1
|
Guevara C, Ampuero JS, Schilling M. Arthropod-Borne and Rodent-Borne Infections in Peru From 1990 to 2022. J Infect Dis 2025; 231:S72-S79. [PMID: 39928390 PMCID: PMC12063091 DOI: 10.1093/infdis/jiae608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025] Open
Abstract
Arboviral and rodent-borne infections are considered a public health concern and pose a significant threat to military service members when deployed in austere environments. In 1990, the U.S. Naval Medical Research Unit (NAMRU) SOUTH, in collaboration with the Peruvian Ministry of Health, initiated febrile illnesses surveillance in Iquitos, Loreto, later expanding to 33 health facilities throughout the country. Additionally, different techniques were developed to maximize virus detection. The activities were crucial in identifying evidence of circulating dengue, Venezuelan equine encephalitis, Mayaro, and Oropouche viruses in the region. Subsequently, Eastern equine encephalitis, encephalomyocarditis, Guaroa, Saint Louis encephalitis, and Rio Mamore viruses, among others, were discovered through our surveillance networks. The results of 3 decades of surveillance identified 16 novel arboviruses and rodent-borne viruses, contributing to public health control and force health protection for the United States and partner nations.
Collapse
|
2
|
Macchia A, Figar S, Biscayart C, González Bernaldo de Quirós F. Impact of prior dengue infection on severity and outcomes: meta-analysis of placebo-controlled trials. Rev Panam Salud Publica 2024; 48:e129. [PMID: 39633829 PMCID: PMC11616458 DOI: 10.26633/rpsp.2024.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/09/2024] [Indexed: 12/07/2024] Open
Abstract
Objective This study evaluated the association between serologically confirmed prior dengue infection and the subsequent risk of virologically confirmed dengue, severe dengue, dengue hospitalization, dengue-related death and all-cause mortality. Methods A systematic review and meta-analysis were conducted following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. PubMed, CINAHL, MEDLINE, the Cochrane Library and Web of Science were searched for reports of phase III randomized controlled trials of vaccine efficacy that had data about the placebo group and information about prior infections and were published between January 1994 and March 2024. Random-effects models were used to calculate combined odds ratios (ORs), and heterogeneity was assessed. Results Four studies from three phase III trials were included. Participants with prior infection had a lower likelihood of developing virologically confirmed dengue during follow up (OR: 0.85, 95% confidence interval [CI]: 0.75 to 0.98, P = 0.024) and the same risk of dengue hospitalization as those without prior infection (OR: 1.18, 95% CI: 0.92 to 1.53, P = 0.198). However, they had a higher rate of severe dengue (OR: 2.91, 95% CI: 1.23 to 6.87, P = 0.015). No dengue-related deaths occurred during follow up. There were no statistically significant differences in all-cause mortality between individuals with and without prior dengue (OR: 1.74, 95% CI: 0.21 to 14.08, P = 0.76). Conclusions Prior dengue infection significantly reduced the risk of virologically confirmed dengue and increased the risk of severe dengue, but had no significant effect on dengue hospitalization, dengue-related death or all-cause mortality during follow up. These findings suggest the need to reconsider prior infection as an independent risk factor.
Collapse
Affiliation(s)
- Alejandro Macchia
- Subsecretaría de Planificación SanitariaMinisterio de Salud de la Ciudad de Buenos AiresCiudad Autónoma de Buenos AiresArgentinaSubsecretaría de Planificación Sanitaria, Ministerio de Salud de la Ciudad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Silvana Figar
- Área de Investigación en Salud Poblacional de la Secretaría de Investigación de la Universidad Hospital Italiano de Buenos AiresGlobal Epidemiology-IMTIB-CONICETArgentinaÁrea de Investigación en Salud Poblacional de la Secretaría de Investigación de la Universidad Hospital Italiano de Buenos Aires, Global Epidemiology-IMTIB-CONICET, Argentina
| | - Cristián Biscayart
- Gerencia Operativa de EpidemiologíaMinisterio de Salud de la Ciudad de Buenos AiresCiudad Autónoma de Buenos AiresArgentinaGerencia Operativa de Epidemiología, Ministerio de Salud de la Ciudad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Fernán González Bernaldo de Quirós
- Ministerio de Salud de la Ciudad Autónoma de Buenos AiresCiudad Autónoma de Buenos AiresArgentinaMinisterio de Salud de la Ciudad Autónoma de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
3
|
de Arruda TB, Bavia L, Mosimann ALP, Aoki MN, Sarzi ML, Conchon-Costa I, Wowk PF, Duarte dos Santos CN, Pavanelli WR, Silveira GF, Bordignon J. Viremia and Inflammatory Cytokines in Dengue: Interleukin-2 as a Biomarker of Infection, and Interferon-α and -γ as Markers of Primary versus Secondary Infection. Pathogens 2023; 12:1362. [PMID: 38003826 PMCID: PMC10675515 DOI: 10.3390/pathogens12111362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
The pathogenesis of Dengue virus (DENV) infection is complex and involves viral replication that may trigger an inflammatory response leading to severe disease. Here, we investigated the correlation between viremia and cytokine levels in the serum of DENV-infected patients. Between 2013 and 2014, 138 patients with a diagnosis of acute-phase DENV infection and 22 patients with a non-dengue acute febrile illness (AFI) were enrolled. Through a focus-forming assay (FFU), we determined the viremia levels in DENV-infected patients and observed a peak in the first two days after the onset of symptoms. A higher level of viremia was observed in primary versus secondary DENV-infected patients. Furthermore, no correlation was observed between viremia and inflammatory cytokine levels in DENV-infected patients. Receiver operating characteristic (ROC) curve analysis revealed that IL-2 has the potential to act as a marker to distinguish dengue from other febrile illnesses and is positively correlated with Th1 cytokines. IFN-α and IFN-γ appear to be potential markers of primary versus secondary infection in DENV-infected patients, respectively. The results also indicate that viremia levels are not the main driving force behind inflammation in dengue and that cytokines could be used as infection biomarkers and for differentiation between primary versus secondary infection.
Collapse
Affiliation(s)
- Thaís Bonato de Arruda
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, Fiocruz, Curitiba 81350-010, Paraná, Brazil; (T.B.d.A.); (A.L.P.M.)
| | - Lorena Bavia
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, Fiocruz, Curitiba 81350-010, Paraná, Brazil; (T.B.d.A.); (A.L.P.M.)
- Departamento de Biologia Celular, Setor de Ciências Biológicas, Universidade Federal do Paraná (UFPR), Curitiba 81531-980, Paraná, Brazil
| | - Ana Luiza Pamplona Mosimann
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, Fiocruz, Curitiba 81350-010, Paraná, Brazil; (T.B.d.A.); (A.L.P.M.)
| | - Mateus Nobrega Aoki
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, Fiocruz, Curitiba 81350-010, Paraná, Brazil; (T.B.d.A.); (A.L.P.M.)
- Laboratório de Ciências & Tecnologias Aplicadas a Saúde, Instituto Carlos Chagas, Fiocruz, Curitiba 81350-010, Paraná, Brazil
| | - Maria Lo Sarzi
- Secretaria Municipal de Saúde de Cambé, Cambé 86057-970, Paraná, Brazil
| | - Ivete Conchon-Costa
- Laboratório de Protozoologia Experimental, Universidade Estadual de Londrina, Londrina 86057-970, Paraná, Brazil (W.R.P.)
| | - Pryscilla Fanini Wowk
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, Fiocruz, Curitiba 81350-010, Paraná, Brazil; (T.B.d.A.); (A.L.P.M.)
| | - Claudia Nunes Duarte dos Santos
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, Fiocruz, Curitiba 81350-010, Paraná, Brazil; (T.B.d.A.); (A.L.P.M.)
| | - Wander Rogério Pavanelli
- Laboratório de Protozoologia Experimental, Universidade Estadual de Londrina, Londrina 86057-970, Paraná, Brazil (W.R.P.)
| | | | - Juliano Bordignon
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, Fiocruz, Curitiba 81350-010, Paraná, Brazil; (T.B.d.A.); (A.L.P.M.)
| |
Collapse
|
4
|
Rivera JA, Rengifo AC, Rosales-Munar A, Díaz-Herrera TH, Ciro JU, Parra E, Alvarez-Díaz DA, Laiton-Donato K, Caldas ML. Genotyping of dengue virus from infected tissue samples embedded in paraffin. Virol J 2023; 20:100. [PMID: 37231481 DOI: 10.1186/s12985-023-02072-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/14/2023] [Indexed: 05/27/2023] Open
Abstract
Dengue has become one of the vector-borne diseases that affect humans worldwide. In Latin American countries, Colombia is historically one of the most affected by epidemics of this flavivirus. The underreporting of signs and symptoms of probable cases of dengue, the lack of characterization of the serotypes of the infection, and the few detailed studies of postmortem necropsies of patients are among other conditions that have delayed progress in the knowledge of the pathogenesis of the disease. This study presents the results of fragment sequencing assays on paraffin-embedded tissue samples from fatal DENV cases during the 2010 epidemic in Colombia. We found that the predominant serotype was DENV-2, with the Asian/American genotype of lineages 1 and 2. This work is one of the few reports of the circulating genotypes of dengue during the 2010 epidemic in Colombia, one of the most lethal dates in the country's history.
Collapse
Grants
- contract 757 project 2013 Instituto Nacional de Salud (INS), Dirección de Investigación en Salud Pública (DISP), and the Colombian Department of Science, Technology, and Innovation (Minciencias)
- contract 757 project 2013 Instituto Nacional de Salud (INS), Dirección de Investigación en Salud Pública (DISP), and the Colombian Department of Science, Technology, and Innovation (Minciencias)
- contract 757 project 2013 Instituto Nacional de Salud (INS), Dirección de Investigación en Salud Pública (DISP), and the Colombian Department of Science, Technology, and Innovation (Minciencias)
- contract 757 project 2013 Instituto Nacional de Salud (INS), Dirección de Investigación en Salud Pública (DISP), and the Colombian Department of Science, Technology, and Innovation (Minciencias)
- contract 757 project 2013 Instituto Nacional de Salud (INS), Dirección de Investigación en Salud Pública (DISP), and the Colombian Department of Science, Technology, and Innovation (Minciencias)
- contract 757 project 2013 Instituto Nacional de Salud (INS), Dirección de Investigación en Salud Pública (DISP), and the Colombian Department of Science, Technology, and Innovation (Minciencias)
- contract 757 project 2013 Instituto Nacional de Salud (INS), Dirección de Investigación en Salud Pública (DISP), and the Colombian Department of Science, Technology, and Innovation (Minciencias)
- contract 757 project 2013 Instituto Nacional de Salud (INS), Dirección de Investigación en Salud Pública (DISP), and the Colombian Department of Science, Technology, and Innovation (Minciencias)
- contract 757 project 2013 Instituto Nacional de Salud (INS), Dirección de Investigación en Salud Pública (DISP), and the Colombian Department of Science, Technology, and Innovation (Minciencias)
Collapse
Affiliation(s)
- Jorge Alonso Rivera
- Dirección de investigación en Salud Pública, Grupo de Morfología Celular, Instituto Nacional de Salud, Avenue 26 No. 51-20 - Zone 6 CAN, Bogotá, Colombia
| | - Aura Caterine Rengifo
- Dirección de investigación en Salud Pública, Grupo de Morfología Celular, Instituto Nacional de Salud, Avenue 26 No. 51-20 - Zone 6 CAN, Bogotá, Colombia.
| | - Alicia Rosales-Munar
- Dirección de investigación en Salud Pública, Grupo de Morfología Celular, Instituto Nacional de Salud, Avenue 26 No. 51-20 - Zone 6 CAN, Bogotá, Colombia
| | - Taylor H Díaz-Herrera
- Dirección de investigación en Salud Pública, Grupo de Morfología Celular, Instituto Nacional de Salud, Avenue 26 No. 51-20 - Zone 6 CAN, Bogotá, Colombia
| | - José Usme Ciro
- CIST-Centro de Investigaciones en Salud Para el Trópico, Facultad de Medicina, Universidad Cooperativa de Colombia, Santa Marta, 47003, Colombia
| | - Edgar Parra
- Dirección de Redes en Salud Pública, Grupo de Patología, Instituto Nacional de Salud, Bogotá, Colombia
| | - Diego A Alvarez-Díaz
- Dirección de investigación en Salud Pública, Grupo de Genómica de Microorganismos Emergentes, Instituto Nacional de Salud, Bogotá, Colombia
| | - Katherine Laiton-Donato
- Dirección de investigación en Salud Pública, Grupo de Genómica de Microorganismos Emergentes, Instituto Nacional de Salud, Bogotá, Colombia
| | - María Leonor Caldas
- Dirección de investigación en Salud Pública, Grupo de Morfología Celular, Instituto Nacional de Salud, Avenue 26 No. 51-20 - Zone 6 CAN, Bogotá, Colombia
| |
Collapse
|
5
|
Thomas SJ. Is new dengue vaccine efficacy data a relief or cause for concern? NPJ Vaccines 2023; 8:55. [PMID: 37061527 PMCID: PMC10105158 DOI: 10.1038/s41541-023-00658-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/29/2023] [Indexed: 04/17/2023] Open
Abstract
Dengue is a major global public health problem requiring a safe and efficacious vaccine as the foundation of a comprehensive countermeasure strategy. Despite decades of attempts, the world has a single dengue vaccine licensed in numerous countries, but restrictions and conditions of its use have deterred uptake. Recently, clinical efficacy data has been revealed for two additional dengue vaccine candidates and the data appears encouraging. In this perspective I discuss dengue, the complexities of dengue vaccine development, early development setbacks, and how the latest data from the field may be cause for measured optimism. Finally, I provide some perspectives on evaluating dengue vaccine performance and how the pursuit of the perfect dengue vaccine may prevent advancement of vaccines which are good enough.
Collapse
Affiliation(s)
- Stephen J Thomas
- SUNY Upstate Medical University, Institute for Global Health and Translational Sciences, Syracuse, NY, USA.
| |
Collapse
|
6
|
Diagnosis of Dengue Virus Infections Imported to Hungary and Phylogenetic Analysis of Virus Isolates. Diagnostics (Basel) 2023; 13:diagnostics13050873. [PMID: 36900018 PMCID: PMC10001143 DOI: 10.3390/diagnostics13050873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND Dengue virus is one of the most important arbovirus infections of public health concern. Between 2017 and June 2022, 75 imported dengue infections were confirmed by laboratory diagnostic methods in Hungary. Our study aimed to isolate the imported Dengue strains and characterize them by whole-genome sequencing. METHODS Laboratory diagnosis of imported infections was carried out using both serological and molecular methods. Virus isolation was attempted on Vero E6 cell lines. An in-house amplicon-based whole-genome sequencing method was applied for the detailed molecular characterization of the isolated virus strains. RESULTS From 75 confirmed Dengue infected patients, 68 samples were used for virus isolation. Isolation and whole-genome sequencing were successful in the case of eleven specimens. Isolated strains belonged to Dengue-1,-2,-3 serotypes. DISCUSSION The isolated strains corresponded to the circulating genotypes of the visited geographic area, and some of the genotypes were linked with more severe DENV cases in the literature. We found that multiple factors, including viral load, specimen type, and patient antibody status, influence the isolation efficacy. CONCLUSIONS Analysis of imported DENV strains can help estimate the outcomes of a possible local DENV transmission in Hungary, a threat from the near future.
Collapse
|
7
|
Jiang L, Liu Y, Su W, Liu W, Dong Z, Long Y, Luo L, Jing Q, Cao Y, Wu X, Di B. Epidemiological and genomic analysis of dengue cases in Guangzhou, China, from 2010 to 2019. Sci Rep 2023; 13:2161. [PMID: 36750601 PMCID: PMC9905598 DOI: 10.1038/s41598-023-28453-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 01/18/2023] [Indexed: 02/09/2023] Open
Abstract
With a long epidemic history and a large number of dengue cases, Guangzhou is a key city for controlling dengue in China. The demographic information regarding dengue cases, and the genomic characteristics of the envelope gene of dengue viruses, as well as the associations between these factors were investigated from 2010 to 2019, to improve the understanding of the epidemiology of dengue in Guangzhou. Demographic data on 44,385 dengue cases reported to the Notifiable Infectious Disease Report System were analyzed using IBM SPSS Statistics v. 20. Dengue virus isolates from patient sera were sequenced, and phylogenetic trees were constructed using PhyML 3.1. There was no statistical difference in the risk of dengue infection between males and females. Unlike other areas in which dengue is endemic, the infection risk in Guangzhou increased with age. Surveillance identified four serotypes responsible for dengue infections in Guangzhou. Serotype 1 remained prevalent for most of the study period, whereas serotypes 3 and 4 were prevalent in 2012 and 2010, respectively. Different serotypes underwent genotype and sublineage shifts. The epidemiological characteristics and phylogeny of dengue in Guangzhou suggested that although it has circulated in Guangzhou for decades, it has not been endemic in Guangzhou. Meanwhile, shifts in genotypes, rather than in serotypes, might have caused dengue epidemics in Guangzhou.
Collapse
Affiliation(s)
- Liyun Jiang
- AIDS Control and Prevention Department, Guangzhou Centre for Disease Control and Prevention, Baiyunqu Qidelu 1, Guangdong, China.
| | - Yuan Liu
- Centre for Disease Control and Prevention of Liwan District of Guangzhou, Liwan Zhoumenxijie 32, Guangdong, China
| | - Wenzhe Su
- Virology Department, Guangzhou Centre for Disease Control and Prevention, Baiyunqu Qidelu 1, Guangdong, China
| | - Wenhui Liu
- Epidemiology Department, Guangzhou Centre for Disease Control and Prevention, Baiyunqu Qidelu 1, Guangdong, China
| | - Zhiqiang Dong
- Epidemiology Department, Guangzhou Centre for Disease Control and Prevention, Baiyunqu Qidelu 1, Guangdong, China
| | - Yuxiang Long
- State Key Laboratory of Organ Failure Research, Department of Biostatistics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Lei Luo
- Epidemiology Department, Guangzhou Centre for Disease Control and Prevention, Baiyunqu Qidelu 1, Guangdong, China
| | - Qinlong Jing
- Epidemiology Department, Guangzhou Centre for Disease Control and Prevention, Baiyunqu Qidelu 1, Guangdong, China
| | - Yimin Cao
- Virology Department, Guangzhou Centre for Disease Control and Prevention, Baiyunqu Qidelu 1, Guangdong, China
| | - Xinwei Wu
- Microbiology Department, Guangzhou Centre for Disease Control and Prevention, Baiyunqu Qidelu 1, Guangdong, China
| | - Biao Di
- Virology Department, Guangzhou Centre for Disease Control and Prevention, Baiyunqu Qidelu 1, Guangdong, China
| |
Collapse
|
8
|
Jiang L, Liu Y, Su W, Cao Y, Jing Q, Wu X, Yang Z. Circulation of genotypes of dengue virus serotype 2 in Guangzhou over a period of 20 years. Virol J 2022; 19:47. [PMID: 35303899 PMCID: PMC8931567 DOI: 10.1186/s12985-022-01773-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/01/2022] [Indexed: 11/10/2022] Open
Abstract
Background The dengue epidemic in Guangzhou has imposed a rising burden on society and health infrastructure. Here, we present the genotype data for dengue virus serotype 2 (DENV-2) to improve understanding of this dengue epidemic. Methods We sequenced the envelope gene of DENV-2 obtained from patient serum samples and subsequently performed maximum-likelihood phylogenetic analysis using PhyMLv3.1, maximum clade credibility analysis using BEAST v.1.10.4, and selection pressure analysis using Datamonkey 2.0. Results The prevalent DENV-2 strains identified in Guangzhou region are related to those in Southeast Asian countries. In particular, the Malaysia/Indian subcontinent genotype is prevailing in Guangzhou with no apparent genotype shift having occurred over the past 20 years. However, episodic positive selection was detected at one site. Conclusions Local control of the DENV-2 epidemic in Guangzhou requires effective measures to prevent and monitor imported cases. Moreover, the shift between the Malaysia/Indian subcontinent genotype lineages, which originated at different time points, may account for the rise in DENV-2 cases in Guangzhou. Meanwhile, the low rate of dengue haemorrhagic fever in Guangzhou may be explained by the dominance of the less virulent Malaysia/Indian subcontinent genotype.
Collapse
Affiliation(s)
- Liyun Jiang
- Virology Department, Guangzhou Centre for Disease Control and Prevention, Baiyunqu Qidelu 1, Guangdong, 510440, China.
| | - Yuan Liu
- Pestcide and Disinfection Department, Guangzhou Centre for Disease Control and Prevention, Baiyunqu Qidelu 1, Guangdong, 510440, China
| | - Wenzhe Su
- Virology Department, Guangzhou Centre for Disease Control and Prevention, Baiyunqu Qidelu 1, Guangdong, 510440, China
| | - Yimin Cao
- Virology Department, Guangzhou Centre for Disease Control and Prevention, Baiyunqu Qidelu 1, Guangdong, 510440, China
| | - Qinlong Jing
- Epidemiology Department, Guangzhou Centre for Disease Control and Prevention, Baiyunqu Qidelu 1, Guangdong, 510440, China
| | - Xinwei Wu
- Microbiology Department, Guangzhou Centre for Disease Control and Prevention, Baiyunqu Qidelu 1, Guangdong, 510440, China
| | - Zhicong Yang
- Epidemiology Department, Guangzhou Centre for Disease Control and Prevention, Baiyunqu Qidelu 1, Guangdong, 510440, China
| |
Collapse
|
9
|
Baltzegar J, Vella M, Gunning C, Vasquez G, Astete H, Stell F, Fisher M, Scott TW, Lenhart A, Lloyd AL, Morrison A, Gould F. Rapid evolution of knockdown resistance haplotypes in response to pyrethroid selection in Aedes aegypti. Evol Appl 2021; 14:2098-2113. [PMID: 34429751 PMCID: PMC8372076 DOI: 10.1111/eva.13269] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/10/2021] [Accepted: 06/03/2021] [Indexed: 11/29/2022] Open
Abstract
This study describes the evolution of knockdown resistance (kdr) haplotypes in Aedes aegypti in response to pyrethroid insecticide use over the course of 18 years in Iquitos, Peru. Based on the duration and intensiveness of sampling (~10,000 samples), this is the most thorough study of kdr population genetics in Ae. aegypti to date within a city. We provide evidence for the direct connection between programmatic citywide pyrethroid spraying and the increase in frequency of specific kdr haplotypes by identifying two evolutionary events in the population. The relatively high selection coefficients, even under infrequent insecticide pressure, emphasize how quickly Ae. aegypti populations can evolve. In our examination of the literature on mosquitoes and other insect pests, we could find no cases where a pest evolved so quickly to so few exposures to low or nonresidual insecticide applications. The observed rapid increase in frequency of resistance alleles might have been aided by the incomplete dominance of resistance-conferring alleles over corresponding susceptibility alleles. In addition to dramatic temporal shifts, spatial suppression experiments reveal that genetic heterogeneity existed not only at the citywide scale, but also on a very fine scale within the city.
Collapse
Affiliation(s)
- Jennifer Baltzegar
- Graduate Program in GeneticsCollege of SciencesNorth Carolina State UniversityRaleighNCUSA
- Genetic Engineering and Society CenterNorth Carolina State UniversityRaleighNCUSA
| | - Michael Vella
- Genetic Engineering and Society CenterNorth Carolina State UniversityRaleighNCUSA
- Biomathematics Graduate Program and Department of MathematicsNorth Carolina State UniversityRaleighNCUSA
| | | | - Gissella Vasquez
- Department of EntomologyU.S. Naval Medical Research Unit. No 6.BellavistaPeru
| | - Helvio Astete
- Department of EntomologyU.S. Naval Medical Research Unit. No 6.BellavistaPeru
| | - Fred Stell
- Department of EntomologyU.S. Naval Medical Research Unit. No 6.BellavistaPeru
| | - Michael Fisher
- Department of EntomologyU.S. Naval Medical Research Unit. No 6.BellavistaPeru
| | - Thomas W. Scott
- Department of Entomology and NematologyUniversity of CaliforniaDavisCAUSA
| | - Audrey Lenhart
- Division of Parasitic Diseases and MalariaCenters for Disease Control and PreventionAtlantaGAUSA
| | - Alun L. Lloyd
- Genetic Engineering and Society CenterNorth Carolina State UniversityRaleighNCUSA
- Biomathematics Graduate Program and Department of MathematicsNorth Carolina State UniversityRaleighNCUSA
| | - Amy Morrison
- Department of EntomologyU.S. Naval Medical Research Unit. No 6.BellavistaPeru
- Department of Entomology and NematologyUniversity of CaliforniaDavisCAUSA
| | - Fred Gould
- Genetic Engineering and Society CenterNorth Carolina State UniversityRaleighNCUSA
- Department of Entomology and Plant PathologyNorth Carolina State UniversityRaleighNCUSA
| |
Collapse
|
10
|
del Valle-Mendoza J, Aguilar-Luis M, Carrillo-Ng H, Kym S, Silva-Caso W, Verne E, del Valle L, Bazán-Mayra J, Zavaleta-Gavidia V, Cornejo-Pacherres D, Tarazona-Castro Y, Aquino-Ortega R, Cornejo-Tapia A. Detection of dengue virus serotype 3 in Cajamarca, Peru: Molecular diagnosis and clinical characteristics. ASIAN PAC J TROP MED 2021. [DOI: 10.4103/1995-7645.326257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
11
|
Bhatt P, Sabeena SP, Varma M, Arunkumar G. Current Understanding of the Pathogenesis of Dengue Virus Infection. Curr Microbiol 2021; 78:17-32. [PMID: 33231723 PMCID: PMC7815537 DOI: 10.1007/s00284-020-02284-w] [Citation(s) in RCA: 159] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/04/2020] [Indexed: 12/26/2022]
Abstract
The pathogenesis of dengue virus infection is attributed to complex interplay between virus, host genes and host immune response. Host factors such as antibody-dependent enhancement (ADE), memory cross-reactive T cells, anti-DENV NS1 antibodies, autoimmunity as well as genetic factors are major determinants of disease susceptibility. NS1 protein and anti-DENV NS1 antibodies were believed to be responsible for pathogenesis of severe dengue. The cytokine response of cross-reactive CD4+ T cells might be altered by the sequential infection with different DENV serotypes, leading to further elevation of pro-inflammatory cytokines contributing a detrimental immune response. Fcγ receptor-mediated antibody-dependent enhancement (ADE) results in release of cytokines from immune cells leading to vascular endothelial cell dysfunction and increased vascular permeability. Genomic variation of dengue virus and subgenomic flavivirus RNA (sfRNA) suppressing host immune response are viral determinants of disease severity. Dengue infection can lead to the generation of autoantibodies against DENV NS1antigen, DENV prM, and E proteins, which can cross-react with several self-antigens such as plasminogen, integrin, and platelet cells. Apart from viral factors, several host genetic factors and gene polymorphisms also have a role to play in pathogenesis of DENV infection. This review article highlights the various factors responsible for the pathogenesis of dengue and also highlights the recent advances in the field related to biomarkers which can be used in future for predicting severe disease outcome.
Collapse
Affiliation(s)
- Puneet Bhatt
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | | | - Muralidhar Varma
- Dept of Infectious Diseases, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka 576101 India
| | - Govindakarnavar Arunkumar
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
- Present Address: WHO Country Office, Kathmandu, Nepal
| |
Collapse
|
12
|
de Jesus JG, Dutra KR, Sales FCDS, Claro IM, Terzian AC, Candido DDS, Hill SC, Thézé J, Torres C, D'Agostini TL, Felix AC, Reis AFN, Alcantara LCJ, de Abreu AL, Croda JH, de Oliveira WK, de Filipis AMB, Camis MDCRDS, Romano CM. Genomic detection of a virus lineage replacement event of dengue virus serotype 2 in Brazil, 2019. Mem Inst Oswaldo Cruz 2020; 115:e190423. [PMID: 32428189 PMCID: PMC7227788 DOI: 10.1590/0074-02760190423] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 04/06/2020] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Despite efforts to mitigate the impact of dengue virus (DENV) epidemics, the virus remains a public health problem in tropical and subtropical regions around the world. Most DENV cases in the Americas between January and July 2019 were reported in Brazil. São Paulo State in the southeast of Brazil has reported nearly half of all DENV infections in the country. OBJECTIVES To understand the origin and dynamics of the 2019 DENV outbreak. METHODS Here using portable nanopore sequencing we generated20 new DENV genome sequences from viremic patients with suspected dengue infection residing in two of the most-affected municipalities of São Paulo State, Araraquara and São José do Rio Preto. We conducted a comprehensive phylogenetic analysis with 1,630 global DENV strains to better understand the evolutionary history of the DENV lineages that currently circulate in the region. FINDINGS The new outbreak strains were classified as DENV2 genotype III (American/Asian genotype). Our analysis shows that the 2019 outbreak is the result of a novel DENV lineage that was recently introduced to Brazil from the Caribbean region. Dating phylogeographic analysis suggests that DENV2-III BR-4 was introduced to Brazil in or around early 2014, possibly from the Caribbean region. MAIN CONCLUSIONS Our study describes the early detection of a newly introduced and rapidly-expanding DENV2 virus lineage in Brazil.
Collapse
Affiliation(s)
| | - Karina Rocha Dutra
- Laboratório de Pesquisa em Virologia, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, SP, Brazil
| | | | - Ingra Morales Claro
- Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Ana Carolina Terzian
- Laboratório de Pesquisa em Virologia, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, SP, Brazil
| | | | - Sarah C Hill
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Julien Thézé
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Celeste Torres
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz-Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Tatiana Lang D'Agostini
- Coordenadoria de Controle de Doenças, Centro de Vigilância Epidemiológica Professor Alexandre Vranjac, Secretaria de Estado da Saúde, São Paulo, SP, Brasil
| | - Alvina Clara Felix
- Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | | | - André L de Abreu
- Coordenação Geral de Laboratórios de Saúde Pública, Secretaria de Vigilância em Saúde, Ministério da Saúde, Brasília, DF, Brazil
| | - Júlio Hr Croda
- Coordenação Geral de Laboratórios de Saúde Pública, Secretaria de Vigilância em Saúde, Ministério da Saúde, Brasília, DF, Brazil
| | - Wanderson K de Oliveira
- Coordenação Geral de Laboratórios de Saúde Pública, Secretaria de Vigilância em Saúde, Ministério da Saúde, Brasília, DF, Brazil
| | - Ana Maria Bispo de Filipis
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz-Fiocruz, Rio de Janeiro, RJ, Brazil
| | | | - Camila Malta Romano
- Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
13
|
Lenhart A, Morrison AC, Paz-Soldan VA, Forshey BM, Cordova-Lopez JJ, Astete H, Elder JP, Sihuincha M, Gotlieb EE, Halsey ES, Kochel TJ, Scott TW, Alexander N, McCall PJ. The impact of insecticide treated curtains on dengue virus transmission: A cluster randomized trial in Iquitos, Peru. PLoS Negl Trop Dis 2020; 14:e0008097. [PMID: 32275653 PMCID: PMC7176142 DOI: 10.1371/journal.pntd.0008097] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 04/22/2020] [Accepted: 01/28/2020] [Indexed: 11/18/2022] Open
Abstract
Dengue is one of the most important vector-borne diseases, resulting in an estimated hundreds of millions of infections annually throughout the tropics. Control of dengue is heavily dependent upon control of its primary mosquito vector, Aedes aegypti. Innovative interventions that are effective at targeting the adult stage of the mosquito are needed to increase the options for effective control. The use of insecticide-treated curtains (ITCs) has previously been shown to significantly reduce the abundance of Ae. aegypti in and around homes, but the impact of ITCs on dengue virus (DENV) transmission has not been rigorously quantified. A parallel arm cluster-randomized controlled trial was conducted in Iquitos, Peru to quantify the impact of ITCs on DENV seroconversion as measured through plaque-reduction neutralization tests. Seroconversion data showed that individuals living in the clusters that received ITCs were at greater risk to seroconverting to DENV, with an average seroconversion rate of 50.6 per 100 person-years (PY) (CI: 29.9–71.9), while those in the control arm had an average seroconversion rate of 37.4 per 100 PY (CI: 15.2–51.7). ITCs lost their insecticidal efficacy within 6 months of deployment, necessitating re-treatment with insecticide. Entomological indicators did not show statistically significant differences between ITC and non-ITC clusters. It’s unclear how the lack of protective efficacy reported here is attributable to simple failure of the intervention to protect against Ae. aegypti bites, or the presence of a faulty intervention during much of the follow-up period. The higher risk of dengue seroconversion that was detected in the ITC clusters may have arisen due to a false sense of security that inadvertently led to less routine protective behaviors on the part of households that received the ITCs. Our study provides important lessons learned for conducting cluster randomized trials for vector control interventions against Aedes-transmitted virus infections. Dengue is one of the most important mosquito-borne diseases affecting humans, resulting in an estimated hundreds of millions of infections annually throughout the tropics. To control dengue, most public health programs use a variety of methods to kill the primary mosquito vector, Aedes aegypti. Water holding containers that harbor larvae (and other immature stages) are treated or eliminated. During emergencies, large insecticide spray campaigns are deployed to kill infected adult mosquitoes. Innovative interventions that are effective at targeting adult mosquitoes in sustainable ways are needed to increase the options for control of dengue and other Aedes borne virus diseases. The use of insecticide-treated curtains (ITCs) has previously been shown to significantly reduce Ae. aegypti numbers in and around homes, but the impact of ITCs on dengue virus (DENV) transmission has not previously been quantified. Using a rigorous study design in which 10 clusters (~90 houses per cluster) were provided multiple ITCs to place in their homes was compared to 10 clusters of homes without ITCs. Assignment of which clusters received ITCs was randomized. Blood samples were obtained at 9-month intervals from residents living in all the clusters, so that people with serological evidence of a DENV infection could be identified by comparing paired samples. Seroconversion data showed that individuals living in the clusters that received ITCs were at greater risk to DENV seroconverting, with an average seroconversion rate of 50.6 per 100 person-years (PY) (CI: 29.9–71.9). Conversely, those in the control arm had an average seroconversion rate of 37.4 per 100 PY (CI: 15.2–51.7). ITCs lost their insecticidal efficacy within 6 months of deployment, necessitating re-treatment with insecticide. Ae. aegypti populations did not show statistically significant differences between ITC and non-ITC clusters. The reason for higher transmission in the ITC treated clusters could be attributable to failure of the curtains (loss of efficacy) and/or that the curtains were not sufficiently effective at protecting against mosquito bites. The higher risk of DENV seroconversion in ITC clusters may be due to a false sense of security that inadvertently led to less routine protective behaviors on the part of households that received the ITC.
Collapse
Affiliation(s)
- Audrey Lenhart
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Amy C. Morrison
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
- Department of Virology, U.S. Naval Medical Research Unit-6, Lima and Iquitos, Peru
- * E-mail:
| | - Valerie A. Paz-Soldan
- Department of Global Community Health and Behavioral Sciences, Tulane School of Public Health and Tropical Medicine, New Orleans, Louisiana, United States of America
- Facultad de Salud Pública y Administración, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Brett M. Forshey
- Department of Virology, U.S. Naval Medical Research Unit-6, Lima and Iquitos, Peru
| | - Jhonny J. Cordova-Lopez
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Helvio Astete
- Department of Virology, U.S. Naval Medical Research Unit-6, Lima and Iquitos, Peru
| | - John P. Elder
- San Diego State University, San Diego, California, United States of America
| | - Moises Sihuincha
- Director, Department of Internal Medicine, Hospital de Apoyo Iquitos, Peru
| | - Esther E. Gotlieb
- Department of Global Community Health and Behavioral Sciences, Tulane School of Public Health and Tropical Medicine, New Orleans, Louisiana, United States of America
| | - Eric S. Halsey
- Department of Virology, U.S. Naval Medical Research Unit-6, Lima and Iquitos, Peru
| | - Tadeusz J. Kochel
- Department of Virology, U.S. Naval Medical Research Unit-6, Lima and Iquitos, Peru
| | - Thomas W. Scott
- Department of Entomology and Nematology, University of California, Davis, California, United States of America
| | - Neal Alexander
- MRC Tropical Epidemiology Group, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Philip J. McCall
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
14
|
Bavia L, Melanda FN, de Arruda TB, Mosimann ALP, Silveira GF, Aoki MN, Kuczera D, Sarzi ML, Junior WLC, Conchon-Costa I, Pavanelli WR, Duarte Dos Santos CN, Barreto RC, Bordignon J. Epidemiological study on dengue in southern Brazil under the perspective of climate and poverty. Sci Rep 2020; 10:2127. [PMID: 32034173 PMCID: PMC7005746 DOI: 10.1038/s41598-020-58542-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/13/2020] [Indexed: 11/09/2022] Open
Abstract
Social and epidemiological aspects of dengue were evaluated in an important metropolitan area in southern Brazil, from August 2012 to September 2014. Demographic, clinical, serological data were collected from patients with acute dengue symptoms treated at public health system units (HSUs). A systematic approach to analyze the spatial and temporal distribution of cases was developed, considering the temporal cross-correlation between dengue and weather, and the spatial correlation between dengue and income over the city's census tracts. From the 878 patients with suggestive symptoms, 249 were diagnosed as positive dengue infection (28%). Considering the most statistically significant census tracts, a negative correlation was found between mean income and dengue (r = -0.65; p = 0.02; 95% CI: -0.03 to -0.91). The occurrence of dengue followed a seasonal distribution, and it was found to be three and four months delayed in relation to precipitation and temperature, respectively. Unexpectedly, the occurrence of symptomatic patients without dengue infection followed the same seasonal distribution, however its spatial distribution did not correlate with income. Through this methodology, we have found evidence that suggests a relation between dengue and poverty, which enriches the debate in the literature and sheds light on an extremely relevant socioeconomic and public health issue.
Collapse
Affiliation(s)
- Lorena Bavia
- Setor de Ciências da Saúde, Hospital de Clínicas, UFPR, Curitiba, 80060-900, Brazil
| | - Francine Nesello Melanda
- Laboratório de Parasitologia Experimental, Departamento de Ciências Patológicas, UEL, Londrina, 86057-970, Brazil
| | - Thais Bonato de Arruda
- Laboratório de Virologia Molecular do Instituto Carlos Chagas, ICC/Fiocruz/PR, Curitiba, 81350-010, Brazil
| | | | | | - Mateus Nóbrega Aoki
- Laboratório de Ciências e Tecnologias Aplicadas em Saúde do Instituto Carlos Chagas, ICC/Fiocruz/PR, Curitiba, 81350-010, Brazil
| | - Diogo Kuczera
- Laboratório de Virologia Molecular do Instituto Carlos Chagas, ICC/Fiocruz/PR, Curitiba, 81350-010, Brazil
| | - Maria Lo Sarzi
- Secretaria Municipal de Saúde de Cambé, Cambé, 86181-300, Brazil
| | | | - Ivete Conchon-Costa
- Laboratório de Parasitologia Experimental, Departamento de Ciências Patológicas, UEL, Londrina, 86057-970, Brazil
| | - Wander Rogério Pavanelli
- Laboratório de Parasitologia Experimental, Departamento de Ciências Patológicas, UEL, Londrina, 86057-970, Brazil
| | | | | | - Juliano Bordignon
- Laboratório de Virologia Molecular do Instituto Carlos Chagas, ICC/Fiocruz/PR, Curitiba, 81350-010, Brazil.
| |
Collapse
|
15
|
Meena AA, Murugesan A, Sopnajothi S, Yong YK, Ganesh PS, Vimali IJ, Vignesh R, Elanchezhiyan M, Kannan M, Dash AP, Shankar EM. Increase of Plasma TNF-α Is Associated with Decreased Levels of Blood Platelets in Clinical Dengue Infection. Viral Immunol 2020; 33:54-60. [DOI: 10.1089/vim.2019.0100] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Anbalagan A. Meena
- Division of Infection Biology, Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Amudhan Murugesan
- Department of Medicine, Government Theni Medical College & Hospital, Theni, India
- Department of Microbiology, University of Madras, Taramani Campus, Chennai, India
| | | | - Yean K. Yong
- Laboratory Center, Department of Preclinical, Xiamen University Malaysia, Sepang, Malaysia
| | - P. Sankar Ganesh
- Division of Infection Biology, Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Irudhayaraj J. Vimali
- Division of Infection Biology, Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Ramachandran Vignesh
- Department of Paraclinical Medicine, University of Kuala Lumpur Royal College of Medicine, Perak, Ipoh, Malaysia
| | | | - Meganathan Kannan
- Division of Blood and Vascular Biology, Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Aditya P. Dash
- Division of Infection Biology, Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Esaki M. Shankar
- Division of Infection Biology, Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| |
Collapse
|
16
|
Torres JR, Falleiros-Arlant LH, Gessner BD, Delrieu I, Avila-Aguero ML, Giambernardino HIG, Mascareñas A, Brea J, Torres CN, Castellanos-Martinez JM. Updated recommendations of the International Dengue Initiative expert group for CYD-TDV vaccine implementation in Latin America. Vaccine 2019; 37:6291-6298. [PMID: 31515144 DOI: 10.1016/j.vaccine.2019.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/25/2019] [Accepted: 09/02/2019] [Indexed: 11/17/2022]
Abstract
Dengue disease represents a large and growing global threat to public health, causing a significant burden to health systems of endemic countries. For countries considering vaccination as part of their Integrated Management Strategy for Prevention and Control of Dengue, the World Health Organization currently recommends the first licensed dengue vaccine, CYD-TDV for: individuals aged 9 years or above from populations with high transmission rates, based on either seroprevalence criteria or pre-vaccination screening strategies, and for persons with confirmed prior exposure to infection in moderate to lower transmission settings. This paper describes the main conclusions of the Sixth Meeting of the International Dengue Initiative (IDI) held in June 2018, following release of a new product label by the manufacturer, updated WHO-SAGE recommendations, additional scientific evidence on vaccine performance, and reports of experiences by implementing countries. Considerations were made regarding the need for improving the quality of epidemiological and surveillance data in the region to help define the convenience of either of the two vaccination strategies recommended by WHO-SAGE. Extensive discussion was dedicated to the pros and cons of implementing either of such strategies in Latin America. Although, in general, a seroprevalence-based approach was preferred in high transmission settings, when cost-effectivity is favorable pre-vaccination screening is a convenient alternative. Cost-effectiveness evaluations can assist with the decisions by public health authorities of whether to introduce a vaccine. Where implemented, vaccine introduction should be part of a public health strategy that includes the participation of multiple sectors of society, incorporating input from scientific societies, ministries of heath, and civil society, while ensuring a robust communication program.
Collapse
Affiliation(s)
- J R Torres
- Infectious Diseases Section, Tropical Medicine Institute, Universidad Central de Venezuela, Caracas, Venezuela.
| | - L H Falleiros-Arlant
- Departamento de Salud de los Niños, Facultad de Medicina, Universidad Metropolitana de Santos, Brazil.
| | - B D Gessner
- Agence de Médecine Préventive, Ferney-Voltaire, France
| | - I Delrieu
- Sciences and Technologies for Health EpiLinks, Saint-Genis-Pouilly, France.
| | - M L Avila-Aguero
- Servicio de Infectología, Hospital Nacional de Niños "Dr. Carlos Sáenz Herrera", Caja Costarricense de Seguro Social (CCSS), San José, Costa Rica; Affiliated Researcher Center for Infectious Disease Modeling and Analysis (CIDMA) at Yale University, New Haven, CT, USA
| | - H I G Giambernardino
- Departamento de Inmunizaciones y de Control de Infección, Hospital Pequeño Principe, Curitiba, PR, Brazil.
| | - A Mascareñas
- Department of Pediatric Infectious Diseases, Hospital Universitario "José E. Gonzalez", Universidad Autónoma de Nuevo Leon, Mexico
| | - J Brea
- Centro Médico UCE, Santo Domingo, Dominican Republic
| | - C N Torres
- Director Cafettor Medical, Universidad del Bosque, Bogotá, Colombia.
| | | |
Collapse
|
17
|
Gonçalves BDS, Nogueira RMR, Bispo de Filippis AM, Horta MAP. Factors predicting the severity of dengue in patients with warning signs in Rio de Janeiro, Brazil (1986–2012). Trans R Soc Trop Med Hyg 2019; 113:670-677. [DOI: 10.1093/trstmh/trz066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/29/2019] [Accepted: 06/25/2019] [Indexed: 01/15/2023] Open
Abstract
AbstractBackgroundSince 1981, >12 million cases of dengue have been reported in Brazil. Early prediction of severe dengue with no warning signs is crucial to avoid progression to severe dengue. Here we aimed to identify early markers of dengue severity and characterize dengue infection in patients in Rio de Janeiro.MethodsWe evaluated early severity markers, serotypes, infection status, number of days of illness and viral loads associated with dengue fever in patients from Rio de Janeiro, Brazil through an observational retrospective study (1986–2012). We compared dengue without warning signs and dengue with warning signs/severe dengue (DWWS/SD). Infection status was classified by enzyme-linked immunosorbent assay and viraemia was quantified by quantitative real-time reverse transcription polymerase chain reaction.ResultsThe presence of DWWS/ SD was significantly associated with younger age; patients 13–19 y of age had a significantly greater chance of presenting warning signs. Dengue virus type 3 (DENV3) was more likely to induce DWWS/SD, which was more frequent on days 4–5 of illness.ConclusionsDENV3, 4–5 d of illness and 13–19 y of age were early biomarkers of dengue severity. To our knowledge, this was the first study to analyse the characteristics of dengue severity in the state of Rio de Janeiro over 27 y of epidemics since the introduction of DENV.
Collapse
Affiliation(s)
- Bianca De Santis Gonçalves
- Flavivirus Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Rita Maria Ribeiro Nogueira
- Flavivirus Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Ana Maria Bispo de Filippis
- Flavivirus Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Marco Aurélio Pereira Horta
- Flavivirus Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
18
|
Ali A, Fatima Z, Wahid B, Rafique S, Idrees M. Cosmopolitan A1 lineage of dengue virus serotype 2 is circulating in Pakistan: A study from 2017 dengue viral outbreak. J Med Virol 2019; 91:1909-1917. [PMID: 31273791 DOI: 10.1002/jmv.25537] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 05/14/2019] [Indexed: 11/10/2022]
Abstract
Dengue viral infection has become a challenge in tropical and subtropical countries where dengue virus is endemic. Its epidemics are occurring at higher rates amid its circulation throughout the year. Since the first documented outbreak in Pakistan in 1994, this region has reported many sporadic cases and epidemics. There is availability of small scale demographic and epidemiological studies on dengue viral infection in Pakistan. The year 2017 witnessed a huge dengue outbreak in Peshawar city of Pakistan with 69 deaths and 24 807 laboratory-confirmed cases. We suspect that the circulation of a different lineage or genotype could be responsible for the enhanced number of infected patients in Pakistan's 2017 outbreak since previous studies have already described this phenomenon in other countries. For this, we collected 1447 suspected blood samples and their epidemiological data. After serotyping through polymerase chain reaction nine samples of Dengue virus2 (DENV2) were randomly selected and were subjected to Sanger's sequencing for genotyping analysis. The mean distance, genetic diversity, and phylogenetic analysis were carried out using K2 model. The phylogenetic analysis split Pakistani isolates into two lineages, the sequences from 2017 outbreak in Peshawar grouped within A1 lineage of cosmopolitan genotype (IV) of DENV2. The difference in distance, genetic diversity, and amino acids composition strongly back the results that the new lineage is circulating in the region. This is significant as Pakistan is struggling to control dengue epidemics which have caused much loss in both monetary and health sectors.
Collapse
Affiliation(s)
- Amjad Ali
- Department of Genetics, Hazara University, Mansehra, Khyber Pakhtunkhwa, Pakistan.,Molecular Virology Laboratory, Centre for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Zareen Fatima
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Braira Wahid
- Department of Life Sciences, School of Science, University of Management and Technology, Lahore, Pakistan
| | - Shazia Rafique
- Divison of Virology, Center of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Muhammad Idrees
- Divison of Virology, Center of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan.,Hazara University, Mansehra, Pakistan
| |
Collapse
|
19
|
Yellow fever (YF) vaccination does not increase dengue severity: A retrospective study based on 11,448 dengue notifications in a YF and dengue endemic region. Travel Med Infect Dis 2019; 30:25-31. [PMID: 31075425 DOI: 10.1016/j.tmaid.2019.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 11/24/2022]
Abstract
BACKGROUND We study the association between prior yellow fever immunization and clinical outcomes of dengue infections in individuals of varying sexes and ages. Serological interactions between dengue virus and other flaviviruses could drive antibody dependent enhancement, which is associated with disease severity in dengue infections. This effect may influence disease severity in individuals subsequently affected by related flaviviruses, such as dengue. We compare the severity of dengue episodes between patients vaccinated and non-vaccinated against yellow fever. METHODS We evaluated the severity of 11,448 lab-confirmed dengue cases reported in São José do Rio Preto, Brazil, in 7370 YF vaccinated patients compared to 4043 unvaccinated patients. We regressed dengue severity against YF vaccine status and a number of demographic, clinical, and laboratory variables as controls. We also evaluated the association between YF vaccination status and the clinical and laboratory symptoms of dengue patients. RESULTS We did not find any evidence of increased risk for severe dengue in patients vaccinated against YF (odds ratio = 1.00; 95% confidence interval = 0.87-1.14). Most of the variables analyzed did not have a statistically significant association with YF vaccination status. CONCLUSIONS We found no evidence that YF vaccination in dengue-endemic areas increases the risk of severe dengue fever.
Collapse
|
20
|
Murillo D, Murillo A, Lee S. The Role of Vertical Transmission in the Control of Dengue Fever. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E803. [PMID: 30841574 PMCID: PMC6427266 DOI: 10.3390/ijerph16050803] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 11/22/2022]
Abstract
In this work, a two-strain dengue model with vertical transmission in the mosquito population is considered. Although vertical transmission is often ignored in models of dengue fever, we show that effective control of an outbreak of dengue can depend on whether or not the vertical transmission is a significant mode of disease transmission. We model the effect of a control strategy aimed at reducing human-mosquito transmissions in an optimal control framework. As the likelihood of vertical transmission increases, outbreaks become more difficult and expensive to control. However, even for low levels of vertical transmission, the additional, uncontrolled, transmission from infected mosquito to eggs may undercut the effectiveness of any control function. This is of particular importance in regions where existing control policies may be effective and the endemic strain does not exhibit vertical transmission. If a novel strain that does exhibit vertical transmission invades, then existing, formerly effective, control policies may no longer be sufficient. Therefore, public health officials should pay more attention to the role of vertical transmission for more effective interventions and policy.
Collapse
Affiliation(s)
- David Murillo
- Simon A. Levin Mathematical, Computational and Modeling Sciences Center, Arizona State University, Tempe, AZ 85287, USA.
| | - Anarina Murillo
- Simon A. Levin Mathematical, Computational and Modeling Sciences Center, Arizona State University, Tempe, AZ 85287, USA.
| | - Sunmi Lee
- Department of Applied Mathematics, Kyung Hee University, Yongin 446-701, Korea.
- Institute of Natural Sciences, Kyung Hee University, Yongin 446-701, Korea.
| |
Collapse
|
21
|
Rawarak N, Suttitheptumrong A, Reamtong O, Boonnak K, Pattanakitsakul SN. Protein Disulfide Isomerase Inhibitor Suppresses Viral Replication and Production during Antibody-Dependent Enhancement of Dengue Virus Infection in Human Monocytic Cells. Viruses 2019; 11:v11020155. [PMID: 30781856 PMCID: PMC6410196 DOI: 10.3390/v11020155] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 12/12/2022] Open
Abstract
One of several mechanisms that leads to the development of dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS) is called antibody-dependent enhancement (ADE). Monocytes can be infected by the ADE phenomenon, which occurs in dengue secondary infection. This study aimed to investigate the proteins involved in ADE of DENV infection in the human monocytic cell line U937. The phosphoproteins were used to perform and analyze for protein expression using mass spectrometry (GeLC-MS/MS). The differential phosphoproteins revealed 1131 altered proteins compared between isotype- and DENV-specific antibody-treated monocytes. The altered proteins revealed 558 upregulated proteins and 573 downregulated proteins. Protein disulfide isomerase (PDI), which is an enzyme that had a high-ranking fold change and that catalyzes the formation, breakage, and rearrangement of disulfide bonds within a protein molecule, was selected for further study. PDI was found to be important for dengue virus infectivity during the ADE model. The effect of PDI inhibition was also shown to be involved in the early stage of life cycle by time-of-drug-addition assay. These results suggest that PDI is important for protein translation and virion assembly of dengue virus during infection in human monocytes, and it may play a significant role as a chaperone to stabilize dengue protein synthesis.
Collapse
Affiliation(s)
- Nantapon Rawarak
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| | - Aroonroong Suttitheptumrong
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand.
| | - Kobporn Boonnak
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand.
| | - Sa-Nga Pattanakitsakul
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| |
Collapse
|
22
|
Long KC, Sulca J, Bazan I, Astete H, Jaba HL, Siles C, Kocher C, Vilcarromero S, Schwarz J, Escobedo-Vargas KS, Castro-Llanos F, Angulo L, Flores G, Ramal-Asayag C, Halsey ES, Hontz RD, Paz-Soldan VA, Scott TW, Lambrechts L, Morrison AC. Feasibility of feeding Aedes aegypti mosquitoes on dengue virus-infected human volunteers for vector competence studies in Iquitos, Peru. PLoS Negl Trop Dis 2019; 13:e0007116. [PMID: 30753180 PMCID: PMC6388938 DOI: 10.1371/journal.pntd.0007116] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 02/25/2019] [Accepted: 12/26/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Transmission of dengue virus (DENV) from humans to mosquitoes represents a critical component of dengue epidemiology. Examinations of this process have generally been hampered by a lack of methods that adequately represent natural acquisition of DENV by mosquitoes from humans. In this study, we assessed artificial and natural blood feeding methods based on rates of DENV infection and dissemination within mosquitoes for use in a field-based epidemiological cohort study in Iquitos, Peru. METHODOLOGY/PRINCIPAL FINDINGS Our study was implemented, stepwise, between 2011 and 2015. Participants who were 5 years and older with 5 or fewer days of fever were enrolled from ongoing clinic- and neighborhood-based studies on dengue in Iquitos. Wild type, laboratory-reared Aedes aegypti were fed directly on febrile individuals or on blood collected from participants that was either untreated or treated with EDTA. Mosquitoes were tested after approximately 14 days of extrinsic incubation for DENV infection and dissemination. A total of 58 participants, with viremias ranging from 1.3 × 10(2) to 2.9 × 10(6) focus-forming units per mL of serum, participated in one or more feeding methods. DENV infection and dissemination rates were not significantly different following direct and indirect-EDTA feeding; however, they were significantly lower for mosquitoes that fed indirectly on blood with no additive. Relative to direct feeding, infection rates showed greater variation following indirect-EDTA than indirect-no additive feeding. Dissemination rates were similar across all feeding methods. No differences were detected in DENV infection or dissemination rates in mosquitoes fed directly on participants with different dengue illness severity. CONCLUSIONS/SIGNIFICANCE Our study demonstrates the feasibility of using direct and indirect feeding methods for field-based studies on vector competence. Direct mosquito feeding is preferable in terms of logistical ease, biosecurity, and reliability.
Collapse
Affiliation(s)
- Kanya C. Long
- Department of Entomology and Nematology, University of California, Davis, Davis, California, United States of America
| | - Juan Sulca
- Virology and Emerging Infections Department, U.S. Naval Medical Research Unit No. 6, Washington DC, Lima and Iquitos, Peru
| | - Isabel Bazan
- Virology and Emerging Infections Department, U.S. Naval Medical Research Unit No. 6, Washington DC, Lima and Iquitos, Peru
| | - Helvio Astete
- Virology and Emerging Infections Department, U.S. Naval Medical Research Unit No. 6, Washington DC, Lima and Iquitos, Peru
| | - Hugo L. Jaba
- Entomology Department, U.S. Naval Medical Research Unit No. 6, Washington DC, Lima and Iquitos, Peru
| | - Crystyan Siles
- Virology and Emerging Infections Department, U.S. Naval Medical Research Unit No. 6, Washington DC, Lima and Iquitos, Peru
| | - Claudine Kocher
- Virology and Emerging Infections Department, U.S. Naval Medical Research Unit No. 6, Washington DC, Lima and Iquitos, Peru
| | - Stalin Vilcarromero
- Virology and Emerging Infections Department, U.S. Naval Medical Research Unit No. 6, Washington DC, Lima and Iquitos, Peru
| | - Julia Schwarz
- Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Karin S. Escobedo-Vargas
- Entomology Department, U.S. Naval Medical Research Unit No. 6, Washington DC, Lima and Iquitos, Peru
| | - Fanny Castro-Llanos
- Entomology Department, U.S. Naval Medical Research Unit No. 6, Washington DC, Lima and Iquitos, Peru
| | - Leslye Angulo
- Virology and Emerging Infections Department, U.S. Naval Medical Research Unit No. 6, Washington DC, Lima and Iquitos, Peru
| | - Guadalupe Flores
- Virology and Emerging Infections Department, U.S. Naval Medical Research Unit No. 6, Washington DC, Lima and Iquitos, Peru
| | - Cesar Ramal-Asayag
- Department of Internal Medicine, Loreto Regional Hospital “Felipe Santiago Arriola Iglesias,” Punchana, Iquitos, Peru
- School of Medicine, Universidad Nacional de la Amazonia Peruana, Iquitos, Peru
| | - Eric S. Halsey
- Virology and Emerging Infections Department, U.S. Naval Medical Research Unit No. 6, Washington DC, Lima and Iquitos, Peru
| | - Robert D. Hontz
- Virology and Emerging Infections Department, U.S. Naval Medical Research Unit No. 6, Washington DC, Lima and Iquitos, Peru
| | - Valerie A. Paz-Soldan
- Global Community Health and Behavioral Sciences Department, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, United States of America
| | - Thomas W. Scott
- Department of Entomology and Nematology, University of California, Davis, Davis, California, United States of America
| | - Louis Lambrechts
- Insect-Virus Interactions Group, Department of Genomes and Genetics, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 2000, Paris, France
| | - Amy C. Morrison
- Department of Entomology and Nematology, University of California, Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
23
|
Morrison AC, Schwarz J, Long KC, Cordova J, Rios JE, Quiroz WL, Vizcarra SA, Hontz RD, Scott TW, Lambrechts L, Paz Soldan VA. Acceptability of Aedes aegypti blood feeding on dengue virus-infected human volunteers for vector competence studies in Iquitos, Peru. PLoS Negl Trop Dis 2019; 13:e0007090. [PMID: 30742621 PMCID: PMC6386403 DOI: 10.1371/journal.pntd.0007090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 02/22/2019] [Accepted: 12/18/2018] [Indexed: 12/03/2022] Open
Abstract
As part of a study to investigate drivers of dengue virus (DENV) transmission dynamics, this qualitative study explored whether DENV-infected residents of Iquitos, Peru, considered it acceptable (1) to participate in direct mosquito feeding experiments (lab-reared Aedes aegypti mosquitoes fed directly on human volunteers) and (2) to provide blood meals indirectly (Ae. aegypti fed on blood drawn from participants by venipuncture). Twelve focus group discussions (FGDs; 94 participants: 82 females and 12 males) were conducted in January 2014 to explore six themes: (1) concerns and preferences regarding direct mosquito feeds and blood draws, (2) comprehension of and misconceptions about study procedures, (3) motivating factors for participation, (4) acceptability of children's participation, (5) willingness to provide multiple samples over several days, and (6) preference for direct feedings in homes versus the study laboratory. Results of FGDs, including one with 5 of 53 past direct mosquito feed participants, indicated that mosquito feeding procedures are acceptable to Iquitos residents when they are provided with information and a few key messages are properly reinforced. FGD participants' concerns focused primarily on safety issues rather than discomfort associated with mosquito bites. A video explaining the study dramatically increased comprehension of the study procedures. The majority of participants expressed a preference for mosquito feeding over venipuncture. Adults supported child participation if the children themselves assented. For most participants, home feedings were preferred over those in a laboratory. A major impetus for participation was the idea that results would contribute to an improved understanding of DENV transmission in Iquitos. Findings from our study will support future large-scale studies that employ direct mosquito feeding, a low-risk, non-invasive procedure that is experimentally superior to artificial mosquito feeding methods.
Collapse
Affiliation(s)
- Amy C. Morrison
- Department of Entomology and Nematology, University of California, Davis, Davis, California, United States of America
- Virology and Emerging Infections Department, U.S. Naval Medical Research Unit No. 6, Washington DC, Lima and Iquitos, Peru
| | - Julia Schwarz
- Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Kanya C. Long
- Department of Entomology and Nematology, University of California, Davis, Davis, California, United States of America
| | - Jhonny Cordova
- Department of Entomology and Nematology, University of California, Davis, Davis, California, United States of America
| | - Jennifer E. Rios
- Virology and Emerging Infections Department, U.S. Naval Medical Research Unit No. 6, Washington DC, Lima and Iquitos, Peru
| | - W. Lorena Quiroz
- Virology and Emerging Infections Department, U.S. Naval Medical Research Unit No. 6, Washington DC, Lima and Iquitos, Peru
| | - S. Alfonso Vizcarra
- Department of Entomology and Nematology, University of California, Davis, Davis, California, United States of America
| | - Robert D. Hontz
- Virology and Emerging Infections Department, U.S. Naval Medical Research Unit No. 6, Washington DC, Lima and Iquitos, Peru
| | - Thomas W. Scott
- Department of Entomology and Nematology, University of California, Davis, Davis, California, United States of America
| | - Louis Lambrechts
- Insect-Virus Interactions Group, Department of Genomes and Genetics, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique, Unité de Recherche Associée 3012, Paris, France
| | - Valerie A. Paz Soldan
- Global Community Health and Behavioral Sciences, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, United States of America
| |
Collapse
|
24
|
Kar M, Nisheetha A, Kumar A, Jagtap S, Shinde J, Singla M, M S, Pandit A, Chandele A, Kabra SK, Krishna S, Roy R, Lodha R, Pattabiraman C, Medigeshi GR. Isolation and molecular characterization of dengue virus clinical isolates from pediatric patients in New Delhi. Int J Infect Dis 2018; 84S:S25-S33. [PMID: 30528666 DOI: 10.1016/j.ijid.2018.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/01/2018] [Accepted: 12/04/2018] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVE To characterize the in vitro replication fitness, viral diversity, and phylogeny of dengue viruses (DENV) isolated from Indian patients. METHODS DENV was isolated from whole blood collected from patients by passaging in cell culture. Passage 3 viruses were used for growth kinetics in C6/36 mosquito cells. Parallel efforts also focused on the isolation of DENV RNA from plasma samples of the same patients, which were processed for next-generation sequencing. RESULTS It was possible to isolate 64 clinical isolates of DENV, mostly DENV-2. Twenty-five of these were further used for growth curve analysis in vitro, which showed a wide range of replication kinetics. The highest viral titers were associated with isolates from patients with dengue with warning signs and severe dengue cases. Full genome sequences of 21 DENV isolates were obtained. Genome analysis mapped the circulating DENV-2 strains to the Cosmopolitan genotype. CONCLUSIONS The replication kinetics of isolates from patients with mild or severe infection did not differ significantly, but the viral titers varied by two orders of magnitude between the isolates, suggesting differences in replication fitness among the circulating DENV-2.
Collapse
Affiliation(s)
- Meenakshi Kar
- Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Amul Nisheetha
- National Centre for Biological Sciences, TIFR, Bengaluru, India
| | - Anuj Kumar
- National Centre for Biological Sciences, TIFR, Bengaluru, India
| | - Suraj Jagtap
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India
| | - Jitendra Shinde
- Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Mohit Singla
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Saranya M
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, India
| | - Awadhesh Pandit
- National Centre for Biological Sciences, TIFR, Bengaluru, India
| | - Anmol Chandele
- ICGEB-Emory Vaccine Center, ICGEB Campus, New Delhi, India
| | - Sushil K Kabra
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Sudhir Krishna
- National Centre for Biological Sciences, TIFR, Bengaluru, India
| | - Rahul Roy
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India; Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, India; Center for Biosystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| | - Rakesh Lodha
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | | | | |
Collapse
|
25
|
Takahashi S, Metcalf CJE, Arima Y, Fujimoto T, Shimizu H, Rogier van Doorn H, Le Van T, Chan YF, Farrar JJ, Oishi K, Grenfell BT. Epidemic dynamics, interactions and predictability of enteroviruses associated with hand, foot and mouth disease in Japan. J R Soc Interface 2018; 15:rsif.2018.0507. [PMID: 30209044 PMCID: PMC6170776 DOI: 10.1098/rsif.2018.0507] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 08/20/2018] [Indexed: 12/28/2022] Open
Abstract
Outbreaks of hand, foot and mouth disease have been documented in Japan since 1963. This disease is primarily caused by the two closely related serotypes of Enterovirus A71 (EV-A71) and Coxsackievirus A16 (CV-A16). Here, we analyse Japanese virologic and syndromic surveillance time-series data from 1982 to 2015. As in some other countries in the Asia Pacific region, EV-A71 in Japan has a 3 year cyclical component, whereas CV-A16 is predominantly annual. We observe empirical signatures of an inhibitory interaction between the serotypes; virologic lines of evidence suggest they may indeed interact immunologically. We fit the time series to mechanistic epidemiological models: as a first-order effect, we find the data consistent with single-serotype susceptible–infected–recovered dynamics. We then extend the modelling to incorporate an inhibitory interaction between serotypes. Our results suggest the existence of a transient cross-protection and possible asymmetry in its strength such that CV-A16 serves as a stronger forcing on EV-A71. Allowing for asymmetry yields accurate out-of-sample predictions and the directionality of this effect is consistent with the virologic literature. Confirmation of these hypothesized interactions would have important implications for understanding enterovirus epidemiology and informing vaccine development. Our results highlight the general implication that even subtle interactions could have qualitative impacts on epidemic dynamics and predictability.
Collapse
Affiliation(s)
- Saki Takahashi
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - C Jessica E Metcalf
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA.,Woodrow Wilson School of Public and International Affairs, Princeton University, Princeton, NJ, USA
| | - Yuzo Arima
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tsuguto Fujimoto
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hiroyuki Shimizu
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - H Rogier van Doorn
- Oxford University Clinical Research Unit-Wellcome Trust Major Overseas Programme, National Hospital for Tropical Diseases, Ha Noi, Viet Nam.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Tan Le Van
- Oxford University Clinical Research Unit-Wellcome Trust Major Overseas Programme, National Hospital for Tropical Diseases, Ha Noi, Viet Nam
| | - Yoke-Fun Chan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Jeremy J Farrar
- Oxford University Clinical Research Unit-Wellcome Trust Major Overseas Programme, National Hospital for Tropical Diseases, Ha Noi, Viet Nam.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Kazunori Oishi
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Bryan T Grenfell
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA .,Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
26
|
Gloria-Soria A, Armstrong PM, Powell JR, Turner PE. Infection rate of Aedes aegypti mosquitoes with dengue virus depends on the interaction between temperature and mosquito genotype. Proc Biol Sci 2018; 284:rspb.2017.1506. [PMID: 28978730 DOI: 10.1098/rspb.2017.1506] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 09/04/2017] [Indexed: 11/12/2022] Open
Abstract
Dengue fever is the most prevalent arthropod-transmitted viral disease worldwide, with endemic transmission restricted to tropical and subtropical regions of different temperature profiles. Temperature is epidemiologically relevant because it affects dengue infection rates in Aedes aegypti mosquitoes, the major vector of the dengue virus (DENV). Aedes aegypti populations are also known to vary in competence for different DENV genotypes. We assessed the effects of mosquito and virus genotype on DENV infection in the context of temperature by challenging Ae. aegypti from two locations in Vietnam, which differ in temperature regimes, with two isolates of DENV-2 collected from the same two localities, followed by incubation at 25, 27 or 32°C for 10 days. Genotyping of the mosquito populations and virus isolates confirmed that each group was genetically distinct. Extrinsic incubation temperature (EIT) and DENV-2 genotype had a direct effect on the infection rate, consistent with previous studies. However, our results show that the EIT impacts the infection rate differently in each mosquito population, indicating a genotype by environment interaction. These results suggest that the magnitude of DENV epidemics may not only depend on the virus and mosquito genotypes present, but also on how they interact with local temperature. This information should be considered when estimating vector competence of local and introduced mosquito populations during disease risk evaluation.
Collapse
Affiliation(s)
- A Gloria-Soria
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect St. PO Box 208106, New Haven, CT 06520-8106, USA
| | - P M Armstrong
- The Connecticut Agricultural Experiment Station, 123 Huntington St. PO Box 1106, New Haven, CT 06504, USA
| | - J R Powell
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect St. PO Box 208106, New Haven, CT 06520-8106, USA
| | - P E Turner
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect St. PO Box 208106, New Haven, CT 06520-8106, USA.,Program in Microbiology, Yale School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
27
|
Pollett S, Melendrez MC, Maljkovic Berry I, Duchêne S, Salje H, Cummings DAT, Jarman RG. Understanding dengue virus evolution to support epidemic surveillance and counter-measure development. INFECTION GENETICS AND EVOLUTION 2018; 62:279-295. [PMID: 29704626 DOI: 10.1016/j.meegid.2018.04.032] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 04/20/2018] [Accepted: 04/24/2018] [Indexed: 11/30/2022]
Abstract
Dengue virus (DENV) causes a profound burden of morbidity and mortality, and its global burden is rising due to the co-circulation of four divergent DENV serotypes in the ecological context of globalization, travel, climate change, urbanization, and expansion of the geographic range of the Ae.aegypti and Ae.albopictus vectors. Understanding DENV evolution offers valuable opportunities to enhance surveillance and response to DENV epidemics via advances in RNA virus sequencing, bioinformatics, phylogenetic and other computational biology methods. Here we provide a scoping overview of the evolution and molecular epidemiology of DENV and the range of ways that evolutionary analyses can be applied as a public health tool against this arboviral pathogen.
Collapse
Affiliation(s)
- S Pollett
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Marie Bashir Institute, University of Sydney, NSW, Australia; Institute for Global Health Sciences, University of California at San Francisco, CA, USA.
| | - M C Melendrez
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - I Maljkovic Berry
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - S Duchêne
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Australia
| | - H Salje
- Institut Pasteur, Paris, France; Johns Hopkins School of Public Health, Baltimore, MD, USA
| | - D A T Cummings
- Johns Hopkins School of Public Health, Baltimore, MD, USA; University of Florida, FL, USA
| | - R G Jarman
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| |
Collapse
|
28
|
Gunning CE, Okamoto KW, Astete H, Vasquez GM, Erhardt E, Del Aguila C, Pinedo R, Cardenas R, Pacheco C, Chalco E, Rodriguez-Ferruci H, Scott TW, Lloyd AL, Gould F, Morrison AC. Efficacy of Aedes aegypti control by indoor Ultra Low Volume (ULV) insecticide spraying in Iquitos, Peru. PLoS Negl Trop Dis 2018; 12:e0006378. [PMID: 29624581 PMCID: PMC5906025 DOI: 10.1371/journal.pntd.0006378] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 04/18/2018] [Accepted: 03/08/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Aedes aegypti is a primary vector of dengue, chikungunya, Zika, and urban yellow fever viruses. Indoor, ultra low volume (ULV) space spraying with pyrethroid insecticides is the main approach used for Ae. aegypti emergency control in many countries. Given the widespread use of this method, the lack of large-scale experiments or detailed evaluations of municipal spray programs is problematic. METHODOLOGY/PRINCIPAL FINDINGS Two experimental evaluations of non-residual, indoor ULV pyrethroid spraying were conducted in Iquitos, Peru. In each, a central sprayed sector was surrounded by an unsprayed buffer sector. In 2013, spray and buffer sectors included 398 and 765 houses, respectively. Spraying reduced the mean number of adults captured per house by ~83 percent relative to the pre-spray baseline survey. In the 2014 experiment, sprayed and buffer sectors included 1,117 and 1,049 houses, respectively. Here, the sprayed sector's number of adults per house was reduced ~64 percent relative to baseline. Parity surveys in the sprayed sector during the 2014 spray period indicated an increase in the proportion of very young females. We also evaluated impacts of a 2014 citywide spray program by the local Ministry of Health, which reduced adult populations by ~60 percent. In all cases, adult densities returned to near-baseline levels within one month. CONCLUSIONS/SIGNIFICANCE Our results demonstrate that densities of adult Ae. aegypti can be reduced by experimental and municipal spraying programs. The finding that adult densities return to approximately pre-spray densities in less than a month is similar to results from previous, smaller scale experiments. Our results demonstrate that ULV spraying is best viewed as having a short-term entomological effect. The epidemiological impact of ULV spraying will need evaluation in future trials that measure capacity of insecticide spraying to reduce human infection or disease.
Collapse
Affiliation(s)
- Christian E. Gunning
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC United States of America
| | - Kenichi W. Okamoto
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC United States of America
| | - Helvio Astete
- Naval Medical Research Unit No. 6, 3230 Lima Pl., Washington DC, Lima and Iquitos, Peru
| | - Gissella M. Vasquez
- Naval Medical Research Unit No. 6, 3230 Lima Pl., Washington DC, Lima and Iquitos, Peru
| | - Erik Erhardt
- Department of Mathematics and Statistics, University of New Mexico, Albuquerque, NM, United States of America
| | - Clara Del Aguila
- Department of Environmental Sanitation, Peruvian Ministry of Health, Iquitos, Peru
| | - Raul Pinedo
- Department of Environmental Sanitation, Peruvian Ministry of Health, Iquitos, Peru
| | - Roldan Cardenas
- Department of Environmental Sanitation, Peruvian Ministry of Health, Iquitos, Peru
| | - Carlos Pacheco
- Department of Environmental Sanitation, Peruvian Ministry of Health, Iquitos, Peru
| | - Enrique Chalco
- Department of Environmental Sanitation, Peruvian Ministry of Health, Iquitos, Peru
| | | | - Thomas W. Scott
- Department of Entomology and Nematology, University of California, Davis, CA, United States of America
| | - Alun L. Lloyd
- Biomathematics Graduate Program and Department of Mathematics, North Carolina State University, Raleigh, NC, United States of America
| | - Fred Gould
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC United States of America
| | - Amy C. Morrison
- Naval Medical Research Unit No. 6, 3230 Lima Pl., Washington DC, Lima and Iquitos, Peru
- Department of Entomology and Nematology, University of California, Davis, CA, United States of America
| |
Collapse
|
29
|
Katzelnick LC, Harris E. The use of longitudinal cohorts for studies of dengue viral pathogenesis and protection. Curr Opin Virol 2018; 29:51-61. [PMID: 29597086 PMCID: PMC5996389 DOI: 10.1016/j.coviro.2018.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 03/12/2018] [Indexed: 12/31/2022]
Abstract
In this review, we describe how longitudinal prospective community-based, school-based, and household-based cohort studies contribute to improving our knowledge of viral disease, focusing specifically on contributions to understanding and preventing dengue. We describe how longitudinal cohorts enable measurement of essential disease parameters and risk factors; provide insights into biological correlates of protection and disease risk; enable rapid application of novel biological and statistical technologies; lead to development of new interventions and inform vaccine trial design; serve as sentinels in outbreak conditions and facilitate development of critical diagnostic assays; enable holistic studies on disease in the context of other infections, comorbidities, and environmental risk factors; and build research capacity that strengthens national and global public health response and disease surveillance.
Collapse
Affiliation(s)
- Leah C Katzelnick
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, 185 Li Ka Shing Center, 1951 Oxford Street, Berkeley, CA 94720-3370, United States
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, 185 Li Ka Shing Center, 1951 Oxford Street, Berkeley, CA 94720-3370, United States.
| |
Collapse
|
30
|
Hyperendemic dengue transmission and identification of a locally evolved DENV-3 lineage, Papua New Guinea 2007-2010. PLoS Negl Trop Dis 2018; 12:e0006254. [PMID: 29494580 PMCID: PMC5849365 DOI: 10.1371/journal.pntd.0006254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 03/13/2018] [Accepted: 01/19/2018] [Indexed: 11/19/2022] Open
Abstract
Background Dengue is endemic in the Western Pacific and Oceania and the region reports more than 200,000 cases annually. Outbreaks of dengue and severe dengue occur regularly and movement of virus throughout the region has been reported. Disease surveillance systems, however, in many areas are not fully established and dengue incidence is underreported. Dengue epidemiology is likely least understood in Papua New Guinea (PNG), where the prototype DENV-2 strain New Guinea C was first isolated by Sabin in 1944 but where routine surveillance is not undertaken and little incidence and prevalence data is available. Methodology/Principal findings Serum samples from individuals with recent acute febrile illness or with non-febrile conditions collected between 2007–2010 were tested for anti-DENV neutralizing antibody. Responses were predominantly multitypic and seroprevalence increased with age, a pattern indicative of endemic dengue. DENV-1, DENV-2 and DENV-3 genomes were detected by RT-PCR within a nine-month period and in several instances, two serotypes were identified in individuals sampled within a period of 10 days. Phylogenetic analysis of whole genome sequences identified a DENV-3 Genotype 1 lineage which had evolved on the northern coast of PNG which was likely exported to the western Pacific five years later, in addition to a DENV-2 Cosmopolitan Genotype lineage which had previously circulated in the region. Conclusions/Significance We show that dengue is hyperendemic in PNG and identify an endemic, locally evolved lineage of DENV-3 that was associated with an outbreak of severe dengue in Pacific countries in subsequent years, although severe disease was not identified in PNG. Additional studies need to be undertaken to understand dengue epidemiology and burden of disease in PNG. Dengue virus (DENV) was first identified in Papua New Guinea (PNG) in 1944. Dengue is currently assumed to be an endemic disease in PNG although there is little incidence or prevalence data, and the evidence consensus for dengue presence is low. Routine surveillance is not undertaken and dengue is not a notifiable disease. Severe dengue is rarely identified by local clinicians and the reasons for this are unclear but may be related to poor recognition of dengue and a low index of suspicion, despite high incidence and prevalence rates in neighbouring countries. For example, Indonesia shares borders with PNG and regularly reports outbreaks of severe dengue and transmission of multiple DENV serotypes. DENV infection is identified in travellers from PNG however there are no data on locally circulating strains and how they may compare to viruses associated with severe dengue epidemics in other countries in the Asia Pacific region. We identified evidence for previous infection with all four DENV serotypes among people living on the northern coast of PNG, in Madang, and on Lihir Island in the Bismarck Archipelago off the northeastern coast. We also detected DENV-1, DENV-2, and DENV-3 virus in febrile patients, and we describe the first whole genome sequences of endemically circulating DENV since the prototype 1944 DENV-2New Guinea C strain was characterized. Of note, severe dengue was not diagnosed in any patient infected with these viruses in PNG although introduction of the PNG DENV-3 strain into the Solomon Islands five years later resulted in a large outbreak of severe dengue with hospitalizations and deaths in that country. Dengue epidemiology and burden of disease should be investigated in PNG.
Collapse
|
31
|
Transcytosis Involvement in Transport System and Endothelial Permeability of Vascular Leakage during Dengue Virus Infection. Viruses 2018; 10:v10020069. [PMID: 29419739 PMCID: PMC5850376 DOI: 10.3390/v10020069] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/19/2018] [Accepted: 02/01/2018] [Indexed: 12/19/2022] Open
Abstract
The major role of endothelial cells is to maintain homeostasis of vascular permeability and to preserve the integrity of vascular vessels to prevent fluid leakage. Properly functioning endothelial cells promote physiological balance and stability for blood circulation and fluid components. A monolayer of endothelial cells has the ability to regulate paracellular and transcellular pathways for transport proteins, solutes, and fluid. In addition to the paracellular pathway, the transcellular pathway is another route of endothelial permeability that mediates vascular permeability under physiologic conditions. The transcellular pathway was found to be associated with an assortment of disease pathogeneses. The clinical manifestation of severe dengue infection in humans is vascular leakage and hemorrhagic diatheses. This review explores and describes the transcellular pathway, which is an alternate route of vascular permeability during dengue infection that corresponds with the pathologic finding of intact tight junction. This pathway may be the route of albumin transport that causes endothelial dysfunction during dengue virus infection.
Collapse
|
32
|
Dias JDJ, Branco MDRFC, Queiroz RCDS, dos Santos AM, Moreira EPB, da Silva MDS. Analysis of dengue cases according to clinical severity, São Luís, Maranhão, Brazil. Rev Inst Med Trop Sao Paulo 2017; 59:e71. [PMID: 29116291 PMCID: PMC5679683 DOI: 10.1590/s1678-9946201759071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 08/29/2017] [Indexed: 11/22/2022] Open
Abstract
Severe dengue cases have increased in Brazil since 2001, with the first records in Maranhão dating back to 2002. The aim of this study was to determine the prevalence of severe dengue cases by age group and the possible risk factors. This was a study of secondary data on dengue in residents of São Luís, Maranhão, Brazil, using probable cases notified to the National Mandatory Reporting System (SINAN) from 2002 to 2011. The diagnosis and classification of dengue were based on the Brazilian Ministry of Health criteria: dengue fever (DF), dengue hemorrhagic fever (DHF) and dengue fever with complications (DWC). DHF and DWC were considered severe dengue, and DF was classified as non-severe dengue. A logistic regression analysis was performed with severe dengue as the outcome. During the study period, 1,229 cases of severe dengue were reported; of these, 812 in patients under the age of 15 (66%). Among the risk factors evaluated, age under 15 years old (OR = 3.10, 95% CI = 2.69-3.57, p-value = 0.001) was associated with severe dengue. The prevalence of severe dengue in children under the age of 15 was higher, and only this age group was associated with the occurrence of severe dengue.
Collapse
Affiliation(s)
- José de Jesus Dias
- Universidade Federal do Maranhão, Programa de Pós-Graduação em Saúde
Coletiva, São Luís, Maranhão, Brazil
| | - Maria dos Remédios Freitas Carvalho Branco
- Universidade Federal do Maranhão, Programa de Pós-Graduação em Saúde
Coletiva, São Luís, Maranhão, Brazil
- Universidade Federal do Maranhão, Programa de Pós-Graduação em Saúde e
Ambiente, São Luís, Maranhão, Brazil
| | | | - Alcione Miranda dos Santos
- Universidade Federal do Maranhão, Programa de Pós-Graduação em Saúde
Coletiva, São Luís, Maranhão, Brazil
| | | | | |
Collapse
|
33
|
Chatchen S, Sabchareon A, Sirivichayakul C. Serodiagnosis of asymptomatic dengue infection. ASIAN PAC J TROP MED 2016; 10:11-14. [PMID: 28107858 DOI: 10.1016/j.apjtm.2016.12.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 11/20/2016] [Accepted: 12/02/2016] [Indexed: 11/16/2022] Open
Abstract
Dengue virus (DENV) is a mosquito-transmitted virus that is expanding across the world. The incidence of dengue infection, especially severe disease, has been increasing. DENV consist of 4 serotypes of single stranded RNA viruses (D1-D4) in the genus Flavivirus, family Flaviviridae. Majority of dengue infections are asymptomatic cases, which cause difficulty in disease control and are important in dengue surveillance. There is still no gold standard to diagnose asymptomatic dengue infection. Plaque reduction neutralization test (PRNT) has been developed for many purposes such as immunological study, clinical study, vaccine trial and is currently the most sensitive and specific method for serological surveillance. However, PRNT shows some degree of cross reaction among different dengue serotypes especially secondary dengue infection cases and to other flaviviruses. Moreover, various modification since the beginning make PRNT lack of inter-laboratory standardization which is an important issue. This paper discusses the important of asymptomatic dengue infection and its diagnostic method.
Collapse
Affiliation(s)
- Supawat Chatchen
- Department of Tropical Pediatrics, Faculty of Tropical Medicine, Mahidol University, Thailand.
| | - Arunee Sabchareon
- Department of Tropical Pediatrics, Faculty of Tropical Medicine, Mahidol University, Thailand
| | - Chukiat Sirivichayakul
- Department of Tropical Pediatrics, Faculty of Tropical Medicine, Mahidol University, Thailand
| |
Collapse
|
34
|
Haryanto S, Hayati RF, Yohan B, Sijabat L, Sihite IF, Fahri S, Meutiawati F, Halim JAN, Halim SN, Soebandrio A, Sasmono RT. The molecular and clinical features of dengue during outbreak in Jambi, Indonesia in 2015. Pathog Glob Health 2016; 110:119-29. [PMID: 27215933 DOI: 10.1080/20477724.2016.1184864] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Dengue is hyperendemic in Indonesia. In 2015, reported cases of dengue fever doubled those of 2014 in the Jambi municipality of Sumatra. We examined viral aetiology and its relationship with disease outcome in Jambi. Dengue-suspected patients' sera were collected and NS1 detection and IgM/IgG serology were performed. Dengue virus (DENV) serotyping was performed using real-time RT-PCR. Envelope genes were sequenced to determine the genotypes of DENV. Clinical, haematologic, and demographic data were recorded. Of 210 dengue-suspected patients, 107 were confirmed. The disease manifested as Dengue Fever (62%), Dengue Haemorrhagic Fever (36%), and Dengue Shock Syndrome (2%). The serotypes of 94 DENV were determined. All DENV serotypes were detected with DENV-1 as the predominant serotype (66%). Genotypically, the DENV-1 viruses belong to Genotype I, DENV-2 was of Cosmopolitan genotype, DENV-3 as Genotype I, and DENV-4 belonged to Genotype II. Comparison with historical data revealed serotype predominance switched from DENV-3 to DENV-1, and the replacement of Genotype IV of DENV-1 with Genotype I. In summary, DENV-1 predominated during the 2015 dengue outbreak in Jambi. The full spectrum of dengue disease occurred and was characterized by a switch in predominant serotypes.
Collapse
Affiliation(s)
- Sotianingsih Haryanto
- a Siloam Hospital , Jambi , Indonesia.,d Faculty of Medicine , Jambi University , Jambi , Indonesia
| | - Rahma F Hayati
- b Eijkman Institute for Molecular Biology , Jakarta , Indonesia
| | | | | | | | - Sukmal Fahri
- c Health Polytechnic , Jambi Provincial Health Office , Jambi , Indonesia
| | | | | | - Stefanie N Halim
- e Faculty of Medicine , Diponegoro University , Semarang , Indonesia
| | - Amin Soebandrio
- b Eijkman Institute for Molecular Biology , Jakarta , Indonesia
| | - R Tedjo Sasmono
- b Eijkman Institute for Molecular Biology , Jakarta , Indonesia
| |
Collapse
|
35
|
Soo KM, Khalid B, Ching SM, Chee HY. Meta-Analysis of Dengue Severity during Infection by Different Dengue Virus Serotypes in Primary and Secondary Infections. PLoS One 2016; 11:e0154760. [PMID: 27213782 PMCID: PMC4877104 DOI: 10.1371/journal.pone.0154760] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/19/2016] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Dengue virus (DENV) infection is currently a major cause of morbidity and mortality in the world; it has become more common and virulent over the past half-century and has gained much attention. Thus, this review compared the percentage of severe cases of both primary and secondary infections with different serotypes of dengue virus. METHODS Data related to the number of cases involving dengue fever (DF), dengue hemorrhagic fever (DHF), dengue shock syndrome (DSS) or severe dengue infections caused by different serotypes of dengue virus were obtained by using the SCOPUS, the PUBMED and the OVID search engines with the keywords "(dengue* OR dengue virus*) AND (severe dengue* OR severity of illness index* OR severity* OR DF* OR DHF* OR DSS*) AND (serotypes* OR serogroup*)", according to the MESH terms suggested by PUBMED and OVID. RESULTS Approximately 31 studies encompassing 15,741 cases reporting on the dengue serotypes together with their severity were obtained, and meta-analysis was carried out to analyze the data. This study found that DENV-3 from the Southeast Asia (SEA) region displayed the greatest percentage of severe cases in primary infection (95% confidence interval (CI), 31.22-53.67, 9 studies, n = 598, I2 = 71.53%), whereas DENV-2, DENV-3, and DENV-4 from the SEA region, as well as DENV-2 and DENV-3 from non-SEA regions, exhibited the greatest percentage of severe cases in secondary infection (95% CI, 11.64-80.89, 4-14 studies, n = 668-3,149, I2 = 14.77-96.20%). Moreover, DENV-2 and DENV-4 from the SEA region had been found to be more highly associated with dengue shock syndrome (DSS) (95% CI, 10.47-40.24, 5-8 studies, n = 642-2,530, I2 = 76.93-97.70%), while DENV-3 and DENV-4 from the SEA region were found to be more highly associated with dengue hemorrhagic fever (DHF) (95% CI, 31.86-54.58, 9 studies, n = 674-2,278, I2 = 55.74-88.47%), according to the 1997 WHO dengue classification. Finally, DENV-2 and DENV-4 from the SEA region were discovered to be more highly associated with secondary infection compared to other serotypes (95% CI, 72.01-96.32, 9-12 studies, n = 671-2,863, I2 = 25.01-96.75%). CONCLUSION This study provides evidence that the presence of certain serotypes, including primary infection with DENV-3 from the SEA region and secondary infection with DENV-2, DENV-3, and DENV-4 also from the SEA region, as well as DENV-2 and DENV-3 from non SEA regions, increased the risk of severe dengue infections. Thus, these serotypes are worthy of special consideration when making clinical predictions upon the severity of the infection. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42015026093 (http://www.crd.york.ac.uk/PROSPERO).
Collapse
Affiliation(s)
- Kuan-Meng Soo
- Department of Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Bahariah Khalid
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Siew-Mooi Ching
- Department of Family Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Malaysian Research Institute on Ageing, Universiti Putra Malaysia, Serdang, Malaysia
| | - Hui-Yee Chee
- Department of Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
36
|
Trang NTH, Long NP, Hue TTM, Hung LP, Trung TD, Dinh DN, Luan NT, Huy NT, Hirayama K. Association between nutritional status and dengue infection: a systematic review and meta-analysis. BMC Infect Dis 2016; 16:172. [PMID: 27097934 PMCID: PMC4839161 DOI: 10.1186/s12879-016-1498-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 04/07/2016] [Indexed: 11/24/2022] Open
Abstract
Background Dengue infection has various clinical manifestations, often with unpredictable clinical evolutions and outcomes. Several factors including nutritional status have been studied to find the relationship with dengue severity. However, the nutritional status had conflicting effects on the complication of dengue in some previous studies. Therefore, we conducted a systematic review and performed a meta-analysis to analyze the association between nutritional status and the outcome of dengue infection. Methods Eleven electronic databases and manual searching of reference lists were used to identify the relevant studies published before August 2013. At least two authors worked independently in every step to select eligible studies and extract data. Dengue severity in the included studies must be classified into three categories: dengue fever (DF), dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Results Thirteen articles that met the inclusion criteria came to final analysis. A meta-analysis using fixed- or random-effects models was conducted to calculate pooled odds ratios (OR) with corresponding 95 % confidence intervals. It has shown that there was no statistically significant association between DHF group and DSS group in malnutritional and overweight/obesity patients with OR: 1.17 (95 % CI: 0.99–1.39), 1.31 (0.91–1.88), respectively. A significantly inverse relation between DF and DHF groups of malnutritional patients was revealed (OR = 0.71, 95 % CI: 0.56–0.90). Our meta-analysis also indicated a statistically significant negative correlation between malnourished children with dengue virus infection and healthy children (OR = 0.46, 95 % CI: 0.3–0.70). When analyzing patients with normal nutrition status, we found out that there was a significantly negative relationship between DHF and DSS groups (0.87; 95 % CI: 0.77–0.99). Other comparisons of DSS with DF/DHF groups, DSS/DHF with DF groups, and DHF with DF groups in normal nutritional patients showed no significant correlation. However, the findings should be interpreted cautiously because all significant associations were lost after removing of the largest study. Conclusions Results from previous studies failed to show any solid consistency regarding the association between the nutritional status and dengue infection. Consequently, the effects of nutritional status on dengue disease outcome has been controversial. Further studies are recommended to clarify the impact of nutritional status on dengue infection. Electronic supplementary material The online version of this article (doi:10.1186/s12879-016-1498-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nguyen Thi Huyen Trang
- Hue University of Medicine and Pharmacy, Hue City, Vietnam.,Online Research Club, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Nguyen Phuoc Long
- Online Research Club, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.,University of Medicine and Pharmacy, Ho Chi Minh City, Vietnam
| | - Tran Thi Minh Hue
- Online Research Club, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.,Hanoi Medical University, Ha Noi, Vietnam
| | - Le Phi Hung
- Online Research Club, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.,University of Medicine and Pharmacy, Ho Chi Minh City, Vietnam
| | - Tran Dinh Trung
- Online Research Club, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.,Da Nang University of Medical Technology and Pharmacy, Da Nang city, Vietnam
| | - Doan Ngoc Dinh
- Online Research Club, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.,Health Strategy and Policy Institute (HSPI), Ha Noi, Vietnam
| | - Nguyen Thien Luan
- Online Research Club, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.,University of Medicine and Pharmacy, Ho Chi Minh City, Vietnam
| | - Nguyen Tien Huy
- Online Research Club, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan. .,Department of Clinical Product Development, Institute of Tropical Medicine (NEKKEN), Leading Graduate School Program, and Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.
| | - Kenji Hirayama
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Leading Graduate School Program, and Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.
| |
Collapse
|
37
|
Sim S, Hibberd ML. Genomic approaches for understanding dengue: insights from the virus, vector, and host. Genome Biol 2016; 17:38. [PMID: 26931545 PMCID: PMC4774013 DOI: 10.1186/s13059-016-0907-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The incidence and geographic range of dengue have increased dramatically in recent decades. Climate change, rapid urbanization and increased global travel have facilitated the spread of both efficient mosquito vectors and the four dengue virus serotypes between population centers. At the same time, significant advances in genomics approaches have provided insights into host–pathogen interactions, immunogenetics, and viral evolution in both humans and mosquitoes. Here, we review these advances and the innovative treatment and control strategies that they are inspiring.
Collapse
Affiliation(s)
- Shuzhen Sim
- Infectious Diseases, Genome Institute of Singapore, Singapore, 138672, Singapore
| | - Martin L Hibberd
- Infectious Diseases, Genome Institute of Singapore, Singapore, 138672, Singapore. .,Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK.
| |
Collapse
|
38
|
Christofferson RC. Zika Virus Emergence and Expansion: Lessons Learned from Dengue and Chikungunya May Not Provide All the Answers. Am J Trop Med Hyg 2016; 95:15-8. [PMID: 26903610 DOI: 10.4269/ajtmh.15-0866] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/21/2016] [Indexed: 01/06/2023] Open
Abstract
Following the emergence of Zika in the past decade, there are lessons to be learned from similar emergence events of dengue (DENV) and chikungunya (CHIKV). Specifically, as Zika emerges in the Americas there is a natural tendency to apply the knowledge base of DENV and CHIKV to mitigation and control of a virus with such a similar transmission system. However, there are marked differences that may preclude such broad stroke application of this knowledge base without making potentially faulty assumptions. Herein, Zika virus (ZIKV) transmission is reviewed, and the commonalities among these three arboviruses are discussed. Importantly, the divergence of this particular arbovirus is discussed, as is the need to develop ZIKV-specific knowledge base for mitigation of this disease. Specifically reviewed are 1) emergence and persistence patterns, 2) genetic and phenotypic diversity, 3) vector host range, and finally, 4) alternate transmission routes and added complexity of ZIKV transmission and presentation.
Collapse
Affiliation(s)
- Rebecca C Christofferson
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana.
| |
Collapse
|
39
|
Abstract
Dengue provides the most abundant example in human medicine and the greatest human illness burden caused by the phenomenon of intrinsic antibody-dependent infection enhancement (iADE). In this immunopathological phenomenon infection of monocytes or macrophages using infectious immune complexes suppresses innate antiviral systems, permitting logarithmic intracellular growth of dengue virus. The four dengue viruses evolved from a common ancestor yet retain similar ecology and pathogenicity, but although infection with one virus provides short-term cross-protection against infection with a different type, millions of secondary dengue infections occur worldwide each year. When individuals are infected in the virtual absence of cross-protective dengue antibodies, the dengue vascular permeability syndrome (DVPS) may ensue. This occurs in around 2 to 4% of second heterotypic dengue infections. A complete understanding of the biologic mechanism of iADE, dengue biology, and the mechanism of host responses to dengue infection should lead to a comprehensive and complete understanding of the pathogenesis of DVPS. A crucial emphasis must be placed on understanding ADE. Clinical and epidemiological observations of DVPS define the research questions and provide research parameters. This article will review knowledge related to dengue ADE and point to areas where there has been little research progress. These observations relate to the two stages of dengue illnesses: afferent phenomena are those that promote the success of the microorganism to infect and survive; efferent phenomena are those mounted by the host to inhibit infection and replication and to eliminate the infectious agent and infected tissues. Data will be discussed as "knowns" and "unknowns."
Collapse
|
40
|
Incomplete Protection against Dengue Virus Type 2 Re-infection in Peru. PLoS Negl Trop Dis 2016; 10:e0004398. [PMID: 26848841 PMCID: PMC4746126 DOI: 10.1371/journal.pntd.0004398] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 12/29/2015] [Indexed: 12/27/2022] Open
Abstract
Background Nearly half of the world’s population is at risk for dengue, yet no licensed vaccine or anti-viral drug is currently available. Dengue is caused by any of four dengue virus serotypes (DENV-1 through DENV-4), and infection by a DENV serotype is assumed to provide life-long protection against re-infection by that serotype. We investigated the validity of this fundamental assumption during a large dengue epidemic caused by DENV-2 in Iquitos, Peru, in 2010–2011, 15 years after the first outbreak of DENV-2 in the region. Methodology/Principal Findings We estimated the age-dependent prevalence of serotype-specific DENV antibodies from longitudinal cohort studies conducted between 1993 and 2010. During the 2010–2011 epidemic, active dengue cases were identified through active community- and clinic-based febrile surveillance studies, and acute inapparent DENV infections were identified through contact tracing studies. Based on the age-specific prevalence of DENV-2 neutralizing antibodies, the age distribution of DENV-2 cases was markedly older than expected. Homologous protection was estimated at 35.1% (95% confidence interval: 0%–65.2%). At the individual level, pre-existing DENV-2 antibodies were associated with an incomplete reduction in the frequency of symptoms. Among dengue cases, 43% (26/66) exhibited elevated DENV-2 neutralizing antibody titers for years prior to infection, compared with 76% (13/17) of inapparent infections (age-adjusted odds ratio: 4.2; 95% confidence interval: 1.1–17.7). Conclusions/Significance Our data indicate that protection from homologous DENV re-infection may be incomplete in some circumstances, which provides context for the limited vaccine efficacy against DENV-2 in recent trials. Further studies are warranted to confirm this phenomenon and to evaluate the potential role of incomplete homologous protection in DENV transmission dynamics. Dengue is a mosquito-borne viral illness that imposes a tremendous public health burden on tropical and sub-tropical regions. An estimated 390 million infections occur globally each year, and up to 4 billion people are at risk. Dengue is caused by four dengue virus (DENV) serotypes (DENV-1 to DENV-4). Infection with any DENV can lead to a range of disease outcomes, from mild febrile illness to severe, hemorrhagic manifestations and death. Infection by one serotype has been assume to provide complete and lifelong protection against re-infection by the same serotype, and to our knowledge, instances of re-infection by the same serotype have not been rigorously documented. However, few long-term studies have been conducted in such a way that re-infection by the same serotype could be observed, if it did in fact occur. Our study provides evidence that re-infection may occur in certain circumstances. We draw from data collected during a 2010–2011 DENV-2 epidemic in northeastern Peru, 15 years after the initial DENV-2 outbreak in the region. This finding has significant implications for our understanding of dengue epidemiology and for dengue vaccine formulation, which may need to consider multiple genotypes of each serotype. Data from other long-term dengue epidemiology studies should be analyzed to determine if homologous re-infection is a more widespread phenomenon.
Collapse
|
41
|
Thanachartwet V, Oer-Areemitr N, Chamnanchanunt S, Sahassananda D, Jittmittraphap A, Suwannakudt P, Desakorn V, Wattanathum A. Identification of clinical factors associated with severe dengue among Thai adults: a prospective study. BMC Infect Dis 2015; 15:420. [PMID: 26468084 PMCID: PMC4606996 DOI: 10.1186/s12879-015-1150-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 09/26/2015] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Dengue is the most common mosquito-borne viral disease in humans. Recently, there has been an epidemic shift of dengue from mainly affecting children to affecting more adults with increased severity. However, clinical factors associated with severe dengue in adults have varied widely between studies. We aimed to identify the clinical factors associated with the development of severe dengue according to the World Health Organization (WHO)'s 2009 definition. METHODS We conducted a prospective study of adults with dengue admitted to the Hospital for Tropical Diseases in Bangkok, Thailand, from October 2012 to December 2014. Univariate and stepwise multivariate logistic regression analyses were performed. RESULTS Of the 153 hospitalized patients with confirmed dengue viral infections, 132 (86.3 %) patients had non-severe dengue including dengue without warning signs (7 patients, 5.3 %) and dengue with warning signs (125, 94.7 %). The rest (21, 13.7 %) had severe dengue including severe plasma leakage (16, 76.2 %), severe organ involvement (16, 76.2 %), and severe clinical bleeding (8, 38.1 %). Using stepwise multivariate logistic regression, clinical factors identified as independently associated with the development of severe dengue were: (1) being >40 years old (odds ratio [OR]: 5.215, 95 % confidence interval [CI]: 1.538-17.689), (2) having persistent vomiting (OR: 4.817, CI: 1.375-16.873), (3) having >300 cells per μL of absolute atypical lymphocytes (OR: 3.163, CI: 1.017-9.834), and (4) having lactate levels ≥2.0 mmol/L (OR: 7.340, CI: 2.334-23.087). In addition, increases in lactate and absolute atypical lymphocyte levels corresponded with severe dengue (p < 0.05). CONCLUSIONS Our study identified several clinical factors independently associated with the development of severe dengue among hospitalized adults with dengue. This can aid in the early recognition and prompt management of at-risk patients to reduce morbidity and mortality.
Collapse
Affiliation(s)
- Vipa Thanachartwet
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand.
| | - Nittha Oer-Areemitr
- Pulmonary and Critical Care Division, Department of Medicine, Phramongkutklao Hospital, 315 Rajvithi Road, Bangkok, 10400, Thailand.
| | - Supat Chamnanchanunt
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand.
| | - Duangjai Sahassananda
- Information Technology Unit, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand.
| | - Akanitt Jittmittraphap
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand.
| | - Plengsakoon Suwannakudt
- Hospital for Tropical Diseases, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand.
| | - Varunee Desakorn
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand.
| | - Anan Wattanathum
- Pulmonary and Critical Care Division, Department of Medicine, Phramongkutklao Hospital, 315 Rajvithi Road, Bangkok, 10400, Thailand.
| |
Collapse
|
42
|
Barros VE, dos Santos-Junior NN, Amarilla AA, Soares AM, Lourencini R, Trabuco AC, Aquino VH. Differential replicative ability of clinical dengue virus isolates in an immunocompetent C57BL/6 mouse model. BMC Microbiol 2015; 15:189. [PMID: 26415508 PMCID: PMC4587874 DOI: 10.1186/s12866-015-0520-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Accepted: 09/18/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Several experimental animal models have been used to study the pathogenesis of dengue disease; however, most of the studies used laboratory-adapted viruses, which lack the virulence of viruses circulating in humans. The aim of this study was to analyze the ability of clinical Dengue virus (DENV) isolates (D2/BR/RP/RMB/09 and D3/BR/SL3/02) to infect immunocompetent C57BL/6 mice. METHODS Two strategies of intraperitoneal infection, which were based on the concept of the antibody dependent enhancement phenomenon, were used. In one strategy, the animals were inoculated with macrophages infected in vitro with dengue viruses, which were incubated with enhancing antibodies, and in the other strategy, the animals were inoculated with a complex of enhancing antibodies and dengue viruses. RESULTS The D3/BR/SL3/08 isolate showed a higher ability of infection (virus RNA was more frequently detected in the serum and in several organs) in the experimental model compared to both the D2/BR/RP/RMB/2009 isolate and a laboratory adapted DENV-1 strain (Mochizuki strain), regardless of the infection strategy used. The main features of the D3/BR/SL3/08 isolate were its neuroinvasiveness and the induction of an extended period of viremia. Enhancing antibodies did not influence on the infection of animals when macrophages were used, but the level of viremia was increased when they were used as a complex with a D3/BR/SL3/02 isolate. DISCUSSION We showed that DENV isolates could infect immunocompetent C57BL/6 mice, which have has been previously used to study some aspect of dengue disease when infected with laboratory adapted strains. DENV genome was detected in the same organs found in humans when autopsy and biopsy samples were analyzed, showing that C57BL/6 mice reproduce some aspects of the DENV tropism observed in humans. The main difference observed between the D3/BR/SL3/02 and D2/BR/RP/RMB/2009 clinical isolates was the neuroinvasive ability of the first one. Neuroinvasiveness has been described in some DENV infected cases and is common for other members of the Flavivirus genus. CONCLUSIONS These results suggest that C57BL/6 mice can be used as an experimental model to evaluate virulence differences among DENV clinical isolates.
Collapse
Affiliation(s)
- Veridiana Ester Barros
- Laboratory of Virology, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av do Café, s/n, CEP: 14040-903, Ribeirao Preto, Sao Paulo, Brazil.
| | - Nilton Nascimento dos Santos-Junior
- Laboratory of Virology, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av do Café, s/n, CEP: 14040-903, Ribeirao Preto, Sao Paulo, Brazil.
| | - Alberto Anastacio Amarilla
- Laboratory of Virology, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av do Café, s/n, CEP: 14040-903, Ribeirao Preto, Sao Paulo, Brazil.
| | - Adriana Moreira Soares
- Laboratory of Virology, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av do Café, s/n, CEP: 14040-903, Ribeirao Preto, Sao Paulo, Brazil.
| | - Rafael Lourencini
- Laboratory of Virology, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av do Café, s/n, CEP: 14040-903, Ribeirao Preto, Sao Paulo, Brazil.
| | - Amanda Cristina Trabuco
- Laboratory of Virology, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av do Café, s/n, CEP: 14040-903, Ribeirao Preto, Sao Paulo, Brazil.
| | - Victor Hugo Aquino
- Laboratory of Virology, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av do Café, s/n, CEP: 14040-903, Ribeirao Preto, Sao Paulo, Brazil.
| |
Collapse
|
43
|
Tang WW, Grewal R, Shresta S. Influence of antibodies and T cells on dengue disease outcome: insights from interferon receptor-deficient mouse models. Curr Opin Virol 2015; 13:61-6. [PMID: 26001278 DOI: 10.1016/j.coviro.2015.04.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 04/23/2015] [Accepted: 04/23/2015] [Indexed: 10/23/2022]
Abstract
Dengue virus (DENV) is a globally important mosquito-borne virus that causes a spectrum of diseases ranging from dengue fever (DF) to dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS), affecting 3.6 billion people in 128 countries [1,2(•)]. There is an urgent need for a drug or vaccine against DENV, yet none are presently available. In fact, results from recent Phase IIb and III trials of an attenuated tetrameric vaccine revealed that the vaccine provided limited protection against DENV serotype 2 in DENV-immune people, and no protection against any serotype in naïve individuals [3-5], highlighting the difficulties associated with dengue vaccine development. A challenge in the development of a DENV vaccine is that a vaccine must protect against all four DENV serotypes, which co-circulate in endemic areas. Further complicating DENV vaccine development is that the correlates of protection are not fully defined, mechanisms regulating the generation of protective antibody and T cell responses against all four DENV serotypes are as yet to be deciphered, and the adaptive immune response may actually contribute to severe disease. Recent studies using the only available animal model of DHF/DSS in mice lacking one or more components of the interferon (IFN) system have begun to provide crucial insights into the protective versus pathogenic nature of both antibody and T cell responses to DENV. Herein, we highlight key studies using the IFN receptor-deficient mouse models toward understanding the contribution of antibodies and T cells in impacting the outcome of DENV infection.
Collapse
Affiliation(s)
- William W Tang
- La Jolla Institute for Allergy & Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Rajvir Grewal
- La Jolla Institute for Allergy & Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Sujan Shresta
- La Jolla Institute for Allergy & Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA.
| |
Collapse
|
44
|
Kucharski AJ, Andreasen V, Gog JR. Capturing the dynamics of pathogens with many strains. J Math Biol 2015; 72:1-24. [PMID: 25800537 PMCID: PMC4698306 DOI: 10.1007/s00285-015-0873-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 03/05/2015] [Indexed: 12/20/2022]
Abstract
Pathogens that consist of multiple antigenic variants are a serious public health concern. These infections, which include dengue virus, influenza and malaria, generate substantial morbidity and mortality. However, there are considerable theoretical challenges involved in modelling such infections. As well as describing the interaction between strains that occurs as a result cross-immunity and evolution, models must balance biological realism with mathematical and computational tractability. Here we review different modelling approaches, and suggest a number of biological problems that are potential candidates for study with these methods. We provide a comprehensive outline of the benefits and disadvantages of available frameworks, and describe what biological information is preserved and lost under different modelling assumptions. We also consider the emergence of new disease strains, and discuss how models of pathogens with multiple strains could be developed further in future. This includes extending the flexibility and biological realism of current approaches, as well as interface with data.
Collapse
Affiliation(s)
- Adam J Kucharski
- Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK.
| | - Viggo Andreasen
- Department of Mathematics and Physics, Roskilde University, 4000, Roskilde, Denmark
| | - Julia R Gog
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
45
|
Thomas SJ, Endy TP, Rothman AL, Barrett AD. Flaviviruses (Dengue, Yellow Fever, Japanese Encephalitis, West Nile Encephalitis, St. Louis Encephalitis, Tick-Borne Encephalitis, Kyasanur Forest Disease, Alkhurma Hemorrhagic Fever, Zika). MANDELL, DOUGLAS, AND BENNETT'S PRINCIPLES AND PRACTICE OF INFECTIOUS DISEASES 2015:1881-1903.e6. [DOI: 10.1016/b978-1-4557-4801-3.00155-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
46
|
Sam SS, Teoh BT, Chinna K, AbuBakar S. High producing tumor necrosis factor alpha gene alleles in protection against severe manifestations of dengue. Int J Med Sci 2015; 12:177-86. [PMID: 25589894 PMCID: PMC4293183 DOI: 10.7150/ijms.8988] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 12/09/2014] [Indexed: 11/13/2022] Open
Abstract
UNLABELLED Dengue virus (DENV) infection usually presents with mild self-limiting dengue fever (DF). Few however, would present with the more severe form of the disease, dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). In the present study, the association between IL-12B, IL-10 and TNF-α gene polymorphisms and dengue severity was investigated. METHODS A case-control study was performed on a total of 120 unrelated controls, 86 DF patients and 196 DHF/DSS patients. The polymorphisms in IL-12B, IL-10 and TNF-α genes were genotyped using PCR-RFLP and PCR-sequencing methods. RESULTS A protective association of TNF-α -308A allele and -308GA genotype against DHF/DSS was observed, while TNF-α -238A allele and -238GA genotype were associated with DHF/DSS. A combination of TNF-α -308GA+AA genotype and IL-10 non-GCC haplotypes, IL-12B pro homozygotes (pro1/pro1, pro2/pro2) and IL-12B 3'UTR AC were significantly correlated with protective effects against DHF/DSS. An association between the cytokine gene polymorphisms and protection against the clinical features of severe dengue including thrombocytopenia and increased liver enzymes was observed in this study. CONCLUSION The overall findings of the study support the correlation of high-producer TNF-α genotypes combined with low-producer IL-10 haplotypes and IL-12B genotypes in reduced risk of DHF/DSS.
Collapse
Affiliation(s)
- Sing-Sin Sam
- 1. Tropical Infectious Diseases Research and Education Center (TIDREC), Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Boon-Teong Teoh
- 1. Tropical Infectious Diseases Research and Education Center (TIDREC), Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Karuthan Chinna
- 2. Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Sazaly AbuBakar
- 1. Tropical Infectious Diseases Research and Education Center (TIDREC), Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
47
|
Stoddard ST, Wearing HJ, Reiner RC, Morrison AC, Astete H, Vilcarromero S, Alvarez C, Ramal-Asayag C, Sihuincha M, Rocha C, Halsey ES, Scott TW, Kochel TJ, Forshey BM. Long-term and seasonal dynamics of dengue in Iquitos, Peru. PLoS Negl Trop Dis 2014; 8:e3003. [PMID: 25033412 PMCID: PMC4102451 DOI: 10.1371/journal.pntd.0003003] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 06/02/2014] [Indexed: 12/02/2022] Open
Abstract
Introduction Long-term disease surveillance data provide a basis for studying drivers of pathogen transmission dynamics. Dengue is a mosquito-borne disease caused by four distinct, but related, viruses (DENV-1-4) that potentially affect over half the world's population. Dengue incidence varies seasonally and on longer time scales, presumably driven by the interaction of climate and host susceptibility. Precise understanding of dengue dynamics is constrained, however, by the relative paucity of laboratory-confirmed longitudinal data. Methods We studied 10 years (2000–2010) of laboratory-confirmed, clinic-based surveillance data collected in Iquitos, Peru. We characterized inter and intra-annual patterns of dengue dynamics on a weekly time scale using wavelet analysis. We explored the relationships of case counts to climatic variables with cross-correlation maps on annual and trimester bases. Findings Transmission was dominated by single serotypes, first DENV-3 (2001–2007) then DENV-4 (2008–2010). After 2003, incidence fluctuated inter-annually with outbreaks usually occurring between October and April. We detected a strong positive autocorrelation in case counts at a lag of ∼70 weeks, indicating a shift in the timing of peak incidence year-to-year. All climatic variables showed modest seasonality and correlated weakly with the number of reported dengue cases across a range of time lags. Cases were reduced after citywide insecticide fumigation if conducted early in the transmission season. Conclusions Dengue case counts peaked seasonally despite limited intra-annual variation in climate conditions. Contrary to expectations for this mosquito-borne disease, no climatic variable considered exhibited a strong relationship with transmission. Vector control operations did, however, appear to have a significant impact on transmission some years. Our results indicate that a complicated interplay of factors underlie DENV transmission in contexts such as Iquitos. Description of long-term temporal patterns in disease occurrence improves our understanding of pathogen transmission dynamics and facilitates predicting new epidemics. Dengue, the most prevalent mosquito-borne, viral disease of humans, typically varies seasonally and on longer, inter-annual time scales. In most studies of these patterns, however, only a fraction of putative dengue cases are confirmed with laboratory diagnostics. Here we analyzed 10 years of fully confirmed dengue cases reported to a sentinel surveillance system in Iquitos, Peru. We describe the inter and intra-annual patterns of weekly case counts and relate these to climate and local vector control efforts. We show that dengue case counts vary seasonally in Iquitos despite very little variation in key climatic conditions, such as temperature and humidity. Overall, transmission correlated poorly with climate regardless of time lag. In seasons when vector control was conducted early, there was an apparent decline in cases later that season. We speculate that the relationships between climatic conditions and transmission of DENV in Iquitos are complex and non-linear, and that other factors, such as herd immunity, virus diversity, and vector control efforts, play key roles determining the timing and intensity of transmission.
Collapse
Affiliation(s)
- Steven T. Stoddard
- Department of Entomology and Nematology, University of California, Davis, Davis, California, United States of America
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| | - Helen J. Wearing
- University of New Mexico, Albuquerque, Albuquerque, New Mexico, United States of America
| | - Robert C. Reiner
- Department of Entomology and Nematology, University of California, Davis, Davis, California, United States of America
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Amy C. Morrison
- Department of Entomology and Nematology, University of California, Davis, Davis, California, United States of America
- U.S. Naval Medical Research Unit No. 6, Lima, Peru
| | | | | | | | | | | | | | | | - Thomas W. Scott
- Department of Entomology and Nematology, University of California, Davis, Davis, California, United States of America
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Tadeusz J. Kochel
- U.S. Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | | |
Collapse
|
48
|
Lyons AG. The human dengue challenge experience at the Walter Reed Army Institute of Research. J Infect Dis 2014; 209 Suppl 2:S49-55. [PMID: 24872396 DOI: 10.1093/infdis/jiu174] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recent discordance between measured levels of serotypes of dengue virus neutralizing antibody and clinical outcomes suggests a need to reevaluate the process of prescreening dengue vaccine candidates to better predict their clinical benefit before initiation of large-scale human vaccine trials. In the absence of a reliable animal model for dengue, a human dengue virus challenge model (ie, a controlled live dengue virus infectious challenge study) may prove useful and timely to elucidate mechanisms that underlie protection (as well as virulence), thus facilitating down-selection of vaccine candidates before beginning advanced field trials. Dengue challenge studies were safely used in prior decades to study the vector biology, clinical spectrum of illness, and reactogenicity of candidate live dengue virus vaccines of uncertain attenuation. Redeveloping the human dengue challenge model following current regulatory guidance, good manufacturing practice, and good clinical practice could streamline and accelerate vaccine development by offering a time- and resource-efficient method to evaluate the safety and potential efficacy of dengue vaccine and therapeutic candidates. In this article, the development of such a challenge model and its subsequent application is summarized from 2 recent reports.
Collapse
|
49
|
Williams M, Mayer SV, Johnson WL, Chen R, Volkova E, Vilcarromero S, Widen SG, Wood TG, Suarez-Ognio L, Long KC, Hanley KA, Morrison AC, Vasilakis N, Halsey ES. Lineage II of Southeast Asian/American DENV-2 is associated with a severe dengue outbreak in the Peruvian Amazon. Am J Trop Med Hyg 2014; 91:611-20. [PMID: 25002298 DOI: 10.4269/ajtmh.13-0600] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
During 2010 and 2011, the Loreto region of Peru experienced a dengue outbreak of unprecedented magnitude and severity for the region. This outbreak coincided with the reappearance of dengue virus-2 (DENV-2) in Loreto after almost 8 years. Whole-genome sequence indicated that DENV-2 from the outbreak belonged to lineage II of the southeast Asian/American genotype and was most closely related to viruses circulating in Brazil during 2007 and 2008, whereas DENV-2 previously circulating in Loreto grouped with lineage I (DENV-2 strains circulating in South America since 1990). One amino acid substitution (NS5 A811V) in the 2010 and 2011 isolates resulted from positive selection. However, the 2010 and 2011 DENV-2 did not replicate to higher titers in monocyte-derived dendritic cells and did not infect or disseminate in a higher proportion of Aedes aegypti than DENV-2 isolates previously circulating in Loreto. These results suggest that factors other than enhanced viral replication played a role in the severity of this outbreak.
Collapse
Affiliation(s)
- Maya Williams
- Department of Virology, US Naval Medical Research Unit No. 6, Lima, Peru; Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas; Department of Biology, New Mexico State University, Las Cruces, New Mexico; Department of Virology, US Naval Medical Research Unit No. 6, Iquitos, Peru; Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas; Dirección General de Epidemiología del Ministerio de Salud del Perú, Lima, Perú; Entomology Department, University of California, Davis, California; Institute for Human Infections and Immunity and Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas
| | - Sandra V Mayer
- Department of Virology, US Naval Medical Research Unit No. 6, Lima, Peru; Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas; Department of Biology, New Mexico State University, Las Cruces, New Mexico; Department of Virology, US Naval Medical Research Unit No. 6, Iquitos, Peru; Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas; Dirección General de Epidemiología del Ministerio de Salud del Perú, Lima, Perú; Entomology Department, University of California, Davis, California; Institute for Human Infections and Immunity and Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas
| | - William L Johnson
- Department of Virology, US Naval Medical Research Unit No. 6, Lima, Peru; Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas; Department of Biology, New Mexico State University, Las Cruces, New Mexico; Department of Virology, US Naval Medical Research Unit No. 6, Iquitos, Peru; Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas; Dirección General de Epidemiología del Ministerio de Salud del Perú, Lima, Perú; Entomology Department, University of California, Davis, California; Institute for Human Infections and Immunity and Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas
| | - Rubing Chen
- Department of Virology, US Naval Medical Research Unit No. 6, Lima, Peru; Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas; Department of Biology, New Mexico State University, Las Cruces, New Mexico; Department of Virology, US Naval Medical Research Unit No. 6, Iquitos, Peru; Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas; Dirección General de Epidemiología del Ministerio de Salud del Perú, Lima, Perú; Entomology Department, University of California, Davis, California; Institute for Human Infections and Immunity and Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas
| | - Evgeniya Volkova
- Department of Virology, US Naval Medical Research Unit No. 6, Lima, Peru; Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas; Department of Biology, New Mexico State University, Las Cruces, New Mexico; Department of Virology, US Naval Medical Research Unit No. 6, Iquitos, Peru; Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas; Dirección General de Epidemiología del Ministerio de Salud del Perú, Lima, Perú; Entomology Department, University of California, Davis, California; Institute for Human Infections and Immunity and Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas
| | - Stalin Vilcarromero
- Department of Virology, US Naval Medical Research Unit No. 6, Lima, Peru; Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas; Department of Biology, New Mexico State University, Las Cruces, New Mexico; Department of Virology, US Naval Medical Research Unit No. 6, Iquitos, Peru; Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas; Dirección General de Epidemiología del Ministerio de Salud del Perú, Lima, Perú; Entomology Department, University of California, Davis, California; Institute for Human Infections and Immunity and Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas
| | - Steven G Widen
- Department of Virology, US Naval Medical Research Unit No. 6, Lima, Peru; Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas; Department of Biology, New Mexico State University, Las Cruces, New Mexico; Department of Virology, US Naval Medical Research Unit No. 6, Iquitos, Peru; Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas; Dirección General de Epidemiología del Ministerio de Salud del Perú, Lima, Perú; Entomology Department, University of California, Davis, California; Institute for Human Infections and Immunity and Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas
| | - Thomas G Wood
- Department of Virology, US Naval Medical Research Unit No. 6, Lima, Peru; Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas; Department of Biology, New Mexico State University, Las Cruces, New Mexico; Department of Virology, US Naval Medical Research Unit No. 6, Iquitos, Peru; Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas; Dirección General de Epidemiología del Ministerio de Salud del Perú, Lima, Perú; Entomology Department, University of California, Davis, California; Institute for Human Infections and Immunity and Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas
| | - Luis Suarez-Ognio
- Department of Virology, US Naval Medical Research Unit No. 6, Lima, Peru; Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas; Department of Biology, New Mexico State University, Las Cruces, New Mexico; Department of Virology, US Naval Medical Research Unit No. 6, Iquitos, Peru; Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas; Dirección General de Epidemiología del Ministerio de Salud del Perú, Lima, Perú; Entomology Department, University of California, Davis, California; Institute for Human Infections and Immunity and Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas
| | - Kanya C Long
- Department of Virology, US Naval Medical Research Unit No. 6, Lima, Peru; Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas; Department of Biology, New Mexico State University, Las Cruces, New Mexico; Department of Virology, US Naval Medical Research Unit No. 6, Iquitos, Peru; Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas; Dirección General de Epidemiología del Ministerio de Salud del Perú, Lima, Perú; Entomology Department, University of California, Davis, California; Institute for Human Infections and Immunity and Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas
| | - Kathryn A Hanley
- Department of Virology, US Naval Medical Research Unit No. 6, Lima, Peru; Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas; Department of Biology, New Mexico State University, Las Cruces, New Mexico; Department of Virology, US Naval Medical Research Unit No. 6, Iquitos, Peru; Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas; Dirección General de Epidemiología del Ministerio de Salud del Perú, Lima, Perú; Entomology Department, University of California, Davis, California; Institute for Human Infections and Immunity and Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas
| | - Amy C Morrison
- Department of Virology, US Naval Medical Research Unit No. 6, Lima, Peru; Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas; Department of Biology, New Mexico State University, Las Cruces, New Mexico; Department of Virology, US Naval Medical Research Unit No. 6, Iquitos, Peru; Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas; Dirección General de Epidemiología del Ministerio de Salud del Perú, Lima, Perú; Entomology Department, University of California, Davis, California; Institute for Human Infections and Immunity and Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas
| | - Nikos Vasilakis
- Department of Virology, US Naval Medical Research Unit No. 6, Lima, Peru; Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas; Department of Biology, New Mexico State University, Las Cruces, New Mexico; Department of Virology, US Naval Medical Research Unit No. 6, Iquitos, Peru; Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas; Dirección General de Epidemiología del Ministerio de Salud del Perú, Lima, Perú; Entomology Department, University of California, Davis, California; Institute for Human Infections and Immunity and Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas
| | - Eric S Halsey
- Department of Virology, US Naval Medical Research Unit No. 6, Lima, Peru; Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas; Department of Biology, New Mexico State University, Las Cruces, New Mexico; Department of Virology, US Naval Medical Research Unit No. 6, Iquitos, Peru; Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas; Dirección General de Epidemiología del Ministerio de Salud del Perú, Lima, Perú; Entomology Department, University of California, Davis, California; Institute for Human Infections and Immunity and Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
50
|
Abstract
Infectious disease models play a key role in public health planning. These models rely on accurate estimates of key transmission parameters such as the force of infection (FoI), which is the per-capita risk of a susceptible person being infected. The FoI captures the fundamental dynamics of transmission and is crucial for gauging control efforts, such as identifying vaccination targets. Dengue virus (DENV) is a mosquito-borne, multiserotype pathogen that currently infects ∼390 million people a year. Existing estimates of the DENV FoI are inaccurate because they rely on the unrealistic assumption that risk is constant over time. Dengue models are thus unreliable for designing vaccine deployment strategies. Here, we present to our knowledge the first time-varying (daily), serotype-specific estimates of DENV FoIs using a spline-based fitting procedure designed to examine a 12-y, longitudinal DENV serological dataset from Iquitos, Peru (11,703 individuals, 38,416 samples, and 22,301 serotype-specific DENV infections from 1999 to 2010). The yearly DENV FoI varied markedly across time and serotypes (0-0.33), as did daily basic reproductive numbers (0.49-4.72). During specific time periods, the FoI fluctuations correlated across serotypes, indicating that different DENV serotypes shared common transmission drivers. The marked variation in transmission intensity that we detected indicates that intervention targets based on one-time estimates of the FoI could underestimate the level of effort needed to prevent disease. Our description of dengue virus transmission dynamics is unprecedented in detail, providing a basis for understanding the persistence of this rapidly emerging pathogen and improving disease prevention programs.
Collapse
|