1
|
McCaig CD. The Link between Oxygen and Basement Membranes. Rev Physiol Biochem Pharmacol 2025; 187:61-87. [PMID: 39838009 DOI: 10.1007/978-3-031-68827-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Epithelial tissues and the basement membranes they sit on did not appear for billions of years. Their appearance was delayed most likely by a lack of oxygen, which is required for collagen synthesis, and which only began to build up following the Great Oxygenation Event ~ 2.4 billion years ago. Both the oxygenation of Earth and the multiple roles of collagen require regulation by electrical forces.
Collapse
Affiliation(s)
- Colin D McCaig
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| |
Collapse
|
2
|
Kück U, Pöggeler S. STRIPAK, a fundamental signaling hub of eukaryotic development. Microbiol Mol Biol Rev 2024; 88:e0020523. [PMID: 39526753 DOI: 10.1128/mmbr.00205-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
SUMMARYThe striatin-interacting phosphatase and kinase (STRIPAK) complex is involved in the regulation of many developmental processes in eukaryotic microorganisms and all animals, including humans. STRIPAK is a component of protein phosphatase 2A (PP2A), a highly conserved serine-threonine phosphatase composed of catalytic subunits (PP2Ac), a scaffolding subunit (PP2AA) and various substrate-directing B regulatory subunits. In particular, the B''' regulatory subunit called striatin has evoked major interest over the last 20 years. Studies in fungal systems have contributed substantially to our current knowledge about STRIPAK composition, assembly, and cellular localization, as well as its regulatory role in autophagy and the morphology of fungal development. STRIPAK represents a signaling hub with many kinases and thus integrates upstream and downstream information from many conserved eukaryotic signaling pathways. A profound understanding of STRIPAK's regulatory role in fungi opens the gateway to understanding the multifarious functions carried out by STRIPAK in higher eukaryotes, including its contribution to malignant cell growth.
Collapse
Affiliation(s)
- Ulrich Kück
- Allgemeine & Molekulare Botanik, Ruhr-University, Bochum, Germany
| | - Stefanie Pöggeler
- Department of Genetics of Eukaryotic Microorganisms, Institute of Microbiology and Genetics, Georg-August-University, Göttingen, Germany
- Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University, Göttingen, Germany
| |
Collapse
|
3
|
Zhang L, Wang L, Fang Y, Gao Y, Yang S, Su J, Ni J, Teng Y, Bai S. Phosphorylated transcription factor PuHB40 mediates ROS-dependent anthocyanin biosynthesis in pear exposed to high light. THE PLANT CELL 2024; 36:3562-3583. [PMID: 38842382 PMCID: PMC11371158 DOI: 10.1093/plcell/koae167] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/15/2024] [Accepted: 06/03/2024] [Indexed: 06/07/2024]
Abstract
Plants are increasingly vulnerable to environmental stresses because of global warming and climate change. Stress-induced reactive oxygen species (ROS) accumulation results in plant cell damage, even cell death. Anthocyanins are important antioxidants that scavenge ROS to maintain ROS homeostasis. However, the mechanism underlying ROS-induced anthocyanin accumulation is unclear. In this study, we determined that the HD-Zip I family member transcription factor PuHB40 mediates ROS-dependent anthocyanin biosynthesis under high-light stress in pear (Pyrus ussuriensis). Specifically, PuHB40 induces the PuMYB123-like-PubHLH3 transcription factor complex for anthocyanin biosynthesis. The PuHB40-mediated transcriptional activation depends on its phosphorylation level, which is regulated by protein phosphatase PP2A. Elevated ROS content maintains high PuHB40 phosphorylation levels while also enhancing the PuHB40-induced PuMYB123-like transcription by decreasing the PuPP2AA2 expression, ultimately leading to increased anthocyanin biosynthesis. Our study reveals a pathway regulating the ROS-induced anthocyanin biosynthesis in pears, further clarifying the mechanism underlying the abiotic stress-induced anthocyanin biosynthesis, which may have implications for improving plant stress tolerance.
Collapse
Affiliation(s)
- Lu Zhang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Lu Wang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yongchen Fang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yuhao Gao
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Shulin Yang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Jun Su
- Institute of Horticulture, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Junbei Ni
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yuanwen Teng
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
- Hainan Institute of Zhejiang University, Sanya, Hainan 572000, China
| | - Songling Bai
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
| |
Collapse
|
4
|
Banerjee A, Mathew S, Naqvi MM, Yilmaz SZ, Zacharopoulou M, Doruker P, Kumita JR, Yang SH, Gur M, Itzhaki LS, Gordon R, Bahar I. Influence of point mutations on PR65 conformational adaptability: Insights from molecular simulations and nanoaperture optical tweezers. SCIENCE ADVANCES 2024; 10:eadn2208. [PMID: 38820156 PMCID: PMC11141623 DOI: 10.1126/sciadv.adn2208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/29/2024] [Indexed: 06/02/2024]
Abstract
PR65 is the HEAT repeat scaffold subunit of the heterotrimeric protein phosphatase 2A (PP2A) and an archetypal tandem repeat protein. Its conformational mechanics plays a crucial role in PP2A function by opening/closing substrate binding/catalysis interface. Using in silico saturation mutagenesis, we identified PR65 "hinge" residues whose substitutions could alter its conformational adaptability and thereby PP2A function, and selected six mutations that were verified to be expressed and soluble. Molecular simulations and nanoaperture optical tweezers revealed consistent results on the specific effects of the mutations on the structure and dynamics of PR65. Two mutants observed in simulations to stabilize extended/open conformations exhibited higher corner frequencies and lower translational scattering in experiments, indicating a shift toward extended conformations, whereas another displayed the opposite features, confirmed by both simulations and experiments. The study highlights the power of single-molecule nanoaperture-based tweezers integrated with in silico approaches for exploring the effect of mutations on protein structure and dynamics.
Collapse
Affiliation(s)
- Anupam Banerjee
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Samuel Mathew
- Department of Electrical and Computer Engineering, University of Victoria, Victoria V8P 5C2, Canada
| | - Mohsin M. Naqvi
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - Sema Z. Yilmaz
- Department of Mechanical Engineering, Istanbul Technical University, 34437 Istanbul, Turkey
| | - Maria Zacharopoulou
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - Pemra Doruker
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Janet R. Kumita
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - Shang-Hua Yang
- Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Mert Gur
- Department of Mechanical Engineering, Istanbul Technical University, 34437 Istanbul, Turkey
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Laura S. Itzhaki
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - Reuven Gordon
- Department of Electrical and Computer Engineering, University of Victoria, Victoria V8P 5C2, Canada
| | - Ivet Bahar
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA
- Department of Biochemistry and Cell Biology, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
5
|
Stan A, Bosart K, Kaur M, Vo M, Escorcia W, Yoder RJ, Bouley RA, Petreaca RC. Detection of driver mutations and genomic signatures in endometrial cancers using artificial intelligence algorithms. PLoS One 2024; 19:e0299114. [PMID: 38408048 PMCID: PMC10896512 DOI: 10.1371/journal.pone.0299114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/05/2024] [Indexed: 02/28/2024] Open
Abstract
Analyzed endometrial cancer (EC) genomes have allowed for the identification of molecular signatures, which enable the classification, and sometimes prognostication, of these cancers. Artificial intelligence algorithms have facilitated the partitioning of mutations into driver and passenger based on a variety of parameters, including gene function and frequency of mutation. Here, we undertook an evaluation of EC cancer genomes deposited on the Catalogue of Somatic Mutations in Cancers (COSMIC), with the goal to classify all mutations as either driver or passenger. Our analysis showed that approximately 2.5% of all mutations are driver and cause cellular transformation and immortalization. We also characterized nucleotide level mutation signatures, gross chromosomal re-arrangements, and gene expression profiles. We observed that endometrial cancers show distinct nucleotide substitution and chromosomal re-arrangement signatures compared to other cancers. We also identified high expression levels of the CLDN18 claudin gene, which is involved in growth, survival, metastasis and proliferation. We then used in silico protein structure analysis to examine the effect of certain previously uncharacterized driver mutations on protein structure. We found that certain mutations in CTNNB1 and TP53 increase protein stability, which may contribute to cellular transformation. While our analysis retrieved previously classified mutations and genomic alterations, which is to be expected, this study also identified new signatures. Additionally, we show that artificial intelligence algorithms can be effectively leveraged to accurately predict key drivers of cancer. This analysis will expand our understanding of ECs and improve the molecular toolbox for classification, diagnosis, or potential treatment of these cancers.
Collapse
Affiliation(s)
- Anda Stan
- Biology Program, The Ohio State University, Marion, Ohio, United States of America
| | - Korey Bosart
- Biology Program, The Ohio State University, Marion, Ohio, United States of America
| | - Mehak Kaur
- Biology Program, The Ohio State University, Marion, Ohio, United States of America
| | - Martin Vo
- Biology Department, Xavier University, Cincinnati, Ohio, United States of America
| | - Wilber Escorcia
- Biology Department, Xavier University, Cincinnati, Ohio, United States of America
| | - Ryan J Yoder
- Department of Chemistry and Biochemistry, The Ohio State University, Marion, Ohio, United States of America
| | - Renee A Bouley
- Department of Chemistry and Biochemistry, The Ohio State University, Marion, Ohio, United States of America
| | - Ruben C Petreaca
- Department of Molecular Genetics, The Ohio State University, Marion, Ohio, United States of America
- James Comprehensive Cancer Center, The Ohio State University Columbus, Columbus, Ohio, United States of America
| |
Collapse
|
6
|
Qin K, Yu M, Fan J, Wang H, Zhao P, Zhao G, Zeng W, Chen C, Wang Y, Wang A, Schwartz Z, Hong J, Song L, Wagstaff W, Haydon RC, Luu HH, Ho SH, Strelzow J, Reid RR, He TC, Shi LL. Canonical and noncanonical Wnt signaling: Multilayered mediators, signaling mechanisms and major signaling crosstalk. Genes Dis 2024; 11:103-134. [PMID: 37588235 PMCID: PMC10425814 DOI: 10.1016/j.gendis.2023.01.030] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/01/2022] [Accepted: 01/29/2023] [Indexed: 08/18/2023] Open
Abstract
Wnt signaling plays a major role in regulating cell proliferation and differentiation. The Wnt ligands are a family of 19 secreted glycoproteins that mediate their signaling effects via binding to Frizzled receptors and LRP5/6 coreceptors and transducing the signal either through β-catenin in the canonical pathway or through a series of other proteins in the noncanonical pathway. Many of the individual components of both canonical and noncanonical Wnt signaling have additional functions throughout the body, establishing the complex interplay between Wnt signaling and other signaling pathways. This crosstalk between Wnt signaling and other pathways gives Wnt signaling a vital role in many cellular and organ processes. Dysregulation of this system has been implicated in many diseases affecting a wide array of organ systems, including cancer and embryological defects, and can even cause embryonic lethality. The complexity of this system and its interacting proteins have made Wnt signaling a target for many therapeutic treatments. However, both stimulatory and inhibitory treatments come with potential risks that need to be addressed. This review synthesized much of the current knowledge on the Wnt signaling pathway, beginning with the history of Wnt signaling. It thoroughly described the different variants of Wnt signaling, including canonical, noncanonical Wnt/PCP, and the noncanonical Wnt/Ca2+ pathway. Further description involved each of its components and their involvement in other cellular processes. Finally, this review explained the various other pathways and processes that crosstalk with Wnt signaling.
Collapse
Affiliation(s)
- Kevin Qin
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael Yu
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jiaming Fan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Hongwei Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Piao Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Guozhi Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wei Zeng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Interventional Neurology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong 523475, China
| | - Connie Chen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yonghui Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Clinical Laboratory Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200000, China
| | - Annie Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Zander Schwartz
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- School of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Jeffrey Hong
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Lily Song
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Sherwin H. Ho
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jason Strelzow
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Lewis L. Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
7
|
Bolhuis DL, Dixit R, Slep KC. Crystal structure of the Arabidopsis SPIRAL2 C-terminal domain reveals a p80-Katanin-like domain. PLoS One 2023; 18:e0290024. [PMID: 38157339 PMCID: PMC10756542 DOI: 10.1371/journal.pone.0290024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 08/01/2023] [Indexed: 01/03/2024] Open
Abstract
Epidermal cells of dark-grown plant seedlings reorient their cortical microtubule arrays in response to blue light from a net lateral orientation to a net longitudinal orientation with respect to the long axis of cells. The molecular mechanism underlying this microtubule array reorientation involves katanin, a microtubule severing enzyme, and a plant-specific microtubule associated protein called SPIRAL2. Katanin preferentially severs longitudinal microtubules, generating seeds that amplify the longitudinal array. Upon severing, SPIRAL2 binds nascent microtubule minus ends and limits their dynamics, thereby stabilizing the longitudinal array while the lateral array undergoes net depolymerization. To date, no experimental structural information is available for SPIRAL2 to help inform its mechanism. To gain insight into SPIRAL2 structure and function, we determined a 1.8 Å resolution crystal structure of the Arabidopsis thaliana SPIRAL2 C-terminal domain. The domain is composed of seven core α-helices, arranged in an α-solenoid. Amino-acid sequence conservation maps primarily to one face of the domain involving helices α1, α3, α5, and an extended loop, the α6-α7 loop. The domain fold is similar to, yet structurally distinct from the C-terminal domain of Ge-1 (an mRNA decapping complex factor involved in P-body localization) and, surprisingly, the C-terminal domain of the katanin p80 regulatory subunit. The katanin p80 C-terminal domain heterodimerizes with the MIT domain of the katanin p60 catalytic subunit, and in metazoans, binds the microtubule minus-end factors CAMSAP3 and ASPM. Structural analysis predicts that SPIRAL2 does not engage katanin p60 in a mode homologous to katanin p80. The SPIRAL2 structure highlights an interesting evolutionary convergence of domain architecture and microtubule minus-end localization between SPIRAL2 and katanin complexes, and establishes a foundation upon which structure-function analysis can be conducted to elucidate the role of this domain in the regulation of plant microtubule arrays.
Collapse
Affiliation(s)
- Derek L. Bolhuis
- Program in Molecular and Cellular Biophysics, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Ram Dixit
- Department of Biology and Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Kevin C. Slep
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
8
|
Madan V, Albacete‐Albacete L, Jin L, Scaturro P, Watson JL, Muschalik N, Begum F, Boulanger J, Bauer K, Kiebler MA, Derivery E, Bullock SL. HEATR5B associates with dynein-dynactin and promotes motility of AP1-bound endosomal membranes. EMBO J 2023; 42:e114473. [PMID: 37872872 PMCID: PMC10690479 DOI: 10.15252/embj.2023114473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/25/2023] Open
Abstract
The microtubule motor dynein mediates polarised trafficking of a wide variety of organelles, vesicles and macromolecules. These functions are dependent on the dynactin complex, which helps recruit cargoes to dynein's tail and activates motor movement. How the dynein-dynactin complex orchestrates trafficking of diverse cargoes is unclear. Here, we identify HEATR5B, an interactor of the adaptor protein-1 (AP1) clathrin adaptor complex, as a novel player in dynein-dynactin function. HEATR5B was recovered in a biochemical screen for proteins whose association with the dynein tail is augmented by dynactin. We show that HEATR5B binds directly to the dynein tail and dynactin and stimulates motility of AP1-associated endosomal membranes in human cells. We also demonstrate that the Drosophila HEATR5B homologue is an essential gene that selectively promotes dynein-based transport of AP1-bound membranes to the Golgi apparatus. As HEATR5B lacks the coiled-coil architecture typical of dynein adaptors, our data point to a non-canonical process orchestrating motor function on a specific cargo. We additionally show that HEATR5B promotes association of AP1 with endosomal membranes independently of dynein. Thus, HEATR5B co-ordinates multiple events in AP1-based trafficking.
Collapse
Affiliation(s)
- Vanesa Madan
- Division of Cell BiologyMedical Research Council (MRC) Laboratory of Molecular BiologyCambridgeUK
- Present address:
AbcamCambridgeUK
| | - Lucas Albacete‐Albacete
- Division of Cell BiologyMedical Research Council (MRC) Laboratory of Molecular BiologyCambridgeUK
| | - Li Jin
- Division of Cell BiologyMedical Research Council (MRC) Laboratory of Molecular BiologyCambridgeUK
| | | | - Joseph L Watson
- Division of Cell BiologyMedical Research Council (MRC) Laboratory of Molecular BiologyCambridgeUK
- Present address:
Department of BiochemistryUniversity of WashingtonSeattleWAUSA
| | - Nadine Muschalik
- Division of Cell BiologyMedical Research Council (MRC) Laboratory of Molecular BiologyCambridgeUK
| | - Farida Begum
- Division of Cell BiologyMedical Research Council (MRC) Laboratory of Molecular BiologyCambridgeUK
| | - Jérôme Boulanger
- Division of Cell BiologyMedical Research Council (MRC) Laboratory of Molecular BiologyCambridgeUK
| | - Karl Bauer
- Biomedical Center, Department for Cell Biology, Medical FacultyLudwig‐Maximilians‐University of MunichMunichGermany
| | - Michael A Kiebler
- Biomedical Center, Department for Cell Biology, Medical FacultyLudwig‐Maximilians‐University of MunichMunichGermany
| | - Emmanuel Derivery
- Division of Cell BiologyMedical Research Council (MRC) Laboratory of Molecular BiologyCambridgeUK
| | - Simon L Bullock
- Division of Cell BiologyMedical Research Council (MRC) Laboratory of Molecular BiologyCambridgeUK
| |
Collapse
|
9
|
Zhang H, Wu S, Itzhaki LS, Perrett S. Interaction between huntingtin exon 1 and HEAT repeat structure probed by chimeric model proteins. Protein Sci 2023; 32:e4810. [PMID: 37853955 PMCID: PMC10659953 DOI: 10.1002/pro.4810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/11/2023] [Accepted: 10/15/2023] [Indexed: 10/20/2023]
Abstract
Huntington disease (HD) is associated with aggregation of huntingtin (HTT) protein containing over 35 continuous Q residues within the N-terminal exon 1 encoded region. The C-terminal of the HTT protein consists mainly of HEAT repeat structure which serves as a scaffold for multiple cellular activities. Structural and biochemical analysis of the intact HTT protein has been hampered by its huge size (~300 kDa) and most in vitro studies to date have focused on the properties of the exon 1 region. To explore the interaction between HTT exon 1 and the HEAT repeat structure, we constructed chimeric proteins containing the N-terminal HTT exon 1 region and the HEAT repeat protein PR65/A. The results indicate that HTT exon 1 slightly destabilizes the downstream HEAT repeat structure and endows the HEAT repeat structure with more conformational flexibility. Wild-type and pathological lengths of polyQ did not show differences in the interaction between HTT exon 1 and the HEAT repeats. With the C-terminal fusion of PR65/A, HTT exon 1 containing pathological lengths of polyQ could still form amyloid fibrils, but the higher-order architecture of fibrils and kinetics of fibril formation were affected by the C-terminal fusion of HEAT repeats. This indicates that interaction between HTT exon 1 and HEAT repeat structure is compatible with both normal function of HTT protein and the pathogenesis of HD, and this study provides a potential model for further exploration.
Collapse
Affiliation(s)
- Hong Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in BiomacromoleculesInstitute of Biophysics, Chinese Academy of SciencesBeijingChina
- University of the Chinese Academy of SciencesBeijingChina
- Institute of Basic Medical Sciences, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| | - Si Wu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in BiomacromoleculesInstitute of Biophysics, Chinese Academy of SciencesBeijingChina
- University of the Chinese Academy of SciencesBeijingChina
| | | | - Sarah Perrett
- National Laboratory of Biomacromolecules, CAS Center for Excellence in BiomacromoleculesInstitute of Biophysics, Chinese Academy of SciencesBeijingChina
- University of the Chinese Academy of SciencesBeijingChina
| |
Collapse
|
10
|
Casari E, Pizzul P, Rinaldi C, Gnugnoli M, Clerici M, Longhese MP. The PP2A phosphatase counteracts the function of the 9-1-1 axis in checkpoint activation. Cell Rep 2023; 42:113360. [PMID: 38007689 DOI: 10.1016/j.celrep.2023.113360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/25/2023] [Accepted: 10/13/2023] [Indexed: 11/27/2023] Open
Abstract
DNA damage elicits a checkpoint response depending on the Mec1/ATR kinase, which detects the presence of single-stranded DNA and activates the effector kinase Rad53/CHK2. In Saccharomyces cerevisiae, one of the signaling circuits leading to Rad53 activation involves the evolutionarily conserved 9-1-1 complex, which acts as a platform for the binding of Dpb11 and Rad9 (referred to as the 9-1-1 axis) to generate a protein complex that allows Mec1 activation. By examining the effects of both loss-of-function and hypermorphic mutations, here, we show that the Cdc55 and Tpd3 subunits of the PP2A phosphatase counteract activation of the 9-1-1 axis. The lack of this inhibitory function results in DNA-damage sensitivity, sustained checkpoint-mediated cell-cycle arrest, and impaired resection of DNA double-strand breaks. This PP2A anti-checkpoint role depends on the capacity of Cdc55 to interact with Ddc1 and to counteract Ddc1-Dpb11 complex formation by preventing Dpb11 recognition of Ddc1 phosphorylated on Thr602.
Collapse
Affiliation(s)
- Erika Casari
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, 20126 Milano, Italy
| | - Paolo Pizzul
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, 20126 Milano, Italy
| | - Carlo Rinaldi
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, 20126 Milano, Italy
| | - Marco Gnugnoli
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, 20126 Milano, Italy
| | - Michela Clerici
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, 20126 Milano, Italy
| | - Maria Pia Longhese
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, 20126 Milano, Italy.
| |
Collapse
|
11
|
Bahar I, Banerjee A, Mathew S, Naqvi M, Yilmaz S, Zachoropoulou M, Doruker P, Kumita J, Yang SH, Gur M, Itzhaki L, Gordon R. Influence of Point Mutations on PR65 Conformational Adaptability: Insights from Nanoaperture Optical Tweezer Experiments and Molecular Simulations. RESEARCH SQUARE 2023:rs.3.rs-3599809. [PMID: 38014259 PMCID: PMC10680943 DOI: 10.21203/rs.3.rs-3599809/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
PR65 is the HEAT-repeat scaffold subunit of the heterotrimeric protein phosphatase 2A (PP2A) and an archetypal tandem-repeat protein, forming a spring-like architecture. PR65 conformational mechanics play a crucial role in PP2A function by opening/closing the substrate-binding/catalysis interface. Using in-silico saturation mutagenesis we identified "hinge" residues of PR65, whose substitutions are predicted to restrict its conformational adaptability and thereby disrupt PP2A function. Molecular simulations revealed that a subset of hinge mutations stabilized the extended/open conformation, whereas another had the opposite effect. By trapping in nanoaperture optical tweezer, we characterized PR65 motion and showed that the former mutants exhibited higher corner frequencies and lower translational scattering, indicating a shift towards extended conformations, whereas the latter showed the opposite behavior. Thus, experiments confirm the conformations predicted computationally. The study highlights the utility of nanoaperture-based tweezers for exploring structure and dynamics, and the power of integrating this single-molecule method with in silico approaches.
Collapse
|
12
|
Li H, Wang J, Kuan TA, Tang B, Feng L, Wang J, Cheng Z, Skłenar J, Derbyshire P, Hulin M, Li Y, Zhai Y, Hou Y, Menke FLH, Wang Y, Ma W. Pathogen protein modularity enables elaborate mimicry of a host phosphatase. Cell 2023:S0092-8674(23)00640-2. [PMID: 37369204 DOI: 10.1016/j.cell.2023.05.049] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/18/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023]
Abstract
Pathogens produce diverse effector proteins to manipulate host cellular processes. However, how functional diversity is generated in an effector repertoire is poorly understood. Many effectors in the devastating plant pathogen Phytophthora contain tandem repeats of the "(L)WY" motif, which are structurally conserved but variable in sequences. Here, we discovered a functional module formed by a specific (L)WY-LWY combination in multiple Phytophthora effectors, which efficiently recruits the serine/threonine protein phosphatase 2A (PP2A) core enzyme in plant hosts. Crystal structure of an effector-PP2A complex shows that the (L)WY-LWY module enables hijacking of the host PP2A core enzyme to form functional holoenzymes. While sharing the PP2A-interacting module at the amino terminus, these effectors possess divergent C-terminal LWY units and regulate distinct sets of phosphoproteins in the host. Our results highlight the appropriation of an essential host phosphatase through molecular mimicry by pathogens and diversification promoted by protein modularity in an effector repertoire.
Collapse
Affiliation(s)
- Hui Li
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Jinlong Wang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tung Ariel Kuan
- Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Bozeng Tang
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Li Feng
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Jiuyu Wang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhi Cheng
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jan Skłenar
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Paul Derbyshire
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Michelle Hulin
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Yufei Li
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Yi Zhai
- Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Yingnan Hou
- Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA; School of Agriculture & Biology, Shanghai Jiaotong University, Shanghai 200240, China
| | - Frank L H Menke
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Yanli Wang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Wenbo Ma
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK; Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
13
|
Zhao M, Yang Y, Shi Y, Chen X, Yang Y, Pan L, Du Z, Sun H, Yao C, Ma G, Du A. PP2Acα-B'/PR61 Holoenzyme of Toxoplasma gondii Is Required for the Amylopectin Metabolism and Proliferation of Tachyzoites. Microbiol Spectr 2023; 11:e0010423. [PMID: 37199633 PMCID: PMC10269777 DOI: 10.1128/spectrum.00104-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 04/26/2023] [Indexed: 05/19/2023] Open
Abstract
Here, we report that the inhibition of the PP2A subfamily by okadaic acid results in an accumulation of polysaccharides in the acute infection stage (tachyzoites) of Toxoplasma gondii, which is a protozoan of global zoonotic importance and a model for the apicomplexan parasites. The loss of the catalytic subunit α of PP2A (ΔPP2Acα) in RHΔku80 leads to the polysaccharide accumulation phenotype in the base of tachyzoites as well as residual bodies and significantly compromises the intracellular growth in vitro and the virulence in vivo. A metabolomic analysis revealed that the accumulated polysaccharides in ΔPP2Acα are derived from interrupted glucose metabolism, which affects the production of ATP and energy homeostasis in the T. gondii knockout. The assembly of the PP2Acα holoenzyme complex involved in the amylopectin metabolism in tachyzoites is possibly not regulated by LCMT1 or PME1, and this finding contributes to the identification of the regulatory B subunit (B'/PR61). The loss of B'/PR61 results in the accumulation of polysaccharide granules in the tachyzoites as well as reduced plaque formation ability, exactly the same as ΔPP2Acα. Taken together, we have identified a PP2Acα-B'/PR61 holoenzyme complex that plays a crucial role in the carbohydrate metabolism and viability in T. gondii, and its deficiency in function remarkably suppresses the growth and virulence of this important zoonotic parasite both in vitro and in vivo. Hence, rendering the PP2Acα-B'/PR61 holoenzyme functionless should be a promising strategy for the intervention of Toxoplasma acute infection and toxoplasmosis. IMPORTANCE Toxoplasma gondii switches back and forth between acute and chronic infections, mainly in response to host immunologic status, which is characterized by flexible but specific energy metabolism. Polysaccharide granules are accumulated in the acute infection stage of T. gondii that have been exposed to a chemical inhibitor of the PP2A subfamily. The genetic depletion of the catalytic subunit α of PP2A leads to this phenotype and significantly affects the cell metabolism, energy production, and viability. Further, a regulatory B subunit PR61 is necessary for the PP2A holoenzyme to function in glucose metabolism and in the intracellular growth of T. gondii tachyzoites. A deficiency of this PP2A holoenzyme complex (PP2Acα-B'/PR61) in T. gondii knockouts results in the abnormal accumulation of polysaccharides and the disruption of energy metabolism, suppressing their growth and virulence. These findings provide novel insights into cell metabolism and identify a potential target for an intervention against a T. gondii acute infection.
Collapse
Affiliation(s)
- Mingxiu Zhao
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yi Yang
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yue Shi
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
- Hainan Institute, Zhejiang University, Yazhou Bay Sci-Tech City, Sanya, China
| | - Xueqiu Chen
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yimin Yang
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Lingtao Pan
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Zhendong Du
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Hongchao Sun
- Department of Animal Parasitology, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Science, Hangzhou, Zhejiang Province, China
| | - Chaoqun Yao
- Department of Biomedical Sciences and One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, Basseterre, St. Kitts and Nevis
| | - Guangxu Ma
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - Aifang Du
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
14
|
Patil RS, Kovacs-Kasa A, Gorshkov BA, Fulton DJR, Su Y, Batori RK, Verin AD. Serine/Threonine Protein Phosphatases 1 and 2A in Lung Endothelial Barrier Regulation. Biomedicines 2023; 11:1638. [PMID: 37371733 PMCID: PMC10296329 DOI: 10.3390/biomedicines11061638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/28/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Vascular barrier dysfunction is characterized by increased permeability and inflammation of endothelial cells (ECs), which are prominent features of acute lung injury (ALI), acute respiratory distress syndrome (ARDS), and sepsis, and a major complication of the SARS-CoV-2 infection and COVID-19. Functional impairment of the EC barrier and accompanying inflammation arises due to microbial toxins and from white blood cells of the lung as part of a defensive action against pathogens, ischemia-reperfusion or blood product transfusions, and aspiration syndromes-based injury. A loss of barrier function results in the excessive movement of fluid and macromolecules from the vasculature into the interstitium and alveolae resulting in pulmonary edema and collapse of the architecture and function of the lungs, and eventually culminates in respiratory failure. Therefore, EC barrier integrity, which is heavily dependent on cytoskeletal elements (mainly actin filaments, microtubules (MTs), cell-matrix focal adhesions, and intercellular junctions) to maintain cellular contacts, is a critical requirement for the preservation of lung function. EC cytoskeletal remodeling is regulated, at least in part, by Ser/Thr phosphorylation/dephosphorylation of key cytoskeletal proteins. While a large body of literature describes the role of phosphorylation of cytoskeletal proteins on Ser/Thr residues in the context of EC barrier regulation, the role of Ser/Thr dephosphorylation catalyzed by Ser/Thr protein phosphatases (PPases) in EC barrier regulation is less documented. Ser/Thr PPases have been proposed to act as a counter-regulatory mechanism that preserves the EC barrier and opposes EC contraction. Despite the importance of PPases, our knowledge of the catalytic and regulatory subunits involved, as well as their cellular targets, is limited and under-appreciated. Therefore, the goal of this review is to discuss the role of Ser/Thr PPases in the regulation of lung EC cytoskeleton and permeability with special emphasis on the role of protein phosphatase 1 (PP1) and protein phosphatase 2A (PP2A) as major mammalian Ser/Thr PPases. Importantly, we integrate the role of PPases with the structural dynamics of the cytoskeleton and signaling cascades that regulate endothelial cell permeability and inflammation.
Collapse
Affiliation(s)
- Rahul S. Patil
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Anita Kovacs-Kasa
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Boris A. Gorshkov
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - David J. R. Fulton
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Pharmacology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Yunchao Su
- Department of Pharmacology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Robert K. Batori
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Alexander D. Verin
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
15
|
Kaynak BT, Dahmani ZL, Doruker P, Banerjee A, Yang SH, Gordon R, Itzhaki LS, Bahar I. Cooperative mechanics of PR65 scaffold underlies the allosteric regulation of the phosphatase PP2A. Structure 2023; 31:607-618.e3. [PMID: 36948205 PMCID: PMC10164121 DOI: 10.1016/j.str.2023.02.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/25/2023] [Accepted: 02/23/2023] [Indexed: 03/24/2023]
Abstract
PR65, a horseshoe-shaped scaffold composed of 15 HEAT (observed in Huntingtin, elongation factor 3, protein phosphatase 2A, and the yeast kinase TOR1) repeats, forms, together with catalytic and regulatory subunits, the heterotrimeric protein phosphatase PP2A. We examined the role of PR65 in enabling PP2A enzymatic activity with computations at various levels of complexity, including hybrid approaches that combine full-atomic and elastic network models. Our study points to the high flexibility of this scaffold allowing for end-to-end distance fluctuations of 40-50 Å between compact and extended conformations. Notably, the intrinsic dynamics of PR65 facilitates complexation with the catalytic subunit and is retained in the PP2A complex enabling PR65 to engage the two domains of the catalytic subunit and provide the mechanical framework for enzymatic activity, with support from the regulatory subunit. In particular, the intra-repeat coils at the C-terminal arm play an important role in allosterically mediating the collective dynamics of PP2A, pointing to target sites for modulating PR65 function.
Collapse
Affiliation(s)
- Burak T Kaynak
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Zakaria L Dahmani
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Pemra Doruker
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Anupam Banerjee
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Laufer Center for Physical and Quantitative Biology, and Department of Biochemistry and Cell Biology, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Shang-Hua Yang
- Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Reuven Gordon
- Department of Electrical and Computer Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Laura S Itzhaki
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - Ivet Bahar
- Laufer Center for Physical and Quantitative Biology, and Department of Biochemistry and Cell Biology, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
16
|
Haanen TJ, O'Connor CM, Narla G. Biased holoenzyme assembly of protein phosphatase 2A (PP2A): From cancer to small molecules. J Biol Chem 2022; 298:102656. [PMID: 36328247 PMCID: PMC9707111 DOI: 10.1016/j.jbc.2022.102656] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Protein phosphatase 2A (PP2A) is a family of serine threonine phosphatases responsible for regulating protein phosphorylation, thus opposing the activity of cellular kinases. PP2A is composed of a catalytic subunit (PP2A Cα/β) and scaffolding subunit (PP2A Aα/β) and various substrate-directing B regulatory subunits. PP2A biogenesis is regulated at multiple levels. For example, the sequestration of the free catalytic subunit during the process of biogenesis avoids promiscuous phosphatase activity. Posttranslational modifications of PP2A C direct PP2A heterotrimeric formation. Additionally, PP2A functions as a haploinsufficient tumor suppressor, where attenuated PP2A enzymatic activity creates a permissive environment for oncogenic transformation. Recent work studying PP2A in cancer showed that its role in tumorigenesis is more nuanced, with some holoenzymes being tumor suppressive, while others are required for oncogenic transformation. In cancer biology, PP2A function is modulated through various mechanisms including the displacement of specific B regulatory subunits by DNA tumor viral antigens, by recurrent mutations, and through loss of carboxymethyl-sensitive heterotrimeric complexes. In aggregate, these alterations bias PP2A activity away from its tumor suppressive functions and toward oncogenic ones. From a therapeutic perspective, molecular glues and disruptors present opportunities for both the selective stabilization of tumor-suppressive holoenzymes and disruption of holoenzymes that are pro-oncogenic. Collectively, these approaches represent an attractive cancer therapy for a wide range of tumor types. This review will discuss the mechanisms by which PP2A holoenzyme formation is dysregulated in cancer and the current therapies that are aimed at biasing heterotrimer formation of PP2A for the treatment of cancer.
Collapse
Affiliation(s)
- Terrance J Haanen
- Division of Genetic Medicine, Department of Internal Medicine, The University of Michigan, Ann Arbor, Michigan, USA
| | - Caitlin M O'Connor
- Division of Genetic Medicine, Department of Internal Medicine, The University of Michigan, Ann Arbor, Michigan, USA
| | - Goutham Narla
- Division of Genetic Medicine, Department of Internal Medicine, The University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
17
|
Baker EK, Solivio B, Pode-Shakked B, Cross LA, Sullivan B, Raas-Rothschild A, Chorin O, Barel O, Bar-Yosef O, Husami A, Hopkin RJ, Prada CE, Stottmann RW, Weaver KN. PPP2R1A neurodevelopmental disorder is associated with congenital heart defects. Am J Med Genet A 2022; 188:3262-3277. [PMID: 36209351 DOI: 10.1002/ajmg.a.62946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/03/2022] [Accepted: 07/05/2022] [Indexed: 01/31/2023]
Abstract
Protein phosphatase 2A (PP2A) is a heterotrimeric serine/threonine phosphatase that regulates numerous biological processes. PPP2R1A encodes the scaffolding "Aα" subunit of PP2A. To date, nearly 40 patients have been previously reported with 19 different pathogenic PPP2R1A variants, with phenotypes including intellectual disability, developmental delay, epilepsy, infant agenesis/dysgenesis of the corpus callosum, and dysmorphic features. Apart from a single case, severe congenital heart defects (CHD) have not been described. We report four new unrelated individuals with pathogenic heterozygous PPP2R1A variants and CHD and model the crystal structure of several variants to investigate mechanisms of phenotype disparity. Individuals 1 and 2 have a previously described variant (c.548G>A, p.R183Q) and similar phenotypes with severe ventriculomegaly, agenesis/dysgenesis of the corpus callosum, and severe CHD. Individual 3 also has a recurrent variant (c.544C>T, p.R182W) and presented with agenesis of corpus callosum, ventriculomegaly, mild pulmonic stenosis, and small patent foramen ovale. Individual 4 has a novel variant (c.536C>A, p.P179H), ventriculomegaly, and atrial septal defect. To conclude, we propose expansion of the phenotype of PPP2R1A neurodevelopmental disorder to include CHD. Further, the R183Q variant has now been described in three individuals, all with severe neurologic abnormalities, severe CHD, and early death suggesting that this variant may be particularly deleterious.
Collapse
Affiliation(s)
- Elizabeth K Baker
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Beulah Solivio
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Steve & Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Ben Pode-Shakked
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- The Institute for Rare Diseases, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Laura Ann Cross
- Department of Pediatrics, Children's Mercy Hospital, Kansas City, Missouri, USA
| | - Bonnie Sullivan
- Department of Pediatrics, Children's Mercy Hospital, Kansas City, Missouri, USA
| | - Annick Raas-Rothschild
- The Institute for Rare Diseases, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Odelia Chorin
- The Institute for Rare Diseases, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Ortal Barel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Genomic Unit, Sheba Cancer Research Center, Sheba Medical Center, Tel-Hashomer, Israel
| | - Omer Bar-Yosef
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Pediatric Neurology Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Israel
| | - Ammar Husami
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Robert J Hopkin
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Carlos E Prada
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Human Genetics, Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Rolf W Stottmann
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Steve & Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University School of Medicine, Columbus, Ohio, USA
| | - Kathryn Nicole Weaver
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
18
|
Mondal S, Singh SP. New insights on thioredoxins (Trxs) and glutaredoxins (Grxs) by in silico amino acid sequence, phylogenetic and comparative structural analyses in organisms of three domains of life. Heliyon 2022; 8:e10776. [PMID: 36203893 PMCID: PMC9529593 DOI: 10.1016/j.heliyon.2022.e10776] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/03/2022] [Accepted: 09/22/2022] [Indexed: 11/04/2022] Open
Abstract
Thioredoxins (Trxs) and Glutaredoxins (Grxs) regulate several cellular processes by controlling the redox state of their target proteins. Trxs and Grxs belong to thioredoxin superfamily and possess characteristic Trx/Grx fold. Several phylogenetic, biochemical and structural studies have contributed to our overall understanding of Trxs and Grxs. However, comparative study of closely related Trxs and Grxs in organisms of all domains of life was missing. Here, we conducted in silico comparative structural analysis combined with amino acid sequence and phylogenetic analyses of 65 Trxs and 88 Grxs from 12 organisms of three domains of life to get insights into evolutionary and structural relationship of two proteins. Outcomes suggested that despite diversity in their amino acids composition in distantly related organisms, both Trxs and Grxs strictly conserved functionally and structurally important residues. Also, position of these residues was highly conserved in all studied Trxs and Grxs. Notably, if any substitution occurred during evolution, preference was given to amino acids having similar chemical properties. Trxs and Grxs were found more different in eukaryotes than prokaryotes due to altered helical conformation. The surface of Trxs was negatively charged, while Grxs surface was positively charged, however, the active site was constituted by uncharged amino acids in both proteins. Also, phylogenetic analysis of Trxs and Grxs in three domains of life supported endosymbiotic origins of chloroplast and mitochondria, and suggested their usefulness in molecular systematics. We also report previously unknown catalytic motifs of two proteins, and discuss in detail about effect of abovementioned parameters on overall structural and functional diversity of Trxs and Grxs.
Collapse
|
19
|
Friedrich D, Marintchev A, Arthanari H. The metaphorical swiss army knife: The multitude and diverse roles of HEAT domains in eukaryotic translation initiation. Nucleic Acids Res 2022; 50:5424-5442. [PMID: 35552740 PMCID: PMC9177959 DOI: 10.1093/nar/gkac342] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 11/24/2022] Open
Abstract
Biomolecular associations forged by specific interaction among structural scaffolds are fundamental to the control and regulation of cell processes. One such structural architecture, characterized by HEAT repeats, is involved in a multitude of cellular processes, including intracellular transport, signaling, and protein synthesis. Here, we review the multitude and versatility of HEAT domains in the regulation of mRNA translation initiation. Structural and cellular biology approaches, as well as several biophysical studies, have revealed that a number of HEAT domain-mediated interactions with a host of protein factors and RNAs coordinate translation initiation. We describe the basic structural architecture of HEAT domains and briefly introduce examples of the cellular processes they dictate, including nuclear transport by importin and RNA degradation. We then focus on proteins in the translation initiation system featuring HEAT domains, specifically the HEAT domains of eIF4G, DAP5, eIF5, and eIF2Bϵ. Comparative analysis of their remarkably versatile interactions, including protein-protein and protein-RNA recognition, reveal the functional importance of flexible regions within these HEAT domains. Here we outline how HEAT domains orchestrate fundamental aspects of translation initiation and highlight open mechanistic questions in the area.
Collapse
Affiliation(s)
- Daniel Friedrich
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Assen Marintchev
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, MA, USA
| | - Haribabu Arthanari
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
20
|
Idelfonso-García OG, Alarcón-Sánchez BR, Vásquez-Garzón VR, Baltiérrez-Hoyos R, Villa-Treviño S, Muriel P, Serrano H, Pérez-Carreón JI, Arellanes-Robledo J. Is Nucleoredoxin a Master Regulator of Cellular Redox Homeostasis? Its Implication in Different Pathologies. Antioxidants (Basel) 2022; 11:antiox11040670. [PMID: 35453355 PMCID: PMC9030443 DOI: 10.3390/antiox11040670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 01/27/2023] Open
Abstract
Nucleoredoxin (NXN), an oxidoreductase enzyme, contributes to cellular redox homeostasis by regulating different signaling pathways in a redox-dependent manner. By interacting with seven proteins so far, namely disheveled (DVL), protein phosphatase 2A (PP2A), phosphofructokinase-1 (PFK1), translocation protein SEC63 homolog (SEC63), myeloid differentiation primary response gene-88 (MYD88), flightless-I (FLII), and calcium/calmodulin-dependent protein kinase II type alpha (CAMK2A), NXN is involved in the regulation of several key cellular processes, including proliferation, organogenesis, cell cycle progression, glycolysis, innate immunity and inflammation, motility, contraction, protein transport into the endoplasmic reticulum, neuronal plasticity, among others; as a result, NXN has been implicated in different pathologies, such as cancer, alcoholic and polycystic liver disease, liver fibrogenesis, obesity, Robinow syndrome, diabetes mellitus, Alzheimer’s disease, and retinitis pigmentosa. Together, this evidence places NXN as a strong candidate to be a master redox regulator of cell physiology and as the hub of different redox-sensitive signaling pathways and associated pathologies. This review summarizes and discusses the current insights on NXN-dependent redox regulation and its implication in different pathologies.
Collapse
Affiliation(s)
- Osiris Germán Idelfonso-García
- Laboratory of Liver Diseases, National Institute of Genomic Medicine–INMEGEN, Mexico City 14610, Mexico; (O.G.I.-G.); (B.R.A.-S.); (J.I.P.-C.)
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa Campus, Mexico City 09340, Mexico;
| | - Brisa Rodope Alarcón-Sánchez
- Laboratory of Liver Diseases, National Institute of Genomic Medicine–INMEGEN, Mexico City 14610, Mexico; (O.G.I.-G.); (B.R.A.-S.); (J.I.P.-C.)
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute–CINVESTAV-IPN, Mexico City 07360, Mexico;
| | - Verónica Rocío Vásquez-Garzón
- Laboratory of Fibrosis and Cancer, Faculty of Medicine and Surgery, ‘Benito Juárez’ Autonomous University of Oaxaca–UABJO, Oaxaca 68020, Mexico; (V.R.V.-G.); (R.B.-H.)
- Directorate of Cátedras, National Council of Science and Technology–CONACYT, Mexico City 03940, Mexico
| | - Rafael Baltiérrez-Hoyos
- Laboratory of Fibrosis and Cancer, Faculty of Medicine and Surgery, ‘Benito Juárez’ Autonomous University of Oaxaca–UABJO, Oaxaca 68020, Mexico; (V.R.V.-G.); (R.B.-H.)
- Directorate of Cátedras, National Council of Science and Technology–CONACYT, Mexico City 03940, Mexico
| | - Saúl Villa-Treviño
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute–CINVESTAV-IPN, Mexico City 07360, Mexico;
| | - Pablo Muriel
- Laboratory of Experimental Hepatology, Department of Pharmacology, Center for Research and Advanced Studies of the National Polytechnic Institute–CINVESTAV-IPN, Mexico City 07360, Mexico;
| | - Héctor Serrano
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa Campus, Mexico City 09340, Mexico;
| | - Julio Isael Pérez-Carreón
- Laboratory of Liver Diseases, National Institute of Genomic Medicine–INMEGEN, Mexico City 14610, Mexico; (O.G.I.-G.); (B.R.A.-S.); (J.I.P.-C.)
| | - Jaime Arellanes-Robledo
- Laboratory of Liver Diseases, National Institute of Genomic Medicine–INMEGEN, Mexico City 14610, Mexico; (O.G.I.-G.); (B.R.A.-S.); (J.I.P.-C.)
- Directorate of Cátedras, National Council of Science and Technology–CONACYT, Mexico City 03940, Mexico
- Correspondence: ; Tel.: +52-55-5350-1900 (ext. 1218)
| |
Collapse
|
21
|
Khan MM, Kalim UU, Khan MH, Lahesmaa R. PP2A and Its Inhibitors in Helper T-Cell Differentiation and Autoimmunity. Front Immunol 2022; 12:786857. [PMID: 35069561 PMCID: PMC8766794 DOI: 10.3389/fimmu.2021.786857] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/14/2021] [Indexed: 12/20/2022] Open
Abstract
Protein phosphatase 2A (PP2A) is a highly complex heterotrimeric Ser/Thr phosphatase that regulates many cellular processes. The role of PP2A as a tumor suppressor has been extensively studied and reviewed. However, emerging evidence suggests PP2A constrains inflammatory responses and is important in autoimmune and neuroinflammatory diseases. Here, we reviewed the existing literature on the role of PP2A in T-cell differentiation and autoimmunity. We have also discussed the modulation of PP2A activity by endogenous inhibitors and its small-molecule activators as potential therapeutic approaches against autoimmunity.
Collapse
Affiliation(s)
- Mohd Moin Khan
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- Turku Doctoral Programme of Molecular Medicine (TuDMM), University of Turku, Turku, Finland
| | - Ubaid Ullah Kalim
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Meraj H. Khan
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Riitta Lahesmaa
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| |
Collapse
|
22
|
Ji M, Sun K, Fang H, Zhuang Z, Chen H, Chen Q, Cao Z, Wang Y, Ditta A, Khan MKR, Wang K, Wang B. Genome-wide identification and characterization of the CLASP_N gene family in upland cotton ( Gossypium hirsutum L.). PeerJ 2022; 10:e12733. [PMID: 35036102 PMCID: PMC8734470 DOI: 10.7717/peerj.12733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 12/12/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Cytoplasmic linker-associated proteins (CLASPs) are tubule proteins that can bind to microtubules and participate in regulating the structure and function of microtubules, which significantly affects the development and growth of plants. These proteins have been identified in Arabidopsis; however, little research has been performed in upland cotton. METHODS In this study, the whole genome of the CLASP_N family was analyzed to provide theoretical support for the function of this gene family in the development of upland cotton fiber. Bioinformatics was used to analyze the family characteristics of CLASP_N in upland cotton, such as member identification, sequence characteristics, conserved domain structure and coevolutionary relationships. Real-time fluorescent quantitative PCR (qRT-PCR) was used to clarify the expression pattern of the upland cotton CLASP_N gene family in cotton fiber. RESULTS At the genome-wide level, we identified 16 upland cotton CLASP_N genes. A chromosomal localization analysis revealed that these 16 genes were located on 13 chromosomes. The motif results showed that all CLASP_N proteins have the CLASP_N domain. Gene structure analysis showed that the structure and length of exons and introns were consistent in the subgroups. In the evolutionary analysis with other species, the gene family clearly diverged from the other species in the evolutionary process. A promoter sequence analysis showed that this gene family contains a large number of cis-acting elements related to a variety of plant hormones. qRT-PCR was used to clarify the expression pattern of the upland cotton CLASP_N gene family in cotton fiber and leaves, and Gh210800 was found to be highly expressed in the later stages of fiber development. The results of this study provide a foundation for further research on the molecular role of the CLASP_N genes in cotton fiber development.
Collapse
Affiliation(s)
- Meijun Ji
- School of Life Sciences, Nantong University, Nantong, Jiangsu, China
| | - Kangtai Sun
- School of Life Sciences, Nantong University, Nantong, Jiangsu, China
| | - Hui Fang
- School of Life Sciences, Nantong University, Nantong, Jiangsu, China
| | - Zhimin Zhuang
- School of Life Sciences, Nantong University, Nantong, Jiangsu, China
| | - Haodong Chen
- Cotton Sciences Research Institute of Hunan/ National Hybrid Cotton Research Promotion Center, Changde, Hunan, China
| | - Qi Chen
- School of Life Sciences, Nantong University, Nantong, Jiangsu, China
| | - Ziyi Cao
- School of Life Sciences, Nantong University, Nantong, Jiangsu, China
| | - Yiting Wang
- School of Life Sciences, Nantong University, Nantong, Jiangsu, China
| | - Allah Ditta
- Plant Breeding and Genetics Division, Nuclear Institute for Agriculture and Biology, Faisalabad, Pakistan
| | - Muhammad Kashif Riaz Khan
- Plant Breeding and Genetics Division, Nuclear Institute for Agriculture and Biology, Faisalabad, Pakistan
| | - Kai Wang
- School of Life Sciences, Nantong University, Nantong, Jiangsu, China
| | - Baohua Wang
- School of Life Sciences, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
23
|
Abstract
To infect nondividing cells, HIV-1 needs to cross the nuclear membrane. The importin transportin-SR2 (TRN-SR2 or transportin-3) has been proposed to mediate HIV-1 nuclear import, but the detailed mechanism remains unresolved. The direct interaction of TRN-SR2 with HIV-1 integrase (IN) has been proposed to drive HIV-1 nuclear import. Alternatively, TRN-SR2 may play an indirect role by mediating nuclear import of cleavage and polyadenylation specificity factor 6 (CPSF6). To unravel the role of TRN-SR2, we designed CRISPR/Cas9 guide RNAs targeting different exons of TNPO3. Although this approach failed to generate full knockouts, monoallelic knockout clones were generated with indel mutations. HIV-1 replication was hampered in those clones at the level of HIV-1 nuclear import without an effect on the cellular distribution of the TRN-SR2 cargoes CPSF6 or alternative splicing factor1/pre-mRNA splicing factor SF2 (ASF/SF2). Recombinant ΔV105 TRN-SR2 expressed in clone 15.15 was 2-fold impaired for interaction with HIV-1 IN and classified as an interaction mutant. Our data support a model whereby TRN-SR2 acts as a cofactor of HIV-1 nuclear import without compromising the nuclear import of cellular cargoes. CRISPR/Cas9-induced mutagenesis can be used as a method to generate interface mutants to characterize host factors of human pathogens. IMPORTANCE Combination antiretroviral therapy (cART) effectively controls HIV-1 by reducing viral loads, but it does not cure the infection. Lifelong treatment with cART is a prerequisite for sustained viral suppression. The rapid emergence of drug-resistant viral strains drives the necessity to discover new therapeutic targets. The nuclear import of HIV-1 is crucial in the HIV-1 replication cycle, but the detailed mechanism remains incompletely understood. This study provides evidence that TRN-SR2 directly mediates HIV-1 nuclear import via the interaction with HIV-1 integrase. The interaction between those proteins is therefore a promising target toward a rational drug design which could lead to new therapeutic strategies due to the bottleneck nature of HIV-1 nuclear import.
Collapse
|
24
|
Structural Insights into Protein Regulation by Phosphorylation and Substrate Recognition of Protein Kinases/Phosphatases. Life (Basel) 2021; 11:life11090957. [PMID: 34575106 PMCID: PMC8467178 DOI: 10.3390/life11090957] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/05/2021] [Accepted: 09/10/2021] [Indexed: 12/30/2022] Open
Abstract
Protein phosphorylation is one of the most widely observed and important post-translational modification (PTM) processes. Protein phosphorylation is regulated by protein kinases, each of which covalently attaches a phosphate group to an amino acid side chain on a serine (Ser), threonine (Thr), or tyrosine (Tyr) residue of a protein, and by protein phosphatases, each of which, conversely, removes a phosphate group from a phosphoprotein. These reversible enzyme activities provide a regulatory mechanism by activating or deactivating many diverse functions of proteins in various cellular processes. In this review, their structures and substrate recognition are described and summarized, focusing on Ser/Thr protein kinases and protein Ser/Thr phosphatases, and the regulation of protein structures by phosphorylation. The studies reviewed here and the resulting information could contribute to further structural, biochemical, and combined studies on the mechanisms of protein phosphorylation and to drug discovery approaches targeting protein kinases or protein phosphatases.
Collapse
|
25
|
Sandal P, Jong CJ, Merrill RA, Song J, Strack S. Protein phosphatase 2A - structure, function and role in neurodevelopmental disorders. J Cell Sci 2021; 134:270819. [PMID: 34228795 DOI: 10.1242/jcs.248187] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Neurodevelopmental disorders (NDDs), including intellectual disability (ID), autism and schizophrenia, have high socioeconomic impact, yet poorly understood etiologies. A recent surge of large-scale genome or exome sequencing studies has identified a multitude of mostly de novo mutations in subunits of the protein phosphatase 2A (PP2A) holoenzyme that are strongly associated with NDDs. PP2A is responsible for at least 50% of total Ser/Thr dephosphorylation in most cell types and is predominantly found as trimeric holoenzymes composed of catalytic (C), scaffolding (A) and variable regulatory (B) subunits. PP2A can exist in nearly 100 different subunit combinations in mammalian cells, dictating distinct localizations, substrates and regulatory mechanisms. PP2A is well established as a regulator of cell division, growth, and differentiation, and the roles of PP2A in cancer and various neurodegenerative disorders, such as Alzheimer's disease, have been reviewed in detail. This Review summarizes and discusses recent reports on NDDs associated with mutations of PP2A subunits and PP2A-associated proteins. We also discuss the potential impact of these mutations on the structure and function of the PP2A holoenzymes and the etiology of NDDs.
Collapse
Affiliation(s)
- Priyanka Sandal
- Department of Neuroscience and Pharmacology, and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242, USA
| | - Chian Ju Jong
- Department of Neuroscience and Pharmacology, and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242, USA
| | - Ronald A Merrill
- Department of Neuroscience and Pharmacology, and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242, USA
| | - Jianing Song
- Department of Neuroscience and Pharmacology, and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242, USA
| | - Stefan Strack
- Department of Neuroscience and Pharmacology, and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242, USA
| |
Collapse
|
26
|
Folding and Stability of Ankyrin Repeats Control Biological Protein Function. Biomolecules 2021; 11:biom11060840. [PMID: 34198779 PMCID: PMC8229355 DOI: 10.3390/biom11060840] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/25/2021] [Accepted: 06/01/2021] [Indexed: 01/04/2023] Open
Abstract
Ankyrin repeat proteins are found in all three kingdoms of life. Fundamentally, these proteins are involved in protein-protein interaction in order to activate or suppress biological processes. The basic architecture of these proteins comprises repeating modules forming elongated structures. Due to the lack of long-range interactions, a graded stability among the repeats is the generic properties of this protein family determining both protein folding and biological function. Protein folding intermediates were frequently found to be key for the biological functions of repeat proteins. In this review, we discuss most recent findings addressing this close relation for ankyrin repeat proteins including DARPins, Notch receptor ankyrin repeat domain, IκBα inhibitor of NFκB, and CDK inhibitor p19INK4d. The role of local folding and unfolding and gradual stability of individual repeats will be discussed during protein folding, protein-protein interactions, and post-translational modifications. The conformational changes of these repeats function as molecular switches for biological regulation, a versatile property for modern drug discovery.
Collapse
|
27
|
Ghosh SG, Breuss MW, Schlachetzki Z, Chai G, Ross D, Stanley V, Sonmez FM, Topaloglu H, Zaki MS, Hosny H, Gad S, Gleeson JG. Biallelic hypomorphic mutations in HEATR5B, encoding HEAT repeat-containing protein 5B, in a neurological syndrome with pontocerebellar hypoplasia. Eur J Hum Genet 2021; 29:957-964. [PMID: 33824466 PMCID: PMC8187379 DOI: 10.1038/s41431-021-00832-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/12/2021] [Accepted: 02/09/2021] [Indexed: 11/09/2022] Open
Abstract
HEAT repeats are 37-47 amino acid flexible tandem repeat structural motifs occurring in a wide variety of eukaryotic proteins with diverse functions. Due to their ability to undergo elastic conformational changes, they often serve as scaffolds at sites of protein interactions. Here, we describe four affected children from two families presenting with pontocerebellar hypoplasia manifest clinically with neonatal seizures, severe intellectual disability, and motor delay. Whole exome sequencing identified biallelic variants at predicted splice sites in intron 31 of HEATR5B, encoding the HEAT repeat-containing protein 5B segregating in a recessive fashion. Aberrant splicing was found in patient fibroblasts, which correlated with reduced levels of HEATR5B protein. HEATR5B is expressed during brain development in human, and we failed to recover live-born homozygous Heatr5b knockout mice. Taken together, our results implicate loss of HEATR5B in pontocerebellar hypoplasia.
Collapse
Affiliation(s)
- Shereen G Ghosh
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
- Rady Children's Institute for Genomic Medicine, San Diego, CA, USA
| | - Martin W Breuss
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA.
- Rady Children's Institute for Genomic Medicine, San Diego, CA, USA.
- Department of Pediatrics, Section of Genetics and Metabolism, University of Colorado School of Medicine, Aurora, CO, USA.
| | - Zinayida Schlachetzki
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
- Rady Children's Institute for Genomic Medicine, San Diego, CA, USA
| | - Guoliang Chai
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
- Rady Children's Institute for Genomic Medicine, San Diego, CA, USA
| | - Danica Ross
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
- Rady Children's Institute for Genomic Medicine, San Diego, CA, USA
| | - Valentina Stanley
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
- Rady Children's Institute for Genomic Medicine, San Diego, CA, USA
| | - F Mujgan Sonmez
- Guven Hospital Child Neurology, Ankara, Turkey
- Department of Child Neurology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Haluk Topaloglu
- Division of Pediatric Neurology, Hacettepe University Children's Hospital, Ankara, Turkey
| | - Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Heba Hosny
- Genetic Department, National Institution of Neuromotor Systems, Cairo, Egypt
| | - Shaimaa Gad
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Joseph G Gleeson
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA.
- Rady Children's Institute for Genomic Medicine, San Diego, CA, USA.
| |
Collapse
|
28
|
Kaur G, Iyer LM, Burroughs AM, Aravind L. Bacterial death and TRADD-N domains help define novel apoptosis and immunity mechanisms shared by prokaryotes and metazoans. eLife 2021; 10:70394. [PMID: 34061031 PMCID: PMC8195603 DOI: 10.7554/elife.70394] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 05/23/2021] [Indexed: 12/12/2022] Open
Abstract
Several homologous domains are shared by eukaryotic immunity and programmed cell-death systems and poorly understood bacterial proteins. Recent studies show these to be components of a network of highly regulated systems connecting apoptotic processes to counter-invader immunity, in prokaryotes with a multicellular habit. However, the provenance of key adaptor domains, namely those of the Death-like and TRADD-N superfamilies, a quintessential feature of metazoan apoptotic systems, remained murky. Here, we use sensitive sequence analysis and comparative genomics methods to identify unambiguous bacterial homologs of the Death-like and TRADD-N superfamilies. We show the former to have arisen as part of a radiation of effector-associated α-helical adaptor domains that likely mediate homotypic interactions bringing together diverse effector and signaling domains in predicted bacterial apoptosis- and counter-invader systems. Similarly, we show that the TRADD-N domain defines a key, widespread signaling bridge that links effector deployment to invader-sensing in multicellular bacterial and metazoan counter-invader systems. TRADD-N domains are expanded in aggregating marine invertebrates and point to distinctive diversifying immune strategies probably directed both at RNA and retroviruses and cellular pathogens that might infect such communities. These TRADD-N and Death-like domains helped identify several new bacterial and metazoan counter-invader systems featuring underappreciated, common functional principles: the use of intracellular invader-sensing lectin-like (NPCBM and FGS), transcription elongation GreA/B-C, glycosyltransferase-4 family, inactive NTPase (serving as nucleic acid receptors), and invader-sensing GTPase switch domains. Finally, these findings point to the possibility of multicellular bacteria-stem metazoan symbiosis in the emergence of the immune/apoptotic systems of the latter.
Collapse
Affiliation(s)
- Gurmeet Kaur
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, United States
| | - Lakshminarayan M Iyer
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, United States
| | - A Maxwell Burroughs
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, United States
| | - L Aravind
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, United States
| |
Collapse
|
29
|
Zheng H, Qi Y, Hu S, Cao X, Xu C, Yin Z, Chen X, Li Y, Liu W, Li J, Wang J, Wei G, Liang K, Chen FX, Xu Y. Identification of Integrator-PP2A complex (INTAC), an RNA polymerase II phosphatase. Science 2020; 370:370/6520/eabb5872. [DOI: 10.1126/science.abb5872] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/09/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Hai Zheng
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
- The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, China, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yilun Qi
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Shibin Hu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Xuan Cao
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Congling Xu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Zhinang Yin
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Xizi Chen
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yan Li
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Weida Liu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Jie Li
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Jiawei Wang
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Gang Wei
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Kaiwei Liang
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Fei Xavier Chen
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yanhui Xu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
- The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, China, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
- Human Phenome Institute, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|
30
|
Lenaerts L, Reynhout S, Verbinnen I, Laumonnier F, Toutain A, Bonnet-Brilhault F, Hoorne Y, Joss S, Chassevent AK, Smith-Hicks C, Loeys B, Joset P, Steindl K, Rauch A, Mehta SG, Chung WK, Devriendt K, Holder SE, Jewett T, Baldwin LM, Wilson WG, Towner S, Srivastava S, Johnson HF, Daumer-Haas C, Baethmann M, Ruiz A, Gabau E, Jain V, Varghese V, Al-Beshri A, Fulton S, Wechsberg O, Orenstein N, Prescott K, Childs AM, Faivre L, Moutton S, Sullivan JA, Shashi V, Koudijs SM, Heijligers M, Kivuva E, McTague A, Male A, van Ierland Y, Plecko B, Maystadt I, Hamid R, Hannig VL, Houge G, Janssens V. The broad phenotypic spectrum of PPP2R1A-related neurodevelopmental disorders correlates with the degree of biochemical dysfunction. Genet Med 2020; 23:352-362. [PMID: 33106617 PMCID: PMC7862067 DOI: 10.1038/s41436-020-00981-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 12/31/2022] Open
Abstract
Purpose Neurodevelopmental disorders (NDD) caused by protein phosphatase 2A (PP2A) dysfunction have mainly been associated with de novo variants in PPP2R5D and PPP2CA, and more rarely in PPP2R1A. Here, we aimed to better understand the latter by characterizing 30 individuals with de novo and often recurrent variants in this PP2A scaffolding Aα subunit. Methods Most cases were identified through routine clinical diagnostics. Variants were biochemically characterized for phosphatase activity and interaction with other PP2A subunits. Results We describe 30 individuals with 16 different variants in PPP2R1A, 21 of whom had variants not previously reported. The severity of developmental delay ranged from mild learning problems to severe intellectual disability (ID) with or without epilepsy. Common features were language delay, hypotonia, and hypermobile joints. Macrocephaly was only seen in individuals without B55α subunit-binding deficit, and these patients had less severe ID and no seizures. Biochemically more disruptive variants with impaired B55α but increased striatin binding were associated with profound ID, epilepsy, corpus callosum hypoplasia, and sometimes microcephaly. Conclusion We significantly expand the phenotypic spectrum of PPP2R1A-related NDD, revealing a broader clinical presentation of the patients and that the functional consequences of the variants are more diverse than previously reported.
Collapse
Affiliation(s)
- Lisa Lenaerts
- Laboratory of Protein Phosphorylation & Proteomics, Department of Cellular & Molecular Medicine, University of Leuven (KU Leuven), Leuven, Belgium
| | - Sara Reynhout
- Laboratory of Protein Phosphorylation & Proteomics, Department of Cellular & Molecular Medicine, University of Leuven (KU Leuven), Leuven, Belgium.,KU Leuven Brain Institute (LBI), Leuven, Belgium
| | - Iris Verbinnen
- Laboratory of Protein Phosphorylation & Proteomics, Department of Cellular & Molecular Medicine, University of Leuven (KU Leuven), Leuven, Belgium
| | - Frédéric Laumonnier
- UMR1253, iBrain, University of Tours, INSERM, Tours, France.,Service de Génétique, Centre Hospitalier Régional Universitaire, Tours, France
| | - Annick Toutain
- UMR1253, iBrain, University of Tours, INSERM, Tours, France.,Service de Génétique, Centre Hospitalier Régional Universitaire, Tours, France
| | - Frédérique Bonnet-Brilhault
- UMR1253, iBrain, University of Tours, INSERM, Tours, France.,Excellence Center in Autism and Neurodevelopmental Disorders, Centre Hospitalier Régional Universitaire, Tours, France
| | - Yana Hoorne
- Laboratory of Protein Phosphorylation & Proteomics, Department of Cellular & Molecular Medicine, University of Leuven (KU Leuven), Leuven, Belgium
| | - Shelagh Joss
- West of Scotland Centre for Genomic Medicine, Queen Elizabeth University Hospital, Glasgow, UK
| | | | | | - Bart Loeys
- Center for Medical Genetics, University of Antwerp/Antwerp University Hospital, Antwerp, Belgium
| | - Pascal Joset
- Institute of Medical Genetics, University of Zurich, Schlieren, Zurich, Switzerland
| | - Katharina Steindl
- Institute of Medical Genetics, University of Zurich, Schlieren, Zurich, Switzerland
| | - Anita Rauch
- Institute of Medical Genetics, University of Zurich, Schlieren, Zurich, Switzerland
| | - Sarju G Mehta
- East Anglian Regional Medical Genetics Service, Addenbrookes Hospital, Cambridge, UK
| | - Wendy K Chung
- Columbia University Medical Center, New York, NY, USA
| | - Koenraad Devriendt
- Department of Human Genetics, University of Leuven (KU Leuven), Leuven, Belgium
| | - Susan E Holder
- North West Thames Regional Genetics Service, Harrow, London, UK
| | - Tamison Jewett
- Wake Forest School of Medicine, Wake Forest University, Winston-Salem, NC, USA
| | - Lauren M Baldwin
- Wake Forest School of Medicine, Wake Forest University, Winston-Salem, NC, USA
| | - William G Wilson
- Department of Pediatrics, University of Virginia, Charlottesville, VA, USA
| | - Shelley Towner
- Department of Pediatrics, University of Virginia, Charlottesville, VA, USA
| | | | - Hannah F Johnson
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | | | - Martina Baethmann
- Pediatric Neurology, Sozialpädiatrisches Zentrum, Klinikum Dritter Orden München, Munich, Germany
| | - Anna Ruiz
- Genetics Laboratory, UDIAT-Centre Diagnòstic, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Elisabeth Gabau
- Paediatric Unit, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Vani Jain
- All Wales Medical Genomics Service, University Hospital of Wales, Cardiff, UK
| | - Vinod Varghese
- All Wales Medical Genomics Service, University Hospital of Wales, Cardiff, UK
| | - Ali Al-Beshri
- Internal Medicine & Medical Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Oded Wechsberg
- Pediatric Genetics Unit, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Maccabi Healthcare Services, Tel Aviv, Israel
| | - Naama Orenstein
- Pediatric Genetics Unit, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Katrina Prescott
- Yorkshire Regional Genetics Department, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Anne-Marie Childs
- Department of Neurology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Laurence Faivre
- Centre de référence Anomalies du Développement et Syndromes malformatifs, FHU TRANSLAD, UMR1231 GAD, CHU Dijon et Université de Bourgogne, Dijon, France
| | - Sébastien Moutton
- CPDPN, Pôle mère enfant, Maison de Santé Bordeaux Bagatelle, Talence, France
| | - Jennifer A Sullivan
- Department of Pediatrics, Division of Medical Genetics, Duke University Medical Center, Durham, NC, USA
| | - Vandana Shashi
- Department of Pediatrics, Division of Medical Genetics, Duke University Medical Center, Durham, NC, USA
| | | | - Malou Heijligers
- Department of Clinical Genetics, Maastricht UMC+, Maastricht, The Netherlands
| | - Emma Kivuva
- Royal Devon & Exeter NHS Foundation Trust, Exeter, UK
| | - Amy McTague
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK.,Department of Neurology, Great Ormond Street Hospital, London, UK
| | - Alison Male
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK.,Department of Neurology, Great Ormond Street Hospital, London, UK
| | | | - Barbara Plecko
- Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria
| | - Isabelle Maystadt
- Centre de Génétique Humaine, Institut de Pathologie et de Génétique, Gosselies, Belgium
| | - Rizwan Hamid
- Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Gunnar Houge
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway.
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation & Proteomics, Department of Cellular & Molecular Medicine, University of Leuven (KU Leuven), Leuven, Belgium. .,KU Leuven Brain Institute (LBI), Leuven, Belgium.
| |
Collapse
|
31
|
Bheri M, Mahiwal S, Sanyal SK, Pandey GK. Plant protein phosphatases: What do we know about their mechanism of action? FEBS J 2020; 288:756-785. [PMID: 32542989 DOI: 10.1111/febs.15454] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/27/2020] [Accepted: 06/09/2020] [Indexed: 12/30/2022]
Abstract
Protein phosphorylation is a major reversible post-translational modification. Protein phosphatases function as 'critical regulators' in signaling networks through dephosphorylation of proteins, which have been phosphorylated by protein kinases. A large understanding of their working has been sourced from animal systems rather than the plant or the prokaryotic systems. The eukaryotic protein phosphatases include phosphoprotein phosphatases (PPP), metallo-dependent protein phosphatases (PPM), protein tyrosine (Tyr) phosphatases (PTP), and aspartate (Asp)-dependent phosphatases. The PPP and PPM families are serine(Ser)/threonine(Thr)-specific phosphatases (STPs), while PTP family is Tyr specific. Dual-specificity phosphatases (DsPTPs/DSPs) dephosphorylate Ser, Thr, and Tyr residues. PTPs lack sequence homology with STPs, indicating a difference in catalytic mechanisms, while the PPP and PPM families share a similar structural fold indicating a common catalytic mechanism. The catalytic cysteine (Cys) residue in the conserved HCX5 R active site motif of the PTPs acts as a nucleophile during hydrolysis. The PPP members require metal ions, which coordinate the phosphate group of the substrate, followed by a nucleophilic attack by a water molecule and hydrolysis. The variable holoenzyme assembly of protein phosphatase(s) and the overlap with other post-translational modifications like acetylation and ubiquitination add to their complexity. Though their functional characterization is extensively reported in plants, the mechanistic nature of their action is still being explored by researchers. In this review, we exclusively overview the plant protein phosphatases with an emphasis on their mechanistic action as well as structural characteristics.
Collapse
Affiliation(s)
- Malathi Bheri
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Swati Mahiwal
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Sibaji K Sanyal
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
32
|
HEATR1 Deficiency Promotes Chemoresistance via Upregulating ZNF185 and Downregulating SMAD4 in Pancreatic Cancer. JOURNAL OF ONCOLOGY 2020; 2020:3181596. [PMID: 32565799 PMCID: PMC7271247 DOI: 10.1155/2020/3181596] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/28/2020] [Accepted: 03/14/2020] [Indexed: 01/05/2023]
Abstract
Objective To discover the correlated gene with HEATR1 in regulating chemoresistance of gemcitabine. Methods Gene chip analysis was performed to find out differential genes between HEATR1-KD and control groups. The top 20 genes were subjected to high-content screening, and functional assay was implemented. Gene expression profiling was carried out to find the downstream target. Immunohistochemistry and survival analysis were performed. Results ZNF185 fold change (4.5285) was the most significant between the HEATR1-KD and control groups. Knocking down ZNF185 could promote the chemosensitivity, apoptosis, and proliferative inhibition, with SMAD4 significantly upregulated. Patients with high HEATR1 and SMAD4 or low ZNF185 exhibited better survival. Conclusion HEATR1, ZNF185, and SMAD4 could affect the chemosensitivity of gemcitabine and may be the indicators of gemcitabine selection in the chemotherapy of pancreatic cancer.
Collapse
|
33
|
Biswas D, Cary W, Nolta JA. PPP2R5D-Related Intellectual Disability and Neurodevelopmental Delay: A Review of the Current Understanding of the Genetics and Biochemical Basis of the Disorder. Int J Mol Sci 2020; 21:ijms21041286. [PMID: 32074998 PMCID: PMC7072873 DOI: 10.3390/ijms21041286] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/03/2020] [Accepted: 02/10/2020] [Indexed: 12/14/2022] Open
Abstract
Protein Phosphatase 2 Regulatory Subunit B′ Delta (PPP2R5D)-related intellectual disability (ID) and neurodevelopmental delay results from germline de novo mutations in the PPP2R5D gene. This gene encodes the protein PPP2R5D (also known as the B56 delta subunit), which is an isoform of the subunit family B56 of the enzyme serine/threonine-protein phosphatase 2A (PP2A). Clinical signs include intellectual disability (ID); autism spectrum disorder (ASD); epilepsy; speech problems; behavioral challenges; and ophthalmologic, skeletal, endocrine, cardiac, and genital malformations. The association of defective PP2A activity in the brain with a wide range of severity of ID, along with its role in ASD, Alzheimer’s disease, and Parkinson’s-like symptoms, have recently generated the impetus for further research into mutations within this gene. PP2A, together with protein phosphatase 1 (PP1), accounts for more than 90% of all phospho-serine/threonine dephosphorylations in different tissues. The specificity for a wide variety of substrates is determined through nearly 100 different PP2A holoenzymes that are formed by at least 23 types of regulatory B subunits, and two isoforms each of the catalytic subunit C and the structural subunit A. In the mammalian brain, PP2A-mediated protein dephosphorylation plays an important role in learning and memory. The PPP2R5D subunit is highly expressed in the brain and the PPP2A–PPP2R5D holoenzyme plays an important role in maintaining neurons and regulating neuronal signaling. From 2015 to 2017, 25 individuals with PPP2R5D-related developmental disorder were diagnosed. Since then, Whole-Exome Sequencing (WES) has helped to identify more unrelated individuals clinically diagnosed with a neurodevelopmental disorder with pathological variants of PPP2R5D. In this review, we discuss the current understanding of the clinical and genetic aspects of the disorder in the context of the known functions of the PP2A–PPP2R5D holoenzyme in the brain, as well as the pathogenic mutations in PPP2R5D that lead to deficient PP2A–PPP2R5D dephosphorylation and their implications during development and in the etiology of autism, Parkinson’s disease, Alzheimer’s disease, and so forth. In the future, tools such as transgenic animals carrying pathogenic PPP2R5D mutations, and patient-derived induced pluripotent stem cell lines need to be developed in order to fully understand the effects of these mutations on different neural cell types.
Collapse
Affiliation(s)
- Dayita Biswas
- SPARK Program Scholar, Institute for Regenerative Cures, University of California, Sacramento, CA 95817, USA;
| | - Whitney Cary
- Stem Cell Program, UC Davis School of Medicine. The University of California, Sacramento, CA 95817, USA
- UC Davis Gene Therapy Program, University of California, Sacramento, CA 95817, USA
- Correspondence: (W.C.); (J.A.N.)
| | - Jan A. Nolta
- SPARK Program Scholar, Institute for Regenerative Cures, University of California, Sacramento, CA 95817, USA;
- Stem Cell Program, UC Davis School of Medicine. The University of California, Sacramento, CA 95817, USA
- UC Davis Gene Therapy Program, University of California, Sacramento, CA 95817, USA
- Correspondence: (W.C.); (J.A.N.)
| |
Collapse
|
34
|
O'Connor CM, Leonard D, Wiredja D, Avelar RA, Wang Z, Schlatzer D, Bryson B, Tokala E, Taylor SE, Upadhyay A, Sangodkar J, Gingras AC, Westermarck J, Xu W, DiFeo A, Brautigan DL, Haider S, Jackson M, Narla G. Inactivation of PP2A by a recurrent mutation drives resistance to MEK inhibitors. Oncogene 2020; 39:703-717. [PMID: 31541192 PMCID: PMC6980487 DOI: 10.1038/s41388-019-1012-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/26/2019] [Accepted: 08/09/2019] [Indexed: 12/27/2022]
Abstract
The serine/threonine Protein Phosphatase 2A (PP2A) functions as a tumor suppressor by negatively regulating multiple oncogenic signaling pathways. The canonical PP2A holoenzyme comprises a scaffolding subunit (PP2A Aα/β), which serves as the platform for binding of both the catalytic C subunit and one regulatory B subunit. Somatic heterozygous missense mutations in PPP2R1A, the gene encoding the PP2A Aα scaffolding subunit, have been identified across multiple cancer types, but the effects of the most commonly mutated residue, Arg-183, on PP2A function have yet to be fully elucidated. In this study, we used a series of cellular and in vivo models and discovered that the most frequent Aα R183W mutation formed alternative holoenzymes by binding of different PP2A regulatory subunits compared with wild-type Aα, suggesting a rededication of PP2A functions. Unlike wild-type Aα, which suppressed tumorigenesis, the R183W mutant failed to suppress tumor growth in vivo through activation of the MAPK pathway in RAS-mutant transformed cells. Furthermore, cells expressing R183W were less sensitive to MEK inhibitors. Taken together, our results demonstrate that the R183W mutation in PP2A Aα scaffold abrogates the tumor suppressive actions of PP2A, thereby potentiating oncogenic signaling and reducing drug sensitivity of RAS-mutant cells.
Collapse
Affiliation(s)
- Caitlin M O'Connor
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - Daniel Leonard
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Danica Wiredja
- Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, OH, USA
| | - Rita A Avelar
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Zhizhi Wang
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Daniela Schlatzer
- Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, OH, USA
| | - Benjamin Bryson
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Eesha Tokala
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Sarah E Taylor
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Aditya Upadhyay
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Jaya Sangodkar
- Department of Internal Medicine: Genetic Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Jukka Westermarck
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Wenqing Xu
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Analisa DiFeo
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
| | - David L Brautigan
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Shozeb Haider
- Department of Pharmaceutical and Biological Chemistry, University College London, London, UK
| | - Mark Jackson
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Goutham Narla
- Department of Internal Medicine: Genetic Medicine, University of Michigan, Ann Arbor, MI, USA.
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
35
|
A proteomic investigation of Aspergillus carbonarius exposed to yeast volatilome or to its major component 2-phenylethanol reveals major shifts in fungal metabolism. Int J Food Microbiol 2019; 306:108265. [DOI: 10.1016/j.ijfoodmicro.2019.108265] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/02/2019] [Accepted: 07/09/2019] [Indexed: 12/29/2022]
|
36
|
Hughes SA, Wang F, Wang S, Kreutzberger MAB, Osinski T, Orlova A, Wall JS, Zuo X, Egelman EH, Conticello VP. Ambidextrous helical nanotubes from self-assembly of designed helical hairpin motifs. Proc Natl Acad Sci U S A 2019; 116:14456-14464. [PMID: 31262809 PMCID: PMC6642399 DOI: 10.1073/pnas.1903910116] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tandem repeat proteins exhibit native designability and represent potentially useful scaffolds for the construction of synthetic biomimetic assemblies. We have designed 2 synthetic peptides, HEAT_R1 and LRV_M3Δ1, based on the consensus sequences of single repeats of thermophilic HEAT (PBS_HEAT) and Leucine-Rich Variant (LRV) structural motifs, respectively. Self-assembly of the peptides afforded high-aspect ratio helical nanotubes. Cryo-electron microscopy with direct electron detection was employed to analyze the structures of the solvated filaments. The 3D reconstructions from the cryo-EM maps led to atomic models for the HEAT_R1 and LRV_M3Δ1 filaments at resolutions of 6.0 and 4.4 Å, respectively. Surprisingly, despite sequence similarity at the lateral packing interface, HEAT_R1 and LRV_M3Δ1 filaments adopt the opposite helical hand and differ significantly in helical geometry, while retaining a local conformation similar to previously characterized repeat proteins of the same class. The differences in the 2 filaments could be rationalized on the basis of differences in cohesive interactions at the lateral and axial interfaces. These structural data reinforce previous observations regarding the structural plasticity of helical protein assemblies and the need for high-resolution structural analysis. Despite these observations, the native designability of tandem repeat proteins offers the opportunity to engineer novel helical nanotubes. Moreover, the resultant nanotubes have independently addressable and chemically distinguishable interior and exterior surfaces that would facilitate applications in selective recognition, transport, and release.
Collapse
Affiliation(s)
| | - Fengbin Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908
| | - Shengyuan Wang
- Department of Chemistry, Emory University, Atlanta, GA 30322
| | - Mark A B Kreutzberger
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908
| | - Tomasz Osinski
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908
| | - Albina Orlova
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908
| | - Joseph S Wall
- Department of Biology, Brookhaven National Laboratory, Upton, NY 11973
| | - Xiaobing Zuo
- X-Ray Science Division, Argonne National Laboratory, Argonne, IL 60439
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908
| | | |
Collapse
|
37
|
Hillebrand A, Matz JM, Almendinger M, Müller K, Matuschewski K, Schmitz-Linneweber C. Identification of clustered organellar short (cos) RNAs and of a conserved family of organellar RNA-binding proteins, the heptatricopeptide repeat proteins, in the malaria parasite. Nucleic Acids Res 2019; 46:10417-10431. [PMID: 30102371 PMCID: PMC6212722 DOI: 10.1093/nar/gky710] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 07/24/2018] [Indexed: 11/13/2022] Open
Abstract
Gene expression in mitochondria of Plasmodium falciparum is essential for parasite survival. The molecular mechanisms of Plasmodium organellar gene expression remain poorly understood. This includes the enigmatic assembly of the mitochondrial ribosome from highly fragmented rRNAs. Here, we present the identification of clustered organellar short RNA fragments (cosRNAs) that are possible footprints of RNA-binding proteins (RBPs) in Plasmodium organelles. In plants, RBPs of the pentatricopeptide repeat (PPR) class produce footprints as a consequence of their function in processing organellar RNAs. Intriguingly, many of the Plasmodium cosRNAs overlap with 5'-ends of rRNA fragments. We hypothesize that these are footprints of RBPs involved in assembling the rRNA fragments into a functioning ribosome. A bioinformatics search of the Plasmodium nuclear genome identified a hitherto unrecognized organellar helical-hairpin-repeat protein family that we term heptatricopeptide repeat (HPR) proteins. We demonstrate that selected HPR proteins are targeted to mitochondria in P. berghei and that one of them, PbHPR1, associates with RNA, but not DNA in vitro. A phylogenetic search identified HPR proteins in a wide variety of eukaryotes. We hypothesize that HPR proteins are required for processing and stabilizing RNAs in Apicomplexa and other taxa.
Collapse
Affiliation(s)
- Arne Hillebrand
- Humboldt University Berlin, Molecular Genetics, Berlin, Germany
| | - Joachim M Matz
- Humboldt University, Department of Molecular Parasitology, Berlin, Germany
| | | | - Katja Müller
- Humboldt University, Department of Molecular Parasitology, Berlin, Germany
| | - Kai Matuschewski
- Humboldt University, Department of Molecular Parasitology, Berlin, Germany
| | | |
Collapse
|
38
|
Wallace A, Caruso P, Karaa A. A Newborn with Severe Ventriculomegaly: Expanding the PPP2R1A Gene Mutation Phenotype. J Pediatr Genet 2019; 8:240-243. [PMID: 31687265 DOI: 10.1055/s-0039-1692414] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 05/03/2019] [Indexed: 10/26/2022]
Abstract
Protein phosphatase 2A (PP2A) is a heterotrimeric protein serine/threonine phosphatase that regulates a diverse range of cellular activities. The PPP2R1A gene on chromosome 19 (19q13.41) encodes the α isoform of the scaffolding subunit of the PP2A holoenzyme, which functions to link the catalytic subunit to the regulatory subunit. Here we present a case of a newborn boy with a novel PPP2R1A gene mutation (c.548G>A; p.Arg183Gln) with severe lateral and third ventriculomegaly, hypoplastic corpus callosum, and pontocerebellar hypoplasia. To our knowledge, this is the sixth case reported in the literature, thus expanding the phenotype of this rare genetic condition.
Collapse
Affiliation(s)
- Alexandra Wallace
- Department of Pediatrics, MassGeneral Hospital for Children, Boston, Massachusetts, United States
| | - Paul Caruso
- Division of Neuroradiology, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Amel Karaa
- Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
39
|
Remmerie M, Janssens V. PP2A: A Promising Biomarker and Therapeutic Target in Endometrial Cancer. Front Oncol 2019; 9:462. [PMID: 31214504 PMCID: PMC6558005 DOI: 10.3389/fonc.2019.00462] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 05/14/2019] [Indexed: 12/14/2022] Open
Abstract
Over the last decade, the use of targeted therapies has immensely increased in the treatment of cancer. However, treatment for endometrial carcinomas (ECs) has lagged behind, although potential molecular markers have been identified. This is particularly problematic for the type II ECs, since these aggressive tumors are usually not responsive toward the current standard therapies. Therefore, type II ECs are responsible for most EC-related deaths, indicating the need for new treatment options. Interestingly, molecular analyses of type II ECs have uncovered frequent genetic alterations (up to 40%) in PPP2R1A, encoding the Aα subunit of the tumor suppressive heterotrimeric protein phosphatase type 2A (PP2A). PPP2R1A mutations were also reported in type I ECs and other common gynecologic cancers, albeit at much lower frequencies (0-7%). Nevertheless, PP2A inactivation in the latter cancer types is common via other mechanisms, in particular by increased expression of Cancerous Inhibitor of PP2A (CIP2A) and PP2A Methylesterase-1 (PME-1) proteins. In this review, we discuss the therapeutic potential of direct and indirect PP2A targeting compounds, possibly in combination with other anti-cancer drugs, in EC. Furthermore, we investigate the potential of the PP2A status as a predictive and/or prognostic marker for type I and II ECs.
Collapse
Affiliation(s)
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
40
|
Taylor SE, O'Connor CM, Wang Z, Shen G, Song H, Leonard D, Sangodkar J, LaVasseur C, Avril S, Waggoner S, Zanotti K, Armstrong AJ, Nagel C, Resnick K, Singh S, Jackson MW, Xu W, Haider S, DiFeo A, Narla G. The Highly Recurrent PP2A Aα-Subunit Mutation P179R Alters Protein Structure and Impairs PP2A Enzyme Function to Promote Endometrial Tumorigenesis. Cancer Res 2019; 79:4242-4257. [PMID: 31142515 DOI: 10.1158/0008-5472.can-19-0218] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/12/2019] [Accepted: 05/22/2019] [Indexed: 11/16/2022]
Abstract
Somatic mutation of the protein phosphatase 2A (PP2A) Aα-subunit gene PPP2R1A is highly prevalent in high-grade endometrial carcinoma. The structural, molecular, and biological basis by which the most recurrent endometrial carcinoma-specific mutation site P179 facilitates features of endometrial carcinoma malignancy has yet to be fully determined. Here, we used a series of structural, biochemical, and biological approaches to investigate the impact of the P179R missense mutation on PP2A function. Enhanced sampling molecular dynamics simulations showed that arginine-to-proline substitution at the P179 residue changes the protein's stable conformation profile. A crystal structure of the tumor-derived PP2A mutant revealed marked changes in A-subunit conformation. Binding to the PP2A catalytic subunit was significantly impaired, disrupting holoenzyme formation and enzymatic activity. Cancer cells were dependent on PP2A disruption for sustained tumorigenic potential, and restoration of wild-type Aα in a patient-derived P179R-mutant cell line restored enzyme function and significantly attenuated tumorigenesis and metastasis in vivo. Furthermore, small molecule-mediated therapeutic reactivation of PP2A significantly inhibited tumorigenicity in vivo. These outcomes implicate PP2A functional inactivation as a critical component of high-grade endometrial carcinoma disease pathogenesis. Moreover, they highlight PP2A reactivation as a potential therapeutic strategy for patients who harbor P179R PPP2R1A mutations. SIGNIFICANCE: This study characterizes a highly recurrent, disease-specific PP2A PPP2R1A mutation as a driver of endometrial carcinoma and a target for novel therapeutic development.See related commentary by Haines and Huang, p. 4009.
Collapse
Affiliation(s)
- Sarah E Taylor
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Caitlin M O'Connor
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Zhizhi Wang
- Department of Biological Structure, University of Washington, Seattle, Washington
| | - Guobo Shen
- Department of Biological Structure, University of Washington, Seattle, Washington
| | - Haichi Song
- Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, University College London, London, United Kingdom
| | - Daniel Leonard
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Jaya Sangodkar
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Corinne LaVasseur
- School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Stefanie Avril
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Steven Waggoner
- Department of Obstetrics and Gynecology, University Hospitals of Cleveland, Cleveland, Ohio
| | - Kristine Zanotti
- Department of Obstetrics and Gynecology, University Hospitals of Cleveland, Cleveland, Ohio
| | - Amy J Armstrong
- Department of Obstetrics and Gynecology, University Hospitals of Cleveland, Cleveland, Ohio
| | - Christa Nagel
- Department of Obstetrics and Gynecology, University Hospitals of Cleveland, Cleveland, Ohio
| | - Kimberly Resnick
- Department of Obstetrics and Gynecology, MetroHealth, Cleveland, Ohio
| | - Sareena Singh
- Department of Obstetrics and Gynecology, Aultman Hospital, Canton, Ohio
| | - Mark W Jackson
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Wenqing Xu
- Department of Biological Structure, University of Washington, Seattle, Washington
| | - Shozeb Haider
- Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, University College London, London, United Kingdom
| | - Analisa DiFeo
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan.,Department of Pathology, University of Michigan, Ann Arbor, Michigan.,Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Goutham Narla
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan. .,Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
41
|
He S, Ma X, Ye Y, Zhang M, Zhuang J, Song Y, Xia W. HEATR1 modulates cell survival in non-small cell lung cancer via activation of the p53/PUMA signaling pathway. Onco Targets Ther 2019; 12:4001-4011. [PMID: 31190896 PMCID: PMC6535672 DOI: 10.2147/ott.s195826] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 04/26/2019] [Indexed: 12/31/2022] Open
Abstract
Aim: To determine the mechanisms of HEATR1 on cell survival in non-small cell lung cancer (NSCLC). Methods: HEATR1 mRNA expression levels in 57 pairs of NSCLC tumor and adjacent normal lung tissues were analyzed using the TCGA database. The effect of HEATR1 inhibition on cell proliferation, apoptosis, and colony formation was measured in A549 and NCI-H460 cells lines. In addition, the effect of HEATR1 inhibition on tumor growth was measured using in vivo xenograft nude mouse models. Additionally, downstream signaling pathways affected by HEATR1 inhibition were analyzed using microarrays and bioinformatics analysis, and were validated using quantitative real-time polymerase chain reaction and Western blot analysis. Results: HEATR1 levels were significantly higher in NSCLC tumor tissues compared to normal adjacent lung tissues (P<0.001). In vitro, cell proliferation was significantly reduced in both A549 and NCI-H1299 cells transduced with shHEATR1 compared to shCtrl (P<0.001). Colony formation was also significantly reduced after HEATR1 interference (P<0.01). Additionally, the percentage of apoptosis was significantly increased in cells transduced with shHEATR1 (P<0.001). In vivo, HEATR1 inhibition significantly reduced xenograft tumor growth in nude mice. HEATR1 inhibition drastically affected the p53-signaling pathway, significantly up-regulating PUMA and BAX both at the mRNA and protein levels (P<0.001), while BCL2 levels were significantly down-regulated (P<0.01). The cell proliferation and apoptosis were recovered in cell transduced with shHEATR1 and shp53 compared to shHEATR1 (P<0.05). Conclusion: HEATR1 inhibition activated p53 by reducing ribosome biogenesis, which subsequently led to NSCLC cell apoptosis and reduced cell survival through the p53-PUMA-BAX/BCL2 axis. Our results provide a mechanism by which therapeutic modulation of HEATR1 could be a treatment strategy for NSCLC. In addition, HEATR1 could be used as a potential biomarker for the prognosis or therapeutic evaluation of NSCLC.
Collapse
Affiliation(s)
- Saifei He
- Central Laboratory, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Xing Ma
- Department of Nuclear Medicine, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Ying Ye
- Central Laboratory, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Miao Zhang
- Central Laboratory, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Juhua Zhuang
- Department of Nuclear Medicine, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Yanan Song
- Central Laboratory, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Wei Xia
- Department of Nuclear Medicine, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| |
Collapse
|
42
|
Bheri M, Pandey GK. PP2A Phosphatases Take a Giant Leap in the Post-Genomics Era. Curr Genomics 2019; 20:154-171. [PMID: 31929724 PMCID: PMC6935955 DOI: 10.2174/1389202920666190517110605] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 05/09/2019] [Accepted: 05/09/2019] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Protein phosphorylation is an important reversible post-translational modifica-tion, which regulates a number of critical cellular processes. Phosphatases and kinases work in a con-certed manner to act as a "molecular switch" that turns-on or - off the regulatory processes driving the growth and development under normal circumstances, as well as responses to multiple stresses in plant system. The era of functional genomics has ushered huge amounts of information to the framework of plant systems. The comprehension of who's who in the signaling pathways is becoming clearer and the investigations challenging the conventional functions of signaling components are on a rise. Protein phosphatases have emerged as key regulators in the signaling cascades. PP2A phosphatases due to their diverse holoenzyme compositions are difficult to comprehend. CONCLUSION In this review, we highlight the functional versatility of PP2A members, deciphered through the advances in the post-genomic era.
Collapse
Affiliation(s)
- Malathi Bheri
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi-110021, India
| | - Girdhar K. Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi-110021, India
| |
Collapse
|
43
|
Moura M, Conde C. Phosphatases in Mitosis: Roles and Regulation. Biomolecules 2019; 9:E55. [PMID: 30736436 PMCID: PMC6406801 DOI: 10.3390/biom9020055] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 02/07/2023] Open
Abstract
Mitosis requires extensive rearrangement of cellular architecture and of subcellular structures so that replicated chromosomes can bind correctly to spindle microtubules and segregate towards opposite poles. This process originates two new daughter nuclei with equal genetic content and relies on highly-dynamic and tightly regulated phosphorylation of numerous cell cycle proteins. A burst in protein phosphorylation orchestrated by several conserved kinases occurs as cells go into and progress through mitosis. The opposing dephosphorylation events are catalyzed by a small set of protein phosphatases, whose importance for the accuracy of mitosis is becoming increasingly appreciated. This review will focus on the established and emerging roles of mitotic phosphatases, describe their structural and biochemical properties, and discuss recent advances in understanding the regulation of phosphatase activity and function.
Collapse
Affiliation(s)
- Margarida Moura
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.
- i3S-Instituto de Investigação e Inovação em Saúde da Universidade do Porto, 4200-135, Porto, Portugal.
- Programa Doutoral em Biologia Molecular e Celular (MCbiology), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal.
| | - Carlos Conde
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.
- i3S-Instituto de Investigação e Inovação em Saúde da Universidade do Porto, 4200-135, Porto, Portugal.
| |
Collapse
|
44
|
Fowle H, Zhao Z, Graña X. PP2A holoenzymes, substrate specificity driving cellular functions and deregulation in cancer. Adv Cancer Res 2019; 144:55-93. [PMID: 31349904 PMCID: PMC9994639 DOI: 10.1016/bs.acr.2019.03.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PP2A is a highly conserved eukaryotic serine/threonine protein phosphatase of the PPP family of phosphatases with fundamental cellular functions. In cells, PP2A targets specific subcellular locations and substrates by forming heterotrimeric holoenzymes, where a core dimer consisting of scaffold (A) and catalytic (C) subunits complexes with one of many B regulatory subunits. PP2A plays a key role in positively and negatively regulating a myriad of cellular processes, as it targets a very sizable fraction of the cellular substrates phosphorylated on Ser/Thr residues. This review focuses on insights made toward the understanding on how the subunit composition and structure of PP2A holoenzymes mediates substrate specificity, the role of substrate modulation in the signaling of cellular division, growth, and differentiation, and its deregulation in cancer.
Collapse
Affiliation(s)
- Holly Fowle
- Fels Institute for Cancer Research and Molecular Biology and Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Ziran Zhao
- Fels Institute for Cancer Research and Molecular Biology and Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Xavier Graña
- Fels Institute for Cancer Research and Molecular Biology and Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States.
| |
Collapse
|
45
|
SHOC2-MRAS-PP1 complex positively regulates RAF activity and contributes to Noonan syndrome pathogenesis. Proc Natl Acad Sci U S A 2018; 115:E10576-E10585. [PMID: 30348783 DOI: 10.1073/pnas.1720352115] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Dephosphorylation of the inhibitory "S259" site on RAF kinases (S259 on CRAF, S365 on BRAF) plays a key role in RAF activation. The MRAS GTPase, a close relative of RAS oncoproteins, interacts with SHOC2 and protein phosphatase 1 (PP1) to form a heterotrimeric holoenzyme that dephosphorylates this S259 RAF site. MRAS and SHOC2 function as PP1 regulatory subunits providing the complex with striking specificity against RAF. MRAS also functions as a targeting subunit as membrane localization is required for efficient RAF dephosphorylation and ERK pathway regulation in cells. SHOC2's predicted structure shows remarkable similarities to the A subunit of PP2A, suggesting a case of convergent structural evolution with the PP2A heterotrimer. We have identified multiple regions in SHOC2 involved in complex formation as well as residues in MRAS switch I and the interswitch region that help account for MRAS's unique effector specificity for SHOC2-PP1. MRAS, SHOC2, and PPP1CB are mutated in Noonan syndrome, and we show that syndromic mutations invariably promote complex formation with each other, but not necessarily with other interactors. Thus, Noonan syndrome in individuals with SHOC2, MRAS, or PPPC1B mutations is likely driven at the biochemical level by enhanced ternary complex formation and highlights the crucial role of this phosphatase holoenzyme in RAF S259 dephosphorylation, ERK pathway dynamics, and normal human development.
Collapse
|
46
|
Remmerie M, Janssens V. Targeted Therapies in Type II Endometrial Cancers: Too Little, but Not Too Late. Int J Mol Sci 2018; 19:E2380. [PMID: 30104481 PMCID: PMC6121653 DOI: 10.3390/ijms19082380] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/02/2018] [Accepted: 08/08/2018] [Indexed: 01/14/2023] Open
Abstract
Type II endometrial carcinomas (ECs) are responsible for most endometrial cancer-related deaths due to their aggressive nature, late stage detection and high tolerance for standard therapies. However, there are no targeted therapies for type II ECs, and they are still treated the same way as the clinically indolent and easily treatable type I ECs. Therefore, type II ECs are in need of new treatment options. More recently, molecular analysis of endometrial cancer revealed phosphorylation-dependent oncogenic signalling in the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathways to be most frequently altered in type II ECs. Consequently, clinical trials tested pharmacologic kinase inhibitors targeting these pathways, although mostly with rather disappointing results. In this review, we highlight the most common genetic alterations in type II ECs. Additionally, we reason why most clinical trials for ECs using targeted kinase inhibitors had unsatisfying results and what should be changed in future clinical trial setups. Furthermore, we argue that, besides kinases, phosphatases should no longer be ignored in clinical trials, particularly in type II ECs, where the tumour suppressive phosphatase protein phosphatase type 2A (PP2A) is frequently mutated. Lastly, we discuss the therapeutic potential of targeting PP2A for (re)activation, possibly in combination with pharmacologic kinase inhibitors.
Collapse
Affiliation(s)
- Michiel Remmerie
- Laboratory of Protein Phosphorylation & Proteomics, Department of Cellular & Molecular Medicine, University of Leuven (KU Leuven), B-3000 Leuven, Belgium.
- Leuven Cancer Institute (LKI), B-3000 Leuven, Belgium.
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation & Proteomics, Department of Cellular & Molecular Medicine, University of Leuven (KU Leuven), B-3000 Leuven, Belgium.
- Leuven Cancer Institute (LKI), B-3000 Leuven, Belgium.
| |
Collapse
|
47
|
Alvarado ME, Rubiano C, Sánchez W, Díaz A, Wasserman M. Calcium-binding proteins that are type B″ regulatory subunits of phosphatase 2A in Giardia intestinalis. Parasitol Res 2018; 117:3205-3214. [PMID: 30043281 DOI: 10.1007/s00436-018-6019-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/17/2018] [Indexed: 10/28/2022]
Abstract
Giardia intestinalis is a protozoan parasite that colonizes the upper part of the small intestine of its mammalian hosts. The trophozoite, which is the replicative stage, has a complex cytoskeleton that allows it to move and adhere to intestinal cells. It has been proposed that protein phosphatase 2A (PP2A) participates in the regulation of changes to the parasite cytoskeleton during its life cycle. However, how PP2A is involved in this regulation remains unclear since its substrates and regulators have not been characterized. In this work, we report the bioinformatic and experimental analysis of two potential regulatory B″ subunits of PP2A in Giardia, both of which are calcium-binding proteins. In this work, in silico and experimental evidence of the binding of both proteins to calcium is presented; the proteins are shown to interact with the catalytic PP2A subunit in the trophozoite stage, and they exhibit different subcellular localization patterns. Because PP2A is a heterotrimer, homology analysis of the different subunits of PP2A indicates that fewer holoenzyme combinations can be formed in this parasite than in other organisms. Our results suggest that the localization of PP2A may be associated with calcium-dependent signaling through its B″ type regulatory subunits.
Collapse
Affiliation(s)
- Magda E Alvarado
- Laboratorio de Investigaciones Básicas en Bioquímica - LIBBIQ, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia.
| | - Claudia Rubiano
- Laboratorio de Investigaciones Básicas en Bioquímica - LIBBIQ, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - William Sánchez
- Laboratorio de Investigaciones Básicas en Bioquímica - LIBBIQ, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Andrea Díaz
- Laboratorio de Investigaciones Básicas en Bioquímica - LIBBIQ, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Moisés Wasserman
- Laboratorio de Investigaciones Básicas en Bioquímica - LIBBIQ, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
48
|
Major P, Embley TM, Williams TA. Phylogenetic Diversity of NTT Nucleotide Transport Proteins in Free-Living and Parasitic Bacteria and Eukaryotes. Genome Biol Evol 2018; 9:480-487. [PMID: 28164241 PMCID: PMC5381601 DOI: 10.1093/gbe/evx015] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2017] [Indexed: 01/24/2023] Open
Abstract
Plasma membrane-located nucleotide transport proteins (NTTs) underpin the lifestyle of important obligate intracellular bacterial and eukaryotic pathogens by importing energy and nucleotides from infected host cells that the pathogens can no longer make for themselves. As such their presence is often seen as a hallmark of an intracellular lifestyle associated with reductive genome evolution and loss of primary biosynthetic pathways. Here, we investigate the phylogenetic distribution of NTT sequences across the domains of cellular life. Our analysis reveals an unexpectedly broad distribution of NTT genes in both host-associated and free-living prokaryotes and eukaryotes. We also identify cases of within-bacteria and bacteria-to-eukaryote horizontal NTT transfer, including into the base of the oomycetes, a major clade of parasitic eukaryotes. In addition to identifying sequences that retain the canonical NTT structure, we detected NTT gene fusions with HEAT-repeat and cyclic nucleotide binding domains in Cyanobacteria, pathogenic Chlamydiae and Oomycetes. Our results suggest that NTTs are versatile functional modules with a much wider distribution and a broader range of potential roles than has previously been appreciated.
Collapse
Affiliation(s)
- Peter Major
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne, United Kingdom
| | - T Martin Embley
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne, United Kingdom
| | - Tom A Williams
- School of Earth Sciences, University of Bristol, United Kingdom
| |
Collapse
|
49
|
Yoon J, Kim SJ, An S, Cho S, Leitner A, Jung T, Aebersold R, Hebert H, Cho US, Song JJ. Integrative Structural Investigation on the Architecture of Human Importin4_Histone H3/H4_Asf1a Complex and Its Histone H3 Tail Binding. J Mol Biol 2018; 430:822-841. [DOI: 10.1016/j.jmb.2018.01.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 11/15/2022]
|
50
|
Horani A, Ustione A, Huang T, Firth AL, Pan J, Gunsten SP, Haspel JA, Piston DW, Brody SL. Establishment of the early cilia preassembly protein complex during motile ciliogenesis. Proc Natl Acad Sci U S A 2018; 115:E1221-E1228. [PMID: 29358401 PMCID: PMC5819421 DOI: 10.1073/pnas.1715915115] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Motile cilia are characterized by dynein motor units, which preassemble in the cytoplasm before trafficking into the cilia. Proteins required for dynein preassembly were discovered by finding human mutations that result in absent ciliary motors, but little is known about their expression, function, or interactions. By monitoring ciliogenesis in primary airway epithelial cells and MCIDAS-regulated induced pluripotent stem cells, we uncovered two phases of expression of preassembly proteins. An early phase, composed of HEATR2, SPAG1, and DNAAF2, preceded other preassembly proteins and was independent of MCIDAS regulation. The early preassembly proteins colocalized within perinuclear foci that also contained dynein arm proteins. These proteins also interacted based on immunoprecipitation and Förster resonance energy transfer (FRET) studies. FRET analysis of HEAT domain deletions and human mutations showed that HEATR2 interacted with itself and SPAG1 at multiple HEAT domains, while DNAAF2 interacted with SPAG1. Human mutations in HEATR2 did not affect this interaction, but triggered the formation of p62/Sequestosome-1-positive aggregates containing the early preassembly proteins, suggesting that degradation of an early preassembly complex is responsible for disease and pointing to key regions required for HEATR2 scaffold stability. We speculate that HEATR2 is an early scaffold for the initiation of dynein complex assembly in motile cilia.
Collapse
Affiliation(s)
- Amjad Horani
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110;
| | - Alessandro Ustione
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Tao Huang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Amy L Firth
- Department of Medicine, University of Southern California, Keck School of Medicine, Los Angeles, CA 90033
| | - Jiehong Pan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Sean P Gunsten
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Jeffrey A Haspel
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - David W Piston
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Steven L Brody
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|