1
|
Young JM, Nelson JW, Cheng J, Zhang W, Mader S, Davis CM, Morrison RS, Alkayed NJ. Peroxisomal biogenesis in ischemic brain. Antioxid Redox Signal 2015; 22:109-20. [PMID: 25226217 PMCID: PMC4281844 DOI: 10.1089/ars.2014.5833] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
AIMS Peroxisomes are highly adaptable and dynamic organelles, adjusting their size, number, and enzyme composition to changing environmental and metabolic demands. We determined whether peroxisomes respond to ischemia, and whether peroxisomal biogenesis is an adaptive response to cerebral ischemia. RESULTS Focal cerebral ischemia induced peroxisomal biogenesis in peri-infarct neurons, which was associated with a corresponding increase in peroxisomal antioxidant enzyme catalase. Peroxisomal biogenesis was also observed in primary cultured cortical neurons subjected to ischemic insult induced by oxygen-glucose deprivation (OGD). A catalase inhibitor increased OGD-induced neuronal death. Moreover, preventing peroxisomal proliferation by knocking down dynamin-related protein 1 (Drp1) exacerbated neuronal death induced by OGD, whereas enhancing peroxisomal biogenesis pharmacologically using a peroxisome proliferator-activated receptor-alpha agonist protected against neuronal death induced by OGD. INNOVATION This is the first documentation of ischemia-induced peroxisomal biogenesis in mammalian brain using a combined in vivo and in vitro approach, electron microscopy, high-resolution laser-scanning confocal microscopy, and super-resolution structured illumination microscopy. CONCLUSION Our findings suggest that neurons respond to ischemic injury by increasing peroxisome biogenesis, which serves a protective function, likely mediated by enhanced antioxidant capacity of neurons.
Collapse
Affiliation(s)
- Jennifer M Young
- 1 Department of Anesthesiology & Perioperative Medicine, The Knight Cardiovascular Institute, Oregon Health & Science University , Portland, Oregon
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Ito R, Morita M, Takahashi N, Shimozawa N, Usuda N, Imanaka T, Ito M. Identification of Pex5pM, and retarded maturation of 3-ketoacyl-CoA thiolase and acyl-CoA oxidase in CHO cells expressing mutant Pex5p isoforms. J Biochem 2009; 138:781-90. [PMID: 16428307 DOI: 10.1093/jb/mvi175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recently, we isolated CHO cells, termed SK32 cells, that express mutant Pex5p (G432R), and showed mislocalization of catalase in the cytosol, but peroxisomal localization of 3-ketoacyl-CoA thiolase (thiolase) in the mutant cells [Ito, R. et al. (2001) Biochem. Biophys. Res. Commun. 288, 321-327]. While analyzing the mutant cells, we found a novel Pex5p isoform (Pex5pM), which was shorter by seven amino acids than Pex5pL and longer by 30 amino acids than Pex5pS. Similar levels of mRNA syntheses for the PEX5 gene were observed in both the wild type and mutant cells, but the protein levels of Pex5p isoforms were markedly reduced in the mutant cells cultured at 37 degrees C and only slightly discernible at 30 degrees C, suggesting that they could be rapidly degraded. Furthermore, we characterized the peroxisomal localization of thiolase and acyl-CoA oxidase (Aox) in SK32 cells. The proteins in the organelle fraction were protected from proteinase K-digestion in the mutant cells, indicating that they were translocated inside peroxisomes. However, the conversion of Aox from component A to components B and C was completely prevented at both 30 and 37 degrees C, and the precursor form of thiolase was partially processed to the mature one in a temperature-sensitive manner. Transformed SK32 cells stably expressing one of the wild type Pex5p isoforms were isolated, and then the maturation steps for thiolase and Aox were examined. Pex5pM and S restored the processing of the two enzymes, but Pex5pL did not. In addition, Pex5pL prevented the maturation of thiolase observed at 30 degrees C. These results indicate that (i) the novel Pex5pM is functional and (ii) a seven amino acids-insertion, which is present in the L isoform but absent in the M isoform, plays some role in the process of maturation of thiolase and Aox.
Collapse
Affiliation(s)
- Ritsu Ito
- Division of Molecular Cell Biology, Saga University Faculty of Medicine, Nabeshima 5-1-1, Saga 849-8501
| | | | | | | | | | | | | |
Collapse
|
3
|
Abstract
Peroxisomes are organelles that carry out diverse biochemical processes in eukaryotic cells, including the core pathways of beta-oxidation of lipid molecules and detoxification of reactive oxygen species. In multicellular organisms defects in peroxisome assembly result in multiple biochemical and developmental abnormalities. As peroxisomes do not contain genetic material, their protein content, and therefore function, is determined by the import of nuclearly encoded proteins from the cytosol and, presumably, removal of damaged or obsolete proteins. Import of matrix proteins can be broken down into four steps: targeting signal recognition by the cycling import receptors; receptor-cargo docking at the peroxisome membrane; translocation and cargo unloading; and receptor recycling. Import is mediated by a set of evolutionarily conserved proteins called peroxins that have been identified primarily via genetic screens, but knowledge of their biochemical activities remains largely unresolved. Recent studies have filled in some of the blanks regarding receptor recycling and the role of ubiquitination but outstanding questions remain concerning the nature of the translocon and its ability to accommodate folded, even oligomeric proteins, and the mechanism of cargo unloading and turnover of peroxisomal proteins. This review seeks to integrate recent findings from yeast, mammalian and plant systems to present an up to date account of how proteins enter the peroxisome matrix.
Collapse
|
4
|
Grzmil P, Burfeind C, Preuss T, Dixkens C, Wolf S, Engel W, Burfeind P. The putative peroxisomal gene Pxt1 is exclusively expressed in the testis. Cytogenet Genome Res 2007; 119:74-82. [PMID: 18160785 DOI: 10.1159/000109622] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Accepted: 06/18/2007] [Indexed: 01/18/2023] Open
Abstract
Genes reported to be crucial for spermatogenesis are often exclusively expressed in the testis. We have identified a novel male germ cell-specific expressed gene named peroxisomal testis specific 1 (Pxt1) with expression starting at the spermatocyte stage during mouse spermatogenesis. The putative amino acid sequence encoded by the cDNA of the Pxt1 gene contains a conserved Asn-His-Leu (NHL)-motif at its C-terminal end, which is characteristic for peroxisomal proteins. Pxt1-EGFP fusion protein is co-localized with known peroxisomal marker proteins in transfected NIH3T3 cells. In addition, we could demonstrate that the peroxisomal targeting signal NHL is functional and responsible for the correct subcellular localization of the Pxt1-EGFP fusion protein. In male germ cells peroxisomes were reported only in spermatogonia. The Pxt1 gene is so far the first gene coding for a putative peroxisomal protein which is expressed in later steps of spermatogenesis, namely in pachytene spermatocytes.
Collapse
Affiliation(s)
- P Grzmil
- Institute of Human Genetics, University of Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
5
|
Cox B, Chit MM, Weaver T, Gietl C, Bailey J, Bell E, Banaszak L. Organelle and translocatable forms of glyoxysomal malate dehydrogenase. The effect of the N-terminal presequence. FEBS J 2005; 272:643-54. [PMID: 15670147 DOI: 10.1111/j.1742-4658.2004.04475.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Many organelle enzymes coded for by nuclear genes have N-terminal sequences, which directs them into the organelle (precursor) and are removed upon import (mature). The experiments described below characterize the differences between the precursor and mature forms of watermelon glyoxysomal malate dehydrogenase. Using recombinant protein methods, the precursor (p-gMDH) and mature (gMDH) forms were purified to homogeneity using Ni2+-NTA affinity chromatography. Gel filtration and dynamic light scattering have shown both gMDH and p-gMDH to be dimers in solution with p-gMDH having a correspondingly higher molecular weight. p-gMDH also exhibited a smaller translational diffusion coefficient (D(t)) at temperatures between 4 and 32 degrees C resulting from the extra amino acids on the N-terminal. Differential scanning calorimetry described marked differences in the unfolding properties of the two proteins with p-gMDH showing additional temperature dependent transitions. In addition, some differences were found in the steady state kinetic constants and the pH dependence of the K(m) for oxaloacetate. Both the organelle-precursor and the mature form of this glyoxysomal enzyme were crystallized under identical conditions. The crystal structure of p-gMDH, the first structure of a cleavable and translocatable protein, was solved to a resolution of 2.55 A. GMDH is the first glyoxysomal MDH structure and was solved to a resolution of 2.50 A. A comparison of the two structures shows that there are few visible tertiary or quaternary structural differences between corresponding elements of p-gMDH, gMDH and other MDHs. Maps from both the mature and translocatable proteins lack significant electron density prior to G44. While no portion of the translocation sequences from either monomer in the biological dimer was visible, all of the other solution properties indicated measurable effects of the additional residues at the N-terminal.
Collapse
Affiliation(s)
- Bryan Cox
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, MN, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
Peroxisomes are metabolic organelles with enzymatic content that are found in virtually all cells and are involved in beta-oxidation of fatty acids, hydrogen peroxide-based respiration and defence against oxidative stress. The steps of their biogenesis involves "peroxins", proteins encoded by PEX genes. Peroxins are involved in three key stages of peroxisome development: (1). import of peroxisomal membrane proteins; (2). import of peroxisomal matrix proteins and (3). peroxisome proliferation. Of these three areas, peroxisomal matrix-protein import is by far the best understood and accounts for most of the available published data on peroxisome biogenesis. Defects in peroxisome biogenesis result in peroxisome biogenesis disorders (PBDs), which although rare, have no known cure to-date. This review explores current understanding of each key area in peroxisome biogenesis, paying particular attention to the role of protein import.
Collapse
Affiliation(s)
- Laura-Anne Brown
- Centre for Plant Sciences, University of Leeds, Leeds, United Kingdom
| | | |
Collapse
|
7
|
Silva-Filho MC. One ticket for multiple destinations: dual targeting of proteins to distinct subcellular locations. CURRENT OPINION IN PLANT BIOLOGY 2003; 6:589-95. [PMID: 14611958 DOI: 10.1016/j.pbi.2003.09.008] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The biogenesis of organelles and the maintenance of cell functions in multi-compartmentalized plant cells require a specific protein delivery mechanism to ensure efficient and effective translocation of proteins to their respective destinations. Increasing numbers of studies demonstrate that some proteins are targeted simultaneously to more than one compartment by a range of mechanisms, involving composite targeting sequences and/or transcriptional and translational controls. Recent data indicate that the final destination of a protein might respond to changes in the environment; this underlines the complexity of cell engineering that is required to localize a protein.
Collapse
Affiliation(s)
- Marcio C Silva-Filho
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, CP 83, 13400-970 Piracicaba, São Paulo, Brazil.
| |
Collapse
|
8
|
Santana A, Salido E, Torres A, Shapiro LJ. Primary hyperoxaluria type 1 in the Canary Islands: a conformational disease due to I244T mutation in the P11L-containing alanine:glyoxylate aminotransferase. Proc Natl Acad Sci U S A 2003; 100:7277-82. [PMID: 12777626 PMCID: PMC165866 DOI: 10.1073/pnas.1131968100] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Primary hyperoxaluria type 1 (PH1) is an inborn error of metabolism resulting from a deficiency of alanine:glyoxylate aminotransferase (AGXT; EC 2.6.1.44). Most of the PH1 alleles detected in the Canary Islands carry the Ile-244 --> Thr (I244T) mutation in the AGXT gene, with 14 of 16 patients homozygous for this mutation. Four polymorphisms within AGXT and regional microsatellites also were shared in their haplotypes (AGXT*LTM), consistent with a founder effect. The consequences of these amino acid changes were investigated. Although I244T alone did not affect AGXT activity or subcellular localization, when present in the same protein molecule as Leu-11 --> Pro (L11P), it resulted in loss of enzymatic activity in soluble cell extracts. Like its normal counterpart, the AGXT*LTM protein was present in the peroxisomes but it was insoluble in detergent-free buffers. The polymorphism L11P behaved as an intragenic modifier of the I244T mutation, with the resulting protein undergoing stable interaction with molecular chaperones and aggregation. This aggregation was temperature-sensitive. AGXT*LTM expressed in Escherichia coli, as a GST-fusion protein, and in insect cells could be purified and retained enzymatic activity. Among various chemical chaperones tested in cell culture, betaine substantially improved the solubility of the mutant protein and the enzymatic activity in cell lysates. In summary, I244T, the second most common mutation responsible for PH1, is a protein conformational disease that may benefit from new therapies with pharmacological chaperones or small molecules to minimize protein aggregation.
Collapse
Affiliation(s)
- A Santana
- Department of Pediatrics, University of California School of Medicine, San Francisco, CA 94143, USA
| | | | | | | |
Collapse
|
9
|
Igarashi D, Miwa T, Seki M, Kobayashi M, Kato T, Tabata S, Shinozaki K, Ohsumi C. Identification of photorespiratory glutamate:glyoxylate aminotransferase (GGAT) gene in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 33:975-987. [PMID: 12631323 DOI: 10.1046/j.1365-313x.2003.01688.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In the photorespiratory process, peroxisomal glutamate:glyoxylate aminotransferase (GGAT) catalyzes the reaction of glutamate and glyoxylate to 2-oxoglutarate and glycine. Although GGAT has been assumed to play important roles for the transamination in photorespiratory carbon cycles, the gene encoding GGAT has not been identified. Here, we report that an alanine:2-oxoglutarate aminotransferase (AOAT)-like protein functions as GGAT in peroxisomes. Arabidopsis has four genes encoding AOAT-like proteins and two of them (namely AOAT1 and AOAT2) contain peroxisomal targeting signal 1 (PTS1). The expression analysis of mRNA encoding AOATs and EST information suggested that AOAT1 was the major protein in green leaves. When AOAT1 fused to green fluorescent protein (GFP) was expressed in BY-2 cells, it was found to be localized to peroxisomes depending on PTS1. By screening of Arabidopsis T-DNA insertion lines, an AOAT1 knockout line (aoat1-1) was isolated. The activity of GGAT and alanine:glyoxylate aminotransferase (AGAT) in the above-ground tissues of aoat1-1 was reduced drastically and, AOAT and glutamate:pyruvate aminotransferase (GPAT) activity also decreased. Peroxisomal GGAT was detected in the wild type but not in aoat1-1. The growth rate was repressed in aoat1-1 grown under high irradiation or without sugar, though differences were slight in aoat1-1 grown under low irradiation, high-CO2 (0.3%) or high-sugar (3% sucrose) conditions. These phenotypes resembled those of photorespiration-deficient mutants. Glutamate levels increased and serine levels decreased in aoat1-1 grown in normal air conditions. Based on these results, it was concluded that AOAT1 is targeted to peroxisomes, functions as a photorespiratory GGAT, plays a markedly important role for plant growth and the metabolism of amino acids.
Collapse
Affiliation(s)
- Daisuke Igarashi
- Institute of Life Sciences, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki 210-8681, Japan
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Agne B, Meindl NM, Niederhoff K, Einwächter H, Rehling P, Sickmann A, Meyer HE, Girzalsky W, Kunau WH. Pex8p: an intraperoxisomal organizer of the peroxisomal import machinery. Mol Cell 2003; 11:635-46. [PMID: 12667447 DOI: 10.1016/s1097-2765(03)00062-5] [Citation(s) in RCA: 184] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Peroxisomes transport folded and oligomeric proteins across their membrane. Two cytosolic import receptors, Pex5p and Pex7p, along with approximately 12 membrane-bound peroxins participate in this process. While interactions among individual peroxins have been described, their organization into functional units has remained elusive. We have purified and defined two core complexes of the peroxisomal import machinery: the docking complex comprising Pex14p and Pex17p, with the loosely associated Pex13p, and the RING finger complex containing Pex2p, Pex10p, and Pex12p. Association of both complexes into a larger import complex requires Pex8p, an intraperoxisomal protein. We conclude that Pex8p organizes the formation of the larger import complex from the trans side of the peroxisomal membrane and thus might enable functional communication between both sides of the membrane.
Collapse
Affiliation(s)
- Birgit Agne
- Abteilung für Zellbiochemie, Ruhr-Universität Bochum, D-44780, Bochum, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Olsnes S, Klingenberg O, Wiedłocha A. Transport of exogenous growth factors and cytokines to the cytosol and to the nucleus. Physiol Rev 2003; 83:163-82. [PMID: 12506129 DOI: 10.1152/physrev.00021.2002] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In recent years a number of growth factors, cytokines, protein hormones, and other proteins have been found in the nucleus after having been added externally to cells. This review evaluates the evidence that translocation takes place and discusses possible mechanisms. As a demonstration of the principle that extracellular proteins can penetrate cellular membranes and reach the cytosol, a brief overview of the penetration mechanism of protein toxins with intracellular sites of action is given. Then problems and pitfalls in attempts to demonstrate the presence of proteins in the cytosol and in the nucleus as opposed to intracellular vesicular compartments are discussed, and some new approaches to study this are described. A detailed overview of the evidence for translocation of fibroblast growth factor, HIV-Tat, interferon-gamma, and other proteins where there is evidence for intracellular action is given, and translocation mechanisms are discussed. It is concluded that although there are many pitfalls, the bulk of the experiments indicate that certain proteins are indeed able to enter the cytosol and nucleus. Possible roles of the internalized proteins are discussed.
Collapse
Affiliation(s)
- Sjur Olsnes
- Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, Oslo, Norway.
| | | | | |
Collapse
|
12
|
Robin MA, Anandatheerthavarada HK, Biswas G, Sepuri NBV, Gordon DM, Pain D, Avadhani NG. Bimodal targeting of microsomal CYP2E1 to mitochondria through activation of an N-terminal chimeric signal by cAMP-mediated phosphorylation. J Biol Chem 2002; 277:40583-93. [PMID: 12191992 PMCID: PMC3800117 DOI: 10.1074/jbc.m203292200] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytochrome P450 2E1 (CYP2E1) plays an important role in alcohol-induced toxicity and oxidative stress. Recently, we showed that this predominantly microsomal protein is also localized in rat hepatic mitochondria. In this report, we show that the N-terminal 30 amino acids of CYP2E1 contain a chimeric signal for bimodal targeting of the apoprotein to endoplasmic reticulum (ER) and mitochondria. We demonstrate that the cryptic mitochondrial targeting signal at sequence 21-31 of the protein is activated by cAMP-dependent phosphorylation at Ser-129. S129A mutation resulted in lower affinity for binding to cytoplasmic Hsp70, mitochondrial translocases (TOM40 and TIM44) and reduced mitochondrial import. S129A mutation, however, did not affect the extent of binding to the signal recognition particle and association with ER membrane translocator protein Sec61. Addition of saturating levels of signal recognition particle caused only a partial inhibition of CYP2E1 translation under in vitro conditions, and saturating levels of ER resulted only in partial membrane integration. cAMP enhanced the mitochondrial CYP2E1 (referred to as P450MT5) level but did not affect its level in the ER. Our results provide new insights on the mechanism of cAMP-mediated activation of a cryptic mitochondrial targeting signal and regulation of P450MT5 targeting to mitochondria.
Collapse
Affiliation(s)
- Marie-Anne Robin
- Department of Animal Biology and the Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Hindupur K. Anandatheerthavarada
- Department of Animal Biology and the Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Gopa Biswas
- Department of Animal Biology and the Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Naresh Babu V. Sepuri
- Department of Biochemistry and Pharmacology, Thomas Jefferson University Medical School, Philadelphia, Pennsylvania 19107
| | - Donna M. Gordon
- Department of Pharmacology and Physiology, University of Medicine and Dentistry of New Jersey, Newark, New Jersey 07103
| | - Debkumar Pain
- Department of Pharmacology and Physiology, University of Medicine and Dentistry of New Jersey, Newark, New Jersey 07103
| | - Narayan G. Avadhani
- Department of Animal Biology and the Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
13
|
Gould SJ, Collins CS. Opinion: peroxisomal-protein import: is it really that complex? Nat Rev Mol Cell Biol 2002; 3:382-9. [PMID: 11988772 DOI: 10.1038/nrm807] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Peroxisomal enzymes are synthesized in the cytoplasm and imported post-translationally across the peroxisome membrane. Unlike other organelles with a sealed membrane, peroxisomes can import folded enzymes, and they seem to lack intraperoxisomal chaperones. Here, we propose a mechanistic model for the early steps in peroxisomal-matrix-enzyme import, which might help to explain the unusual features of this process.
Collapse
Affiliation(s)
- Stephen J Gould
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | |
Collapse
|
14
|
Fiebiger E, Story C, Ploegh HL, Tortorella D. Visualization of the ER-to-cytosol dislocation reaction of a type I membrane protein. EMBO J 2002; 21:1041-53. [PMID: 11867532 PMCID: PMC125905 DOI: 10.1093/emboj/21.5.1041] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The human cytomegalovirus gene products US2 and US11 induce proteasomal degradation of MHC class I heavy chains. We have generated an enhanced green fluorescent protein-class I heavy chain (EGFP-HC) chimeric molecule to study its dislocation and degradation in US2- and US11-expressing cells. The EGFP-HC fusion is stable in control cells, but is degraded rapidly in US2- or US11-expressing cells. Proteasome inhibitors induce in a time-dependent manner the accumulation of EGFP-HC molecules in US2- and US11-expressing cells, as assessed biochemically and by cytofluorimetry of intact cells. Pulse-chase analysis and subcellular fractionation show that EGFP-HC proteins are dislocated from the endoplasmic reticulum and can be recovered as deglycosylated fluorescent intermediates in the cytosol. These results raise the possibility that dislocation of glycoproteins from the ER may not require their full unfolding.
Collapse
Affiliation(s)
| | | | - Hidde L. Ploegh
- Department of Pathology, Harvard Medical School, 200 Longwood Avenue, Armenise Building, Boston, MA 02115, USA
Corresponding author e-mail:
| | | |
Collapse
|
15
|
Chuong SDX, Mullen RT, Muench DG. Identification of a rice RNA- and microtubule-binding protein as the multifunctional protein, a peroxisomal enzyme involved in the beta -oxidation of fatty acids. J Biol Chem 2002; 277:2419-29. [PMID: 11706039 DOI: 10.1074/jbc.m109510200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The control of subcellular mRNA localization and translation is often mediated by protein factors that are directly or indirectly associated with the cytoskeleton. We report the identification and characterization of a rice seed protein that possesses both RNA and microtubule binding activities. In vitro UV cross-linking assays indicated that this protein binds to all mRNA sequences tested, although there was evidence for preferential binding to RNAs that contained A-C nucleotide sequence motifs. The protein was purified to homogeneity using a two-step procedure, and amino acid sequencing identified it as the multifunctional protein (MFP), a peroxisomal enzyme known to possess a number of activities involved in the beta-oxidation of fatty acids. The recombinant version of this rice MFP binds to RNA in UV cross-linking and gel mobility shift experiments, co-sediments specifically with microtubules, and possesses at least two enzymatic activities involved in peroxisomal fatty acid beta-oxidation. Taken together these data suggest that MFP has an important role in mRNA physiology in the cytoplasm, perhaps in regulating the localization or translation of mRNAs through an interaction with microtubules, in addition to its peroxisomal function.
Collapse
Affiliation(s)
- Simon D X Chuong
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | | | | |
Collapse
|
16
|
Abstract
Peroxisomes are membrane-bound subcellular organelles that are involved in a variety of cellular functions. Disorders of peroxisomes, either in their assembly or single enzyme deficiencies, manifest themselves in the nervous system both in development and later in life. Most peroxisomal matrix proteins are targeted using one of the targeting sequences, whereas integral peroxisomal membrane proteins employ a different method. Peroxisomal importation is unique, allowing the importation of oligomerized proteins, and uses a specific extended shuttle system of receptor and cargo. The understanding of peroxisomal assembly is important because peroxisomal biogenesis disorders such as Zellweger syndrome result from these defects, and the resulting failure causes widespread deficiencies in peroxisomal biochemical function. X-linked adrenoleukodystrophy, representing the other group of peroxisomal disorders, is caused by the lack of the adrenoleukodystrophy protein, with an accumulation of very long chain fatty acids. New information on clinical incidence, phenotypic variability, and pathogenesis is becoming available and will have implications for possible therapies.
Collapse
Affiliation(s)
- G V Raymond
- Kennedy Krieger Institute, 707 N. Broadway, Baltimore, MD 21205, USA.
| |
Collapse
|
17
|
Abstract
A recent study indicates that protein import into the peroxisomal matrix occurs by a possibly unique mechanism involving the shuttling of cargo receptors into and out of the organelles.
Collapse
Affiliation(s)
- W H Kunau
- Institut für Physiologische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany.
| |
Collapse
|