1
|
Haki M, Shafaei N, Moeini M. In Situ Gelling Silk Fibroin/ECM Hydrogel With Sustained Oxygen Release for Neural Tissue Engineering Applications. J Biomed Mater Res A 2025; 113:e37837. [PMID: 39739320 DOI: 10.1002/jbm.a.37837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/17/2024] [Accepted: 11/05/2024] [Indexed: 01/02/2025]
Abstract
In situ gelling, cell-laden hydrogels hold promise for regenerating tissue lesions with irregular shapes located in complex and hard-to-reach anatomical sites. A notable example is the regeneration of neural tissue lost due to cerebral cavitation. However, hypoxia-induced cell necrosis during the vascularization period imposes a significant challenge to the success of this approach. Oxygen-releasing hydrogels have been developed to address this issue, but they suffer from fast oxygen release over a short period, limiting their efficacy. This study develops an in situ gelling hydrogel system based on silk fibroin (SF) and decellularized brain extracellular matrix (dECM) with sustained oxygen release and tunable gelation time. Calcium peroxide nanoparticles (CPO NPs) served as the oxygen generating material, which were encapsulated within SF microparticles before incorporation into the SF-dECM hydrogel, aiming to regulate the oxygen release rate. The total CPO content of the hydrogels was only 2%-4% w/w. Characterization of hydrogels containing various SF concentrations (2%, 4% or 6% w/v) and microparticle loadings (10%, 15% or 20% w/w) demonstrated that SF concentration in the hydrogel matrix significantly affects the swelling, resorption rate and mechanical properties, while microparticle loading has a milder effect. On the other hand, microparticle loading strongly affected the oxygen release profile. High SF concentration in the hydrogel matrix (6% w/v) led to slow resorption rate and high stiffness, likely unsuitable for intended application. Low SF concentration (2% w/v), on the other hand, led to a high swelling ratio and a less sustained oxygen release. Among 4% w/v SF hydrogels, increased microparticle loading led to a slower resorption rate, increased stiffness and enhanced oxygen release. However, cell viability was reduced at 20% w/w microparticle loading, likely due to decreased cell attachment. The 4% w/v SF hydrogels containing 10% w/w SF-CPO microparticles exhibited relatively low swelling ratio (12.8% ± 2.4%), appropriate resorption rate (70.16% ± 10.75% remaining weight after 28 days) and compressive modulus (36.9 ± 1.7 kPa) and sustained oxygen release for over 2 weeks. This sample also showed the highest viability under hypoxic conditions among tested hydrogel samples (87.6% ± 15.9%). Overall, the developed hydrogels in this study showed promise for potential application in brain tissue engineering.
Collapse
Affiliation(s)
- Mahyar Haki
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Nadia Shafaei
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Mohammad Moeini
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| |
Collapse
|
2
|
Wang B, Yang X, Li C, Yang R, Sun T, Yin Y. The shared molecular mechanism of spinal cord injury and sarcopenia: a comprehensive genomics analysis. Front Neurol 2024; 15:1373605. [PMID: 39281413 PMCID: PMC11392746 DOI: 10.3389/fneur.2024.1373605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 08/09/2024] [Indexed: 09/18/2024] Open
Abstract
Introduction The occurrence of Spinal cord injury (SCI) brings economic burden and social burden to individuals, families and society, and the complications after SCI greatly affect the rehabilitation and treatment of patients in the later stage.This study focused on the potential biomarkers that co-exist in SCI and sarcopenia, with the expectation to diagnose and prognose patients in the acute phase and rehabilitation phase using comprehensive data analysis. Methods The datasets used in this study were downloaded from Gene Expression Omnibus (GEO) database. Firstly, the datasets were analyzed with the "DEseq2" and "Limma" R package to identify differentially expressed genes (DEGs), which were then visualized using volcano plots. The SCI and sarcopenia DEGs that overlapped were used to construct a protein-protein interaction (PPI) network. Three algorithms were used to obtain a list of the top 10 hub genes. Next, validation of the hub genes was performed using three datasets. According to the results, the top hub genes were DCN, FSTL1, and COL12A1, which subsequently underwent were Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses. We also assessed immune cell infiltration with the CIBERSORT algorithm to explore the immune cell landscape. The correlations between the hub genes and age and body mass index were investigated. To illustrate the biological mechanisms of the hub genes more clearly, a single-cell RNA-seq dataset was assessed to determine gene expression when muscle injury occurred. According to our analysis and the role in muscle, we chose the fibro/adipogenic progenitors (FAPs) cluster in the next step of the analysis. In the sub cluster analysis, we use the "Monocle" package to perform the trajectory analysis in different injury time points and different cell states. Results A total of 144 overlapped genes were obtained from two datasets. Following PPI network analysis and validation, we finally identified three hub-genes (DCN, FSTL1, and COL12A1), which were significantly altered in sarcopenic SCI patients both before and after rehabilitation training. The three hub genes were also significantly expressed in the FAPs clusters. Furthermore, following injury, the expression of the hub genes changed with the time points, changing in FAPs cluster. Discussion Our study provides comprehensive insights into how muscle changes after SCI are associated with sarcopenia by moving from RNA-seq to RNA-SEQ, including Immune infiltration landscape, pesudotime change and so on. The three hub genes identified in this study could be used to distinguish the sarcopenia state at the genomic level. Additionally, they may also play a prognostic role in evaluating the efficiency of rehabilitation training.
Collapse
Affiliation(s)
- Binyang Wang
- Department of Rehabilitation, The Affiliated Hospital of Yunnan University, Kunming, China
- The Affiliated Hospital of Yunnan University, Kunming Medical University, Kunming, China
| | - Xu Yang
- Department of Rehabilitation, The Affiliated Hospital of Yunnan University, Kunming, China
| | - Chuanxiong Li
- Department of Rehabilitation, The Affiliated Hospital of Yunnan University, Kunming, China
| | - Rongxing Yang
- Department of Rehabilitation, The Affiliated Hospital of Yunnan University, Kunming, China
| | - Tong Sun
- Department of Rehabilitation, The Affiliated Hospital of Yunnan University, Kunming, China
| | - Yong Yin
- Department of Rehabilitation, The Affiliated Hospital of Yunnan University, Kunming, China
| |
Collapse
|
3
|
Streich S, Higuchi J, Opalińska A, Wojnarowicz J, Giovanoli P, Łojkowski W, Buschmann J. Ultrasonic Coating of Poly(D,L-lactic acid)/Poly(lactic-co-glycolic acid) Electrospun Fibers with ZnO Nanoparticles to Increase Angiogenesis in the CAM Assay. Biomedicines 2024; 12:1155. [PMID: 38927362 PMCID: PMC11201106 DOI: 10.3390/biomedicines12061155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/07/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Critical-size bone defects necessitate bone void fillers that should be integrated well and be easily vascularized. One viable option is to use a biocompatible synthetic polymer and sonocoat it with zinc oxide (ZnO) nanoparticles (NPs). However, the ideal NP concentration and size must be assessed because a high dose of ZnO NPs may be toxic. Electrospun PDLLA/PLGA scaffolds were produced with different concentrations (0.5 or 1.0 s of sonocoating) and sizes of ZnO NPs (25 nm and 70 nm). They were characterized by SEM, EDX, ICP-OES, and the water contact angle. Vascularization and integration into the surrounding tissue were assessed with the CAM assay in the living chicken embryo. SEM, EDX, and ICP-OES confirmed the presence of ZnO NPs on polymer fibers. Sonocoated ZnO NPs lowered the WCA compared with the control. Smaller NPs were more pro-angiogenic exhibiting a higher vessel density than the larger NPs. At a lower concentration, less but larger vessels were visible in an environment with a lower cell density. Hence, the favored combination of smaller ZnO NPs at a lower concentration sonocoated on PDLLA/PLGA electrospun meshes leads to an advanced state of tissue integration and vascularization, providing a valuable synthetic bone graft to be used in clinics in the future.
Collapse
Affiliation(s)
- Selina Streich
- Medical Faculty, University of Zurich, Campus Irchel, 8006 Zurich, Switzerland;
- Plastic Surgery and Hand Surgery, University Hospital Zurich, 8091 Zurich, Switzerland;
| | - Julia Higuchi
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland; (J.H.); (A.O.); (J.W.); (W.Ł.)
| | - Agnieszka Opalińska
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland; (J.H.); (A.O.); (J.W.); (W.Ł.)
| | - Jacek Wojnarowicz
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland; (J.H.); (A.O.); (J.W.); (W.Ł.)
| | - Pietro Giovanoli
- Plastic Surgery and Hand Surgery, University Hospital Zurich, 8091 Zurich, Switzerland;
| | - Witold Łojkowski
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland; (J.H.); (A.O.); (J.W.); (W.Ł.)
| | - Johanna Buschmann
- Plastic Surgery and Hand Surgery, University Hospital Zurich, 8091 Zurich, Switzerland;
| |
Collapse
|
4
|
Davoodi P, Rezaei N, Hassan M, Hay DC, Vosough M. Bioengineering vascularized liver tissue for biomedical research and application. Scand J Gastroenterol 2024; 59:623-629. [PMID: 38319110 DOI: 10.1080/00365521.2024.2310172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/18/2024] [Accepted: 01/20/2024] [Indexed: 02/07/2024]
Abstract
The liver performs a wide range of biological functions that are essential to body homeostasis. Damage to liver tissue can result in reduced organ function, and if chronic in nature can lead to organ scarring and progressive disease. Currently, donor liver transplantation is the only longterm treatment for end-stage liver disease. However, orthotopic organ transplantation suffers from several drawbacks that include organ scarcity and lifelong immunosuppression. Therefore, new therapeutic strategies are required. One promising strategy is the engineering of implantable and vascularized liver tissue. This resource could also be used to build the next generation of liver tissue models to better understand human health, disease and aging in vitro. This article reviews recent progress in the field of liver tissue bioengineering, including microfluidic-based systems, bio-printed vascularized tissue, liver spheroids and organoid models, and the induction of angiogenesis in vivo.
Collapse
Affiliation(s)
- Parsa Davoodi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Niloofar Rezaei
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - David C Hay
- Centre for Regenerative Medicine, Institute for Repair and Regeneration, University of Edinburgh, Edinburgh, UK
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
5
|
Wang Z, Chen X, Yan L, Wang W, Zheng P, Mohammadreza A, Liu Q. Antimicrobial peptides in bone regeneration: mechanism and potential. Expert Opin Biol Ther 2024; 24:285-304. [PMID: 38567503 DOI: 10.1080/14712598.2024.2337239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
INTRODUCTION Antimicrobial peptides (AMPs) are small-molecule peptides with a unique antimicrobial mechanism. Other notable biological activities of AMPs, including anti-inflammatory, angiogenesis, and bone formation effects, have recently received widespread attention. These remarkable bioactivities, combined with the unique antimicrobial mechanism of action of AMPs, have led to their increasingly important role in bone regeneration. AREAS COVERED In this review, on the one hand, we aimed to summarize information about the AMPs that are currently used for bone regeneration by reviewing published literature in the PubMed database. On the other hand, we also highlight some AMPs with potential roles in bone regeneration and their possible mechanisms of action. EXPERT OPINION The translation of AMPs to the clinic still faces many problems, but their unique antimicrobial mechanisms and other conspicuous biological activities suggest great potential. An in-depth understanding of the structure and mechanism of action of AMPs will help us to subsequently combine AMPs with different carrier systems and perform structural modifications to reduce toxicity and achieve stable release, which may be a key strategy for facilitating the translation of AMPs to the clinic.
Collapse
Affiliation(s)
- ZhiCheng Wang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- School of Stomatology, Southern Medical University, Guangzhou, China
| | - XiaoMan Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- School of Stomatology, Southern Medical University, Guangzhou, China
| | - Liang Yan
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- School of Stomatology, Southern Medical University, Guangzhou, China
| | - WenJie Wang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- School of Stomatology, Southern Medical University, Guangzhou, China
| | - PeiJia Zheng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- School of Stomatology, Southern Medical University, Guangzhou, China
| | - Atashbahar Mohammadreza
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- School of International Education, Southern Medical University, Guangzhou, China
| | - Qi Liu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- School of Stomatology, Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Tan J, Qiu G, Wang M, Yu Z, Ling X, Aremu JO, Wang C, Liu H, Zhang A, Yang M, Gao F. Perfusion preparation of the rat bladder decellularized scaffold. Regen Ther 2023; 24:499-506. [PMID: 37779903 PMCID: PMC10539872 DOI: 10.1016/j.reth.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 08/23/2023] [Accepted: 09/07/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction Bladder reconstruction is a huge challenge in the field of urology. In recent years, perfusion methods have brought promising results in the field of tissue engineering. We prepared bladder decellularized scaffolds by improved perfusion, which may be suitable for bladder reconstruction. Methods We prepared decellularized scaffolds of rat bladder by perfusion of SDS (0.5% sodium dodecyl sulfate), SDS-SDC (0.5% sodium dodecyl sulfate +0.5% sodium deoxycholate). Histological characteristics of bladder decellularized scaffolds were assessed by Hematoxylin and eosin, Masson, and DAPI staining. Moreover, we also prepared a murine bladder transplantation model to evaluate the regenerative potential of scaffolds. Results Hematoxylin and eosin, Masson, and DAPI staining indicated almost no cellular component residues in the SDS-SDC group. Histological analysis (hematoxylin and eosin staining, Masson staining), CD31 and F4/80 staining analysis, one month after implantation, revealed that the decellularized scaffolds had regenerative characteristics, and the SDS-SDC scaffold had better regenerative properties than the SDS scaffold. Conclusions We successfully prepared the decellularized scaffold for the rat bladder by perfusion. Our results showed that the SDS-SDC scaffold had better decellularization efficiency and reconstruction ability than the SDS scaffold, which provides a new perspective on bladder reconstruction materials.
Collapse
Affiliation(s)
- Jiang Tan
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
- Department of Anatomy, Institute of Neuroscience, College of Basic Medicine, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Guoping Qiu
- Department of Anatomy, Institute of Neuroscience, College of Basic Medicine, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Maoqi Wang
- Department of Anatomy, Institute of Neuroscience, College of Basic Medicine, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Zhuoyuan Yu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Xinyi Ling
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - John Ogooluwa Aremu
- Department of Anatomy, Institute of Neuroscience, College of Basic Medicine, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Chunyu Wang
- Department of Anatomy, Institute of Neuroscience, College of Basic Medicine, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Hao Liu
- Department of Anatomy, Institute of Neuroscience, College of Basic Medicine, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Aozhou Zhang
- Department of Anatomy, Institute of Neuroscience, College of Basic Medicine, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Mei Yang
- Department of Anatomy, Institute of Neuroscience, College of Basic Medicine, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Fei Gao
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
7
|
Zhou F, Xin L, Wang S, Chen K, Li D, Wang S, Huang Y, Xu C, Zhou M, Zhong W, Wang H, Chen T, Song J. Portable Handheld "SkinPen" Loaded with Biomaterial Ink for In Situ Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37262337 DOI: 10.1021/acsami.3c02825] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In situ bioprinting has emerged as an attractive tool for directly depositing therapy ink at the defective area to adapt to the irregular wound shape. However, traditional bioprinting exhibits an obvious limitation in terms of an unsatisfactory bioadhesive effect. Here, a portable handheld bioprinter loaded with biomaterial ink is designed and named "SkinPen". Gelatin methacrylate (GelMA) and Cu-containing bioactive glass nanoparticles (Cu-BGn) serve as the main components to form the hydrogel ink, which displays excellent biocompatibility and antibacterial and angiogenic properties. More importantly, by introducing ultrasound and ultraviolet in a sequential programmed manner, the SkinPen achieves in situ instant gelation and amplified (more than threefold) bioadhesive shear strength. It is suggested that ultrasound-induced cavitation and the resulting topological entanglement contribute to the enhanced bioadhesive performance together. Combining the ultrasound-enhanced bioadhesion with the curative role of the hydrogel, the SkinPen shows a satisfactory wound-healing effect in diabetic rats. Given the detachable property of the SkinPen, the whole device can be put in a first-aid kit. Therefore, the application scenarios can be expanded to many kinds of accidents. Overall, this work presents a portable handheld SkinPen that might provide a facile but effective approach for clinical wound management.
Collapse
Affiliation(s)
- Fuyuan Zhou
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, P. R. China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, P. R. China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, P. R. China
| | - Liangjing Xin
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, P. R. China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, P. R. China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, P. R. China
| | - Shuya Wang
- Key State Laboratory of Fine Chemicals, Dalian 116024, P. R. China
- School of Bioengineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Kaiwen Chen
- Key State Laboratory of Fine Chemicals, Dalian 116024, P. R. China
- School of Bioengineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Dize Li
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, P. R. China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, P. R. China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, P. R. China
| | - Si Wang
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, P. R. China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, P. R. China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, P. R. China
| | - Yuanding Huang
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, P. R. China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, P. R. China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, P. R. China
| | - Chuanhang Xu
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, P. R. China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, P. R. China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, P. R. China
| | - Mengjiao Zhou
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, P. R. China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, P. R. China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, P. R. China
| | - Wenjie Zhong
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, P. R. China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, P. R. China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, P. R. China
| | - Huanan Wang
- Key State Laboratory of Fine Chemicals, Dalian 116024, P. R. China
- School of Bioengineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Tao Chen
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, P. R. China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, P. R. China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, P. R. China
| | - Jinlin Song
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, P. R. China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, P. R. China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, P. R. China
| |
Collapse
|
8
|
Shi J, Wei F, Chouraki B, Sun X, Wei J, Zhu L. Study on Performance Simulation of Vascular-like Flow Channel Model Based on TPMS Structure. Biomimetics (Basel) 2023; 8:biomimetics8010069. [PMID: 36810400 PMCID: PMC9944109 DOI: 10.3390/biomimetics8010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
In medical validation experiments, such as drug testing and clinical trials, 3D bioprinted biomimetic tissues, especially those containing blood vessels, can be used to replace animal models. The difficulty in the viability of printed biomimetic tissues, in general, lies in the provision of adequate oxygen and nutrients to the internal regions. This is to ensure normal cellular metabolic activity. The construction of a flow channel network in the tissue is an effective way to address this challenge by both allowing nutrients to diffuse and providing sufficient nutrients for internal cell growth and by removing metabolic waste in a timely manner. In this paper, a three-dimensional TPMS vascular flow channel network model was developed and simulated to analyse the effect of perfusion pressure on blood flow rate and vascular-like flow channel wall pressure when the perfusion pressure varies. Based on the simulation results, the in vitro perfusion culture parameters were optimised to improve the structure of the porous structure model of the vascular-like flow channel, avoiding perfusion failure due to unreasonable perfusion pressure settings or necrosis of cells without sufficient nutrients due to the lack of fluid passing through some of the channels, and the research work promotes the development of tissue engineering in vitro culture.
Collapse
Affiliation(s)
- Jianping Shi
- School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing 210046, China
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Nanjing 210008, China
- Correspondence: (J.S.); (L.Z.)
| | - Fuyin Wei
- School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing 210046, China
| | - Bilal Chouraki
- School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing 210046, China
| | - Xianglong Sun
- School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing 210046, China
| | - Jiayu Wei
- School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing 210046, China
| | - Liya Zhu
- School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing 210046, China
- Correspondence: (J.S.); (L.Z.)
| |
Collapse
|
9
|
Li A, Sasaki J, Inubushi T, Abe G, Nör J, Yamashiro T, Imazato S. Role of Heparan Sulfate in Vasculogenesis of Dental Pulp Stem Cells. J Dent Res 2023; 102:207-216. [PMID: 36281071 PMCID: PMC10767696 DOI: 10.1177/00220345221130682] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Dental pulp stem cells (DPSCs) can differentiate into vascular endothelial cells and display sprouting ability. During this process, DPSC responses to the extracellular microenvironment and cell-extracellular matrix interactions are critical in regulating their ultimate cell fate. Heparan sulfate (HS) glycosaminoglycan, a major component of extracellular matrix, plays important roles in various biological cell activities by interacting with growth factors and relative receptors. However, the regulatory function of HS on vasculogenesis of mesenchymal stem cells remains unclear. The objective of this study was to investigate the role of HS in endothelial differentiation and vasculogenesis of DPSCs. Our results show that an HS antagonist suppressed the proliferation and sprouting ability of DPSCs undergoing endothelial differentiation. Furthermore, expression of proangiogenic markers significantly declined with increasing dosages of the HS antagonist; in contrast, expression of stemness marker increased. Silencing of exostosin 1 (EXT1), a crucial glycosyltransferase for HS biosynthesis, in DPSCs using a short hairpin RNA significantly altered their gene expression profile. In addition, EXT1-silenced DPSCs expressed lower levels of endothelial differentiation markers and displayed a reduced vascular formation capacity compared with control DPSCs transduced with scrambled sequences. The sprouting ability of EXT1-silenced DPSCs was rescued by the addition of exogenous HS in vitro. Next, we subcutaneously transplanted biodegradable scaffolds seeded with EXT1-silenced or control DPSCs into immunodeficient mice. Lumen-like structures positive for human CD31 and von Willebrand factor were formed by green fluorescent protein-transduced DPSCs. Numbers of blood-containing vessels were significantly lower in scaffolds loaded with EXT1-silenced DPSCs than specimens implanted with control DPSCs. Collectively, our findings unveil the crucial role of HS on endothelial differentiation and vasculogenesis of DPSCs, opening new perspectives for the application of HS to tissue engineering and dental pulp regeneration.
Collapse
Affiliation(s)
- A. Li
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - J.I. Sasaki
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - T. Inubushi
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - G.L. Abe
- Department of Advanced Functional Materials Science, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - J.E. Nör
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - T. Yamashiro
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - S. Imazato
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry, Osaka, Japan
- Department of Advanced Functional Materials Science, Osaka University Graduate School of Dentistry, Osaka, Japan
| |
Collapse
|
10
|
Liu J, Tan Z, Jia Y, Shi X, Hou R, Liu J, Luo D, Fu X, Yang T, Wang X. Co‐delivery of tauroursodeoxycholic acid and dexamethasone using electrospun ultrafine fibers to induce early coupled angiogenesis and osteogenic differentiation. J Appl Polym Sci 2022. [DOI: 10.1002/app.53173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Junyu Liu
- School and Hospital of Stomatology Shanxi Medical University Taiyuan China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials Shanxi Medical University Taiyuan China
| | - Ziwei Tan
- School and Hospital of Stomatology Shanxi Medical University Taiyuan China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials Shanxi Medical University Taiyuan China
| | - Yongliang Jia
- School and Hospital of Stomatology Shanxi Medical University Taiyuan China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials Shanxi Medical University Taiyuan China
| | - Xiaotong Shi
- School and Hospital of Stomatology Shanxi Medical University Taiyuan China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials Shanxi Medical University Taiyuan China
| | - Ruxia Hou
- School and Hospital of Stomatology Shanxi Medical University Taiyuan China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials Shanxi Medical University Taiyuan China
| | - Jiajia Liu
- School and Hospital of Stomatology Shanxi Medical University Taiyuan China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials Shanxi Medical University Taiyuan China
| | - Dongmei Luo
- School and Hospital of Stomatology Shanxi Medical University Taiyuan China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials Shanxi Medical University Taiyuan China
| | - Xinyu Fu
- School and Hospital of Stomatology Shanxi Medical University Taiyuan China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials Shanxi Medical University Taiyuan China
| | - Tingting Yang
- School and Hospital of Stomatology Shanxi Medical University Taiyuan China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials Shanxi Medical University Taiyuan China
| | - Xiangyu Wang
- School and Hospital of Stomatology Shanxi Medical University Taiyuan China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials Shanxi Medical University Taiyuan China
| |
Collapse
|
11
|
Homaeigohar S, Li M, Boccaccini AR. Bioactive glass-based fibrous wound dressings. BURNS & TRAUMA 2022; 10:tkac038. [PMID: 36196303 PMCID: PMC9519693 DOI: 10.1093/burnst/tkac038] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/16/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022]
Abstract
Since the discovery of silicate bioactive glass (BG) by Larry Hench in 1969, different classes of BGs have been researched over decades mainly for bone regeneration. More recently, validating the beneficial influence of BGs with tailored compositions on angiogenesis, immunogenicity and bacterial infection, the applicability of BGs has been extended to soft tissue repair and wound healing. Particularly, fibrous wound dressings comprising BG particle reinforced polymer nanofibers and cotton-candy-like BG fibers have been proven to be successful for wound healing applications. Such fibrous dressing materials imitate the physical structure of skin's extracellular matrix and release biologically active ions e.g. regenerative, pro-angiogenic and antibacterial ions, e.g. borate, copper, zinc, etc., that can provoke cellular activities to regenerate the lost skin tissue and to induce new vessels formation, while keeping an anti-infection environment. In the current review, we discuss different BG fibrous materials meant for wound healing applications and cover the relevant literature in the past decade. The production methods for BG-containing fibers are explained and as fibrous wound dressing materials, their wound healing and bactericidal mechanisms, depending on the ions they release, are discussed. The present gaps in this research area are highlighted and new strategies to address them are suggested.
Collapse
Affiliation(s)
- Shahin Homaeigohar
- School of Science and Engineering, University of Dundee, Dundee DD1 4HN, United Kingdom
| | - Meng Li
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| |
Collapse
|
12
|
Fang J, Peng T, Liu J, Liu H, Liu T, Zhang Z, Zhao C, Li Y, Wang Q, Chen H, Li T, Huang S, Pu X. Muscle-derived Stem Cells Combined With Nerve Growth Factor Transplantation in the Treatment of Stress Urinary Incontinence. Urology 2022; 166:126-132. [PMID: 35490902 DOI: 10.1016/j.urology.2022.04.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To investigate the efficacy of muscle-derived stem cells (MDSCs) combined with nerve growth factor (NGF) in the treatment of stress urinary incontinence (SUI) METHODS: MDSCs were isolated and extracted from 90 SD rats, and the stem cell characteristics of the cells were identified using flow cytometry. NGF overexpression (oe-NGF) plasmid was coated with adenovirus and qRT-PCR was applied to verify adenovirus transfection efficiency. The rat models of SUI were constructed and randomly divided into 5 groups: control group, phosphate buffer (PBS) group, MDSCs + oe-NGF group, MDSCs + vector group, and MDSCs group. After 8 weeks of feeding, the leakage point pressure (LPP) rats, and Masson staining of rat urethral sections were detected. The expression of NGF and vascular endothelial growth factor (VEGF) was detected by western blot and IHC staining. RESULTS Compared with the control group, the LPP and the ratio of muscle fibers/collagen fibers were significantly increased in the MDSCs treated groups, with the highest increase in the MDSCs + oe-NGF group. Western blot and IHC results showed that the expression of NGF and VEGF in the urethral tissues in the MDSCs treated groups were significantly up-regulated comparing with the control group, with the highest increase in the MDSCs + oe-NGF group. CONCLUSION MDSCs alone can relieve SUI, while MDSCs combined with NGF is more effective, which may be related to the up-regulating of VEGF.
Collapse
Affiliation(s)
- Jianxiong Fang
- Department of Urology, Jiangmen Central Hospital, Jiangmen, PR China; Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, PR China
| | - Tianming Peng
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, PR China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou, PR China
| | - Jiumin Liu
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, PR China
| | - Haosheng Liu
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, PR China
| | - Tianqi Liu
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, PR China; Shantou University Medical College, Shantou, PR China
| | - Zhenhui Zhang
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, PR China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou, PR China
| | - Chao Zhao
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, PR China
| | - Yong Li
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, PR China
| | - Qianqian Wang
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, PR China
| | - Hanzhong Chen
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, PR China
| | - Teng Li
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, PR China
| | - Shang Huang
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, PR China
| | - Xiaoyong Pu
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, PR China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou, PR China.
| |
Collapse
|
13
|
Li J, Li R, Wu X, Zheng C, Shiu PHT, Rangsinth P, Lee SMY, Leung GPH. An Update on the Potential Application of Herbal Medicine in Promoting Angiogenesis. Front Pharmacol 2022; 13:928817. [PMID: 35928282 PMCID: PMC9345329 DOI: 10.3389/fphar.2022.928817] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Angiogenesis, the formation of new capillaries from pre-existing vascular networks, plays an important role in many physiological and pathological processes. The use of pro-angiogenic agents has been proposed as an attractive approach for promoting wound healing and treating vascular insufficiency-related problems, such as ischemic heart disease and stroke, which are the leading causes of death worldwide. Traditional herbal medicine has a long history; however, there is still a need for more in-depth studies and evidence-based confirmation from controlled and validated trials. Many in vitro and in vivo studies have reported that herbal medicines and their bioactive ingredients exert pro-angiogenic activity. The most frequently studied pro-angiogenic phytochemicals include ginsenosides from Panax notoginseng, astragalosides and calycosin from Radix Astragali, salvianolic acid B from Salvia miltiorrhiza, paeoniflorin from Radix Paeoniae, ilexsaponin A1 from Ilex pubescens, ferulic acid from Angelica sinensis, and puerarin from Radix puerariae. This review summarizes the progress in research on these phytochemicals, particularly those related to pro-angiogenic mechanisms and applications in ischemic diseases, tissue repair, and wound healing. In addition, an outline of their limitations and challenges during drug development is presented.
Collapse
Affiliation(s)
- Jingjing Li
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Renkai Li
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Xiaoping Wu
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Chengwen Zheng
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Polly Ho-Ting Shiu
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Panthakarn Rangsinth
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Taipa Macao SAR, China
| | - George Pak-Heng Leung
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- *Correspondence: George Pak-Heng Leung,
| |
Collapse
|
14
|
Willemen NGA, Hassan S, Gurian M, Jasso-Salazar MF, Fan K, Wang H, Becker M, Allijn IE, Bal-Öztürk A, Leijten J, Shin SR. Enzyme-Mediated Alleviation of Peroxide Toxicity in Self-Oxygenating Biomaterials. Adv Healthc Mater 2022; 11:e2102697. [PMID: 35362224 PMCID: PMC11041527 DOI: 10.1002/adhm.202102697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/02/2022] [Indexed: 11/09/2022]
Abstract
Oxygen releasing biomaterials can facilitate the survival of living implants by creating environments with a viable oxygen level. Hydrophobic oxygen generating microparticles (HOGMPs) encapsulated calcium peroxide (CPO) have recently been used in tissue engineering to release physiologically relevant amounts of oxygen for several weeks. However, generating oxygen using CPO is mediated via the generation of toxic levels of hydrogen peroxide (H2 O2 ). The incorporation of antioxidants, such as catalases, can potentially reduce H2 O2 levels. However, the formulation in which catalases can most effectively scavenge H2 O2 within oxygen generating biomaterials has remained unexplored. In this study, three distinct catalase incorporation methods are compared based on their ability to decrease H2 O2 levels. Specifically, catalase is incorporated within HOGMPs, or absorbed onto HOGMPs, or freely laden into the hydrogel entrapping HOGMPs and compared with control without catalase. Supplementation of free catalase in an HOGMP-laden hydrogel significantly decreases H2 O2 levels reflecting a higher cellular viability and metabolic activity of all the groups. An HOGMP/catalase-laden hydrogel precursor solution containing cells is used as an oxygenating bioink allowing improved viability of printed constructs under severe hypoxic conditions. The combination of HOGMPs with a catalase-laden hydrogel has the potential to decrease peroxide toxicity of oxygen generating tissues.
Collapse
Affiliation(s)
- Niels G A Willemen
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Cambridge, MA, 02139, USA
- Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, Enschede, 7522 NB, The Netherlands
| | - Shabir Hassan
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Cambridge, MA, 02139, USA
| | - Melvin Gurian
- Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, Enschede, 7522 NB, The Netherlands
| | - Maria Fernanda Jasso-Salazar
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Cambridge, MA, 02139, USA
- Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, Monterrey, NL, 64849, Mexico
| | - Kai Fan
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Cambridge, MA, 02139, USA
- School of Automation, Hangzhhou Dianzi University, Hangzhou, 310018, China
| | - Haihang Wang
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Cambridge, MA, 02139, USA
- Laboratory for Advanced Lubricating Materials, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Malin Becker
- Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, Enschede, 7522 NB, The Netherlands
| | - Iris E Allijn
- Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, Enschede, 7522 NB, The Netherlands
| | - Ayça Bal-Öztürk
- Department of Analytical Chemistry, Faculty of Pharmacy, Istinye University, Istanbul, 34010, Turkey
- Department of Stem Cell and Tissue Engineering, Institute of Health Sciences, Istinye University, Istanbul, 34010, Turkey
| | - Jeroen Leijten
- Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, Enschede, 7522 NB, The Netherlands
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Cambridge, MA, 02139, USA
| |
Collapse
|
15
|
Seiler C, Luepke M, Bach JP, Seifert H. Preparation of artificial vascularised tissue and the indirect determination of its void volume using μCT. VET MED-CZECH 2022; 67:387-394. [PMID: 39161852 PMCID: PMC11333037 DOI: 10.17221/100/2020-vetmed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 02/24/2022] [Indexed: 08/21/2024] Open
Abstract
The non-invasive determination of the vasculature volume would be very useful in many fields of medicine such as oncology and implantation. The purpose of this research was, therefore, to develop a methodology to investigate vascularisation in phantoms using microcomputed tomography (μCT) without having to visualise the single vessels. Epoxy resin and cotton candy were used to form the phantoms with microchannels. The size of the channels was measured via microscopy and the proportion of the void volume (PVV) was calculated. The phantoms were placed in contrast agent solutions of different concentrations and scanned in μCT. The mean CT numbers of the phantoms were calculated with the Amira software and displayed as a function of the determined PVV and the contrast agent concentration (CAC). The fabricated microchannels had the size of biological capillaries (diameter: 5 μm to 15 μm) and the phantoms showed a microchannel density of 5 to15 microchannels per mm². With an increasing CAC, the CT numbers increased significantly. Additionally, the phantoms with a higher PVV also had a higher CT number. The CT numbers and the PVV correlated moderately together, but significantly. The slope of the regression line increased with an increasing CAC.
Collapse
Affiliation(s)
- Christian Seiler
- Institute of General Radiology and Medical Physics, University of Veterinary Medicine Foundation, Hannover, Germany
| | - Matthias Luepke
- Institute of General Radiology and Medical Physics, University of Veterinary Medicine Foundation, Hannover, Germany
| | - Jan-Peter Bach
- Small Animal Clinic, University of Veterinary Medicine Foundation, Hannover, Germany
| | - Hermann Seifert
- Institute of General Radiology and Medical Physics, University of Veterinary Medicine Foundation, Hannover, Germany
| |
Collapse
|
16
|
Bohner M, Maazouz Y, Ginebra MP, Habibovic P, Schoenecker JG, Seeherman H, van den Beucken JJ, Witte F. Sustained local ionic homeostatic imbalance caused by calcification modulates inflammation to trigger heterotopic ossification. Acta Biomater 2022; 145:1-24. [PMID: 35398267 DOI: 10.1016/j.actbio.2022.03.057] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 12/15/2022]
Abstract
Heterotopic ossification (HO) is a condition triggered by an injury leading to the formation of mature lamellar bone in extraskeletal soft tissues. Despite being a frequent complication of orthopedic and trauma surgery, brain and spinal injury, the etiology of HO is poorly understood. The aim of this study is to evaluate the hypothesis that a sustained local ionic homeostatic imbalance (SLIHI) created by mineral formation during tissue calcification modulates inflammation to trigger HO. This evaluation also considers the role SLIHI could play for the design of cell-free, drug-free osteoinductive bone graft substitutes. The evaluation contains five main sections. The first section defines relevant concepts in the context of HO and provides a summary of proposed causes of HO. The second section starts with a detailed analysis of the occurrence and involvement of calcification in HO. It is followed by an explanation of the causes of calcification and its consequences. This allows to speculate on the potential chemical modulators of inflammation and triggers of HO. The end of this second section is devoted to in vitro mineralization tests used to predict the ectopic potential of materials. The third section reviews the biological cascade of events occurring during pathological and material-induced HO, and attempts to propose a quantitative timeline of HO formation. The fourth section looks at potential ways to control HO formation, either acting on SLIHI or on inflammation. Chemical, physical, and drug-based approaches are considered. Finally, the evaluation finishes with a critical assessment of the definition of osteoinduction. STATEMENT OF SIGNIFICANCE: The ability to regenerate bone in a spatially controlled and reproducible manner is an essential prerequisite for the treatment of large bone defects. As such, understanding the mechanism leading to heterotopic ossification (HO), a condition triggered by an injury leading to the formation of mature lamellar bone in extraskeletal soft tissues, would be very useful. Unfortunately, the mechanism(s) behind HO is(are) poorly understood. The present study reviews the literature on HO and based on it, proposes that HO can be caused by a combination of inflammation and calcification. This mechanism helps to better understand current strategies to prevent and treat HO. It also shows new opportunities to improve the treatment of bone defects in orthopedic and dental procedures.
Collapse
|
17
|
Zohar B, Debbi L, Machour M, Nachum N, Redenski I, Epshtein M, Korin N, Levenberg S. A micro-channel array in a tissue engineered vessel graft guides vascular morphogenesis for anastomosis with self-assembled vascular networks. Acta Biomater 2022; 163:182-193. [PMID: 35597433 DOI: 10.1016/j.actbio.2022.05.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 05/08/2022] [Accepted: 05/12/2022] [Indexed: 12/30/2022]
Abstract
Vascularization of 3D engineered tissues poses a great challenge in the field of tissue engineering. One promising approach for vascularizing engineered tissue is cocultivation with endothelial cells (ECs), which spontaneously self-assemble into a natural capillary network in the presence of supportive cells. However, the ECs do not self-assemble according to physiological hierarchy which is required to support blood supply. This work describes the design and fabrication of an AngioTube, a biodegradable engineered macro-vessel surrounded by cylindrical micro-channel array, which is designed to support physiological flow distribution and enable the integration with living capillaries. The well-defined geometry of the engineered micro-channels guides endothelial cells to form patent micro-vessels which sprouted in accordance with the channel orientation. Three different in-vitro models were used to demonstrate anastomosis of these engineered micro-vessels with self-assembled vascular networks. Finally, in-vivo functionality was demonstrated by direct anastomosis with the femoral artery in a rat hindlimb model. This unique approach proposes a new micro-fabrication strategy which introduces uncompromised micro-fluidic device geometrical accuracy at the tissue-scale level. STATEMENT OF SIGNIFICANCE: This study proposes a micro-fabrication strategy suitable for processing real-scale cylindrical implants with very high accuracy, which will enable translation of the high-resolution geometry of micro-fluidic devices to clinically relevant implants containing functional multi-scale vascular networks. Moreover, this approach promises to advance the field of tissue engineering by opening new opportunities to explore the impact of well controlled and uncompromised 3D micro-geometry on cellular behavior.
Collapse
Affiliation(s)
- Barak Zohar
- Department of Biomedical Engineering, Technion-Israel Institute of Technology
| | - Lior Debbi
- Department of Biomedical Engineering, Technion-Israel Institute of Technology
| | - Majd Machour
- Department of Biomedical Engineering, Technion-Israel Institute of Technology
| | - Netta Nachum
- Department of Biomedical Engineering, Technion-Israel Institute of Technology
| | - Idan Redenski
- Department of Biomedical Engineering, Technion-Israel Institute of Technology
| | - Mark Epshtein
- Department of Biomedical Engineering, Technion-Israel Institute of Technology
| | - Netanel Korin
- Department of Biomedical Engineering, Technion-Israel Institute of Technology
| | - Shulamit Levenberg
- Department of Biomedical Engineering, Technion-Israel Institute of Technology.
| |
Collapse
|
18
|
Injectable conductive and angiogenic hydrogels for chronic diabetic wound treatment. J Control Release 2022; 344:249-260. [DOI: 10.1016/j.jconrel.2022.03.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/01/2022] [Accepted: 03/07/2022] [Indexed: 12/26/2022]
|
19
|
Huang B, Chen M, Tian J, Zhang Y, Dai Z, Li J, Zhang W. Oxygen-Carrying and Antibacterial Fluorinated Nano-Hydroxyapatite Incorporated Hydrogels for Enhanced Bone Regeneration. Adv Healthc Mater 2022; 11:e2102540. [PMID: 35166460 DOI: 10.1002/adhm.202102540] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/27/2022] [Indexed: 12/27/2022]
Abstract
Insufficient oxygen availability in tissue engineering is one of the major factors for the failure of clinical transplantation. One potential strategy to conquer this limitation is the fabrication of spontaneous and continuous oxygen supplying scaffolds for in situ tissue regeneration. In this work, a versatile fluorine-incorporating hydrogel is designed which can not only timely and continuously supply oxygen for mesenchymal stem cells (MSCs) to overcome deficient oxygen before vascularization in scaffolds, but can present a higher antibacterial capability to avoid bacterial infections. The HAp@PDA-F nanoparticles are first prepared and then incorporated with the quaternized and methacrylated chitosan forming CS/HAp@PDA-F by photo-crosslinking. In vitro results indicate that CS/HAp@PDA-F hydrogel has outstanding mechanical performance, moreover, it also has the oxygen-carrying ability to prolong survival ability, enhance proliferation activity, and preserve osteogenic differentiation potency and promote osteogenic-related genes expression of rat bone mesenchymal stem cells (rBMSCs) under hypoxic environment. Furthermore, the CS/HAp@PDA-F hydrogel can inhibit the growth of Staphylococcus aureus and Escherichia coli, providing a good antibacterial activity. Additionally, in vivo experiments demonstrate higher bone volume and bone mineral density, and more new bone tissue generation in CS/HAp@PDA-F group than in CS/HAp@PDA group. These results indicate that the rational design of fluorinated hydrogel possesses a good clinical application prospect for bone regeneration.
Collapse
Affiliation(s)
- Baoxuan Huang
- Shanghai Key Laboratory of Functional Materials Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology Meilong Road No. 130 Shanghai 200237 P. R. China
| | - Mingjiao Chen
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology Department of Ophthalmology Ninth People's Hospital Shanghai Jiao Tong University School of Medicine Zhizaoju Road No. 639 Shanghai 200011 P. R. China
| | - Jia Tian
- Shanghai Key Laboratory of Functional Materials Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology Meilong Road No. 130 Shanghai 200237 P. R. China
| | - Yuanhao Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology Meilong Road No. 130 Shanghai 200237 P. R. China
| | - Zhaobo Dai
- Shanghai Key Laboratory of Functional Materials Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology Meilong Road No. 130 Shanghai 200237 P. R. China
| | - Jin Li
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology Department of Ophthalmology Ninth People's Hospital Shanghai Jiao Tong University School of Medicine Zhizaoju Road No. 639 Shanghai 200011 P. R. China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology Meilong Road No. 130 Shanghai 200237 P. R. China
| |
Collapse
|
20
|
Floriano JF, Emanueli C, Vega S, Barbosa AMP, Oliveira RGD, Floriano EAF, Graeff CFDO, Abbade JF, Herculano RD, Sobrevia L, Rudge MVC. Pro-angiogenic approach for skeletal muscle regeneration. Biochim Biophys Acta Gen Subj 2022; 1866:130059. [PMID: 34793875 DOI: 10.1016/j.bbagen.2021.130059] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/01/2021] [Indexed: 12/19/2022]
Abstract
The angiogenesis process is a phenomenon in which numerous molecules participate in the stimulation of the new vessels' formation from pre-existing vessels. Angiogenesis is a crucial step in tissue regeneration and recovery of organ and tissue function. Muscle diseases affect millions of people worldwide overcome the ability of skeletal muscle to self-repair. Pro-angiogenic therapies are key in skeletal muscle regeneration where both myogenesis and angiogenesis occur. These therapies have been based on mesenchymal stem cells (MSCs), exosomes, microRNAs (miRs) and delivery of biological factors. The use of different calls of biomaterials is another approach, including ceramics, composites, and polymers. Natural polymers are use due its bioactivity and biocompatibility in addition to its use as scaffolds and in drug delivery systems. One of these polymers is the natural rubber latex (NRL) which is biocompatible, bioactive, versatile, low-costing, and capable of promoting tissue regeneration and angiogenesis. In this review, the advances in the field of pro-angiogenic therapies are discussed.
Collapse
Affiliation(s)
- Juliana Ferreira Floriano
- São Paulo State University (UNESP), Botucatu Medical School, Botucatu, São Paulo 18.618-687, Brazil; National Heart and Lung Institute, Imperial College London, London, UK.
| | - Costanza Emanueli
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Sofia Vega
- São Paulo State University (UNESP), Botucatu Medical School, Botucatu, São Paulo 18.618-687, Brazil; Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | | | | | | | | | - Joelcio Francisco Abbade
- São Paulo State University (UNESP), Botucatu Medical School, Botucatu, São Paulo 18.618-687, Brazil
| | | | - Luis Sobrevia
- São Paulo State University (UNESP), Botucatu Medical School, Botucatu, São Paulo 18.618-687, Brazil; Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville E-41012, Spain; University of Queensland, Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, QLD, 4029, Queensland, Australia; Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713GZ Groningen, the Netherlands.
| | | |
Collapse
|
21
|
Wang X, Shi C, Hou X, Song S, Li C, Cao W, Chen W, Li L. Application of biomaterials and tissue engineering in bladder regeneration. J Biomater Appl 2022; 36:1484-1502. [DOI: 10.1177/08853282211048574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The primary functions of the bladder are storing urine under low and stable pressure and micturition. Various forms of trauma, tumors, and iatrogenic injuries can cause the loss of or reduce bladder function or capacity. If such damage is not treated in time, it will eventually lead to kidney damage and can even be life-threatening in severe cases. The emergence of tissue engineering technology has led to the development of more possibilities for bladder repair and reconstruction, in which the selection of scaffolds is crucial. In recent years, a growing number of tissue-engineered bladder scaffolds have been constructed. Therefore, this paper will discuss the development of tissue-engineered bladder scaffolds and will further analyze the limitations of and challenges encountered in bladder reconstruction.
Collapse
Affiliation(s)
- Xiaoya Wang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Chunying Shi
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Xianglin Hou
- Institute of genetics and developmental biology, Chinese Academy of Sciences, Beijing, China
| | - Siqi Song
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Chenglin Li
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Wenxuan Cao
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Wei Chen
- Department of Urology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Ling Li
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
22
|
Lin C, Wang Y, Huang Z, Wu T, Xu W, Wu W, Xu Z. Advances in Filament Structure of 3D Bioprinted Biodegradable Bone Repair Scaffolds. Int J Bioprint 2021; 7:426. [PMID: 34805599 PMCID: PMC8600304 DOI: 10.18063/ijb.v7i4.426] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/03/2021] [Indexed: 12/18/2022] Open
Abstract
Conventional bone repair scaffolds can no longer meet the high standards and requirements of clinical applications in terms of preparation process and service performance. Studies have shown that the diversity of filament structures of implantable scaffolds is closely related to their overall properties (mechanical properties, degradation properties, and biological properties). To better elucidate the characteristics and advantages of different filament structures, this paper retrieves and summarizes the state of the art in the filament structure of the three-dimensional (3D) bioprinted biodegradable bone repair scaffolds, mainly including single-layer structure, double-layer structure, hollow structure, core-shell structure and bionic structures. The eximious performance of the novel scaffolds was discussed from different aspects (material composition, ink configuration, printing parameters, etc.). Besides, the additional functions of the current bone repair scaffold, such as chondrogenesis, angiogenesis, anti-bacteria, and anti-tumor, were also concluded. Finally, the paper prospects the future material selection, structural design, functional development, and performance optimization of bone repair scaffolds.
Collapse
Affiliation(s)
- Chengxiong Lin
- National Engineering Research Center for Healthcare Devices, Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Polymer Products, Guangdong Medical Device Research Institute, Guangzhou 510500, China
| | - Yaocheng Wang
- National Engineering Research Center for Healthcare Devices, Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Polymer Products, Guangdong Medical Device Research Institute, Guangzhou 510500, China.,School of Railway Tracks and Transportation, Wuyi University, Jiangmen 529020, China
| | - Zhengyu Huang
- National Engineering Research Center for Healthcare Devices, Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Polymer Products, Guangdong Medical Device Research Institute, Guangzhou 510500, China.,School of Railway Tracks and Transportation, Wuyi University, Jiangmen 529020, China
| | - Tingting Wu
- National Engineering Research Center for Healthcare Devices, Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Polymer Products, Guangdong Medical Device Research Institute, Guangzhou 510500, China
| | - Weikang Xu
- National Engineering Research Center for Healthcare Devices, Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Polymer Products, Guangdong Medical Device Research Institute, Guangzhou 510500, China
| | - Wenming Wu
- National Engineering Research Center for Healthcare Devices, Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Polymer Products, Guangdong Medical Device Research Institute, Guangzhou 510500, China
| | - Zhibiao Xu
- School of Railway Tracks and Transportation, Wuyi University, Jiangmen 529020, China
| |
Collapse
|
23
|
Harris AF, Lacombe J, Zenhausern F. The Emerging Role of Decellularized Plant-Based Scaffolds as a New Biomaterial. Int J Mol Sci 2021; 22:12347. [PMID: 34830229 PMCID: PMC8625747 DOI: 10.3390/ijms222212347] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/30/2021] [Accepted: 11/10/2021] [Indexed: 12/14/2022] Open
Abstract
The decellularization of plant-based biomaterials to generate tissue-engineered substitutes or in vitro cellular models has significantly increased in recent years. These vegetal tissues can be sourced from plant leaves and stems or fruits and vegetables, making them a low-cost, accessible, and sustainable resource from which to generate three-dimensional scaffolds. Each construct is distinct, representing a wide range of architectural and mechanical properties as well as innate vasculature networks. Based on the rapid rise in interest, this review aims to detail the current state of the art and presents the future challenges and perspectives of these unique biomaterials. First, we consider the different existing decellularization techniques, including chemical, detergent-free, enzymatic, and supercritical fluid approaches that are used to generate such scaffolds and examine how these protocols can be selected based on plant cellularity. We next examine strategies for cell seeding onto the plant-derived constructs and the importance of the different functionalization methods used to assist in cell adhesion and promote cell viability. Finally, we discuss how their structural features, such as inherent vasculature, porosity, morphology, and mechanical properties (i.e., stiffness, elasticity, etc.) position plant-based scaffolds as a unique biomaterial and drive their use for specific downstream applications. The main challenges in the field are presented throughout the discussion, and future directions are proposed to help improve the development and use of vegetal constructs in biomedical research.
Collapse
Affiliation(s)
- Ashlee F. Harris
- Center for Applied NanoBioscience and Medicine, College of Medicine Phoenix, University of Arizona, 475 North 5th Street, Phoenix, AZ 85004, USA;
| | - Jerome Lacombe
- Center for Applied NanoBioscience and Medicine, College of Medicine Phoenix, University of Arizona, 475 North 5th Street, Phoenix, AZ 85004, USA;
- Department of Basic Medical Sciences, College of Medicine Phoenix, University of Arizona, 475 North 5th Street, Phoenix, AZ 85004, USA
| | - Frederic Zenhausern
- Center for Applied NanoBioscience and Medicine, College of Medicine Phoenix, University of Arizona, 475 North 5th Street, Phoenix, AZ 85004, USA;
- Department of Basic Medical Sciences, College of Medicine Phoenix, University of Arizona, 475 North 5th Street, Phoenix, AZ 85004, USA
- Department of Biomedical Engineering, College of Engineering, The University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
24
|
Ishii T, Warabi E, Mann GE. Mechanisms underlying unidirectional laminar shear stress-mediated Nrf2 activation in endothelial cells: Amplification of low shear stress signaling by primary cilia. Redox Biol 2021; 46:102103. [PMID: 34425388 PMCID: PMC8379703 DOI: 10.1016/j.redox.2021.102103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/07/2021] [Accepted: 08/12/2021] [Indexed: 12/14/2022] Open
Abstract
Endothelial cells are sensitive to mechanical stress and respond differently to oscillatory flow versus unidirectional flow. This review highlights the mechanisms by which a wide range of unidirectional laminar shear stress induces activation of the redox sensitive antioxidant transcription factor nuclear factor-E2-related factor 2 (Nrf2) in cultured endothelial cells. We propose that fibroblast growth factor-2 (FGF-2), brain-derived neurotrophic factor (BDNF) and 15-Deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) are potential Nrf2 activators induced by laminar shear stress. Shear stress-dependent secretion of FGF-2 and its receptor-mediated signaling is tightly controlled, requiring neutrophil elastase released by shear stress, αvβ3 integrin and the cell surface glycocalyx. We speculate that primary cilia respond to low laminar shear stress (<10 dyn/cm2), resulting in secretion of insulin-like growth factor 1 (IGF-1), which facilitates αvβ3 integrin-dependent FGF-2 secretion. Shear stress induces generation of heparan-binding epidermal growth factor-like growth factor (HB-EGF), which contributes to FGF-2 secretion and gene expression. Furthermore, HB-EGF signaling modulates FGF-2-mediated NADPH oxidase 1 activation that favors casein kinase 2 (CK2)-mediated phosphorylation/activation of Nrf2 associated with caveolin 1 in caveolae. Higher shear stress (>15 dyn/cm2) induces vesicular exocytosis of BDNF from endothelial cells, and we propose that BDNF via the p75NTR receptor could induce CK2-mediated Nrf2 activation. Unidirectional laminar shear stress upregulates gene expression of FGF-2 and BDNF and generation of 15d-PGJ2, which cooperate in sustaining Nrf2 activation to protect endothelial cells against oxidative damage.
Collapse
Affiliation(s)
- Tetsuro Ishii
- School of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan.
| | - Eiji Warabi
- School of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan.
| | - Giovanni E Mann
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, King's College London, 150 Stamford Street, London, SE1 9NH, UK.
| |
Collapse
|
25
|
Willemen NGA, Morsink MAJ, Veerman D, da Silva CF, Cardoso JC, Souto EB, Severino P. From oral formulations to drug-eluting implants: using 3D and 4D printing to develop drug delivery systems and personalized medicine. Biodes Manuf 2021. [DOI: 10.1007/s42242-021-00157-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
26
|
Mei Q, Rao J, Bei HP, Liu Y, Zhao X. 3D Bioprinting Photo-Crosslinkable Hydrogels for Bone and Cartilage Repair. Int J Bioprint 2021; 7:367. [PMID: 34286152 PMCID: PMC8287509 DOI: 10.18063/ijb.v7i3.367] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/31/2021] [Indexed: 11/23/2022] Open
Abstract
Three-dimensional (3D) bioprinting has become a promising strategy for bone manufacturing, with excellent control over geometry and microarchitectures of the scaffolds. The bioprinting ink for bone and cartilage engineering has thus become the key to developing 3D constructs for bone and cartilage defect repair. Maintaining the balance of cellular viability, drugs or cytokines' function, and mechanical integrity is critical for constructing 3D bone and/or cartilage scaffolds. Photo-crosslinkable hydrogel is one of the most promising materials in tissue engineering; it can respond to light and induce structural or morphological transition. The biocompatibility, easy fabrication, as well as controllable mechanical and degradation properties of photo-crosslinkable hydrogel can meet various requirements of the bone and cartilage scaffolds, which enable it to serve as an effective bio-ink for 3D bioprinting. Here, in this review, we first introduce commonly used photo-crosslinkable hydrogel materials and additives (such as nanomaterials, functional cells, and drugs/cytokine), and then discuss the applications of the 3D bioprinted photo-crosslinkable hydrogel scaffolds for bone and cartilage engineering. Finally, we conclude the review with future perspectives about the development of 3D bioprinting photo-crosslinkable hydrogels in bone and cartilage engineering.
Collapse
Affiliation(s)
- Quanjing Mei
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Jingdong Rao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Ho Pan Bei
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | | | - Xin Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| |
Collapse
|
27
|
Zheng F, Derby B, Wong J. Fabrication of microvascular constructs using high resolution electrohydrodynamic inkjet printing. Biofabrication 2021; 13. [DOI: 10.1088/1758-5090/abd158] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 12/07/2020] [Indexed: 01/08/2023]
|
28
|
Min S, Cleveland D, Ko IK, Kim JH, Yang HJ, Atala A, Yoo JJ. Accelerating neovascularization and kidney tissue formation with a 3D vascular scaffold capturing native vascular structure. Acta Biomater 2021; 124:233-243. [PMID: 33524561 DOI: 10.1016/j.actbio.2021.01.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/11/2021] [Accepted: 01/26/2021] [Indexed: 01/03/2023]
Abstract
Establishing an adequate vascularization of three-dimensional (3D) bioengineered tissues remains a critical challenge. We previously fabricated a vascular scaffold using the vascular corrosion casting technique, which provides a similar 3D geometry of native kidney vasculature. In this study, we functionalized the collagen vascular scaffold with a controlled release of vascular endothelial growth factor (VEGF vascular scaffold) to further promote vascularization. The VEGF vascular scaffold showed improved angiogenic capability in 2-dimensional (2D) and 3D in vitro settings. Implantation of the VEGF vascular scaffold seeded with human renal cells into a rat kidney demonstrated enhanced implant vascularization and reduced apoptosis of implanted human renal cells. Hybrid renal tubule-like structures composed of implanted human and migrated host renal cells were formed. This work highlights the critical role of early vascularization of the geometrically mimetic vascular scaffold using the VEGF incorporated vascular scaffold in reducing apoptosis of implanted cells as well as the formation of renal tissue structures.
Collapse
Affiliation(s)
- Sangil Min
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, NC, USA; Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - David Cleveland
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, NC, USA
| | - In Kap Ko
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, NC, USA
| | - Ji Hyun Kim
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, NC, USA
| | - Hee Jo Yang
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, NC, USA; Department of Urology, Soonchunhyang University College of Medicine, Cheonan, South Korea
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, NC, USA
| | - James J Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, NC, USA.
| |
Collapse
|
29
|
Phua QH, Han HA, Soh BS. Translational stem cell therapy: vascularized skin grafts in skin repair and regeneration. J Transl Med 2021; 19:83. [PMID: 33602284 PMCID: PMC7891016 DOI: 10.1186/s12967-021-02752-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/11/2021] [Indexed: 02/07/2023] Open
Abstract
The skin is made up of a plethora of cells arranged in multiple layers with complex and intricate vascular networks, creating a dynamic microenvironment of cells-to-matrix interactions. With limited donor sites, engineered skin substitute has been in high demand for many therapeutic purposes. Over the years, remarkable progress has occurred in the skin tissue-engineering field to develop skin grafts highly similar to native tissue. However, the major hurdle to successful engraftment is the incorporation of functional vasculature to provide essential nutrients and oxygen supply to the embedded cells. Limitations of traditional tissue engineering have driven the rapid development of vascularized skin tissue production, leading to new technologies such as 3D bioprinting, nano-fabrication and micro-patterning using hydrogel based-scaffold. In particular, the key hope to bioprinting would be the generation of interconnected functional vessels, coupled with the addition of specific cell types to mimic the biological and architectural complexity of the native skin environment. Additionally, stem cells have been gaining interest due to their highly regenerative potential and participation in wound healing. This review briefly summarizes the current cell therapies used in skin regeneration with a focus on the importance of vascularization and recent progress in 3D fabrication approaches to generate vascularized network in the skin tissue graft.
Collapse
Affiliation(s)
- Qian Hua Phua
- Disease Modeling and Therapeutics Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| | - Hua Alexander Han
- Disease Modeling and Therapeutics Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| | - Boon-Seng Soh
- Disease Modeling and Therapeutics Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore.
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore.
| |
Collapse
|
30
|
Huang NC, Dai LG, Kang LY, Huang NC, Fu KY, Hsieh PS, Dai NT. Beneficial Effects of Astragaloside IV-Treated and 3-Dimensional-Cultured Endothelial Progenitor Cells on Angiogenesis and Wound Healing. Ann Plast Surg 2021; 86:S3-S12. [PMID: 33438949 DOI: 10.1097/sap.0000000000002655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Astragaloside IV (AS-IV) is a natural herb extract and a popular compound used in traditional Chinese medicine because of its effect on multiple biological processes, such as promotion of cell proliferation, improvement in cardiopulmonary and vascular function, and promotion of angiogenesis around wounds, leading to accelerated wound healing. Vascular regeneration primarily results from the differentiation of endothelial progenitor cells (EPCs). Biomedical acceleration of angiogenesis and differentiation of EPCs around the wound remain challenging. MATERIALS AND METHODS In this study, we treated human umbilical cord blood-derived EPCs with AS-IV and cultured them on 2-dimensional (tissue culture polystyrene) and 3-dimensional culture plates (3DPs). These cultured cells were then combined with human blood plasma gel and applied on the skin of nude mice in an attempt to repair full-thickness skin defects. RESULTS The results show that using 3DP culture could increase vascular-related gene expression in EPCs. Furthermore, 12.5 μg/mL AS-IV-treaded EPCs were combined with plasma gels (P-3DP-EPC12.5) and showed enhanced vascular-related protein expression levels after 3 days of culture. Finally, P-3DP-EPC12.5s were used to repair full-thickness skin defects in nude mice, and we could register a wound healing rate greater than 90% by day 14. CONCLUSIONS Based on these results, we concluded that we have developed a potential therapeutic approach for wound healing using plasma gel containing 3-dimensional surface-cultured AS-IV-treated EPCs.
Collapse
Affiliation(s)
| | | | - Lan-Ya Kang
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Nien-Chi Huang
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Keng-Yen Fu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Pai-Shan Hsieh
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Niann-Tzyy Dai
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
31
|
Nejati S, Karimi‐Soflou R, Karkhaneh A. Influence of process parameters on the characteristics of oxygen‐releasing poly (lactic acid) microparticles: A multioptimization strategy. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Sara Nejati
- Biomedical Engineering Department Amirkabir University of Technology (Tehran Polytechnic) Tehran Iran
| | - Reza Karimi‐Soflou
- Biomedical Engineering Department Amirkabir University of Technology (Tehran Polytechnic) Tehran Iran
| | - Akbar Karkhaneh
- Biomedical Engineering Department Amirkabir University of Technology (Tehran Polytechnic) Tehran Iran
| |
Collapse
|
32
|
Agarwal T, Kazemi S, Costantini M, Perfeito F, Correia CR, Gaspar V, Montazeri L, De Maria C, Mano JF, Vosough M, Makvandi P, Maiti TK. Oxygen releasing materials: Towards addressing the hypoxia-related issues in tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111896. [PMID: 33641899 DOI: 10.1016/j.msec.2021.111896] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/09/2021] [Accepted: 01/16/2021] [Indexed: 02/07/2023]
Abstract
Manufacturing macroscale cell-laden architectures is one of the biggest challenges faced nowadays in the domain of tissue engineering. Such living constructs, in fact, pose strict requirements for nutrients and oxygen supply that can hardly be addressed through simple diffusion in vitro or without a functional vasculature in vivo. In this context, in the last two decades, a substantial amount of work has been carried out to develop smart materials that could actively provide oxygen-release to contrast local hypoxia in large-size constructs. This review provides an overview of the currently available oxygen-releasing materials and their synthesis and mechanism of action, highlighting their capacities under in vitro tissue cultures and in vivo contexts. Additionally, we also showcase an emerging concept, herein termed as "living materials as releasing systems", which relies on the combination of biomaterials with photosynthetic microorganisms, namely algae, in an "unconventional" attempt to supply the damaged or re-growing tissue with the necessary supply of oxygen. We envision that future advances focusing on tissue microenvironment regulated oxygen-supplying materials would unlock an untapped potential for generating a repertoire of anatomic scale, living constructs with improved cell survival, guided differentiation, and tissue-specific biofunctionality.
Collapse
Affiliation(s)
- Tarun Agarwal
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Sara Kazemi
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Marco Costantini
- Institute of Physical Chemistry - Polish Academy of Sciences, Warsaw, Poland
| | - Francisca Perfeito
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Clara R Correia
- Research Center "E. Piaggio", Department of Information Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy
| | - Vítor Gaspar
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Leila Montazeri
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Carmelo De Maria
- Research Center "E. Piaggio", Department of Information Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Massoud Vosough
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Regenerative Medicine, Cell Science Research Centre, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Pooyan Makvandi
- Center for MicroBioRobotics (CMBR), Istituto Italiano di Tecnologia, Pisa, Italy
| | - Tapas Kumar Maiti
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal 721302, India.
| |
Collapse
|
33
|
Tong Z, Xu Z, Tong Y, Qi L, Guo L, Guo J, Gu Y. Effectiveness of distal arterial bypass with porcine decellularized vascular graft for treating diabetic lower limb ischemia. Int J Artif Organs 2020; 44:580-586. [PMID: 33302779 DOI: 10.1177/0391398820980021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Application of tissue engineered vascular grafts for small-diameter artery reconstruction has been a much anticipated advance in vascular surgery. The aim of this study is to assess the effectiveness of small-diameter decellularized vascular grafts in below-knee bypass surgery for diabetic lower extremity ischemia. METHODS Three patients with diabetic lower limb ischemia were admitted to the Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University between May, 2010 and June, 2010. Decellularized porcine arteries with modified surface were implanted in the lower extremity for below-knee arterial revascularization. Imaging examination was performed for assessment of graft mechanical stability and patency at 1 month and 6 months after implantation. RESULTS At 6 months after implantation, all three grafts were patent with no stenosis or aneurysm formation of the grafts were found on imaging assessment with primary patency rate of 100% (3/3) both at 1 month and 6 months after graft insertion. CONCLUSION Decellularized vascular graft with surface modification for the small-diameter artery reconstruction had good clinical results after 6 months follow-up in three patients with diabetic lower limb ischemia.
Collapse
Affiliation(s)
- Zhu Tong
- Department of Vascular Surgery, Xuan Wu Hospital and Institute of Vascular Surgery, Capital Medical University, Beijing, China
| | - Zeqin Xu
- Department of Vascular Surgery, Xuan Wu Hospital and Institute of Vascular Surgery, Capital Medical University, Beijing, China
| | - Yisha Tong
- Department of Vascular Surgery, Austin Hospital, University of Melbourne, Melbourne, Australia
| | - Lixing Qi
- Department of Vascular Surgery, Xuan Wu Hospital and Institute of Vascular Surgery, Capital Medical University, Beijing, China
| | - Lianrui Guo
- Department of Vascular Surgery, Xuan Wu Hospital and Institute of Vascular Surgery, Capital Medical University, Beijing, China
| | - Jianming Guo
- Department of Vascular Surgery, Xuan Wu Hospital and Institute of Vascular Surgery, Capital Medical University, Beijing, China
| | - Yongquan Gu
- Department of Vascular Surgery, Xuan Wu Hospital and Institute of Vascular Surgery, Capital Medical University, Beijing, China
| |
Collapse
|
34
|
Bankoti K, Rameshbabu AP, Datta S, Goswami P, Roy M, Das D, Ghosh SK, Das AK, Mitra A, Pal S, Maulik D, Su B, Ghosh P, Basu B, Dhara S. Dual Functionalized Injectable Hybrid Extracellular Matrix Hydrogel for Burn Wounds. Biomacromolecules 2020; 22:514-533. [PMID: 33289564 DOI: 10.1021/acs.biomac.0c01400] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Low strength and rapid biodegradability of acellular dermal matrix (ADM) restrict its wider clinical application as a rapid cell delivery platform in situ for management of burn wounds. Herein, the extracted ADM was modified by a dual cross-linking approach with ionic crosslinking using chitosan and covalent cross-linking using an iodine-modified 2,5-dihydro-2,5-dimethoxy-furan cross-linker, termed as CsADM-Cl. In addition, inherent growth factors and cytokines were found to be preserved in CsADM-Cl, irrespective of ionic/covalent crosslinking. CsADM-Cl demonstrated improvement in post crosslinking stiffness with a decreased biodegradation rate. This hybrid crosslinked hydrogel supported adhesion, proliferation, and migration of human foreskin-derived fibroblasts and keratinocytes. Also, the angiogenic potential of CsADM-Cl was manifested by chick chorioallantoic membrane assay. CsADM-Cl showed excellent antibacterial activity against Escherichia coli and Staphylococcus aureus. Moreover, CsADM-Cl treated full thickness burn wounds and demonstrated rapid healing marked with superior angiogenesis, well-defined dermal-epidermal junctions, mature basket weave collagen deposition, and development of more pronounced secondary appendages. Altogether, the bioactive CsADM-Cl hydrogel established significant clinical potential to support wound healing as an apt injectable antibacterial matrix to encounter unmet challenges concerning critical burn wounds.
Collapse
Affiliation(s)
- Kamakshi Bankoti
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Arun Prabhu Rameshbabu
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sayanti Datta
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Piyali Goswami
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Madhurima Roy
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Dipankar Das
- Polymer Chemistry Laboratory, Department of Applied Chemistry, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| | - Sudip Kumar Ghosh
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Amit Kumar Das
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Analava Mitra
- Natural Products Research Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sagar Pal
- Polymer Chemistry Laboratory, Department of Applied Chemistry, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| | - Dhrubajyoti Maulik
- Department of Surgery, Bankura Sammilani Medical College, Bankura 722102, India
| | - Bo Su
- Bristol Dental School, University of Bristol, Bristol BS1 2LY, U.K
| | - Paulomi Ghosh
- Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology (CSIR-IICB), 4, Raja S C Mullick Road, Kolkata 700032, India
| | - Bikramajit Basu
- Materials Research Center, Indian Institute of Science, Bangalore 560012, India
| | - Santanu Dhara
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
35
|
In situ sprayed NIR-responsive, analgesic black phosphorus-based gel for diabetic ulcer treatment. Proc Natl Acad Sci U S A 2020; 117:28667-28677. [PMID: 33139557 DOI: 10.1073/pnas.2016268117] [Citation(s) in RCA: 210] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The treatment of diabetic ulcer (DU) remains a major clinical challenge due to the complex wound-healing milieu that features chronic wounds, impaired angiogenesis, persistent pain, bacterial infection, and exacerbated inflammation. A strategy that effectively targets all these issues has proven elusive. Herein, we use a smart black phosphorus (BP)-based gel with the characteristics of rapid formation and near-infrared light (NIR) responsiveness to address these problems. The in situ sprayed BP-based gel could act as 1) a temporary, biomimetic "skin" to temporarily shield the tissue from the external environment and accelerate chronic wound healing by promoting the proliferation of endothelial cells, vascularization, and angiogenesis and 2) a drug "reservoir" to store therapeutic BP and pain-relieving lidocaine hydrochloride (Lid). Within several minutes of NIR laser irradiation, the BP-based gel generates local heat to accelerate microcirculatory blood flow, mediate the release of loaded Lid for "on-demand" pain relief, eliminate bacteria, and reduce inflammation. Therefore, our study not only introduces a concept of in situ sprayed, NIR-responsive pain relief gel targeting the challenging wound-healing milieu in diabetes but also provides a proof-of-concept application of BP-based materials in DU treatment.
Collapse
|
36
|
Rezapour-Lactoee A, Yeganeh H, Gharibi R, Milan PB. Enhanced healing of a full-thickness wound by a thermoresponsive dressing utilized for simultaneous transfer and protection of adipose-derived mesenchymal stem cells sheet. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:101. [PMID: 33140201 DOI: 10.1007/s10856-020-06433-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
To boost the healing process in a full-thickness wound, a simple and efficient strategy based on adipose-derived mesenchymal stem cells (ADSCs) transplantation is described in this work. To increase the chance of ADSCs immobilization in the wound bed and prevent its migration, these cells are fully grown on the surface of a thermoresponsive dressing membrane under in vitro condition. Then, the cells sheet with their secreted extracellular matrix (ECM) is transferred to the damaged skin with the help of this dressing membrane. This membrane remains on wound bed and acts both as a cell sheet transfer vehicle, after external reduction of temperature, and protect wound during the healing process like a common wound dressing. The visual inspection of wounded skin (rat animal model) at selected time intervals shows a higher wound closure rate for ADSCs treated group. For this group of rats, the better quality of reconstructed tissue is approved by results of histological and immunohistochemical analysis since the higher length of the new epidermis, the higher thickness of re-epithelialization layer, a higher level of neovascularization and capillary density, and the least collagen deposition are detected in the healed tissue.
Collapse
Affiliation(s)
- Alireza Rezapour-Lactoee
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Department of Tissue Engineering, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Hamid Yeganeh
- Iran Polymer and Petrochemical Institute, Tehran, P.O. Box:14965/115, Iran.
| | - Reza Gharibi
- Faculty of Chemistry, Kharazmi University, Tehran, Iran
| | - Peiman Brouki Milan
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
37
|
Guo S, Redenski I, Landau S, Szklanny A, Merdler U, Levenberg S. Prevascularized Scaffolds Bearing Human Dental Pulp Stem Cells for Treating Complete Spinal Cord Injury. Adv Healthc Mater 2020; 9:e2000974. [PMID: 32902147 DOI: 10.1002/adhm.202000974] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/08/2020] [Indexed: 02/05/2023]
Abstract
The regeneration of injured spinal cord is hampered by the lack of vascular supply and neurotrophic support. Transplanting tissue-engineered constructs with developed vascular networks and neurotrophic factors, and further understanding the pattern of vessel growth in the remodeled spinal cord tissue are greatly desired. To this end, highly vascularized scaffolds embedded with human dental pulp stem cells (DPSCs) are fabricated, which possess paracrine-mediated angiogenic and neuroregenerative potentials. The potent pro-angiogenic effect of the prevascularized scaffolds is first demonstrated in a rat femoral bundle model, showing robust vessel growth and blood perfusion induced within these scaffolds postimplantation, as evidenced by laser speckle contrast imaging and 3D microCT dual imaging modalities. More importantly, in a rat complete spinal cord transection model, the implantation of these scaffolds to the injured spinal cords can also promote revascularization, as well as axon regeneration, myelin deposition, and sensory recovery. Furthermore, 3D microCT imaging and novel morphometric analysis on the remodeled spinal cord tissue demonstrate substantial regenerated vessels, more significantly in the sensory tract regions, which correlates with behavioral recovery following prevascularization treatment. Taken together, prevascularized DPSC-embedded constructs bear angiogenic and neurotrophic potentials, capable of augmenting and modulating SCI repair.
Collapse
Affiliation(s)
- Shaowei Guo
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
- The First Affiliated Hospital, Shantou University Medical College, Shantou, 515000, China
| | - Idan Redenski
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Shira Landau
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Ariel Szklanny
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Uri Merdler
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Shulamit Levenberg
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| |
Collapse
|
38
|
Yang S, Shi J, Yang J, Feng C, Tang H. Fluid-Structure Interaction Analysis of Perfusion Process of Vascularized Channels within Hydrogel Matrix Based on Three-Dimensional Printing. Polymers (Basel) 2020; 12:polym12091898. [PMID: 32847066 PMCID: PMC7563590 DOI: 10.3390/polym12091898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/15/2020] [Accepted: 08/18/2020] [Indexed: 11/16/2022] Open
Abstract
The rise of three-dimensional bioprinting technology provides a new way to fabricate in tissue engineering in vitro, but how to provide sufficient nutrition for the internal region of the engineered printed tissue has become the main obstacle. In vitro perfusion culture can not only provide nutrients for the growth of internal cells but also take away the metabolic wastes in time, which is an effective method to solve the problem of tissue engineering culture in vitro. Aiming at user-defined tissue engineering with internal vascularized channels obtained by three-dimensional printing experiment in the early stage, a simulation model was established and the in vitro fluid-structure interaction finite element analysis of tissue engineering perfusion process was carried out. Through fluid-structure interaction simulation, the hydrodynamic behavior and mechanical properties of vascularized channels in the perfusion process was discussed when the perfusion pressure, hydrogel concentration, and crosslinking density changed. The effects of perfusion pressure, hydrogel concentration, and crosslinking density on the flow velocity, pressure on the vascularized channels, and deformation of vascularized channels were analyzed. The simulation results provide a method to optimize the perfusion parameters of tissue engineering, avoiding the perfusion failure caused by unreasonable perfusion pressure and hydrogel concentration and promoting the development of tissue engineering culture in vitro.
Collapse
Affiliation(s)
- Shuai Yang
- School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing 210023, China; (S.Y.); (C.F.); (H.T.)
- Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing, Nanjing Normal University, Nanjing 210042, China
| | - Jianping Shi
- School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing 210023, China; (S.Y.); (C.F.); (H.T.)
- Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing, Nanjing Normal University, Nanjing 210042, China
- Correspondence: (J.S.); (J.Y.)
| | - Jiquan Yang
- School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing 210023, China; (S.Y.); (C.F.); (H.T.)
- Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing, Nanjing Normal University, Nanjing 210042, China
- Correspondence: (J.S.); (J.Y.)
| | - Chunmei Feng
- School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing 210023, China; (S.Y.); (C.F.); (H.T.)
- Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing, Nanjing Normal University, Nanjing 210042, China
| | - Hao Tang
- School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing 210023, China; (S.Y.); (C.F.); (H.T.)
- Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing, Nanjing Normal University, Nanjing 210042, China
| |
Collapse
|
39
|
Nazarnezhad S, Baino F, Kim HW, Webster TJ, Kargozar S. Electrospun Nanofibers for Improved Angiogenesis: Promises for Tissue Engineering Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1609. [PMID: 32824491 PMCID: PMC7466668 DOI: 10.3390/nano10081609] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 12/27/2022]
Abstract
Angiogenesis (or the development of new blood vessels) is a key event in tissue engineering and regenerative medicine; thus, a number of biomaterials have been developed and combined with stem cells and/or bioactive molecules to produce three-dimensional (3D) pro-angiogenic constructs. Among the various biomaterials, electrospun nanofibrous scaffolds offer great opportunities for pro-angiogenic approaches in tissue repair and regeneration. Nanofibers made of natural and synthetic polymers are often used to incorporate bioactive components (e.g., bioactive glasses (BGs)) and load biomolecules (e.g., vascular endothelial growth factor (VEGF)) that exert pro-angiogenic activity. Furthermore, seeding of specific types of stem cells (e.g., endothelial progenitor cells) onto nanofibrous scaffolds is considered as a valuable alternative for inducing angiogenesis. The effectiveness of these strategies has been extensively examined both in vitro and in vivo and the outcomes have shown promise in the reconstruction of hard and soft tissues (mainly bone and skin, respectively). However, the translational of electrospun scaffolds with pro-angiogenic molecules or cells is only at its beginning, requiring more research to prove their usefulness in the repair and regeneration of other highly-vascularized vital tissues and organs. This review will cover the latest progress in designing and developing pro-angiogenic electrospun nanofibers and evaluate their usefulness in a tissue engineering and regenerative medicine setting.
Collapse
Affiliation(s)
- Simin Nazarnezhad
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran;
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Hae-Won Kim
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan 31116, Korea;
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine Research Center, Dankook University, Cheonan 31116, Korea
| | - Thomas J. Webster
- Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA;
| | - Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran;
| |
Collapse
|
40
|
Tiwari S, Patil R, Dubey SK, Bahadur P. Graphene nanosheets as reinforcement and cell-instructive material in soft tissue scaffolds. Adv Colloid Interface Sci 2020; 281:102167. [PMID: 32361407 DOI: 10.1016/j.cis.2020.102167] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 12/11/2022]
Abstract
Mechanical strength of polymeric scaffolds deteriorates quickly in the physiological mileu. This can be minimized by reinforcing the polymeric matrix with graphene, a planar two-dimensional material with unique physicochemical and biological properties. Association between the sheet and polymer chains offers a range of porosity commensurate with tissue requirements. Besides, studies suggest that corrugated structure of graphene offers desirable bio-mechanical cues for tissue regeneration. This review covers three important aspects of graphene-polymer composites, (a) the opportunity on reinforcing the polymer matrix with graphene, (b) challenges associated with limited aqueous processability of graphene, and (c) physiological signaling in the presence of graphene. Among numerous graphene materials, our discussion is limited to graphene oxide (GO) and reduced graphene oxide (rGO) nanosheets. Challenges associated with limited dispersity of hydrophobic sheets within the polymeric matrix have been discussed at molecular level.
Collapse
|
41
|
Hamilton NJI, Lee DDH, Gowers KHC, Butler CR, Maughan EF, Jevans B, Orr JC, McCann CJ, Burns AJ, MacNeil S, Birchall MA, O'Callaghan C, Hynds RE, Janes SM. Bioengineered airway epithelial grafts with mucociliary function based on collagen IV- and laminin-containing extracellular matrix scaffolds. Eur Respir J 2020; 55:1901200. [PMID: 32444408 PMCID: PMC7301290 DOI: 10.1183/13993003.01200-2019] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 02/26/2020] [Indexed: 12/15/2022]
Abstract
Current methods to replace damaged upper airway epithelium with exogenous cells are limited. Existing strategies use grafts that lack mucociliary function, leading to infection and the retention of secretions and keratin debris. Strategies that regenerate airway epithelium with mucociliary function are clearly desirable and would enable new treatments for complex airway disease.Here, we investigated the influence of the extracellular matrix (ECM) on airway epithelial cell adherence, proliferation and mucociliary function in the context of bioengineered mucosal grafts. In vitro, primary human bronchial epithelial cells (HBECs) adhered most readily to collagen IV. Biological, biomimetic and synthetic scaffolds were compared in terms of their ECM protein content and airway epithelial cell adherence.Collagen IV and laminin were preserved on the surface of decellularised dermis and epithelial cell attachment to decellularised dermis was greater than to the biomimetic or synthetic alternatives tested. Blocking epithelial integrin α2 led to decreased adherence to collagen IV and to decellularised dermis scaffolds. At air-liquid interface (ALI), bronchial epithelial cells cultured on decellularised dermis scaffolds formed a differentiated respiratory epithelium with mucociliary function. Using in vivo chick chorioallantoic membrane (CAM), rabbit airway and immunocompromised mouse models, we showed short-term preservation of the cell layer following transplantation.Our results demonstrate the feasibility of generating HBEC grafts on clinically applicable decellularised dermis scaffolds and identify matrix proteins and integrins important for this process. The long-term survivability of pre-differentiated epithelia and the relative merits of this approach against transplanting basal cells should be assessed further in pre-clinical airway transplantation models.
Collapse
Affiliation(s)
- Nick J I Hamilton
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
- UCL Ear Institute, The Royal National Throat Nose and Ear Hospital, London, UK
- Nick J.I. Hamilton and Sam M. Janes are joint-senior authors
| | - Dani Do Hyang Lee
- Respiratory, Critical Care and Anaesthesia, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Kate H C Gowers
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Colin R Butler
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Elizabeth F Maughan
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Benjamin Jevans
- Stem Cell and Regenerative Medicine, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Jessica C Orr
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Conor J McCann
- Stem Cell and Regenerative Medicine, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Alan J Burns
- Stem Cell and Regenerative Medicine, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Sheila MacNeil
- Dept of Materials and Science Engineering, The Kroto Research Institute, North Campus, University of Sheffield, Sheffield, UK
| | - Martin A Birchall
- UCL Ear Institute, The Royal National Throat Nose and Ear Hospital, London, UK
| | - Christopher O'Callaghan
- Respiratory, Critical Care and Anaesthesia, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Robert E Hynds
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Sam M Janes
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
- Nick J.I. Hamilton and Sam M. Janes are joint-senior authors
| |
Collapse
|
42
|
Abdullah T, Gauthaman K, Hammad AH, Joshi Navare K, Alshahrie AA, Bencherif SA, Tamayol A, Memic A. Oxygen-Releasing Antibacterial Nanofibrous Scaffolds for Tissue Engineering Applications. Polymers (Basel) 2020; 12:polym12061233. [PMID: 32485817 PMCID: PMC7361702 DOI: 10.3390/polym12061233] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 12/22/2022] Open
Abstract
Lack of suitable auto/allografts has been delaying surgical interventions for the treatment of numerous disorders and has also caused a serious threat to public health. Tissue engineering could be one of the best alternatives to solve this issue. However, deficiency of oxygen supply in the wounded and implanted engineered tissues, caused by circulatory problems and insufficient angiogenesis, has been a rate-limiting step in translation of tissue-engineered grafts. To address this issue, we designed oxygen-releasing electrospun composite scaffolds, based on a previously developed hybrid polymeric matrix composed of poly(glycerol sebacate) (PGS) and poly(ε-caprolactone) (PCL). By performing ball-milling, we were able to embed a large percent of calcium peroxide (CP) nanoparticles into the PGS/PCL nanofibers able to generate oxygen. The composite scaffold exhibited a smooth fiber structure, while providing sustainable oxygen release for several days to a week, and significantly improved cell metabolic activity due to alleviation of hypoxic environment around primary bone-marrow-derived mesenchymal stem cells (BM-MSCs). Moreover, the composite scaffolds also showed good antibacterial performance. In conjunction to other improved features, such as degradation behavior, the developed scaffolds are promising biomaterials for various tissue-engineering and wound-healing applications.
Collapse
Affiliation(s)
- Turdimuhammad Abdullah
- Center of Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (T.A.); (A.H.H.); (A.A.A.)
| | - Kalamegam Gauthaman
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Faculty of Medicine, AIMST University, Semeling, Bedong, Kedah 08100, Malaysia
| | - Ahmed H. Hammad
- Center of Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (T.A.); (A.H.H.); (A.A.A.)
- Electron Microscope and Thin Films Department, Physics Division, National Research Centre, Dokki, Giza 12622, Egypt
| | - Kasturi Joshi Navare
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA;
| | - Ahmed A. Alshahrie
- Center of Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (T.A.); (A.H.H.); (A.A.A.)
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sidi A. Bencherif
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA;
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- UMR CNRS 7338 Biomechanics and Bioengineering, University of Technology of Compiègne, Sorbonne University, 60200 Compiègne, France
| | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut, Farmington, CT 06030, USA;
| | - Adnan Memic
- Center of Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (T.A.); (A.H.H.); (A.A.A.)
- Correspondence:
| |
Collapse
|
43
|
Rao GSNK, Kurakula M, Yadav KS. Application of Electrospun Materials in Gene Delivery. ELECTROSPUN MATERIALS AND THEIR ALLIED APPLICATIONS 2020:265-306. [DOI: 10.1002/9781119655039.ch10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
44
|
Yang S, Tang H, Feng C, Shi J, Yang J. The Research on Multi-material 3D Vascularized Network Integrated Printing Technology. MICROMACHINES 2020; 11:E237. [PMID: 32106448 PMCID: PMC7143135 DOI: 10.3390/mi11030237] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/21/2020] [Accepted: 02/22/2020] [Indexed: 01/19/2023]
Abstract
Three-dimensional bioprinting has emerged as one of the manufacturing approaches that could potentially fabricate vascularized channels, which is helpful to culture tissues in vitro. In this paper, we report a novel approach to fabricate 3D perfusable channels by using the combination of extrusion and inkjet techniques in an integrated manufacture process. To achieve this, firstly we investigate the theoretical model to analyze influencing factors of structural dimensions of the printed parts like the printing speed, pressure, dispensing time, and voltage. In the experiment, photocurable hydrogel was printed to form a self-supporting structure with internal channel grooves. When the desired height of hydrogel was reached, the dual print-head was switched to the piezoelectric nozzle immediately, and the sacrificial material was printed by the changed nozzle on the printed hydrogel layer. Then, the extrusion nozzle was switched to print the next hydrogel layer. Once the printing of the internal construct was finished, hydrogel was extruded to wrap the entire structure, and the construct was immersed in a CaCl2 solution to crosslink. After that, the channel was formed by removing the sacrificial material. This approach can potentially provide a strategy for fabricating 3D vascularized channels and advance the development of culturing thick tissues in vitro.
Collapse
Affiliation(s)
- Shuai Yang
- School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing 210023, China; (S.Y.); (H.T.); (C.F.)
- Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing, Nanjing Normal University, Nanjing 210042, China
| | - Hao Tang
- School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing 210023, China; (S.Y.); (H.T.); (C.F.)
- Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing, Nanjing Normal University, Nanjing 210042, China
| | - Chunmei Feng
- School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing 210023, China; (S.Y.); (H.T.); (C.F.)
| | - Jianping Shi
- School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing 210023, China; (S.Y.); (H.T.); (C.F.)
- Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing, Nanjing Normal University, Nanjing 210042, China
| | - Jiquan Yang
- School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing 210023, China; (S.Y.); (H.T.); (C.F.)
- Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing, Nanjing Normal University, Nanjing 210042, China
| |
Collapse
|
45
|
Li G, Han Q, Lu P, Zhang L, Zhang Y, Chen S, Zhang P, Zhang L, Cui W, Wang H, Zhang H. Construction of Dual-Biofunctionalized Chitosan/Collagen Scaffolds for Simultaneous Neovascularization and Nerve Regeneration. RESEARCH (WASHINGTON, D.C.) 2020; 2020:2603048. [PMID: 32851386 PMCID: PMC7436332 DOI: 10.34133/2020/2603048] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/10/2020] [Indexed: 01/20/2023]
Abstract
Biofunctionalization of artificial nerve implants by incorporation of specific bioactive factors has greatly enhanced the success of grafting procedures for peripheral nerve regeneration. However, most studies on novel biofunctionalized implants have emphasized the promotion of neuronal and axonal repair over vascularization, a process critical for long-term functional restoration. We constructed a dual-biofunctionalized chitosan/collagen composite scaffold with Ile-Lys-Val-Ala-Val (IKVAV) and vascular endothelial growth factor (VEGF) by combining solution blending, in situ lyophilization, and surface biomodification. Immobilization of VEGF and IKVAV on the scaffolds was confirmed both qualitatively by staining and quantitatively by ELISA. Various single- and dual-biofunctionalized scaffolds were compared for the promotion of endothelial cell (EC) and Schwann cell (SC) proliferation as well as the induction of angiogenic and neuroregeneration-associated genes by these cells in culture. The efficacy of these scaffolds for vascularization was evaluated by implantation in chicken embryos, while functional repair capacity in vivo was assessed in rats subjected to a 10 mm sciatic nerve injury. Dual-biofunctionalized scaffolds supported robust EC and SC proliferation and upregulated the expression levels of multiple genes and proteins related to neuroregeneration and vascularization. Dual-biofunctionalized scaffolds demonstrated superior vascularization induction in embryos and greater promotion of vascularization, myelination, and functional recovery in rats. These findings support the clinical potential of VEGF/IKVAV dual-biofunctionalized chitosan/collagen composite scaffolds for facilitating peripheral nerve regeneration, making it an attractive candidate for repairing critical nerve defect. The study may provide a critical experimental and theoretical basis for the development and design of new artificial nerve implants with excellent biological performance.
Collapse
Affiliation(s)
- Guicai Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001 Nantong, China
- Co-Innovation Center of Neuroregeneration, Nantong University, 226001 Nantong, China
| | - Qi Han
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001 Nantong, China
- Co-Innovation Center of Neuroregeneration, Nantong University, 226001 Nantong, China
| | - Panjian Lu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001 Nantong, China
- Co-Innovation Center of Neuroregeneration, Nantong University, 226001 Nantong, China
| | - Liling Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001 Nantong, China
- Co-Innovation Center of Neuroregeneration, Nantong University, 226001 Nantong, China
| | - Yuezhou Zhang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Shiyu Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001 Nantong, China
- Co-Innovation Center of Neuroregeneration, Nantong University, 226001 Nantong, China
| | - Ping Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001 Nantong, China
- Co-Innovation Center of Neuroregeneration, Nantong University, 226001 Nantong, China
| | - Luzhong Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001 Nantong, China
- Co-Innovation Center of Neuroregeneration, Nantong University, 226001 Nantong, China
| | - Wenguo Cui
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Hongkui Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001 Nantong, China
- Co-Innovation Center of Neuroregeneration, Nantong University, 226001 Nantong, China
| | - Hongbo Zhang
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
- Pharmaceutical Sciences Laboratory and Turku Bioscience Centre, Åbo Akademi University, 20520 Turku, Finland
| |
Collapse
|
46
|
Reconstruction of Bone Defect Combined with Massive Loss of Periosteum Using Injectable Human Mesenchymal Stem Cells in Biocompatible Ceramic Scaffolds in a Porcine Animal Model. Stem Cells Int 2019; 2019:6832952. [PMID: 31871469 PMCID: PMC6906857 DOI: 10.1155/2019/6832952] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/30/2019] [Accepted: 11/11/2019] [Indexed: 12/28/2022] Open
Abstract
Clinically, in patients who sustain severe open fractures, there is not only a segmental bone defect needed to be reconstructed but also insufficient healing capacity due to concomitant damages to the periosteum and surrounding soft tissues. For studying the reconstruction of bone defects associated with massive loss of periosteum and surrounding soft tissues, there are no well-established preclinical models in large animals in the literature. The purpose of the study was to generate a large animal model of bone defect with massive periosteum loss and to adopt a tissue engineering approach to achieve rapid bony union with stem cells and biomaterials. In this study, a bone defect with massive periosteum stripping was generated in pigs, which was followed by emptying nearby canal marrow including fat and cancellous bone. The stripped periosteum was a mimic to the situation in the Gustilo type 3 open fractures. Bone defects were then reconstructed by impacting the biocompatible ceramic scaffold, morselized tricalcium phosphate (TCP) loaded with human adipose tissue-derived mesenchymal stem cells (hMSCs). Radiological and pathological assessments indicated that TCP and hMSCs synergistically promoted bone healing with increased lamination and ingrowth of vessels. Both bridging periosteum formation and gap filling were induced rapidly. In conclusion, a porcine model of segmental bone loss with damage of surrounding periosteum was created. Reconstruction of such defects with hMSCs and TCP achieved rapid union of bone defects associated with massive periosteal stripping.
Collapse
|
47
|
Silk fibroin-poly(lactic acid) biocomposites: Effect of protein-synthetic polymer interactions and miscibility on material properties and biological responses. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109890. [PMID: 31500018 DOI: 10.1016/j.msec.2019.109890] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/08/2019] [Accepted: 06/12/2019] [Indexed: 12/22/2022]
Abstract
A protein-polymer blend system based on silkworm silk fibroin (SF) and polylactic acid (PLA) was systematically investigated to understand the interaction and miscibility of proteins and synthetic biocompatible polymers in the macro- and micro-meter scales, which can dramatically control the cell responses and enzyme biodegradation on the biomaterial interface. Silk fibroin, a semicrystalline protein with beta-sheet crystals, provides controllable crystal content and biodegradability; while noncrystallizable PDLLA provides hydrophobicity and thermal stability in the system. Differential scanning calorimetry (DSC) combined with scanning electron microscope (SEM) showed that the morphology of the blend films was uniform on a macroscopic scale, yet with tunable micro-phase patterns at different mixing ratios. Fourier transform infrared analysis (FTIR) revealed that structures of the blend system, such as beta-sheet crystal content, gradually changed with the mixing ratios. All blended samples have better stability than pure SF and PLA samples as evidenced by thermogravimetric analysis. Protease XIV enzymatic study showed that the biodegradability of the blend samples varied with their blending ratios and microscale morphologies. Significantly, the topology of the micro-phase patterns on the blends can promote cell attachment and manipulate the cell growth and proliferation. This study provided a useful platform for understanding the fabrication strategies of protein-synthetic polymer composites that have direct biomedical and green chemistry applications.
Collapse
|
48
|
Heinrich MA, Liu W, Jimenez A, Yang J, Akpek A, Liu X, Pi Q, Mu X, Hu N, Schiffelers RM, Prakash J, Xie J, Zhang YS. 3D Bioprinting: from Benches to Translational Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1805510. [PMID: 31033203 PMCID: PMC6752725 DOI: 10.1002/smll.201805510] [Citation(s) in RCA: 191] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/03/2019] [Indexed: 05/07/2023]
Abstract
Over the last decades, the fabrication of 3D tissues has become commonplace in tissue engineering and regenerative medicine. However, conventional 3D biofabrication techniques such as scaffolding, microengineering, and fiber and cell sheet engineering are limited in their capacity to fabricate complex tissue constructs with the required precision and controllability that is needed to replicate biologically relevant tissues. To this end, 3D bioprinting offers great versatility to fabricate biomimetic, volumetric tissues that are structurally and functionally relevant. It enables precise control of the composition, spatial distribution, and architecture of resulting constructs facilitating the recapitulation of the delicate shapes and structures of targeted organs and tissues. This Review systematically covers the history of bioprinting and the most recent advances in instrumentation and methods. It then focuses on the requirements for bioinks and cells to achieve optimal fabrication of biomimetic constructs. Next, emerging evolutions and future directions of bioprinting are discussed, such as freeform, high-resolution, multimaterial, and 4D bioprinting. Finally, the translational potential of bioprinting and bioprinted tissues of various categories are presented and the Review is concluded by exemplifying commercially available bioprinting platforms.
Collapse
Affiliation(s)
- Marcel Alexander Heinrich
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Department of Biomaterials Science and Technology, Section Targeted Therapeutics, Technical Medical Centre, University of Twente, Enschede 7500AE, The Netherlands
| | - Wanjun Liu
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Key Laboratory of Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, P.R. China
| | - Andrea Jimenez
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Biomedical Engineering Laboratory, Instituto Tecnológico y de Estudios Superiores de Monterrey, Monterrey, Nuevo León 64849, Mexico
| | - Jingzhou Yang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Center of Biomedical Materials 3D Printing, National Engineering Laboratory for Polymer Complex Structure Additive Manufacturing, Baoding 071000, P.R. China
| | - Ali Akpek
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Department of Biomedical Engineering, Istanbul Yeni Yuzyil University, Istanbul 34010, Turkey
| | - Xiao Liu
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, P.R. China
| | - Qingmeng Pi
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Department of Plastic and Reconstructive Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200129, P.R. China
| | - Xuan Mu
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Ning Hu
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, P.R. China
| | - Raymond Michel Schiffelers
- Department of Clinical Chemistry and Hematology, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands
| | - Jai Prakash
- Department of Biomaterials Science and Technology, Section Targeted Therapeutics, Technical Medical Centre, University of Twente, Enschede 7500AE, The Netherlands
| | - Jingwei Xie
- Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| |
Collapse
|
49
|
Guan G, Yu C, Xing M, Wu Y, Hu X, Wang H, Wang L. Hydrogel Small-Diameter Vascular Graft Reinforced with a Braided Fiber Strut with Improved Mechanical Properties. Polymers (Basel) 2019; 11:E810. [PMID: 31064087 PMCID: PMC6571729 DOI: 10.3390/polym11050810] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 04/29/2019] [Accepted: 05/02/2019] [Indexed: 12/18/2022] Open
Abstract
Acute thrombosis remains the main limitation of small-diameter vascular grafts (inner diameter <6 mm) for bridging and bypassing of small arteries defects and occlusion. The use of hydrogel tubes represents a promising strategy. However, their low mechanical strength and high swelling tendency may limit their further application. In the present study, a hydrogel vascular graft of Ca alginate/polyacrylamide reinforced with a braided fiber strut was designed and fabricated with the assistance of a customized casting mold. Morphology, structure, swellability, mechanical properties, cyto- and hemocompatibility of the reinforced graft were characterized. The results showed that the reinforced graft was transparent and robust, with a smooth surface. Scanning electron microscopic examination confirmed a uniform porous structure throughout the hydrogel. The swelling of the reinforced grafts could be controlled to 100%, obtaining clinically satisfactory mechanical properties. In particular, the dynamic circumferential compliance reached (1.7 ± 0.1)%/100 mmHg for 50-90 mmHg, a value significantly higher than that of expanded polytetrafluoroethylene (ePTFE) vascular grafts. Biological tests revealed that the reinforced graft was non-cytotoxic and had a low hemolysis percentage (HP) corresponding to (0.9 ± 0.2)%. In summary, the braided fiber-reinforced hydrogel vascular grafts demonstrated both physical and biological superiority, suggesting their suitability for vascular grafts.
Collapse
Affiliation(s)
- Guoping Guan
- Engineering Research Center of Technical Textiles, Ministry of Education; Key laboratory of Textile Science and Technology, Ministry of Education; College of Textiles, Donghua University, Songjiang District, Shanghai 201620, China.
| | - Chenglong Yu
- Engineering Research Center of Technical Textiles, Ministry of Education; Key laboratory of Textile Science and Technology, Ministry of Education; College of Textiles, Donghua University, Songjiang District, Shanghai 201620, China.
| | - Meiyi Xing
- Engineering Research Center of Technical Textiles, Ministry of Education; Key laboratory of Textile Science and Technology, Ministry of Education; College of Textiles, Donghua University, Songjiang District, Shanghai 201620, China.
| | - Yufen Wu
- Engineering Research Center of Technical Textiles, Ministry of Education; Key laboratory of Textile Science and Technology, Ministry of Education; College of Textiles, Donghua University, Songjiang District, Shanghai 201620, China.
| | - Xingyou Hu
- Engineering Research Center of Technical Textiles, Ministry of Education; Key laboratory of Textile Science and Technology, Ministry of Education; College of Textiles, Donghua University, Songjiang District, Shanghai 201620, China.
| | - Hongjun Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA.
| | - Lu Wang
- Engineering Research Center of Technical Textiles, Ministry of Education; Key laboratory of Textile Science and Technology, Ministry of Education; College of Textiles, Donghua University, Songjiang District, Shanghai 201620, China.
| |
Collapse
|
50
|
Zohar B, Blinder Y, Epshtein M, Szklanny AA, Kaplan B, Korin N, Mooney DJ, Levenberg S. Multi-flow channel bioreactor enables real-time monitoring of cellular dynamics in 3D engineered tissue. Commun Biol 2019; 2:158. [PMID: 31069267 PMCID: PMC6499812 DOI: 10.1038/s42003-019-0400-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 03/11/2019] [Indexed: 12/17/2022] Open
Abstract
The key to understanding, harnessing, and manipulating natural biological processes for the benefit of tissue engineering lies in providing a controllable dynamic environment for tissue development in vitro while being able to track cell activity in real time. This work presents a multi-channel bioreactor specifically designed to enable on-line imaging of fluorescently labeled cells embedded in replicated 3D engineered constructs subjected to different flow conditions. The images are acquired in 3D using a standard upright confocal microscope and further analyzed and quantified by computer vision. The platform is used to characterize and quantify the pace and directionality of angiogenic processes induced by flow. The presented apparatus bears considerable potential to advance scientific research, from basic research pursuing the effect of flow versus static conditions on 3D scaffolds and cell types, to clinically oriented modeling in drug screening and cytotoxicity assays.
Collapse
Affiliation(s)
- Barak Zohar
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yaron Blinder
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA USA
| | - Mark Epshtein
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ariel A. Szklanny
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ben Kaplan
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
- Bruce Rapaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Netanel Korin
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - David J. Mooney
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA USA
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA USA
| | - Shulamit Levenberg
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|