1
|
Zhu J, Long T, Gao L, Zhong Y, Wang P, Wang X, Li Z, Hu Z. RPL21 interacts with LAMP3 to promote colorectal cancer invasion and metastasis by regulating focal adhesion formation. Cell Mol Biol Lett 2023; 28:31. [PMID: 37062845 PMCID: PMC10108486 DOI: 10.1186/s11658-023-00443-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/28/2023] [Indexed: 04/18/2023] Open
Abstract
BACKGROUND Metastasis is the leading cause of death among patients with colorectal cancer (CRC). Therefore, it is important to explore the molecular mechanisms of metastasis to develop effective therapeutic targets for CRC. In the present study, ribosomal protein L21 (RPL21) was considered as being involved in promoting CRC metastasis, yet the underlying mechanism requires further investigation. METHODS Immunohistochemistry, western blotting, and quantitative reverse transcription polymerase chain reaction were performed to measure the expression of RPL21 and lysosome-associated membrane protein 3 (LAMP3) in CRC tissues and cells. Wound healing, transwell migration, and invasion assays were performed to study the migration and invasion of cultured CRC cells. An orthotopic CRC mouse model was developed to investigate the metastatic ability of CRC. Transcriptome sequencing was conducted to identify the genes related to RPL21. The dual-luciferase reporter gene assay was performed to determine the transcriptional activity of transcription factor EB (TFEB). The GST/His pull-down assay was performed to investigate the specific binding sites of RPL21 and LAMP3. The cell adhesion assay was performed to determine the adhesion ability of CRC cells. Immunofluorescence staining was performed to observe focal adhesions (FAs). RESULTS RPL21 was highly expressed in CRC, contributing to tumor invasiveness and poor patient prognosis. Functionally, RPL21 promoted the migration and invasion of CRC cells in vitro and tumor metastasis in vivo. Moreover, LAMP3 was identified as being highly related to RPL21 and was essential in promoting the migration and invasion of CRC cells. Mechanistically, RPL21 activated the transcriptional function of TFEB to upregulate LAMP3 expression. RPL21 directly bound to the aa 341-416 domain of LAMP3 via its aa 1-40 and aa 111-160 segments. The combination of RPL21 and LAMP3 enhanced the stability of the RPL21 protein by suppressing the degradation of the ubiquitin-proteasome system. Furthermore, RPL21 and LAMP3 promoted the formation of immature FAs by activating the FAK/paxillin/ERK signaling pathway. CONCLUSIONS RPL21 promoted invasion and metastasis by regulating FA formation in a LAMP3-dependent manner during CRC progression. The interaction between RPL21 and LAMP3 may function as a potential therapeutic target against CRC.
Collapse
Affiliation(s)
- Jiaxian Zhu
- Department of Pathology, Shenzhen Hospital, Southern Medical University, 1333 Xinhu Road, Shenzhen, 518101, Guangdong, People's Republic of China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Ting Long
- Department of Pathology, Shenzhen Hospital, Southern Medical University, 1333 Xinhu Road, Shenzhen, 518101, Guangdong, People's Republic of China
| | - Lingfang Gao
- Department of Pathology, Shenzhen Hospital, Southern Medical University, 1333 Xinhu Road, Shenzhen, 518101, Guangdong, People's Republic of China
| | - Yan Zhong
- Department of Pathology, Shenzhen Hospital, Southern Medical University, 1333 Xinhu Road, Shenzhen, 518101, Guangdong, People's Republic of China
| | - Ping Wang
- Department of Pathology, Shenzhen Hospital, Southern Medical University, 1333 Xinhu Road, Shenzhen, 518101, Guangdong, People's Republic of China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Xiaoyan Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong, People's Republic of China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
- Key Laboratory of Molecular Tumour Pathology of Guangdong Province, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Zuguo Li
- Department of Pathology, Shenzhen Hospital, Southern Medical University, 1333 Xinhu Road, Shenzhen, 518101, Guangdong, People's Republic of China.
- Key Laboratory of Molecular Tumour Pathology of Guangdong Province, Guangzhou, 510515, Guangdong, People's Republic of China.
| | - Zhiyan Hu
- Department of Pathology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong, People's Republic of China.
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China.
- Key Laboratory of Molecular Tumour Pathology of Guangdong Province, Guangzhou, 510515, Guangdong, People's Republic of China.
| |
Collapse
|
2
|
Xiong W, Lan T, Mo B. Extraribosomal Functions of Cytosolic Ribosomal Proteins in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:607157. [PMID: 33968093 PMCID: PMC8096920 DOI: 10.3389/fpls.2021.607157] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/29/2021] [Indexed: 05/20/2023]
Abstract
Ribosomes are basic translational machines in all living cells. The plant cytosolic ribosome is composed of four rRNAs and approximately 81 ribosomal proteins (RPs). In addition to the fundamental functions of RPs in the messenger RNA decoding process as well as in polypeptide synthesis and ribosome assembly, extraribosomal functions of RPs that occur in the absence of the ribosome have been proposed and studied with respect to RPs' ability to interact with RNAs and non-ribosomal proteins. In a few cases, extraribosomal functions of several RPs have been demonstrated with solid evidences in plants, including microRNA biogenesis, anti-virus defenses, and plant immunity, which have fascinated biologists. We believe that the widespread duplication of RP genes in plants may increase the potential of extraribosomal functions of RPs and more extraribosomal functions of plant RPs will be discovered in the future. In this article we review the current knowledge concerning the extraribosomal functions of RPs in plants and described the prospects for future research in this fascinating area.
Collapse
Affiliation(s)
- Wei Xiong
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Ting Lan
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Beixin Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- *Correspondence: Beixin Mo,
| |
Collapse
|
3
|
Kang H, Jha S, Ivovic A, Fratzl-Zelman N, Deng Z, Mitra A, Cabral WA, Hanson EP, Lange E, Cowen EW, Katz J, Roschger P, Klaushofer K, Dale RK, Siegel RM, Bhattacharyya T, Marini JC. Somatic SMAD3-activating mutations cause melorheostosis by up-regulating the TGF-β/SMAD pathway. J Exp Med 2020; 217:151599. [PMID: 32232430 PMCID: PMC7201932 DOI: 10.1084/jem.20191499] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 12/06/2019] [Accepted: 01/31/2020] [Indexed: 12/19/2022] Open
Abstract
Melorheostosis is a rare sclerosing dysostosis characterized by asymmetric exuberant bone formation. Recently, we reported that somatic mosaicism for MAP2K1-activating mutations causes radiographical “dripping candle wax” melorheostosis. We now report somatic SMAD3 mutations in bone lesions of four unrelated patients with endosteal pattern melorheostosis. In vitro, the SMAD3 mutations stimulated the TGF-β pathway in osteoblasts, enhanced nuclear translocation and target gene expression, and inhibited proliferation. Osteoblast differentiation and mineralization were stimulated by the SMAD3 mutation, consistent with higher mineralization in affected than in unaffected bone, but differing from MAP2K1 mutation–positive melorheostosis. Conversely, osteoblast differentiation and mineralization were inhibited when osteogenesis of affected osteoblasts was driven in the presence of BMP2. Transcriptome profiling displayed that TGF-β pathway activation and ossification-related processes were significantly influenced by the SMAD3 mutation. Co-expression clustering illuminated melorheostosis pathophysiology, including alterations in ECM organization, cell growth, and interferon signaling. These data reveal antagonism of TGF-β/SMAD3 activation by BMP signaling in SMAD3 mutation–positive endosteal melorheostosis, which may guide future therapies.
Collapse
Affiliation(s)
- Heeseog Kang
- Section on Heritable Disorders of Bone and Extracellular Matrix, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Smita Jha
- Clinical and Investigative Orthopedics Surgery Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD.,Program in Reproductive and Adult Endocrinology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Aleksandra Ivovic
- Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD
| | - Nadja Fratzl-Zelman
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of Wiener Gebietskrankenkasse, and Allgemeine Unfallversicherungsanstalt Trauma Center Meidling, First Medical Department Hanusch Hospital, Vienna, Austria
| | - Zuoming Deng
- Biodata Mining and Discovery Section, Office of Science and Technology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD
| | - Apratim Mitra
- Bioinformatics and Scientific Programming Core, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Wayne A Cabral
- Section on Heritable Disorders of Bone and Extracellular Matrix, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Eric P Hanson
- Immunodeficiency and Inflammation Unit, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD
| | - Eileen Lange
- Office of the Clinical Director, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD
| | - Edward W Cowen
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD
| | - James Katz
- Office of the Clinical Director, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD
| | - Paul Roschger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of Wiener Gebietskrankenkasse, and Allgemeine Unfallversicherungsanstalt Trauma Center Meidling, First Medical Department Hanusch Hospital, Vienna, Austria
| | - Klaus Klaushofer
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of Wiener Gebietskrankenkasse, and Allgemeine Unfallversicherungsanstalt Trauma Center Meidling, First Medical Department Hanusch Hospital, Vienna, Austria
| | - Ryan K Dale
- Bioinformatics and Scientific Programming Core, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Richard M Siegel
- Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD
| | - Timothy Bhattacharyya
- Section on Congenital Disorders, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Joan C Marini
- Section on Heritable Disorders of Bone and Extracellular Matrix, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| |
Collapse
|
4
|
Li C, Ge M, Chen D, Sun T, Jiang H, Xie Y, Lu H, Zhang B, Han L, Chen J, Zhu J. RPL21 siRNA Blocks Proliferation in Pancreatic Cancer Cells by Inhibiting DNA Replication and Inducing G1 Arrest and Apoptosis. Front Oncol 2020; 10:1730. [PMID: 33014855 PMCID: PMC7509406 DOI: 10.3389/fonc.2020.01730] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 08/03/2020] [Indexed: 12/12/2022] Open
Abstract
Background Our previous study showed that the ribosomal protein L21 (RPL21) may play an important role in the development and survival of pancreatic cancer. In this article, RNA interference (RNAi) experiments were performed with RPL21-specific small interfering RNA (siRNA) to elucidate the mechanism by which RPL21 controls PC PANC-1 and BxPC-3 cell proliferation. Methods In the present study, PANC-1, BxPC-3 cells, and BALB/c nude mice were used to investigate antitumor effect and mechanism by which RPL21 controls cell proliferation and apoptosis in vitro and in vivo. The effects of RPL21 knockdown on PANC-1 and BxPC-3 cell proliferation, cell cycle and cell apoptosis in vitro were determined using 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assays and flow cytometry assay. The mechanism of RPL21 regulating cell proliferation was investigated using transcriptome sequencing analysis and luciferase reporter assay. The effects of RPL21 knockdown on PANC-1 and BxPC-3 cell proliferation in vivo were determined using BALB/c nude mice tumor model. Results In PANC-1 and BxPC-3 cells, the knockdown of RPL21 expression with corresponding siRNA suppressed cell proliferation in vitro and in vivo, inhibited DNA replication, and induced arrests in the G1 phase of the cell cycle. Further results showed that the mini-chromosome maintenance (MCM) protein family (MCM2-7), CCND1 and CCNE1 were down-regulated significantly in PANC-1 and BxPC-3 cells after transfected with RPL21 siRNA, which suggests that the suppression of DNA replication is due to the reduced expression of MCM2-7 family, and the induction of G1 arrest is correlated with the inhibition of CCND1 and CCNE1. Luciferase reporter assay showed that RPL21 controls the DNA replication and G1-S phase progression possibly through the regulation of E2F1 transcription factor in PC cells. Moreover, RPL21 siRNA showed an apoptosis-inducing effect only in BxPC-3 and PANC-1 cells but not in normal HPDE6-C7 cells. The increase of caspase-8 activities and the loss of mitochondrial membrane potential after RPL21 silencing indicates that the RPL21 gene may be involved in caspase-8-related mitochondrial apoptosis. Conclusion Our findings suggest that siRNA against the RPL21 gene possesses a potential anti-cancer activity for PC cells by inhibiting their proliferation and DNA replication, as well as inducing cell cycle G1 arrest and cell apoptosis.
Collapse
Affiliation(s)
- Chaodong Li
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.,Jecho Biopharmaceuticals Co., Ltd., Tianjin, China
| | - Mei Ge
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Laiyi Center for Biopharmaceutical R&D, Shanghai, China
| | - Daijie Chen
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.,China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Tao Sun
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Hua Jiang
- Jecho Laboratories, Inc., Frederick, MD, United States
| | - Yueqing Xie
- Jecho Laboratories, Inc., Frederick, MD, United States
| | - Huili Lu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Baohong Zhang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Han
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.,Jecho Biopharmaceuticals Co., Ltd., Tianjin, China
| | - Junsheng Chen
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Jianwei Zhu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.,Jecho Biopharmaceuticals Co., Ltd., Tianjin, China.,Jecho Laboratories, Inc., Frederick, MD, United States
| |
Collapse
|
5
|
Hingston P, Chen J, Allen K, Truelstrup Hansen L, Wang S. Strand specific RNA-sequencing and membrane lipid profiling reveals growth phase-dependent cold stress response mechanisms in Listeria monocytogenes. PLoS One 2017; 12:e0180123. [PMID: 28662112 PMCID: PMC5491136 DOI: 10.1371/journal.pone.0180123] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 06/11/2017] [Indexed: 11/19/2022] Open
Abstract
The human pathogen Listeria monocytogenes continues to pose a challenge in the food industry, where it is known to contaminate ready-to-eat foods and grow during refrigerated storage. Increased knowledge of the cold-stress response of this pathogen will enhance the ability to control it in the food-supply-chain. This study utilized strand-specific RNA sequencing and whole cell fatty acid (FA) profiling to characterize the bacterium's cold stress response. RNA and FAs were extracted from a cold-tolerant strain at five time points between early lag phase and late stationary-phase, both at 4°C and 20°C. Overall, more genes (1.3×) were suppressed than induced at 4°C. Late stationary-phase cells exhibited the greatest number (n = 1,431) and magnitude (>1,000-fold) of differentially expressed genes (>2-fold, p<0.05) in response to cold. A core set of 22 genes was upregulated at all growth phases, including nine genes required for branched-chain fatty acid (BCFA) synthesis, the osmolyte transporter genes opuCBCD, and the internalin A and D genes. Genes suppressed at 4°C were largely associated with cobalamin (B12) biosynthesis or the production/export of cell wall components. Antisense transcription accounted for up to 1.6% of total mapped reads with higher levels (2.5×) observed at 4°C than 20°C. The greatest number of upregulated antisense transcripts at 4°C occurred in early lag phase, however, at both temperatures, antisense expression levels were highest in late stationary-phase cells. Cold-induced FA membrane changes included a 15% increase in the proportion of BCFAs and a 15% transient increase in unsaturated FAs between lag and exponential phase. These increases probably reduced the membrane phase transition temperature until optimal levels of BCFAs could be produced. Collectively, this research provides new information regarding cold-induced membrane composition changes in L. monocytogenes, the growth-phase dependency of its cold-stress regulon, and the active roles of antisense transcripts in regulating its cold stress response.
Collapse
Affiliation(s)
- Patricia Hingston
- Department of Food, Nutrition, and Health, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Jessica Chen
- Department of Food, Nutrition, and Health, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Kevin Allen
- Department of Food, Nutrition, and Health, The University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Siyun Wang
- Department of Food, Nutrition, and Health, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
6
|
Han SH, Chung JH, Kim J, Kim KS, Han YS. New role of human ribosomal protein S3: Regulation of cell cycle via phosphorylation by cyclin-dependent kinase 2. Oncol Lett 2017; 13:3681-3687. [PMID: 28521470 PMCID: PMC5431238 DOI: 10.3892/ol.2017.5906] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 03/14/2017] [Indexed: 11/17/2022] Open
Abstract
Human ribosomal protein S3 (hRpS3) is a component of the 40S ribosomal subunit that associated in protein synthesis. hRpS3 has additional ribosomal functions such as DNA repair, transcription, metastasis, and apoptosis via interaction with numerous signaling molecules and has different modifications. Cyclin-dependent kinases (CDKs) are heterodimeric serine/threonine protein kinases that regulate cell cycle progression. Among its members, the Cdk1-cyclin B complex is known to control cell progression in the G2/M phase, while Cdk2-cyclin E/A complexes function in G1/S and S/G2 transition. In our previous study, we observed interaction between hRpS3 and Cdk1. The present study investigated the interaction between hRpS3 and Cdk2. Cdk2 phosphorylated hRps3 at amino acid residues S6 and T221 during the S-phase. Furthermore, hRpS3 knockdown delayed cell cycle progression by modulating the expression of cell cycle-related proteins, including cyclin B1 and cyclin E1. These findings suggest that hRpS3 is involved in Cdk2-mediated cell cycle regulation.
Collapse
Affiliation(s)
- Se Hee Han
- Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Ji Hyung Chung
- Department of Applied Bioscience, College of Life Science, CHA University, Pocheon 11160, Republic of Korea
| | - Joon Kim
- Laboratory of Biochemistry, Division of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Key-Sun Kim
- Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Ye Sun Han
- Department of Advanced Technology Fusion, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
7
|
Fewings NL, Gatt PN, McKay FC, Parnell GP, Schibeci SD, Edwards J, Basuki MA, Goldinger A, Fabis-Pedrini MJ, Kermode AG, Manrique CP, McCauley JL, Nickles D, Baranzini SE, Burke T, Vucic S, Stewart GJ, Booth DR. The autoimmune risk gene ZMIZ1 is a vitamin D responsive marker of a molecular phenotype of multiple sclerosis. J Autoimmun 2017; 78:57-69. [PMID: 28063629 DOI: 10.1016/j.jaut.2016.12.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/22/2016] [Accepted: 12/24/2016] [Indexed: 01/08/2023]
Abstract
Multiple Sclerosis (MS) is a neurological condition driven in part by immune cells from the peripheral circulation, the targets for current successful therapies. The autoimmune and MS risk gene ZMIZ1 is underexpressed in blood in people with MS. We show that, from three independent sets of transcriptomic data, expression of ZMIZ1 is tightly correlated with that of hundreds of other genes. Further we show expression is partially heritable (heritability 0.26), relatively stable over time, predominantly in plasmacytoid dendritic cells and non-classical monocytes, and that levels of ZMIZ1 protein expression are reduced in MS. ZMIZ1 gene expression is increased in response to calcipotriol (1,25 Vitamin D3) (p < 0.0003) and associated with Epstein Barr Virus (EBV) EBNA-1 antibody titre (p < 0.004). MS therapies fingolimod and dimethyl fumarate altered blood ZMIZ1 gene expression compared to untreated MS. The phenotype indicates susceptibility to MS, and may correspond with clinical response and represent a novel clinical target.
Collapse
Affiliation(s)
- N L Fewings
- Centre for Immunology and Allergy Research, Westmead Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - P N Gatt
- Centre for Immunology and Allergy Research, Westmead Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - F C McKay
- Centre for Immunology and Allergy Research, Westmead Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - G P Parnell
- Centre for Immunology and Allergy Research, Westmead Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - S D Schibeci
- Centre for Immunology and Allergy Research, Westmead Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - J Edwards
- Centre for Immunology and Allergy Research, Westmead Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - M A Basuki
- Centre for Immunology and Allergy Research, Westmead Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - A Goldinger
- University of Queensland, Diamantina Institute, Translational Research Institute, The Queensland Brain Institute, University of Queensland, Australia
| | - M J Fabis-Pedrini
- Western Australian Neuroscience Research Institute, University of Western Australia, Nedlands, Western Australia, Australia; Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - A G Kermode
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - C P Manrique
- John P. Hussman Institute for Human Genomics and the Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - J L McCauley
- John P. Hussman Institute for Human Genomics and the Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - D Nickles
- Department of Neurology, University of California San Francisco, USA
| | - S E Baranzini
- Department of Neurology, University of California San Francisco, USA
| | - T Burke
- Western Clinical School, University of Sydney, Westmead Hospital, Sydney, New South Wales, Australia
| | - S Vucic
- Centre for Immunology and Allergy Research, Westmead Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia; Western Clinical School, University of Sydney, Westmead Hospital, Sydney, New South Wales, Australia
| | - G J Stewart
- Centre for Immunology and Allergy Research, Westmead Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia; Western Clinical School, University of Sydney, Westmead Hospital, Sydney, New South Wales, Australia
| | - D R Booth
- Western Clinical School, University of Sydney, Westmead Hospital, Sydney, New South Wales, Australia.
| |
Collapse
|
8
|
Wu N, Wei J, Wang Y, Yan J, Qin Y, Tong D, Pang B, Sun D, Sun H, Yu Y, Sun W, Meng X, Zhang C, Bai J, Chen F, Geng J, Lee KY, Fu S, Jin Y. Ribosomal L22-like1 (RPL22L1) Promotes Ovarian Cancer Metastasis by Inducing Epithelial-to-Mesenchymal Transition. PLoS One 2015; 10:e0143659. [PMID: 26618703 PMCID: PMC4664398 DOI: 10.1371/journal.pone.0143659] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 11/06/2015] [Indexed: 12/30/2022] Open
Abstract
Double minute chromosomes (DMs) have important implications for cancer progression because oncogenes frequently amplified on them. We previously detected a functionally undefined gene amplified on DMs, Ribosomal L22-like1 (RPL22L1). The relationship between RPL22L1 and cancer progression is unknown. Here, RPL22L1 was characterized for its role in ovarian cancer (OC) metastasis and its underlying mechanism was examined. DNA copy number and mRNA expression of RPL22L1 in OC cells was analyzed using data obtained from The Cancer Genome Atlas and the Gene Expression Omnibus database. An immunohistochemical analysis of clinical OC specimens was performed and the relationships between expression level and clinicopathological factors were evaluated. Additionally, in vivo and in vitro assays were performed to understand the role of RPL22L1 in OC. RPL22L1 expression was higher in OC specimens than in normal tissues, and its expression level was highly positively correlated with invasion and lymph node metastasis (P < 0.05). RPL22L1 over-expression significantly enhanced intraperitoneal xenograft tumor development in nude mice and promoted invasion and migration in vitro. Additionally, RPL22L1 knockdown remarkably inhibited UACC-1598 cells invasion and migration. Further, RPL22L1 over-expression up-regulated the mesenchymal markers vimentin, fibronectin, and α-SMA, reduced expression of the epithelial markers E-cadherin, α-catenin, and β-catenin. RPL22L1 inhibition reduced expression of vimentin and N-cadherin. These results suggest that RPL22L1 induces epithelial-to-mesenchymal transition (EMT). Our data showed that the DMs amplified gene RPL22L1 is critical in maintaining the aggressive phenotype of OC and in triggering cell metastasis by inducing EMT. It could be employed as a novel prognostic marker and/or effective therapeutic target for OC.
Collapse
Affiliation(s)
- Nan Wu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Jia Wei
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Yuhui Wang
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Jinyan Yan
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Ying Qin
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Dandan Tong
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Bo Pang
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Donglin Sun
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Haiming Sun
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Yang Yu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Wenjing Sun
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Xiangning Meng
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Chunyu Zhang
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Jing Bai
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Feng Chen
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Jingshu Geng
- Department of Pathology, Third Affiliated Clinical Hospital, Harbin Medical University, Harbin, China
| | - Ki-Young Lee
- Department of Cell Biology & Anatomy, University of Calgary, Alberta, Canada
| | - Songbin Fu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
- * E-mail: (YJ); , (SF)
| | - Yan Jin
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
- * E-mail: (YJ); , (SF)
| |
Collapse
|
9
|
Vizirianakis IS, Papachristou ET, Andreadis P, Zopounidou E, Matragkou CN, Tsiftsoglou AS. Genetic manipulation of RPS5 gene expression modulates the initiation of commitment of MEL cells to erythroid maturation: Implications in understanding ribosomopathies. Int J Oncol 2015; 47:303-14. [PMID: 25998414 DOI: 10.3892/ijo.2015.3017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 02/24/2015] [Indexed: 11/06/2022] Open
Abstract
Impairment of ribosome biogenesis contributes to the molecular pathophysiology of ribosomopathies by deregulating cell-lineage specific proliferation, differentiation and apoptosis decisions of haematopoietic progenitor cells. Here, using pro-erythroblast-like murine erythroleukemia (MEL) cells, a model system of erythroid maturation, we aimed to investigate whether genetic manipulation of RPS5 expression affects the capacity of cells to grow and differentiate in culture. Parental MEL cells stably transfected with full length RPS5 cDNA in sense (MEL-C14 culture) or antisense (MEL-antisenseRPS5 culture) orientation, as well as MEL cells transiently transfected with siRNAs specific for RPS5 gene silencing (MEL-RPS5siRNA culture) were assessed for their ability to fully execute their erythroid maturation program in culture. The data obtained thus far indicate that: a) MEL-antisenseRPS5 exhibit a pronounced delay in the initiation of differentiation, as well as an impairment of commitment, since the continuous presence of the inducer in culture is required for the cells to fully execute their erythroid maturation program. b) RNAi-mediating silencing of RPS5 gene expression resulted in the inability of MEL cells to differentiate; however, when these cells were allowed to recapitulate normal RPS5 gene expression levels they regained their differentiation capacity by accumulating high proportion of erythroid mature cells. c) Interestingly the latter, is accompanied by morphological changes of cells and an impairment of their proliferation and apoptosis potential. Such data for the first time correlate the RPS5 gene expression levels with the differentiation capacity of MEL cells in vitro, a fact that might also have implications in understanding ribosomopathies.
Collapse
Affiliation(s)
- Ioannis S Vizirianakis
- Laboratory of Pharmacology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Eleni T Papachristou
- Laboratory of Pharmacology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Panagiotis Andreadis
- Laboratory of Pharmacology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Elena Zopounidou
- Laboratory of Pharmacology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Christina N Matragkou
- Laboratory of Pharmacology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Asterios S Tsiftsoglou
- Laboratory of Pharmacology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| |
Collapse
|
10
|
Parnell GP, Gatt PN, McKay FC, Schibeci S, Krupa M, Powell JE, Visscher PM, Montgomery GW, Lechner-Scott J, Broadley S, Liddle C, Slee M, Vucic S, Stewart GJ, Booth DR. Ribosomal protein S6 mRNA is a biomarker upregulated in multiple sclerosis, downregulated by interferon treatment, and affected by season. Mult Scler 2013; 20:675-85. [DOI: 10.1177/1352458513507819] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background: Multiple Sclerosis (MS) is an immune-mediated disease of the central nervous system which responds to therapies targeting circulating immune cells. Objective: Our aim was to test if the T-cell activation gene expression pattern (TCAGE) we had previously described from whole blood was replicated in an independent cohort. Methods: We used RNA-seq to interrogate the whole blood transcriptomes of 72 individuals (40 healthy controls, 32 untreated MS). A cohort of 862 control individuals from the Brisbane Systems Genetics Study (BSGS) was used to assess heritability and seasonal expression. The effect of interferon beta (IFNB) therapy on expression was evaluated. Results: The MS/TCAGE association was replicated and rationalized to a single marker, ribosomal protein S6 (RPS6). Expression of RPS6 was higher in MS than controls ( p<0.0004), and lower in winter than summer ( p<4.6E-06). The seasonal pattern correlated with monthly UV light index ( R=0.82, p<0.002), and was also identified in the BSGS cohort ( p<0.0016). Variation in expression of RPS6 was not strongly heritable. RPS6 expression was reduced by IFNB therapy. Conclusions: These data support investigation of RPS6 as a potential therapeutic target and candidate biomarker for measuring clinical response to IFNB and other MS therapies, and of MS disease heterogeneity.
Collapse
Affiliation(s)
- Grant P Parnell
- Westmead Millennium Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Prudence N Gatt
- Westmead Millennium Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Fiona C McKay
- Westmead Millennium Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Stephen Schibeci
- Westmead Millennium Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Malgorzata Krupa
- School of Medicine, Flinders University of South Australia, South Australia, Australia
| | - Joseph E Powell
- University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
- The Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Peter M Visscher
- University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
- The Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Grant W Montgomery
- The Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | | | | | - Christopher Liddle
- Westmead Millennium Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Mark Slee
- School of Medicine, Flinders University of South Australia, South Australia, Australia
| | - Steve Vucic
- Westmead Clinical School, University of Sydney, Westmead Hospital, Sydney, New South Wales, Australia
| | - Graeme J Stewart
- Westmead Millennium Institute, University of Sydney, Sydney, New South Wales, Australia
| | - David R Booth
- Westmead Millennium Institute, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
11
|
Kim Y, Kim HD, Kim J. Cytoplasmic ribosomal protein S3 (rpS3) plays a pivotal role in mitochondrial DNA damage surveillance. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2943-2952. [PMID: 23911537 DOI: 10.1016/j.bbamcr.2013.07.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 07/16/2013] [Accepted: 07/17/2013] [Indexed: 12/21/2022]
Abstract
Ribosomal protein S3 (rpS3) is known to play critical roles in ribosome biogenesis and DNA repair. When cellular ROS levels increase, the mitochondrial genes are highly vulnerable to DNA damage. Increased ROS induces rpS3 accumulation in the mitochondria for DNA repair while significantly decreasing the cellular protein synthesis. For the entrance into the mitochondria, the accumulation of rpS3 was regulated by interaction with HSP90, HSP70, and TOM70. Pretreatment with geldanamycin, which binds to the ATP pocket of HSP90, significantly decreased the interaction of rpS3 with HSP90 and stimulated the accumulation of rpS3 in the mitochondria. Furthermore, cellular ROS was decreased and mtDNA damage was rescued when levels of rpS3 were increased in the mitochondria. Therefore, we concluded that when mitochondrial DNA damages accumulate due to increased levels of ROS, rpS3 accumulates in the mitochondria to repair damaged DNA due to the decreased interaction between rpS3 and HSP90 in the cytosol.
Collapse
Affiliation(s)
- YongJoong Kim
- Laboratory of Biochemistry, School of Life Sciences & Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Hag Dong Kim
- Laboratory of Biochemistry, School of Life Sciences & Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Joon Kim
- Laboratory of Biochemistry, School of Life Sciences & Biotechnology, Korea University, Seoul 136-701, Republic of Korea.
| |
Collapse
|
12
|
Yang M, Sun H, Wang H, Zhang S, Yu X, Zhang L. Down-regulation of ribosomal protein L22 in non-small cell lung cancer. Med Oncol 2013; 30:646. [DOI: 10.1007/s12032-013-0646-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Accepted: 06/14/2013] [Indexed: 11/30/2022]
|
13
|
Burton RS, Barreto FS. A disproportionate role for mtDNA in Dobzhansky-Muller incompatibilities? Mol Ecol 2012; 21:4942-57. [PMID: 22994153 DOI: 10.1111/mec.12006] [Citation(s) in RCA: 221] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 07/18/2012] [Accepted: 07/25/2012] [Indexed: 01/07/2023]
Abstract
Evolution in allopatric populations can lead to incompatibilities that result in reduced hybrid fitness and ultimately reproductive isolation upon secondary contact. The Dobzhansky-Muller (DM) model nicely accounts for the evolution of such incompatibilities. Although DM incompatibilities were originally conceived as resulting of interactions between nuclear genes, recent studies have documented cases where incompatibilities have arisen between nuclear and mitochondrial genomes (mtDNA). Although mtDNA comprises only a tiny component (typically <<0.01%) of an organism's genetic material, several features of mtDNA may lead to a disproportionate contribution to the evolution of hybrid incompatibilities: (i) essentially all functions of mtDNA require interaction with nuclear gene products. All mtDNA-encoded proteins are components of the oxidative phosphorylation (OXPHOS) system and all mtDNA-encoded RNAs are part of the mitochondrial protein synthetic machinery; both processes require interaction with nuclear-encoded proteins for function. (ii) Transcription and replication of mtDNA also involve mitonuclear interactions as nuclear-encoded proteins must bind to regulatory motifs in the mtDNA to initiate these processes. (iii) Although features of mtDNA vary amongst taxa, metazoan mtDNA is typically characterized by high nucleotide substitution rates, lack of recombination and reduced effective population sizes that collectively lead to increased chance fixation of mildly deleterious mutations. Combined, these features create an evolutionary dynamic where rapid mtDNA evolution favours compensatory nuclear gene evolution, ultimately leading to co-adaptation of mitochondrial and nuclear genomes. When previously isolated lineages hybridize in nature or in the lab, intergenomic co-adaptation is disrupted and hybrid breakdown is observed; the role of intergenomic co-adaptation in hybrid breakdown and speciation will generally be most pronounced when rates of mtDNA evolution are high or when restricted gene flow results in significant population differentiation.
Collapse
Affiliation(s)
- Ronald S Burton
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093-0202, USA.
| | | |
Collapse
|
14
|
Goyder MS, Willison KR, Klug DR, Demello AJ, Ces O. Affinity chromatography and capillary electrophoresis for analysis of the yeast ribosomal proteins. BMB Rep 2012; 45:233-8. [PMID: 22531133 DOI: 10.5483/bmbrep.2012.45.4.233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We present a top down separation platform for yeast ribosomal proteins using affinity chromatography and capillary electrophoresis which is designed to allow deposition of proteins onto a substrate. FLAG tagged ribosomes were affinity purified, and rRNA acid precipitation was performed on the ribosomes followed by capillary electrophoresis to separate the ribosomal proteins. Over 26 peaks were detected with excellent reproducibility (<0.5% RSD migration time). This is the first reported separation of eukaryotic ribosomal proteins using capillary electrophoresis. The two stages in this workflow, affinity chromatography and capillary electrophoresis, share the advantages that they are fast, flexible and have small sample requirements in comparison to more commonly used techniques. This method is a remarkably quick route from cell to separation that has the potential to be coupled to high throughput readout platforms for studies of the ribosomal proteome.
Collapse
Affiliation(s)
- Miriam S Goyder
- The Single Cell Proteomics Group, Institute of Chemical Biology, Department of Chemistry, Imperial College London, South Kensington, London, UK
| | | | | | | | | |
Collapse
|
15
|
Yao C, Moretti JE, Struss PE, Spall JA, Müller UF. Arginine cofactors on the polymerase ribozyme. PLoS One 2011; 6:e25030. [PMID: 21949841 PMCID: PMC3176810 DOI: 10.1371/journal.pone.0025030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2011] [Accepted: 08/23/2011] [Indexed: 11/27/2022] Open
Abstract
The RNA world hypothesis states that the early evolution of life went through a stage in which RNA served both as genome and as catalyst. The central catalyst in an RNA world organism would have been a ribozyme that catalyzed RNA polymerization to facilitate self-replication. An RNA polymerase ribozyme was developed previously in the lab but it is not efficient enough for self-replication. The factor that limits its polymerization efficiency is its weak sequence-independent binding of the primer/template substrate. Here we tested whether RNA polymerization could be improved by a cationic arginine cofactor, to improve the interaction with the substrate. In an RNA world, amino acid-nucleic acid conjugates could have facilitated the emergence of the translation apparatus and the transition to an RNP world. We chose the amino acid arginine for our study because this is the amino acid most adept to interact with RNA. An arginine cofactor was positioned at ten different sites on the ribozyme, using conjugates of arginine with short DNA or RNA oligonucleotides. However, polymerization efficiency was not increased in any of the ten positions. In five of the ten positions the arginine reduced or modulated polymerization efficiency, which gives insight into the substrate-binding site on the ribozyme. These results suggest that the existing polymerase ribozyme is not well suited to using an arginine cofactor.
Collapse
Affiliation(s)
- Chengguo Yao
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, United States of America
| | - Janina E. Moretti
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, United States of America
| | - Peter E. Struss
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, United States of America
| | - Junaid A. Spall
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, United States of America
| | - Ulrich F. Müller
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
16
|
Aberrant ribosome biogenesis activates c-Myc and ASK1 pathways resulting in p53-dependent G1 arrest. Oncogene 2011; 30:3317-27. [PMID: 21383696 DOI: 10.1038/onc.2011.47] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The largest energy consumer in the cell is the ribosome biogenesis whose aberrancy elicits various diseases in humans. It has been recently revealed that p53 induction, along with cell cycle arrest, is related with abnormal ribosome biogenesis, but the exact mechanism still remains unknown. In this study, we have found that aberrant ribosome biogenesis activates two parallel cellular pathways, c-Myc and ASK1/p38, which result in p53 induction and G1 arrest. The c-Myc stabilizes p53 by rpL11-mediated HDM2 inhibition, and ASK1/p38 activates p53 by phosphorylation on serine 15 and 33. Our studies demonstrate the relationship between these two pathways and p53 induction. The changes caused by impaired ribosomal stress, such as p53 induction and G1 arrest, were completely disappeared by inhibition of either pathway. These findings suggest a monitoring mechanism of c-Myc and ASK1/p38 against abnormal ribosome biogenesis through controlling the stability and activity of p53 protein.
Collapse
|
17
|
Abstract
Despite the fact that ribosomal proteins are the constituents of an organelle that is present in every cell, they show a surprising level of regulation, and several of them have also been shown to have other extra-ribosomal functions, such in replication, transcription, splicing or even ageing. This review provides a comprehensive summary of these important aspects.
Collapse
Affiliation(s)
- Rital B Bhavsar
- Department of Biology, University of Dayton, OH 45469-2320, USA
| | | | | |
Collapse
|
18
|
Kim HD, Kim TS, Joo YJ, Shin HS, Kim SH, Jang CY, Lee CE, Kim J. RpS3 translation is repressed by interaction with its own mRNA. J Cell Biochem 2010; 110:294-303. [PMID: 20217897 DOI: 10.1002/jcb.22537] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Ribosomal protein S3 (RpS3) is a well-known multi-functional protein mainly involved in protein biosynthesis as a member of the small ribosomal subunit. It also plays a role in repairing various DNA damage acting as a repair UV endonuclease. Most of the rpS3 pool is located in the ribosome while the minority exists in free form in the cytoplasm. We here report an additional function of rpS3 in which it represses its own translation by binding to its cognate mRNA. Through RT-PCR of the RNAs co-immunoprecipitated with ectopically expressed rpS3, rpS3 protein was found to interact with various RNAs-endogenous rpS3, 18S rRNA. The S3-C terminal domain was shown to be the major mRNA binding domain of rpS3, independent of the KH domain. This interaction was shown to occur in cytoplasmic fractions rather than ribosomal fractions, and then is involved in its own mRNA translational inhibition by in vitro translation. Furthermore, when Flag-tagged rpS3 was transiently transfected into 293T cells, the level of endogenous rpS3 gradually decreased regardless of transcription. These results suggest that free rpS3 regulates its own translation via a feedback mechanism.
Collapse
Affiliation(s)
- Hag Dong Kim
- Laboratory of Biochemistry, School of Life Sciences and Biotechnology, and BioInstitute, Korea University, Seoul, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
19
|
RPL41, a small ribosomal peptide deregulated in tumors, is essential for mitosis and centrosome integrity. Neoplasia 2010; 12:284-93. [PMID: 20234822 DOI: 10.1593/neo.91610] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 12/08/2009] [Accepted: 12/09/2009] [Indexed: 11/18/2022]
Abstract
Ribosomal large subunit protein RPL41 is a basic (positively charged) peptide consisting of only 25 amino acids. An antisense-based functional screening revealed that the down-regulation of RPL41 led to an anchorage-independent growth of NIH3T3 cells in soft agar plates. RPL41 depletion with gene-specific small interfering RNA also resulted in malignant transformation of NIH3T3 cells including increased tumor growth in mice. RPL41 deletion was detected in 59% of tumor cell lines by fluorescence in situ hybridization analyses and RPL41 down-regulation in 75% of primary breast cancers by real-time quantitative reverse transcription-polymerase chain reaction. These studies suggest a tumor suppression role for RPL41. By mass spectrometry, RPL41 was associated with several cytoskeleton components including tubulin beta, gamma, and myosin IIA, which was confirmed by Western blot analysis on both cellular lysis and individually in vitro-expressed proteins. RPL41 also bound directly to polymerized tubulins. Cells overexpressing a GFP-RPL41 were resistant to nocodazole-induced microtubule depolymerization. A synthetic RPL41 induced cellular alpha-tubulin acetylation and G(2)/M cell cycle arrest. These results indicate a stabilizing role of RPL41 on microtubule. Microtubule spindles are essential for chromosome segregation during mitosis. Cells with RPL41 knock-down showed abnormal spindles, frequent failure of cytokinesis, and formation of polynuclear cells. In interphase cells, RPL41-depleted cells had premature splitting of centrosome. Our results provide evidence that RPL41 is a microtubule-associated protein essential for functional spindles and for the integrity of centrosome and that the abnormal mitosis and disrupted centrosome associated with the RPL41 down-regulation may be related to malignant transformation.
Collapse
|
20
|
Loke P, Hammond SN, Leung JM, Kim CC, Batra S, Rocha C, Balmaseda A, Harris E. Gene expression patterns of dengue virus-infected children from nicaragua reveal a distinct signature of increased metabolism. PLoS Negl Trop Dis 2010; 4:e710. [PMID: 20559541 PMCID: PMC2886038 DOI: 10.1371/journal.pntd.0000710] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 04/21/2010] [Indexed: 11/22/2022] Open
Abstract
Background Infection with dengue viruses (DENV) leads to a spectrum of disease outcomes. The pathophysiology of severe versus non-severe manifestations of DENV infection may be driven by host responses, which could be reflected in the transcriptional profiles of peripheral blood immune cells. Methodology/Principal Findings We conducted genome-wide microarray analysis of whole blood RNA from 34 DENV-infected children in Nicaragua collected on days 3–6 of illness, with different disease manifestations. Gene expression analysis identified genes that are differentially regulated between clinical subgroups. The most striking transcriptional differences were observed between dengue patients with and without shock, especially in the expression of mitochondrial ribosomal proteins associated with protein biosynthesis. In the dengue hemorrhagic fever patients, one subset of differentially expressed genes encode neutrophil-derived anti-microbial peptides associated with innate immunity. By performing a meta-analysis of our dataset in conjunction with previously published datasets, we confirmed that DENV infection in vivo is associated with large changes to protein and nucleic acid metabolism. Additionally, whereas in vitro infection leads to an increased interferon signature, this was not consistently observed from in vivo patient samples, suggesting that the interferon response in vivo is relatively transient and was no longer observed by days 3–6 of illness. Conclusions/Significance These data highlight important differences between different manifestations of severity during DENV infection as well as identify some commonalities. Compilation of larger datasets in the future across multiple studies, as we have initiated in this report, may well lead to better prediction of disease manifestation via a systems biology approach. Dengue is a widespread viral disease for which over 3 billion people are at risk. There are no drug treatments or vaccines available for this disease. It is also difficult for physicians to predict which patients are at highest risk for the severe manifestations known as dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). We used genome-wide transcriptional profiling analysis to study peripheral blood responses to dengue among patients from Nicaragua. We found that patients with severe manifestations involving shock had very different transcriptional profiles from dengue patients with mild and moderate illness. We then compared our results with other microarray experiments on dengue patients available from public databases and confirmed that dengue is often associated with large changes to the metabolic processes within cells. This approach could identify prognostic markers for severe dengue as well as provide a better understanding of the pathophysiology associated with different grades of disease severity.
Collapse
Affiliation(s)
- P'ng Loke
- Department of Medical Parasitology, School of Medicine, New York University, New York, New York, United States of America
- * E-mail: (PL); (EH)
| | | | - Jacqueline M. Leung
- Department of Medical Parasitology, School of Medicine, New York University, New York, New York, United States of America
| | - Charles C. Kim
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
| | - Sajeev Batra
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
| | - Crisanta Rocha
- Unidad de Infectología, Hospital Infantil Manuel Jesús de Rivera, Managua, Nicaragua
| | - Angel Balmaseda
- Departamento de Virología, Centro Nacional de Diagóstico y Referencia, Ministerio de Salud, Managua, Nicaragua
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, California, United States of America
- * E-mail: (PL); (EH)
| |
Collapse
|
21
|
Kim TS, Kim HD, Kim J. PKCdelta-dependent functional switch of rpS3 between translation and DNA repair. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:395-405. [PMID: 19059439 DOI: 10.1016/j.bbamcr.2008.10.017] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 10/31/2008] [Accepted: 10/31/2008] [Indexed: 12/11/2022]
Abstract
Ribosomal protein S3 (rpS3) is critically involved in translation as a component of the 40S ribosomal subunit and participates in the processing of DNA damage, functioning as a damage DNA endonuclease. However, it is not yet known how the function of rpS3 switches between translation and DNA repair. Here we show that PKCdelta phosphorylates rpS3 resulting in its mobilization in the nucleus to repair damaged DNA. Phosphorylated rpS3 was only detected in non-ribosomal rpS3 and the repair endonuclease activity of rpS3 was increased by its phosphorylation. In addition, rpS3 knock-down cells showed more sensitivity to genotoxic stress than control cells, and this sensitivity was corrected by overexpressed wild-type rpS3 but not by phosphorylation defective rpS3. In conclusion, we propose that the destiny of rpS3 molecules between translation and DNA repair is regulated by PKCdelta-dependent phosphorylation.
Collapse
Affiliation(s)
- Tae-Sung Kim
- Laboratory of Biochemistry, School of Life Sciences and Biotechnology, and BioInstitute, Korea University, Seoul 136-701, Republic of Korea
| | | | | |
Collapse
|
22
|
Piggott AM, Karuso P. Rapid Identification of a Protein Binding Partner for the Marine Natural Product Kahalalide F by Using Reverse Chemical Proteomics. Chembiochem 2008; 9:524-30. [DOI: 10.1002/cbic.200700608] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
23
|
Meyer-Hoffert U, Hornef M, Henriques-Normark B, Normark S, Andersson M, Pütsep K. Identification of heparin/heparan sulfate interacting protein as a major broad-spectrum antimicrobial protein in lung and small intestine. FASEB J 2008; 22:2427-34. [PMID: 18299334 DOI: 10.1096/fj.07-103440] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The lungs are continuously exposed to a broad array of microbes through inhalation, and microorganisms that escape clearance by the upper airway mucociliary motion will deposit in the alveolar compartment of the lower airways. The pulmonary epithelium in the alveolar compartment is covered by a thin aqueous layer that contains surfactant proteins but also microbicidal components. We have here identified the epithelial cell surface-expressed heparin/heparan sulfate interacting protein (HIP/RPL29) by high-performance liquid chromatography-fractionation, N-terminal sequencing, and mass spectrometry analysis as a major antimicrobial component in extracts of mouse lung tissue. HIP/RPL29 was also detected in extracts of mouse small intestinal tissue. HIP/RPL29 exhibited broad antibacterial activity, notably against Pseudomonas aeruginosa strains. Human recombinant HIP/RPL29 exhibited killing activity in the same order of magnitude. The HIP/RPL29 protein was demonstrated to be localized to the epithelial cells and cell surface of the lungs and intestines by immunohistochemistry. We suggest that HIP/RPL29 fulfills a function as an abundant antibacterial factor of the epithelial innate defense shield against invading bacteria in both the lungs and the small intestine.
Collapse
Affiliation(s)
- Ulf Meyer-Hoffert
- Department of Microbiology Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
The C-terminal repeat domain (CTD), an unusual extension appended to the C terminus of the largest subunit of RNA polymerase II, serves as a flexible binding scaffold for numerous nuclear factors; which factors bind is determined by the phosphorylation patterns on the CTD repeats. Changes in phosphorylation patterns, as polymerase transcribes a gene, are thought to orchestrate the association of different sets of factors with the transcriptase and strongly influence functional organization of the nucleus. In this review we appraise what is known, and what is not known, about patterns of phosphorylation on the CTD of RNA polymerases II at the beginning, the middle, and the end of genes; the proposal that doubly phosphorylated repeats are present on elongating polymerase is explored. We discuss briefly proteins known to associate with the phosphorylated CTD at the beginning and ends of genes; we explore in more detail proteins that are recruited to the body of genes, the diversity of their functions, and the potential consequences of tethering these functions to elongating RNA polymerase II. We also discuss accumulating structural information on phosphoCTD-binding proteins and how it illustrates the variety of binding domains and interaction modes, emphasizing the structural flexibility of the CTD. We end with a number of open questions that highlight the extent of what remains to be learned about the phosphorylation and functions of the CTD.
Collapse
Affiliation(s)
- Hemali P Phatnani
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
25
|
Koga Y, Ohga S, Nomura A, Takada H, Hara T. Reduced gene expression of clustered ribosomal proteins in Diamond-Blackfan anemia patients without RPS19 gene mutations. J Pediatr Hematol Oncol 2006; 28:355-61. [PMID: 16794503 DOI: 10.1097/00043426-200606000-00007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Diamond-Blackfan anemia (DBA) is a rare congenital pure red cell aplasia occasionally presenting physical anomalies. Ribosomal protein S19 gene (RPS19) is one of the causative genes for DBA; however, the pathologic mechanism of erythroblastopenia and abnormal morphology has not been clarified. To assess the pathophysiology of DBA, the gene expression profile of 2 representative patients carrying no RPS19 mutations was compared with that of aplastic anemia (AA) patients, assessed by the microarray analyses. The K-mean clustering analysis revealed the significant categorization of 28 ribosomal protein (RP) genes into a small set of group (994 genes) (P=2.39E-17), all of which were expressed at lower levels in DBA than in AA patients. RPS19 was categorized into the set of low expressing genes in DBA patients. No mutations were determined in the promoter and coding sequences of top 10 RP genes expressed at the levels over 1.2 of the AA/DBA ratio, in 3 DBA patients. These results indicated that the lower expression of RP gene group, even without the mutation, was a distinctive feature of DBA from AA, although the study number was small. The reduced RP gene expression, by itself, may suggest an underlying mechanism of the constitutional anemia.
Collapse
Affiliation(s)
- Yuhki Koga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | |
Collapse
|
26
|
Ishii K, Washio T, Uechi T, Yoshihama M, Kenmochi N, Tomita M. Characteristics and clustering of human ribosomal protein genes. BMC Genomics 2006; 7:37. [PMID: 16504170 PMCID: PMC1459141 DOI: 10.1186/1471-2164-7-37] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2005] [Accepted: 02/28/2006] [Indexed: 11/20/2022] Open
Abstract
Background The ribosome is a central player in the translation system, which in mammals consists of four RNA species and 79 ribosomal proteins (RPs). The control mechanisms of gene expression and the functions of RPs are believed to be identical. Most RP genes have common promoters and were therefore assumed to have a unified gene expression control mechanism. Results We systematically analyzed the homogeneity and heterogeneity of RP genes on the basis of their expression profiles, promoter structures, encoded amino acid compositions, and codon compositions. The results revealed that (1) most RP genes are coordinately expressed at the mRNA level, with higher signals in the spleen, lymph node dissection (LND), and fetal brain. However, 17 genes, including the P protein genes (RPLP0, RPLP1, RPLP2), are expressed in a tissue-specific manner. (2) Most promoters have GC boxes and possible binding sites for nuclear respiratory factor 2, Yin and Yang 1, and/or activator protein 1. However, they do not have canonical TATA boxes. (3) Analysis of the amino acid composition of the encoded proteins indicated a high lysine and arginine content. (4) The major RP genes exhibit a characteristic synonymous codon composition with high rates of G or C in the third-codon position and a high content of AAG, CAG, ATC, GAG, CAC, and CTG. Conclusion Eleven of the RP genes are still identified as being unique and did not exhibit at least some of the above characteristics, indicating that they may have unknown functions not present in other RP genes. Furthermore, we found sequences conserved between human and mouse genes around the transcription start sites and in the intronic regions. This study suggests certain overall trends and characteristic features of human RP genes.
Collapse
Affiliation(s)
- Kyota Ishii
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0035, Japan
- Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa 252-8520, Japan
| | - Takanori Washio
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0035, Japan
- Graduate School of Information Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Tamayo Uechi
- Frontier Science Research Center, University of Miyazaki, Kiyotake, Miyazaki 889-1692, Japan
| | - Maki Yoshihama
- Frontier Science Research Center, University of Miyazaki, Kiyotake, Miyazaki 889-1692, Japan
| | - Naoya Kenmochi
- Frontier Science Research Center, University of Miyazaki, Kiyotake, Miyazaki 889-1692, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0035, Japan
- Department of Environmental Information, Keio University, Fujisawa, Kanagawa 252-8520, Japan
| |
Collapse
|
27
|
Wang J, Jing W, Yuan S, Sheng Y, Jiang S, Jang S. The ribosomal protein L32-2 (RPL32-2) of S. pombe exhibits a novel extraribosomal function by acting as a potential transcriptional regulator. FEBS Lett 2006; 580:1827-32. [PMID: 16516201 DOI: 10.1016/j.febslet.2006.02.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2006] [Revised: 02/04/2006] [Accepted: 02/14/2006] [Indexed: 11/17/2022]
Abstract
Ribosomal proteins play important roles in stabilizing the rRNA structure to facilitate protein synthesis in ribosome. In the present study, we analyzed the potential extraribosomal function of the ribosomal protein L32-2 (RPL32-2), which was expressed by a gene clone isolated from a cDNA library of Schizosaccharomyces pombe (S. pombe). RPL32-2 fused with the GAL4 DNA-bind domain or the GAL4 transcriptional activating domain could, respectively, activate transcriptions of reporter genes in yeast strain AH109. The RPL32-2 mutants with truncation of either the N- or the C-terminal domain resulted in abolishment of this regulatory effect. The DNA binding site for RPL32-2 of S. pombe was identified by using a random oligonucleotide selection strategy and gel motility shift assay and Western blotting confirmed its binding specificity. Moreover, we found RPL32-2 was also able to interact with a to-be-identified AT sequence binding protein. These data suggest that RPL32-2 of S. pombe, besides its ribosomal function, may also act as a potential transcriptional regulator in nucleus.
Collapse
Affiliation(s)
- Jing Wang
- Jiangsu Key Lab for Biodiversity and Biotechnology, NNU Key Lab of Microbial Technology, College of Life Science, Nanjing Normal University, 122 Ninghai Lu, Nanjing 210097, PR China
| | | | | | | | | | | |
Collapse
|
28
|
Kim TS, Jang CY, Kim HD, Lee JY, Ahn BY, Kim J. Interaction of Hsp90 with ribosomal proteins protects from ubiquitination and proteasome-dependent degradation. Mol Biol Cell 2005; 17:824-33. [PMID: 16314389 PMCID: PMC1356592 DOI: 10.1091/mbc.e05-08-0713] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Heat-shock protein 90 (Hsp90) is a molecular chaperone that plays a key role in the conformational maturation of various transcription factors and protein kinases in signal transduction. Multifunctional ribosomal protein S3 (rpS3), a component of the ribosomal small subunit, is involved in DNA repair and apoptosis. Our data show that Hsp90 binds directly to rpS3 and the functional consequence of Hsp90-rpS3 interaction results in the prevention of the ubiquitination and the proteasome-dependent degradation of rpS3, subsequently retaining the function and the biogenesis of the ribosome. Interference of Hsp90 activity by Hsp90 inhibitors appears to dissociate rpS3 from Hsp90, associate the protein with Hsp70, and induce the degradation of free forms of rpS3. Furthermore, ribosomal protein S6 (rpS6) also interacted with Hsp90 and exhibited a similar effect upon treatment with Hsp90 inhibitors. Therefore, we conclude that Hsp90 regulates the function of ribosomes by maintaining the stability of 40S ribosomal proteins such as rpS3 and rpS6.
Collapse
Affiliation(s)
- Tae-Sung Kim
- Laboratory of Biochemistry, School of Life Sciences and Biotechnology, and BioInstitute, Korea University, Seoul 136-701, South Korea
| | | | | | | | | | | |
Collapse
|
29
|
Loreni F, Iadevaia V, Tino E, Caldarola S, Amaldi F. RACK1 mRNA translation is regulated via a rapamycin-sensitive pathway and coordinated with ribosomal protein synthesis. FEBS Lett 2005; 579:5517-20. [PMID: 16212959 DOI: 10.1016/j.febslet.2005.09.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Revised: 07/28/2005] [Accepted: 09/08/2005] [Indexed: 10/25/2022]
Abstract
RACK1 has been shown to interact with several proteins, this suggesting that it may play a central role in cell growth regulation. Some recent articles have described RACK1 as a component of the small ribosomal subunit. To investigate the relationship between RACK1 and ribosome, we analyzed RACK1 mRNA structure and regulation. Translational regulation was studied in HeLa cells subjected to serum or amino acid deprivation and stimulation. The results show that RACK1 mRNA has a 5' terminal oligopyrimidine sequence and that its translation is dependent on the availability of serum and amino acids in exactly the same way as any other vertebrate ribosomal protein mRNA.
Collapse
|
30
|
Perry RP. The architecture of mammalian ribosomal protein promoters. BMC Evol Biol 2005; 5:15. [PMID: 15707503 PMCID: PMC554972 DOI: 10.1186/1471-2148-5-15] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Accepted: 02/13/2005] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Mammalian ribosomes contain 79 different proteins encoded by widely scattered single copy genes. Coordinate expression of these genes at transcriptional and post-transcriptional levels is required to ensure a roughly equimolar accumulation of ribosomal proteins. To date, detailed studies of only a very few ribosomal protein (rp) promoters have been made. To elucidate the general features of rp promoter architecture, I made a detailed sequence comparison of the promoter regions of the entire set of orthologous human and mouse rp genes. RESULTS A striking evolutionarily conserved feature of most rp genes is the separation by an intron of the sequences involved in transcriptional and translational regulation from the sequences with protein encoding function. Another conserved feature is the polypyrimidine initiator, which conforms to the consensus (Y)2C+1TY(T)2(Y)3. At least 60 % of the rp promoters contain a largely conserved TATA box or A/T-rich motif, which should theoretically have TBP-binding capability. A remarkably high proportion of the promoters contain conserved binding sites for transcription factors that were previously implicated in rp gene expression, namely upstream GABP and Sp1 sites and downstream YY1 sites. Over 80 % of human and mouse rp genes contain a transposable element residue within 900 bp of 5' flanking sequence; very little sequence identity between human and mouse orthologues was evident more than 200 bp upstream of the transcriptional start point. CONCLUSIONS This analysis has provided some valuable insights into the general architecture of mammalian rp promoters and has identified parameters that might coordinately regulate the transcriptional activity of certain subsets of rp genes.
Collapse
|
31
|
Phatnani HP, Jones JC, Greenleaf AL. Expanding the functional repertoire of CTD kinase I and RNA polymerase II: novel phosphoCTD-associating proteins in the yeast proteome. Biochemistry 2005; 43:15702-19. [PMID: 15595826 PMCID: PMC2879061 DOI: 10.1021/bi048364h] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
CTD kinase I (CTDK-I) of Saccharomyces cerevisiae is required for normal phosphorylation of the C-terminal repeat domain (CTD) on elongating RNA polymerase II. To elucidate cellular roles played by this kinase and the hyperphosphorylated CTD (phosphoCTD) it generates, we systematically searched yeast extracts for proteins that bound to the phosphoCTD made by CTDK-I in vitro. Initially, using a combination of far-western blotting and phosphoCTD affinity chromatography, we discovered a set of novel phosphoCTD-associating proteins (PCAPs) implicated in a variety of nuclear functions. We identified the phosphoCTD-interacting domains of a number of these PCAPs, and in several test cases (namely, Set2, Ssd1, and Hrr25) adduced evidence that phosphoCTD binding is functionally important in vivo. Employing surface plasmon resonance (BIACORE) analysis, we found that recombinant versions of these and other PCAPs bind preferentially to CTD repeat peptides carrying SerPO(4) residues at positions 2 and 5 of each seven amino acid repeat, consistent with the positional specificity of CTDK-I in vitro [Jones, J. C., et al. (2004) J. Biol. Chem. 279, 24957-24964]. Subsequently, we used a synthetic CTD peptide with three doubly phosphorylated repeats (2,5P) as an affinity matrix, greatly expanding our search for PCAPs. This resulted in identification of approximately 100 PCAPs and associated proteins representing a wide range of functions (e.g., transcription, RNA processing, chromatin structure, DNA metabolism, protein synthesis and turnover, RNA degradation, snRNA modification, and snoRNP biogenesis). The varied nature of these PCAPs and associated proteins points to an unexpectedly diverse set of connections between Pol II elongation and other processes, conceptually expanding the role played by CTD phosphorylation in functional organization of the nucleus.
Collapse
Affiliation(s)
| | | | - Arno L. Greenleaf
- To whom correspondence should be addressed. Phone: 919-684-4030. Fax: 919-684-8885. E-mail:
| |
Collapse
|
32
|
Vastenhouw NL, Plasterk RHA. RNAi protects the Caenorhabditis elegans germline against transposition. Trends Genet 2004; 20:314-9. [PMID: 15219396 DOI: 10.1016/j.tig.2004.04.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Nadine L Vastenhouw
- The Hubrecht Laboratory and Center for Biomedical Genetics, Uppsalalaan 8, Utrecht, The Netherlands
| | | |
Collapse
|
33
|
Orfali KA, Ohene-Abuakwa Y, Ball SE. Diamond Blackfan anaemia in the UK: clinical and genetic heterogeneity. Br J Haematol 2004; 125:243-52. [PMID: 15059149 DOI: 10.1111/j.1365-2141.2004.04890.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A detailed family study was undertaken of patients notified to the UK Diamond Blackfan Anaemia (DBA) Registry. RPS19 mutations were detected in 16 of 104 families, including two patients with deletions detected by intragenic loss of heterozygosity of tightly linked polymorphisms. In two further cases, polymorphisms were used to determine the parental allele of origin of RPS19 point mutations. A review of clinical details of patients with mutations and patients in the literature having identical or equivalent mutations revealed evidence for a genotype:phenotype correlation with respect to the prevalence of physical anomalies, and the occurrence of mild or variable haematological severity. Nine of 60 patients had a known family history of DBA. Haematological abnormalities, including raised red cell adenosine deaminase activity, were found in first-degree relatives of 16 of 51 (31%) of patients not previously considered to have familial DBA. Results of both parents and any siblings were normal in only 35 of 60 (58%) of cases, who were therefore assumed to have sporadic de novo DBA. The classical inheritance pattern for DBA is autosomal dominant; however, 12 of 60 families (20%) had more than one affected child despite normal results in both parents. These results have important implications for genetic counselling, and for the selection of potential sibling bone marrow donors.
Collapse
Affiliation(s)
- Karen A Orfali
- Department of Cellular and Molecular Medicine (Haematology), St George's Hospital Medical School, Cranmer Terrace, London SW17 0RE, UK
| | | | | |
Collapse
|
34
|
Kirn-Safran CB, Gomes RR, Brown AJ, Carson DD. Heparan sulfate proteoglycans: Coordinators of multiple signaling pathways during chondrogenesis. ACTA ACUST UNITED AC 2004; 72:69-88. [PMID: 15054905 DOI: 10.1002/bdrc.20005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Heparan sulfate proteoglycans are abundantly expressed in the pericellular matrix of both developing and mature cartilage. Increasing evidence indicates that the action of numerous chondroregulatory molecules depends on these proteoglycans. This review summarizes the current understanding of the interactions of heparan sulfate chains of cartilage proteoglycans with both soluble and nonsoluble ligands during the process of chondrogenesis. In addition, the consequences of mutating genes encoding heparan sulfate biosynthetic enzymes or heparan sulfate proteoglycan core proteins on cartilage development are discussed.
Collapse
|