepted: 04/30/2020] [Indexed: 01/02/2023] Open
Abstract
The human genome encodes millions of regulatory elements, of which only a small fraction are active within a given cell type. Little is known about the global impact of chromatin remodelers on regulatory DNA landscapes and how this translates to gene expression. We use precision genome engineering to reawaken homozygously inactivated SMARCA4, a central ATPase of the human SWI/SNF chromatin remodeling complex, in lung adenocarcinoma cells. Here, we combine DNase I hypersensitivity, histone modification, and transcriptional profiling to show that SMARCA4 dramatically increases both the number and magnitude of accessible chromatin sites genome-wide, chiefly by unmasking sites of low regulatory factor occupancy. By contrast, transcriptional changes are concentrated within well-demarcated remodeling domains wherein expression of specific genes is gated by both distal element activation and promoter chromatin configuration. Our results provide a perspective on how global chromatin remodeling activity is translated to gene expression via regulatory DNA.
Collapse
Affiliation(s)
- John E Lazar
- Departments of Genome Sciences and Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA; Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA
| | | | - Vivek Nandakumar
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA
| | - Hao Wang
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA
| | - Daniel R Chee
- Departments of Genome Sciences and Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA; Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA
| | | | - Reyes Acosta
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA
| | - Douglass Dunn
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA
| | - Morgan Diegel
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA
| | - Fidencio Neri
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA
| | - Andres Castillo
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA
| | - Sean Ibarrientos
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA
| | - Kristen Lee
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA
| | - Ninnia Lescano
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA
| | - Ben Van Biber
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA
| | - Jemma Nelson
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA
| | - Jessica Halow
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA
| | | | - Daniel Bates
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA
| | - Fyodor D Urnov
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA
| | - John A Stamatoyannopoulos
- Departments of Genome Sciences and Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA; Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA.
| | | |
Collapse
|
39
|
Peng S, Sun K, Guo Y, Liu Y, Wang S. Arabidopsis nucleoporin CPR5 controls trichome cell death through the core cell cycle regulator CKI. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:337-345. [PMID: 31692196 DOI: 10.1111/plb.13068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 10/23/2019] [Indexed: 06/10/2023]
Abstract
The Arabidopsis trichome is a polyploid epidermal cell resulting from multiple rounds of endocycles. The CYCLIN-DEPENDENT KINASE INHIBITOR (CKI) family proteins are core cell cycle regulators that promote the endocycle. CONSTITUTIVE EXPRESSION OF PR GENES 5 (CPR5) is a plant-specific nucleoporin. It has been found that two Arabidopsis CKI, SIAMESE (SIM) and SIAMESE-RELATED 1 (SMR1), function downstream of CPR5 to activate plant effector-triggered cell death. The sim smr1 double mutants form multicellular and clustered trichomes, while the cpr5 mutants produce dead and branchless trichomes. This study explored roles of the CPR5-CKI signalling pathway in trichome cell cycle transition. To examine the underlying mechanism of how cell cycle transition is regulated in plant trichomes, Trypan blue staining, flow cytometry, scanning electron microscopy (SEM) and nuclear DNA measurement were conducted. The native promoter-driven CKI and GUS fusion reporter showed that both SIM and SMR1 proteins were preferentially expressed in trichomes. The cpr5-induced dead and branchless trichomes were fully suppressed by the sim smr1 double mutant, suggesting that SIM and SMR1 function downstream of CPR5 in trichome development. Flow cytometry analysis showed that as compared to the number of 2C (C = DNA content in a haploid nucleus) cells, the number of 4C cells significantly increased, whereas that of polyploidy cells (8C and 16C) dramatically decreased in the cpr5 mutant. The elevated 4C/2C ratio in the cpr5 mutant is consistent with de-repression of pro-endocycle regulators SIM and SMR1. The polyploidy cells (8C and 16C) may be selectively targeted to cell death, which is therefore attributed to the branchless trichomes in the cpr5 mutant. Nuclear DNA content analysis demonstrated that the nuclear DNA content of trichomes in the cpr5 sim mutant was significantly higher than in the sim mutant, indicating that CPR5 is a negative endocycle regulator in trichomes. This study reveals that the CPR5-CKI signalling pathway controls trichome cell cycle transition and excessive endocycles are required for cell death in plant trichomes.
Collapse
Affiliation(s)
- S Peng
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - K Sun
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Y Guo
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Y Liu
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - S Wang
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| |
Collapse
|
40
|
Cheedipudi SM, Matkovich SJ, Coarfa C, Hu X, Robertson MJ, Sweet M, Taylor M, Mestroni L, Cleveland J, Willerson JT, Gurha P, Marian AJ. Genomic Reorganization of Lamin-Associated Domains in Cardiac Myocytes Is Associated With Differential Gene Expression and DNA Methylation in Human Dilated Cardiomyopathy. Circ Res 2020; 124:1198-1213. [PMID: 30739589 DOI: 10.1161/circresaha.118.314177] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
RATIONALE LMNA (Lamin A/C), a nuclear membrane protein, interacts with genome through lamin-associated domains (LADs) and regulates gene expression. Mutations in the LMNA gene cause a diverse array of diseases, including dilated cardiomyopathy (DCM). DCM is the leading cause of death in laminopathies. OBJECTIVE To identify LADs and characterize their associations with CpG methylation and gene expression in human cardiac myocytes in DCM. METHODS AND RESULTS LMNA chromatin immunoprecipitation-sequencing, reduced representative bisulfite sequencing, and RNA-sequencing were performed in 5 control and 5 LMNA-associated DCM hearts. LADs were identified using enriched domain detector program. Genome-wide 331±77 LADs with an average size of 2.1±1.5 Mbp were identified in control human cardiac myocytes. LADs encompassed ≈20% of the genome and were predominantly located in the heterochromatin and less so in the promoter and actively transcribed regions. LADs were redistributed in DCM as evidenced by a gain of 520 and loss of 149 genomic regions. Approximately, 4500 coding genes and 800 long noncoding RNAs, whose levels correlated with the transcript levels of coding genes in cis, were differentially expressed in DCM. TP53 (tumor protein 53) was the most prominent among the dysregulated pathways. CpG sites were predominantly hypomethylated genome-wide in controls and DCM hearts, but overall CpG methylation was increased in DCM. LADs were associated with increased CpG methylation and suppressed gene expression. Integrated analysis identified genes whose expressions were regulated by LADs or CpG methylation, or by both, the latter pertained to genes involved in cell death, cell cycle, and metabolic regulation. CONCLUSIONS LADs encompass ≈20% of the genome in human cardiac myocytes comprised several hundred coding and noncoding genes. LADs are redistributed in LMNA-associated DCM in association with markedly altered CpG methylation and gene expression. Thus, LADs through genomic alterations contribute to the pathogenesis of DCM in laminopathies.
Collapse
Affiliation(s)
- Sirisha M Cheedipudi
- From the Center for Cardiovascular Genetics, Department of Medicine, Institute of Molecular Medicine, Texas Heart Institute, University of Texas Health Sciences Center at Houston (S.M.C., P.G., A.J.M.)
| | - Scot J Matkovich
- Center for Cardiovascular Research, Washington University, School of Medicine, St Louis, MO (S.J.M.)
| | | | - Xin Hu
- MD Anderson Cancer Center, Houston, TX (X.H.)
| | | | - Mary Sweet
- Division of Cardiology (M.S., M.T., L.M.), University of Colorado, Denver
| | - Matthew Taylor
- Division of Cardiology (M.S., M.T., L.M.), University of Colorado, Denver
| | - Luisa Mestroni
- Division of Cardiology (M.S., M.T., L.M.), University of Colorado, Denver
| | - Joseph Cleveland
- Division of Cardiothoracic Surgery (J.C.), University of Colorado, Denver
| | | | - Priyatansh Gurha
- From the Center for Cardiovascular Genetics, Department of Medicine, Institute of Molecular Medicine, Texas Heart Institute, University of Texas Health Sciences Center at Houston (S.M.C., P.G., A.J.M.)
| | - Ali J Marian
- From the Center for Cardiovascular Genetics, Department of Medicine, Institute of Molecular Medicine, Texas Heart Institute, University of Texas Health Sciences Center at Houston (S.M.C., P.G., A.J.M.)
| |
Collapse
|
41
|
Kim H, Lee YK, Han KH, Jeon H, Jeong IH, Kim SY, Lee JB, Lee PCW. BRC-mediated RNAi targeting of USE1 inhibits tumor growth in vitro and in vivo. Biomaterials 2019; 230:119630. [PMID: 31791842 DOI: 10.1016/j.biomaterials.2019.119630] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 11/12/2019] [Indexed: 01/18/2023]
Abstract
USE1 has been demonstrated to play crucial roles in the development and progression of human lung cancer. However, the antitumor efficacy of RNA interference (RNAi) targeting of USE1 has not yet been evaluated as a possible clinical application. We here synthesized USE1 targeting bubbled RNA-based cargo (BRC) composed of densely packed multimeric pre-siRNAs with specific Dicer cleavage sites to enable efficient siRNA release upon entry to target cells. The physical entanglement and continuous networking of RNAs via hybridization during enzymatic replication serve as a driving force for the self-assembly of BRCs. These molecules effectively suppressed the transcription of their target genes, leading to tumor growth suppression in vitro and in vivo. Moreover, their repeated intravenous administration efficiently inhibited the growth of A549 tumor xenografts. Based on these findings of a reduced cancer cell viability following a USE1 knockdown, we further explored cell cycle arrest and apoptosis pathways. The observed tumor cell growth suppression was found to be controlled by cell cycle arrest and apoptosis signals induced by the USE1 reduction. These results suggest that USE1 BRCs may have future clinical applications as an RNAi-based cancer therapy.
Collapse
Affiliation(s)
- Hyejin Kim
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, South Korea
| | - Yeon Kyung Lee
- Department of Biomedical Sciences University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Kyung Ho Han
- Department of Biomedical Sciences University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Hyunsu Jeon
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, South Korea
| | - In-Ho Jeong
- Department of Biomedical Sciences University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Sang-Yeob Kim
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea
| | - Jong Bum Lee
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, South Korea.
| | - Peter C W Lee
- Department of Biomedical Sciences University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea.
| |
Collapse
|
42
|
Jancewicz I, Siedlecki JA, Sarnowski TJ, Sarnowska E. BRM: the core ATPase subunit of SWI/SNF chromatin-remodelling complex-a tumour suppressor or tumour-promoting factor? Epigenetics Chromatin 2019; 12:68. [PMID: 31722744 PMCID: PMC6852734 DOI: 10.1186/s13072-019-0315-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/31/2019] [Indexed: 02/07/2023] Open
Abstract
BRM (BRAHMA) is a core, SWI2/SNF2-type ATPase subunit of SWI/SNF chromatin-remodelling complex (CRC) involved in various important regulatory processes including development. Mutations in SMARCA2, a BRM-encoding gene as well as overexpression or epigenetic silencing were found in various human diseases including cancer. Missense mutations in SMARCA2 gene were recently connected with occurrence of Nicolaides-Baraitser genetics syndrome. By contrast, SMARCA2 duplication rather than mutations is characteristic for Coffin-Siris syndrome. It is believed that BRM usually acts as a tumour suppressor or a tumour susceptibility gene. However, other studies provided evidence that BRM function may differ depending on the cancer type and the disease stage, where BRM may play a role in the disease progression. The existence of alternative splicing forms of SMARCA2 gene, leading to appearance of truncated functional, loss of function or gain-of-function forms of BRM protein suggest a far more complicated mode of BRM-containing SWI/SNF CRCs actions. Therefore, the summary of recent knowledge regarding BRM alteration in various types of cancer and highlighting of differences and commonalities between BRM and BRG1, another SWI2/SNF2 type ATPase, will lead to better understanding of SWI/SNF CRCs function in cancer development/progression. BRM has been recently proposed as an attractive target for various anticancer therapies including the use of small molecule inhibitors, synthetic lethality induction or proteolysis-targeting chimera (PROTAC). However, such attempts have some limitations and may lead to severe side effects given the homology of BRM ATPase domain to other ATPases, as well as due to the tissue-specific appearance of BRM- and BRG1-containing SWI/SNF CRC classes. Thus, a better insight into BRM-containing SWI/SNF CRCs function in human tissues and cancers is clearly required to provide a solid basis for establishment of new safe anticancer therapies.
Collapse
Affiliation(s)
- Iga Jancewicz
- Department of Molecular and Translational Oncology, The Maria Sklodowska-Curie Institute-Oncology Center in Warsaw, Wawelska 15B, 02-034, Warsaw, Poland
| | - Janusz A Siedlecki
- Department of Molecular and Translational Oncology, The Maria Sklodowska-Curie Institute-Oncology Center in Warsaw, Wawelska 15B, 02-034, Warsaw, Poland
| | - Tomasz J Sarnowski
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawinskiego 5A, 02-106, Warsaw, Poland.
| | - Elzbieta Sarnowska
- Department of Molecular and Translational Oncology, The Maria Sklodowska-Curie Institute-Oncology Center in Warsaw, Wawelska 15B, 02-034, Warsaw, Poland.
| |
Collapse
|
43
|
Abdollahi S, Salehi-Abargouei A, Tabatabaie M, Sheikhha MH, Fallahzadeh H, Rahmanian M, Toupchian O, Karimi-Nazari E, Mozaffari-Khosravi H. The effect of resveratrol supplementation on the expression levels of factors associated with cellular senescence and sCD163/sTWEAK ratio in patients with type 2 diabetes mellitus: study protocol for a double-blind controlled randomised clinical trial. BMJ Open 2019; 9:e026337. [PMID: 31278094 PMCID: PMC6615841 DOI: 10.1136/bmjopen-2018-026337] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION Over the past decades, the number of people with type 2 diabetes (T2D) has increased globally. One of the major complications in these patients is cardiovascular disease; it seems that the cell proliferation inhibition can improve vascular function in these patients. It is proposed that peroxisome proliferator-activated receptor alpha (PPARα) can induce cell cycle arrest via cyclin-dependent kinase inhibitor 2A (p16) activation. Also, it has been shown that phosphorylated tumour suppressor protein p53 is involved in cell senescence by cyclin-dependent kinase inhibitor 1 (p21) upregulation. Resveratrol is a natural polyphenol and appears to improve the vascular function through the mentioned pathways. We will aim to evaluate the effects of resveratrol supplementation on mRNA expression of PPARα, p53, p21 and p16 in patients with T2D. We will also measure serum levels of cluster of differentiation 163 (CD163) and tumour necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) as the indicators of cardiovascular status. METHODS AND ANALYSIS Seventy-two subjects suffering from T2D will participate in this double-blind randomised parallel placebo-controlled clinical trial. Participants will be randomly assigned to receive 1000 mg/day trans-resveratrol or placebo (methyl cellulose) for 8 weeks. The mRNA expression levels of PPARα, p53, p21 and p16 genes will be assessed using real-time PCR and serum CD163 and TWEAK levels will be measured using commercially available ELISA kits at baseline and the end of the study. Clinical outcome parameters (glycaemic and lipid profiles and body composition) will also be measured before and after study duration. ETHICS AND DISSEMINATION The study is performed in agreement with the Declaration of Helsinki and is approved by the Ethics Committee of the Shahid Sadoughi University of Medical Sciences (no: ir.ssu.sph.rec.1396.120). The results will be published in scientific journals. TRIAL REGISTRATION NUMBER IRCT20171118037528N1; Pre-results.
Collapse
Affiliation(s)
- Shima Abdollahi
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Nutrition and Public Health, School of Public Health, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Amin Salehi-Abargouei
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahtab Tabatabaie
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Hasan Sheikhha
- Department of Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Yazd Clinical and Research Center of infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hossein Fallahzadeh
- Department of Biostatistics and Epidemiology, Research Center of Prevention and Epidemiology of Non-Communicable Disease, School of Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Masoud Rahmanian
- Yazd Diabetic Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Omid Toupchian
- Department of Nutrition and Public Health, School of Public Health, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Elham Karimi-Nazari
- Biological Sciences and Technology Institute, Malek Ashtar University of Technology, Tehran, Iran
| | - Hassan Mozaffari-Khosravi
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Yazd Diabetic Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
44
|
Orlando KA, Nguyen V, Raab JR, Walhart T, Weissman BE. Remodeling the cancer epigenome: mutations in the SWI/SNF complex offer new therapeutic opportunities. Expert Rev Anticancer Ther 2019; 19:375-391. [PMID: 30986130 DOI: 10.1080/14737140.2019.1605905] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Cancer genome sequencing studies have discovered mutations in members of the SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin-remodeling complex in nearly 25% of human cancers. The SWI/SNF complex, first discovered in S. cerevisiae, shows strong conservation from yeast to Drosophila to mammals, contains approximately 10-12 subunits and regulates nucleosome positioning through the energy generated by its ATPase subunits. The unexpected finding of frequent mutations in the complex has fueled studies to identify the mechanisms that drive tumor development and the accompanying therapeutic vulnerabilities. Areas covered: In the review, we focus upon the potential roles different SWI/SNF subunit mutations play in human oncogenesis, their common and unique mechanisms of transformation and the potential for translating these mechanisms into targeted therapies for SWI/SNF-mutant tumors. Expert opinion: We currently have limited insights into how mutations in different SWI/SNF subunits drive the development of human tumors. Because the SWI/SNF complex participates in a broad range of normal cellular functions, defining specific oncogenic pathways has proved difficult. In addition, therapeutic options for SWI/SNF-mutant cancers have mainly evolved from high-throughput screens of cell lines with mutations in different subunits. Future studies should follow a more coherent plan to pinpoint common vulnerabilities among these tumors.
Collapse
Affiliation(s)
- Krystal A Orlando
- a Department of Pathology and Laboratory Medicine , University of North Carolina , Chapel Hill , NC , USA
| | - Vinh Nguyen
- b Curriculum in Toxicology and Environmental Medicine , University of North Carolina , Chapel Hill , NC , USA
| | - Jesse R Raab
- c Department of Genetics , University of North Carolina , Chapel Hill , NC , USA
| | - Tara Walhart
- d Lineberger Comprehensive Cancer Center , University of North Carolina , Chapel Hill , NC , USA
| | - Bernard E Weissman
- a Department of Pathology and Laboratory Medicine , University of North Carolina , Chapel Hill , NC , USA.,b Curriculum in Toxicology and Environmental Medicine , University of North Carolina , Chapel Hill , NC , USA.,d Lineberger Comprehensive Cancer Center , University of North Carolina , Chapel Hill , NC , USA
| |
Collapse
|
45
|
Song Q, Li M, Fan C, Liu Y, Zheng L, Bao Y, Sun L, Yu C, Song Z, Sun Y, Wang G, Huang Y, Li Y. A novel benzamine lead compound of histone deacetylase inhibitor ZINC24469384 can suppresses HepG2 cells proliferation by upregulating NR1H4. Sci Rep 2019; 9:2350. [PMID: 30787420 PMCID: PMC6382829 DOI: 10.1038/s41598-019-39487-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 01/16/2019] [Indexed: 12/18/2022] Open
Abstract
Histone deacetylases (HDACs) can enzymatically transferred acetyl functional group from protein or lysine residues of histone, so they can regulate the expression of lots of genes. Now HDACs are used as drug targets and many HDAC inhibitors (HDACis) were approved for cancer therapy or in clinical trials. However, the physiological mechanisms and regulatory processes of HDACi anti-cancer effects are largely unexplored and uncompleted. Here we use the virtual screening workflow obtained 25 hit compounds and ZINC24469384 can significantly inhibit HDAC activity while arrest cell cycle at G1/S phase and significantly induced HepG2 cell apoptosis, time-course RNA-seq demonstrate that HepG2 cells transcriptionally respond to ZINC24469384. Pathway analysis of DEGs and DASGs reveal that NR1H4 may play an important role in ZINC24469384-induced anti-proliferation effect and is dramatically alleviated by down-regulating the SOCS2 expression and promoting STAT3 phosphorylation in knockdown NR1H4 HepG2 cells. Analysis based on TCGA database indicated that NR1H4 and SOCS2 were downregulated in liver cancer, this suggest NR1H4 and SOCS2 may play an important role in tumorigenesis. These results indicated that ZINC24469384 is a novel benzamine lead compound of HDACi and provides a novel mechanism for HDACi to inhibit cancer.
Collapse
Affiliation(s)
- Qiuhang Song
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Mingyue Li
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Cong Fan
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Yucui Liu
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Lihua Zheng
- Research Center of Agriculture and Medicine gene Engineering of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Yongli Bao
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Luguo Sun
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Chunlei Yu
- Research Center of Agriculture and Medicine gene Engineering of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Zhenbo Song
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Ying Sun
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Guannan Wang
- Research Center of Agriculture and Medicine gene Engineering of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Yanxin Huang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China.
| | - Yuxin Li
- Research Center of Agriculture and Medicine gene Engineering of Ministry of Education, Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
46
|
Xue Y, Meehan B, Macdonald E, Venneti S, Wang XQD, Witkowski L, Jelinic P, Kong T, Martinez D, Morin G, Firlit M, Abedini A, Johnson RM, Cencic R, Patibandla J, Chen H, Papadakis AI, Auguste A, de Rink I, Kerkhoven RM, Bertos N, Gotlieb WH, Clarke BA, Leary A, Witcher M, Guiot MC, Pelletier J, Dostie J, Park M, Judkins AR, Hass R, Levine DA, Rak J, Vanderhyden B, Foulkes WD, Huang S. CDK4/6 inhibitors target SMARCA4-determined cyclin D1 deficiency in hypercalcemic small cell carcinoma of the ovary. Nat Commun 2019; 10:558. [PMID: 30718512 PMCID: PMC6361890 DOI: 10.1038/s41467-018-06958-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 10/04/2018] [Indexed: 12/22/2022] Open
Abstract
Inactivating mutations in SMARCA4 (BRG1), a key SWI/SNF chromatin remodelling gene, underlie small cell carcinoma of the ovary, hypercalcemic type (SCCOHT). To reveal its druggable vulnerabilities, we perform kinase-focused RNAi screens and uncover that SMARCA4-deficient SCCOHT cells are highly sensitive to the inhibition of cyclin-dependent kinase 4/6 (CDK4/6). SMARCA4 loss causes profound downregulation of cyclin D1, which limits CDK4/6 kinase activity in SCCOHT cells and leads to in vitro and in vivo susceptibility to CDK4/6 inhibitors. SCCOHT patient tumors are deficient in cyclin D1 yet retain the retinoblastoma-proficient/p16INK4a-deficient profile associated with positive responses to CDK4/6 inhibitors. Thus, our findings indicate that CDK4/6 inhibitors, approved for a breast cancer subtype addicted to CDK4/6 activation, could be repurposed to treat SCCOHT. Moreover, our study suggests a novel paradigm whereby critically low oncogene levels, caused by loss of a driver tumor suppressor, may also be exploited therapeutically.
Collapse
Affiliation(s)
- Yibo Xue
- Department of Biochemistry, McGill University, Montreal, QC, H3G 1Y6, Canada
- The Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, H3A 1A3, Canada
| | - Brian Meehan
- Department of Pediatrics, McGill University, Montreal, QC, H4A 3J1, Canada
- Research Institute of McGill University Health Centre Montreal Children's Hospital, Montreal, QC, H4A 3J1, Canada
| | - Elizabeth Macdonald
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1Y 4E9, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Sriram Venneti
- Pathology and Neuropathology, University of Michigan Medical School, Ann Arbor, MI, 48109-0605, USA
| | - Xue Qing D Wang
- Department of Biochemistry, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Leora Witkowski
- Department of Human Genetics, McGill University, Montreal, QC, H3A 0C7, Canada
- Department of Medical Genetics, Jewish General Hospital, McGill University, Montreal, QC, H3T 1E2, Canada
- Lady Davis Institute, McGill University, Montreal, QC, H3T 1E2, Canada
- Department of Medical Genetics and Cancer Research Program, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, H4A 3JI, Canada
| | - Petar Jelinic
- Gynecologic Oncology, Laura and Isaac Perlmutter Cancer Center, NYU Langone Medical Center, New York, NY, 10016, USA
| | - Tim Kong
- Department of Biochemistry, McGill University, Montreal, QC, H3G 1Y6, Canada
- The Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, H3A 1A3, Canada
| | - Daniel Martinez
- Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, 19104, USA
| | - Geneviève Morin
- Department of Biochemistry, McGill University, Montreal, QC, H3G 1Y6, Canada
- The Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, H3A 1A3, Canada
| | - Michelle Firlit
- Gynecologic Oncology, Laura and Isaac Perlmutter Cancer Center, NYU Langone Medical Center, New York, NY, 10016, USA
| | - Atefeh Abedini
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1Y 4E9, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Radia M Johnson
- Department of Biochemistry, McGill University, Montreal, QC, H3G 1Y6, Canada
- The Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, H3A 1A3, Canada
| | - Regina Cencic
- Department of Biochemistry, McGill University, Montreal, QC, H3G 1Y6, Canada
- The Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, H3A 1A3, Canada
| | - Jay Patibandla
- Gynecologic Oncology, Laura and Isaac Perlmutter Cancer Center, NYU Langone Medical Center, New York, NY, 10016, USA
| | - Hongbo Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sat University, 510275, Guangzhou, China
| | - Andreas I Papadakis
- Department of Biochemistry, McGill University, Montreal, QC, H3G 1Y6, Canada
- The Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, H3A 1A3, Canada
| | - Aurelie Auguste
- Department of Cancer Medicine, Gustave Roussy, INSERM U981, 94800, Villejuif, France
| | - Iris de Rink
- Genomics Core Facility, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands
| | - Ron M Kerkhoven
- Genomics Core Facility, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands
| | - Nicholas Bertos
- Department of Biochemistry, McGill University, Montreal, QC, H3G 1Y6, Canada
- The Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, H3A 1A3, Canada
| | - Walter H Gotlieb
- Division of Gynecologic Oncology, Segal Cancer Center, Jewish General Hospital, McGill University, Montreal, QC, H3T 1E2, Canada
| | - Blaise A Clarke
- Department of Laboratory Medicine and Pathobiology, University of Toronto, University Health Network, Toronto, ON, M5G 2C4, Canada
| | - Alexandra Leary
- Department of Cancer Medicine, Gustave Roussy, INSERM U981, 94800, Villejuif, France
| | - Michael Witcher
- Department of Oncology, McGill University, Montreal, QC, H3T 1E2, Canada
- Department of Experimental Medicine, McGill University, Montreal, QC, H3T 1E2, Canada
- Lady Davis Institute, Jewish General Hospital, Montreal, QC, H3T 1E2, Canada
- Segal Cancer Centre, Jewish General Hospital, Montreal, QC, H3T 1E2, Canada
| | - Marie-Christine Guiot
- Department of Pathology, Montreal Neurological Hospital/Institute, McGill University Health Centre, Montreal, QC, H3A 2B4, Canada
| | - Jerry Pelletier
- Department of Biochemistry, McGill University, Montreal, QC, H3G 1Y6, Canada
- The Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, H3A 1A3, Canada
| | - Josée Dostie
- Department of Biochemistry, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Morag Park
- Department of Biochemistry, McGill University, Montreal, QC, H3G 1Y6, Canada
- The Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, H3A 1A3, Canada
| | - Alexander R Judkins
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Keck School of Medicine of University of Southern California, Los Angeles, CA, 90027, USA
| | - Ralf Hass
- Biochemistry and Tumor Biology Laboratory, Department of Gynecology and Obstetrics, Medical University Hannover, 30625, Hannover, Germany
| | - Douglas A Levine
- Gynecologic Oncology, Laura and Isaac Perlmutter Cancer Center, NYU Langone Medical Center, New York, NY, 10016, USA
| | - Janusz Rak
- Department of Pediatrics, McGill University, Montreal, QC, H4A 3J1, Canada
- Research Institute of McGill University Health Centre Montreal Children's Hospital, Montreal, QC, H4A 3J1, Canada
| | - Barbara Vanderhyden
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1Y 4E9, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - William D Foulkes
- Department of Human Genetics, McGill University, Montreal, QC, H3A 0C7, Canada.
- Department of Medical Genetics, Jewish General Hospital, McGill University, Montreal, QC, H3T 1E2, Canada.
- Lady Davis Institute, McGill University, Montreal, QC, H3T 1E2, Canada.
- Department of Medical Genetics and Cancer Research Program, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, H4A 3JI, Canada.
| | - Sidong Huang
- Department of Biochemistry, McGill University, Montreal, QC, H3G 1Y6, Canada.
- The Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, H3A 1A3, Canada.
| |
Collapse
|
47
|
Kim HR, Rahman FU, Kim KS, Kim EK, Cho SM, Lee K, Moon OS, Seo YW, Yoon WK, Won YS, Kang H, Kim HC, Nam KH. Critical Roles of E2F3 in Growth and Musculo-skeletal Phenotype in Mice. Int J Med Sci 2019; 16:1557-1563. [PMID: 31839743 PMCID: PMC6909802 DOI: 10.7150/ijms.39068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 09/11/2019] [Indexed: 12/24/2022] Open
Abstract
E2F3, a member of the E2F family, plays a critical role in cell cycle and proliferation by targeting downstream, retinoblastoma (RB) a tumor suppressor family protein. The purpose of this study, was to investigate the role and function of E2F3 in vivo. We examined phenotypic abnormalities, by deletion of the E2f3 gene in mice. Complete ablation of the E2F3 was fully penetrant, in the pure C57BL/6N background. The E2f3+/ - mouse embryo developed normally without fatal disorder. However, they exhibited reduced body weight, growth retardation, skeletal imperfection, and poor grip strength ability. Findings suggest that E2F3 has a pivotal role in muscle and bone development, and affect normal mouse growth.
Collapse
Affiliation(s)
- Hae-Rim Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Yeonjudanji-ro 30, Chungbuk 28116, Korea
| | - Faiz Ur Rahman
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Yeonjudanji-ro 30, Chungbuk 28116, Korea
| | - Kwang-Soo Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Yeonjudanji-ro 30, Chungbuk 28116, Korea.,Department of Animal Science and Technology, Chung-Ang University, Seodong-daero 4726, Gyeonggi 17546, Korea
| | - Eun-Kyeung Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Yeonjudanji-ro 30, Chungbuk 28116, Korea
| | - Sang-Mi Cho
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Yeonjudanji-ro 30, Chungbuk 28116, Korea
| | - Kihoon Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Yeonjudanji-ro 30, Chungbuk 28116, Korea
| | - Ok-Sung Moon
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Yeonjudanji-ro 30, Chungbuk 28116, Korea
| | - Young-Won Seo
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Yeonjudanji-ro 30, Chungbuk 28116, Korea
| | - Won-Kee Yoon
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Yeonjudanji-ro 30, Chungbuk 28116, Korea
| | - Young-Suk Won
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Yeonjudanji-ro 30, Chungbuk 28116, Korea
| | - Hoyoung Kang
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Yeonjudanji-ro 30, Chungbuk 28116, Korea
| | - Hyoung-Chin Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Yeonjudanji-ro 30, Chungbuk 28116, Korea
| | - Ki-Hoan Nam
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Yeonjudanji-ro 30, Chungbuk 28116, Korea
| |
Collapse
|
48
|
Genome-wide identification of RETINOBLASTOMA RELATED 1 binding sites in Arabidopsis reveals novel DNA damage regulators. PLoS Genet 2018; 14:e1007797. [PMID: 30500810 PMCID: PMC6268010 DOI: 10.1371/journal.pgen.1007797] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/30/2018] [Indexed: 01/06/2023] Open
Abstract
Retinoblastoma (pRb) is a multifunctional regulator, which was likely present in the last common ancestor of all eukaryotes. The Arabidopsis pRb homolog RETINOBLASTOMA RELATED 1 (RBR1), similar to its animal counterparts, controls not only cell proliferation but is also implicated in developmental decisions, stress responses and maintenance of genome integrity. Although most functions of pRb-type proteins involve chromatin association, a genome-wide understanding of RBR1 binding sites in Arabidopsis is still missing. Here, we present a plant chromatin immunoprecipitation protocol optimized for genome-wide studies of indirectly DNA-bound proteins like RBR1. Our analysis revealed binding of Arabidopsis RBR1 to approximately 1000 genes and roughly 500 transposable elements, preferentially MITES. The RBR1-decorated genes broadly overlap with previously identified targets of two major transcription factors controlling the cell cycle, i.e. E2F and MYB3R3 and represent a robust inventory of RBR1-targets in dividing cells. Consistently, enriched motifs in the RBR1-marked domains include sequences related to the E2F consensus site and the MSA-core element bound by MYB3R transcription factors. Following up a key role of RBR1 in DNA damage response, we performed a meta-analysis combining the information about the RBR1-binding sites with genome-wide expression studies under DNA stress. As a result, we present the identification and mutant characterization of three novel genes required for growth upon genotoxic stress. The Retinoblastoma (pRb) tumor suppressor is a master regulator of the cell cycle and its inactivation is associated with many types of cancer. Since pRb’s first description as a transcriptional repressor of genes important for cell cycle progression, many more functions have been elucidated, e.g. in developmental decisions and genome integrity. Homologs of human pRb have been identified in most eukaryotes, including plants, indicating an ancient evolutionary origin of pRb-type proteins. We describe here the first genome-wide DNA-binding study for a plant pRb protein, i.e. RBR1, the only pRb homolog in Arabidopsis thaliana. We see prominent binding of RBR1 to the 5’ region of genes involved in cell cycle regulation, chromatin organization and DNA repair. Moreover, we also reveal extensive binding of RBR1 to specific classes of DNA transposons. Since RBR1 is involved in a plethora of processes, our dataset provides a valuable resource for researches from different fields. As an example, we used our dataset to successfully identify new genes necessary for growth upon DNA damage exerted by drugs such as cisplatin or the environmentally prevalent metal aluminum.
Collapse
|
49
|
Wu W, Zhou H, He F, Xiao Z, Jiang Y, Zhao M. Arsenate-mediated G2 cell cycle arrest in U-2OS cells involves phosphorylation of human polycomb protein 2 by p38 MAPK. FEBS Lett 2018; 592:4087-4097. [PMID: 30317550 DOI: 10.1002/1873-3468.13272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/15/2018] [Accepted: 09/03/2018] [Indexed: 12/24/2022]
Abstract
G2/M checkpoints ensure the proper timing of cell mitosis. We previously reported that p38 mitogen-activated protein kinase (MAPK) activation is essential for stress-induced G2 arrest in the U-2OS osteosarcoma cell line, but the molecular mechanism was obscure. Here, using the T7 phage display system, we find p38 directly binds to human polycomb protein 2 (HPC2), and arsenate-induced G2 arrest in U-2OS cell is p38- and phosphorylation of HPC2-dependent. Phosphorylation of HPC2 at threonine 495 is required for recruiting Ring1 and Rb family proteins to form the polycomb repressive complex (PRC), and PRC is required for arsenate-induced downregulation of CDC2 expression. Thus, p38 MAPK regulates cell cycle progression through phosphorylation of HPC2 to mediate transcriptional repression, providing a mechanistic link for arsenate-induced transcriptional silencing.
Collapse
Affiliation(s)
- Wei Wu
- Key Lab for Shock and Microcirculation Research of Guangdong, Southern Medical University, Guangzhou, China.,Department of Pathophysiology, Southern Medical University, Guangzhou, China
| | - Hui Zhou
- Key Lab for Shock and Microcirculation Research of Guangdong, Southern Medical University, Guangzhou, China.,Department of Pathophysiology, Southern Medical University, Guangzhou, China
| | - Fei He
- Key Lab for Shock and Microcirculation Research of Guangdong, Southern Medical University, Guangzhou, China.,Department of Pathophysiology, Southern Medical University, Guangzhou, China
| | - Zhi Xiao
- Key Lab for Shock and Microcirculation Research of Guangdong, Southern Medical University, Guangzhou, China.,Department of Pathophysiology, Southern Medical University, Guangzhou, China
| | - Yong Jiang
- Department of Pathophysiology, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Ming Zhao
- Key Lab for Shock and Microcirculation Research of Guangdong, Southern Medical University, Guangzhou, China.,Department of Pathophysiology, Southern Medical University, Guangzhou, China
| |
Collapse
|
50
|
Pietrzak J, Płoszaj T, Pułaski Ł, Robaszkiewicz A. EP300-HDAC1-SWI/SNF functional unit defines transcription of some DNA repair enzymes during differentiation of human macrophages. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1862:198-208. [PMID: 30414852 DOI: 10.1016/j.bbagrm.2018.10.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/17/2018] [Accepted: 10/31/2018] [Indexed: 01/31/2023]
Abstract
Differentiation of human macrophages predisposes these cells to numerous tasks, i.e. killing invading pathogens, and this entails the need for enhanced intracellular defences against stress, including conditions that may increase DNA damage. Our study shows that expression of DNA repair enzymes, such as PARP1, BRCA1 and XRCC1, are activated during macrophage development by the SWI/SNF chromatin remodelling complex, which serves as a histone acetylation sensor. It recognises and displaces epigenetically marked nucleosomes, thereby enabling transcription. Acetylation is controlled both in monocytes and macrophages by the co-operation of EP300 and HDAC1 activities. Differentiation modulates the activities of individual components of EP300-HDAC1-SWI/SNF functional unit and entails recruitment of PBAF to gene promoters. In monocytes, histone-deacetylated promoters of repressed PARP1, BRCA1 and XRCC1 respond only to HDAC inhibition, with an opening of the chromatin structure by BRM, whereas in macrophages both EP300 and HDAC1 contribute to the fine-tuning of nucleosomal acetylation, with HDAC1 remaining active and the balance of EP300 and HDAC1 activities controlling nucleosome eviction by BRG1-containing SWI/SNF. Since EP300-HDAC1-SWI/SNF operates at the level of gene promoters characterized simultaneously by the presence of E2F binding site(s) and CpG island(s), this allows cells to adjust PARP1, BRCA1 and XRCC1 transcription to the differentiation mode and to restart cell cycle progression. Thus, mutual interdependence between acetylase and deacetylase activities defines the acetylation-dependent code for regulation of histone density and gene transcription by SWI/SNF, notably on gene promoters of DNA repair enzymes.
Collapse
Affiliation(s)
- Julita Pietrzak
- Department of General Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Tomasz Płoszaj
- Department of Clinical and Laboratory Genetics, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland
| | - Łukasz Pułaski
- Laboratory of Transcriptional Regulation, Institute of Medical Biology PAS, Lodowa 106, 93-232 Lodz, Poland; Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Agnieszka Robaszkiewicz
- Department of General Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| |
Collapse
|