1
|
Thakur D, Chauhan A, Jhilta P, Kaushal R, Dipta B. Microbial chitinases and their relevance in various industries. Folia Microbiol (Praha) 2023; 68:29-53. [PMID: 35972681 DOI: 10.1007/s12223-022-00999-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/31/2022] [Indexed: 01/09/2023]
Abstract
Chitin, the second most abundant biopolymer on earth after cellulose, is composed of β-1,4-N-acetylglucosamine (GlcNAc) units. It is widely distributed in nature, especially as a structural polysaccharide in the cell walls of fungi, the exoskeletons of crustaceans, insects, and nematodes. However, the principal commercial source of chitin is the shells of marine or freshwater invertebrates. Microbial chitinases are largely responsible for chitin breakdown in nature, and they play an important role in the ecosystem's carbon and nitrogen balance. Several microbial chitinases have been characterized and are gaining prominence for their applications in various sectors. The current review focuses on chitinases of microbial origin, their diversity, and their characteristics. The applications of chitinases in several industries such as agriculture, food, the environment, and pharmaceutical sectors are also highlighted.
Collapse
Affiliation(s)
- Deepali Thakur
- Dr Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan, 173230, Himachal Pradesh, India
| | - Anjali Chauhan
- Dr Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan, 173230, Himachal Pradesh, India
| | - Prakriti Jhilta
- Dr Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan, 173230, Himachal Pradesh, India
| | - Rajesh Kaushal
- Dr Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan, 173230, Himachal Pradesh, India
| | - Bhawna Dipta
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India.
| |
Collapse
|
2
|
Chaudhary P, Agri U, Chaudhary A, Kumar A, Kumar G. Endophytes and their potential in biotic stress management and crop production. Front Microbiol 2022; 13:933017. [PMID: 36325026 PMCID: PMC9618965 DOI: 10.3389/fmicb.2022.933017] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/12/2022] [Indexed: 11/21/2022] Open
Abstract
Biotic stress is caused by harmful microbes that prevent plants from growing normally and also having numerous negative effects on agriculture crops globally. Many biotic factors such as bacteria, fungi, virus, weeds, insects, and nematodes are the major constrains of stress that tends to increase the reactive oxygen species that affect the physiological and molecular functioning of plants and also led to the decrease in crop productivity. Bacterial and fungal endophytes are the solution to overcome the tasks faced with conventional farming, and these are environment friendly microbial commodities that colonize in plant tissues without causing any damage. Endophytes play an important role in host fitness, uptake of nutrients, synthesis of phytohormone and diminish the injury triggered by pathogens via antibiosis, production of lytic enzymes, secondary metabolites, and hormone activation. They are also reported to help plants in coping with biotic stress, improving crops and soil health, respectively. Therefore, usage of endophytes as biofertilizers and biocontrol agent have developed an eco-friendly substitute to destructive chemicals for plant development and also in mitigation of biotic stress. Thus, this review highlighted the potential role of endophytes as biofertilizers, biocontrol agent, and in mitigation of biotic stress for maintenance of plant development and soil health for sustainable agriculture.
Collapse
Affiliation(s)
- Parul Chaudhary
- Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Upasana Agri
- Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | | | - Ashish Kumar
- Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Govind Kumar
- Indian Council of Agricultural Research (ICAR)-Central Institute for Subtropical Horticulture, Lucknow, India
| |
Collapse
|
3
|
Chen D, Chen C, Zheng X, Chen J, He W, Lin C, Chen H, Chen Y, Xue T. Chitosan Oligosaccharide Production Potential of Mitsuaria sp. C4 and Its Whole-Genome Sequencing. Front Microbiol 2021; 12:695571. [PMID: 34421850 PMCID: PMC8374441 DOI: 10.3389/fmicb.2021.695571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/03/2021] [Indexed: 12/05/2022] Open
Abstract
Chitooligosaccharide is a kind of functional food, which is the degradation product of chitosan (COS) catalyzed by the endo-chitosanase (COSE) enzyme. A COSE with a molecular weight of 34 kDa was purified and characterized from a newly isolated Mitsuaria sp. C4 (C4), and a 38.46% recovery rate and 4.79-fold purification were achieved. The purified C4 COSE exhibited optimum activity at 40°C and pH 7.2 and was significantly inhibited in the presence of Cu2+ and Fe3+. The Km and Vmin of the COSE toward COS were 2.449 g/L and 0.042 g/min/L, respectively. The highest COSE activity reached 8.344 U/ml after optimizing, which represented a 1.34-fold of increase. Additionally, chitooligosaccharide obtained by COSE hydrolysis of COS was verified by using thin-layer chromatography and high-performance liquid chromatography analysis. Whole-genome sequencing demonstrated that the C4 strain contains 211 carbohydrate enzymes, our purified COSE belonging to GHs-46 involved in carbohydrate degradation. Phylogenetic analysis showed that the novel COSE obtained from the C4 strain was clustered into the degree of polymerization = two to three groups, which can perform catalysis in a similar manner to produce (GlcN)2 and (GlcN)3. This work indicates that the C4 strain could be a good resource for enhancing carbohydrate degradation and might represent a useful tool for chitooligosaccharide production in the functional food industry.
Collapse
Affiliation(s)
- Duo Chen
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, China
| | - Congcong Chen
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, China
| | - Xuehai Zheng
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, China
| | - Jiannan Chen
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, China
| | - Wenjin He
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, China
| | - Chentao Lin
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, China
| | - Huibin Chen
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, China
| | - Youqiang Chen
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, China
| | - Ting Xue
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, China
| |
Collapse
|
4
|
Akram F, Akram R, Ikram Ul Haq, Nawaz A, Jabbar Z, Ahmed Z. Biotechnological Eminence of Chitinases: A Focus on Thermophilic Enzyme Sources, Production Strategies and Prominent Applications. Protein Pept Lett 2021; 28:1009-1022. [PMID: 33602064 DOI: 10.2174/0929866528666210218215359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/24/2020] [Accepted: 01/20/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Chitin, the second most abundant polysaccharide in nature, is a constantly valuable and renewable raw material after cellulose. Due to advancement in technology, industrial interest has grown to take advantage of the chitin. OBJECTIVE Now, biomass is being treated with diverse microbial enzymes or cells for the production of desired products under best industrial conditions. Glycosidic bonds in chitin structure are degraded by chitinase enzymes, which are characterized into number of glycoside hydrolase (GHs) families. METHODS Thermophilic microorganisms are remarkable sources of industrially important thermostable enzymes, having ability to survive harsh industrial processing conditions. Thermostable chitinases have an edge over mesophilic chitinases as they can hydrolyse the substrate at relatively high temperatures and exhibit decreased viscosity, significantly reduced contamination risk, thermal and chemical stability and increased solubility. Various methods are employed to purify the enzyme and increase its yield by optimizing various parameters such as temperature, pH, agitation, and by investigating the effect of different chemicals and metal ions etc. Results: Thermostable chitinase enzymes show high specific activity at elevated temperature which distinguish them from mesophiles. Genetic engineering can be used for further improvement of natural chitinases, and unlimited potential for the production of thermophilic chitinases has been highlighted due to advancement in synthetic biological techniques. Thermostable chitinases are then used in different fields such as bioremediation, medicine, agriculture and pharmaceuticals. CONCLUSION This review will provide information about chitinases, biotechnological potential of thermostable enzyme and the methods by which they are being produced and optimized for several industrial applications. Some of the applications of thermostable chitinases have also been briefly described.
Collapse
Affiliation(s)
- Fatima Akram
- Institute of Industrial Biotechnology, GC University, Lahore-54000, . Pakistan
| | - Rabia Akram
- Institute of Industrial Biotechnology, GC University, Lahore-54000, . Pakistan
| | - Ikram Ul Haq
- Institute of Industrial Biotechnology, GC University, Lahore-54000, . Pakistan
| | - Ali Nawaz
- Institute of Industrial Biotechnology, GC University, Lahore-54000, . Pakistan
| | - Zuriat Jabbar
- Institute of Industrial Biotechnology, GC University, Lahore-54000, . Pakistan
| | - Zeeshan Ahmed
- Institute of Industrial Biotechnology, GC University, Lahore-54000, . Pakistan
| |
Collapse
|
5
|
Tully BG, Huntley JF. A Francisella tularensis Chitinase Contributes to Bacterial Persistence and Replication in Two Major U.S. Tick Vectors. Pathogens 2020; 9:pathogens9121037. [PMID: 33321814 PMCID: PMC7764610 DOI: 10.3390/pathogens9121037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/02/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023] Open
Abstract
Nearly 100 years after the first report of tick-borne tularemia, questions remain about the tick vector(s) that pose the greatest risk for transmitting Francisella tularensis (Ft), the causative agent of tularemia. Additionally, few studies have identified genes/proteins required for Ft to infect, persist, and replicate in ticks. To answer questions about vector competence and Ft transmission by ticks, we infected Dermacentor variabilis (Dv),Amblyomma americanum (Aa), and Haemaphysalis longicornis (Hl; invasive species from Asia) ticks with Ft, finding that although Aa ticks initially become infected with 1 order of magnitude higher Ft, Ft replicated more robustly in Dv ticks, and did not persist in Hl ticks. In transmission studies, both Dv and Aa ticks efficiently transmitted Ft to naïve mice, causing disease in 57% and 46% of mice, respectively. Of four putative Ft chitinases, FTL1793 is the most conserved among Francisella sp. We generated a ΔFTL1793 mutant and found that ΔFTL1793 was deficient for infection, persistence, and replication in ticks. Recombinant FTL1793 exhibited chitinase activity in vitro, suggesting that FTL1793 may provide an alternative energy source for Ft in ticks. Taken together, Dv ticks appear to pose a greater risk for harboring and transmitting tularemia and FTL1793 plays a major role in promoting tick infections by Ft.
Collapse
|
6
|
Biochemical and molecular characterization of an acido-thermostable endo-chitinase from Bacillus altitudinis KA15 for industrial degradation of chitinous waste. Carbohydr Res 2020; 495:108089. [PMID: 32807357 DOI: 10.1016/j.carres.2020.108089] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 12/31/2022]
Abstract
This paper reports the isolation and identification of an acido-thermostable chitinase (ChiA-Ba43) which was purified, from the culture liquid of Bacillus altitudinis strain KA15, and characterized. Purification of ChiA-Ba43 produced a 69.6-fold increase in the specific activity (120,000 U/mg) of the chitinase, with a yield of 51% using colloidal chitin as substrate. ChiA-Ba43 was found to be a monomeric protein with a molecular mass of 43,190.05 Da as determined by MALDI-TOF/MS. N-terminal sequence of the first 27 amino-acids (aa) of ChiA-Ba43 displayed homology to chitinases from other Bacillus species. Interestingly, ChiA-Ba43 exhibited optimum pH and temperature of 4-5.5 and 85 °C, respectively. Thin-layer chromatography (TLC) showed that the final hydrolyzed products of the enzyme from chitin-oligosaccharides and colloidal chitin are a mixture of (GlcNAc)2, (GlcNAc)3, (GlcNAc)4, and (GlcNAc)5, which indicates that ChiA-Ba43 possesses an endo-acting function. More interestingly, compared to ChiA-Mt45, ChiA-Hh59, Chitodextrinase®, N-acetyl-β-glucosaminidase®, and ChiA-65, ChiA-Ba43 demonstrated a high level of catalytic efficiency and outstanding tolerance towards various organic solvents. The chiA-Ba43 gene (1332 bp) encoding ChiA-Ba43 (409 aa) was cloned, sequenced, and expressed in Escherichia coli strain HB101. The biochemical properties of the recombinant chitinase (rChiA-Ba43) were equivalent to those of the natively expressed enzyme. These properties make ChiA-Ba43 an ideal candidate for industrial bioconversion of chitinous waste.
Collapse
|
7
|
Bioproduction of N-acetyl-glucosamine from colloidal α-chitin using an enzyme cocktail produced by Aeromonas caviae CHZ306. World J Microbiol Biotechnol 2019; 35:114. [DOI: 10.1007/s11274-019-2694-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 07/07/2019] [Indexed: 12/22/2022]
|
8
|
Zhou J, Chen L, Kang L, Liu Z, Bai Y, Yang Y, Yuan S. ChiE1 from Coprinopsis cinerea is Characterized as a Processive Exochitinase and Revealed to Have a Significant Synergistic Action with Endochitinase ChiIII on Chitin Degradation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12773-12782. [PMID: 30404442 DOI: 10.1021/acs.jafc.8b04261] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Fruiting bodies that exhibit strong autolysis of Coprinopsis cinerea are a good resource for the chitinolytic system. In this study, a new Chitinase ChiE1 from C. cinerea was cloned, heterologously expressed, and characterized. Biochemical analysis demonstrated that ChiE1 is an exochitinase with a processive mode of action. Although ChiE1 contains only a single catalytic domain without a binding domain, it can bind to and degrade insoluble chitin powder and colloidal chitin. The combination of ChiE1 and C. cinerea endochitinase ChiIII could increase the amount of reducing sugar released from chitin powder by approximately 120% compared to using ChiE1 and ChiIII alone. The synergistic action of ChiE1 and ChiIII on degradation of chitin powder is higher than all previously reported synergism of chitinases. The recombinant Chitinase ChiE1 expressed in Pichia pastoris may be used as a synergistic chitinase for a reconstituted chitinolytic system for agricultural, biological, and environmental applications.
Collapse
Affiliation(s)
- Jiangsheng Zhou
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science , Nanjing Normal University , 1 Wenyuan Road , Nanjing 210023 , PR China
| | - Lingling Chen
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science , Nanjing Normal University , 1 Wenyuan Road , Nanjing 210023 , PR China
| | - Liqin Kang
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science , Nanjing Normal University , 1 Wenyuan Road , Nanjing 210023 , PR China
| | - Zhonghua Liu
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science , Nanjing Normal University , 1 Wenyuan Road , Nanjing 210023 , PR China
| | - Yang Bai
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science , Nanjing Normal University , 1 Wenyuan Road , Nanjing 210023 , PR China
| | - Yao Yang
- Ginling College , Nanjing Normal University , 122 Ninghai Road , Nanjing 210097 , PR China
| | - Sheng Yuan
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science , Nanjing Normal University , 1 Wenyuan Road , Nanjing 210023 , PR China
| |
Collapse
|
9
|
Identification of Chitin Degrading Bacterial Strains Isolated from Bulk and Rhizospheric Soil. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2018. [DOI: 10.22207/jpam.12.1.17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
10
|
Nguyen STC, Freund HL, Kasanjian J, Berlemont R. Function, distribution, and annotation of characterized cellulases, xylanases, and chitinases from CAZy. Appl Microbiol Biotechnol 2018; 102:1629-1637. [PMID: 29359269 DOI: 10.1007/s00253-018-8778-y] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/06/2018] [Accepted: 01/09/2018] [Indexed: 11/30/2022]
Abstract
The enzymatic deconstruction of structural polysaccharides, which relies on the production of specific glycoside hydrolases (GHs), is an essential process across environments. Over the past few decades, researchers studying the diversity and evolution of these enzymes have isolated and biochemically characterized thousands of these proteins. The carbohydrate-active enzymes database (CAZy) lists these proteins and provides some metadata. Here, the sequences and metadata of characterized sequences derived from GH families associated with the deconstruction of cellulose, xylan, and chitin were collected and discussed. First, although few polyspecific enzymes are identified, characterized GH families are mostly monospecific. Next, the taxonomic distribution of characterized GH mirrors the distribution of identified sequences in sequenced genomes. This provides a rationale for connecting the identification of GH sequences to specific reactions or lineages. Finally, we tested the annotation of the characterized GHs using HMM scan and the protein families database (Pfam). The vast majority of GHs targeting cellulose, xylan, and chitin can be identified using this publicly accessible approach.
Collapse
Affiliation(s)
- Stanley T C Nguyen
- Department of Biological Sciences, California State University-Long Beach, 1250 Bellflower Blvd., Long Beach, CA, 90840-9502, USA
| | - Hannah L Freund
- Department of Biological Sciences, California State University-Long Beach, 1250 Bellflower Blvd., Long Beach, CA, 90840-9502, USA
| | - Joshua Kasanjian
- Department of Biological Sciences, California State University-Long Beach, 1250 Bellflower Blvd., Long Beach, CA, 90840-9502, USA
| | - Renaud Berlemont
- Department of Biological Sciences, California State University-Long Beach, 1250 Bellflower Blvd., Long Beach, CA, 90840-9502, USA.
| |
Collapse
|
11
|
Cheba BA, Zaghloul TI, El-Mahdy AR, El-Massry MH. Effect of nitrogen sources and fermentation conditions on bacillus sp. R2 chitinase production. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.promfg.2018.03.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Chitinosanase: A fungal chitosan hydrolyzing enzyme with a new and unusually specific cleavage pattern. Carbohydr Polym 2017; 174:1121-1128. [DOI: 10.1016/j.carbpol.2017.07.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/30/2017] [Accepted: 07/02/2017] [Indexed: 11/18/2022]
|
13
|
Bhattacharya S, Das A, Samadder S, Rajan SS. Biosynthesis and characterization of a thermostable, alkali-tolerant chitinase from Bacillus pumilus JUBCH08 displaying antagonism against phytopathogenic Fusarium oxysporum. 3 Biotech 2016. [DOI: https://doi.org/10.1007/s13205-016-0406-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
14
|
Bhattacharya S, Das A, Samadder S, Rajan SS. Biosynthesis and characterization of a thermostable, alkali-tolerant chitinase from Bacillus pumilus JUBCH08 displaying antagonism against phytopathogenic Fusarium oxysporum. 3 Biotech 2016; 6:87. [PMID: 28330157 PMCID: PMC4781814 DOI: 10.1007/s13205-016-0406-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 02/14/2016] [Indexed: 01/19/2023] Open
Abstract
The present investigation highlights the process parameters influencing the submerged fermentation of chitinase by Bacillus pumilus JUBCH08, purification and characterization of the enzyme and determination of antagonistic activity of the bacterium against Fusarium oxysporum. Medium supplemented with 0.5 % chitin and peptone, at initial pH 8.0, when incubated at 35 °C for 72 h favored highest chitinase production. The enzyme was purified 25.1-fold to homogeneity. The chitinase was found to be thermostable and alkali-tolerant with maximum activity at pH 8.0 and 70 °C for 1 h. The molecular weight of chitinase was found to be 64 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Mg2+, Co2+, Ca2+ and Mn2+ improved the chitinase activity. The K m and V max values of the enzyme were 0.13 mg/ml and 38.23 U/ml, respectively. When subjected to dual plate assay, the bacterium showed 45 % antagonism against F. oxysporum. Thus, it could be inferred that cultural conditions strongly affected the chitinase production by B. pumilus JUBCH08. The enzyme being thermostable and best functional under alkaline conditions could be useful for the feed industry and related biotechnological applications. Inhibition of F. oxysporum by the culture through lytic mechanism indicates its potentiality as a biocontrol agent.
Collapse
Affiliation(s)
- Sourav Bhattacharya
- Department of Microbiology, Center for Post Graduate Studies, Jain University, 18/3, 9th Main, 3rd Block, Jayanagar, Bangalore, 560011, Karnataka, India.
| | - Arijit Das
- Department of Microbiology, Center for Post Graduate Studies, Jain University, 18/3, 9th Main, 3rd Block, Jayanagar, Bangalore, 560011, Karnataka, India
| | - Saikat Samadder
- Department of Microbiology, Centre for Advanced Studies in Biosciences, Jain University, Bangalore, 560019, Karnataka, India
| | - Subbaramiah Sundara Rajan
- Department of Microbiology, Centre for Advanced Studies in Biosciences, Jain University, Bangalore, 560019, Karnataka, India
| |
Collapse
|
15
|
Erban T, Rybanska D, Harant K, Hortova B, Hubert J. Feces Derived Allergens of Tyrophagus putrescentiae Reared on Dried Dog Food and Evidence of the Strong Nutritional Interaction between the Mite and Bacillus cereus Producing Protease Bacillolysins and Exo-chitinases. Front Physiol 2016; 7:53. [PMID: 26941650 PMCID: PMC4764834 DOI: 10.3389/fphys.2016.00053] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/04/2016] [Indexed: 12/31/2022] Open
Abstract
Tyrophagus putrescentiae (Schrank, 1781) is an emerging source of allergens in stored products and homes. Feces proteases are the major allergens of astigmatid mites (Acari: Acaridida). In addition, the mites are carriers of microorganisms and microbial adjuvant compounds that stimulate innate signaling pathways. We sought to analyze the mite feces proteome, proteolytic activities, and mite-bacterial interaction in dry dog food (DDF). Proteomic methods comprising enzymatic and zymographic analysis of proteases and 2D-E-MS/MS were performed. The highest protease activity was assigned to trypsin-like proteases; lower activity was assigned to chymotrypsin-like proteases, and the cysteine protease cathepsin B-like had very low activity. The 2D-E-MS/MS proteomic analysis identified mite trypsin allergen Tyr p3, fatty acid-binding protein Tyr p13 and putative mite allergens ferritin (Grp 30) and (poly)ubiquitins. Tyr p3 was detected at different positions of the 2D-E. It indicates presence of zymogen at basic pI, and mature-enzyme form and enzyme fragment at acidic pI. Bacillolysins (neutral and alkaline proteases) of Bacillus cereus symbiont can contribute to the protease activity of the mite extract. The bacterial exo-chitinases likely contribute to degradation of mite exuviae, mite bodies or food boluses consisting of chitin, including the peritrophic membrane. Thus, the chitinases disrupt the feces and facilitate release of the allergens. B. cereus was isolated and identified based on amplification and sequencing of 16S rRNA and motB genes. B. cereus was added into high-fat, high-protein (DDF) and low-fat, low-protein (flour) diets to 1 and 5% (w/w), and the diets palatability was evaluated in 21-day population growth test. The supplementation of diet with B. cereus significantly suppressed population growth and the suppressive effect was higher in the high-fat, high-protein diet than in the low-fat, low-protein food. Thus, B. cereus has to coexist with the mite in balance to be beneficial for the mite. The mite-B. cereus symbiosis can be beneficial-suppressive at some level. The results increase the veterinary and medical importance of the allergens detected in feces. The B. cereus enzymes/toxins are important components of mite allergens. The strong symbiotic association of T. putrescentiae with B. cereus in DDF was indicated.
Collapse
Affiliation(s)
- Tomas Erban
- Laboratory of Proteomics, Biologically Active Substances in Crop Protection, Crop Research Institute Prague, Czech Republic
| | - Dagmar Rybanska
- Laboratory of Proteomics, Biologically Active Substances in Crop Protection, Crop Research InstitutePrague, Czech Republic; Department of Plant Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences PraguePrague, Czech Republic
| | - Karel Harant
- Biology Section, Laboratory of Mass Spectrometry, Service Labs, Faculty of Science, Charles University in Prague Prague, Czech Republic
| | - Bronislava Hortova
- Laboratory of Proteomics, Biologically Active Substances in Crop Protection, Crop Research Institute Prague, Czech Republic
| | - Jan Hubert
- Laboratory of Proteomics, Biologically Active Substances in Crop Protection, Crop Research Institute Prague, Czech Republic
| |
Collapse
|
16
|
Effect of Metal Ions, Chemical Agents, and Organic Solvent on Bacillus Sp.R2 Chitinase Activity. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.protcy.2016.01.090] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Akocak PB, Churey JJ, Worobo RW. Antagonistic effect of chitinolytic Pseudomonas and Bacillus on growth of fungal hyphae and spores of aflatoxigenic Aspergillus flavus. FOOD BIOSCI 2015. [DOI: 10.1016/j.fbio.2015.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
18
|
Characterization of extracellular chitinase from Chitinibacter sp. GC72 and its application in GlcNAc production from crayfish shell enzymatic degradation. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2015.02.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
19
|
Mersni-Achour R, Cheikh YB, Pichereau V, Doghri I, Etien C, Dégremont L, Saulnier D, Fruitier-Arnaudin I, Travers MA. Factors other than metalloprotease are required for full virulence of French Vibrio tubiashii isolates in oyster larvae. MICROBIOLOGY-SGM 2015; 161:997-1007. [PMID: 25701736 DOI: 10.1099/mic.0.000058] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 02/11/2015] [Indexed: 12/19/2022]
Abstract
Vibrio tubiashii is a marine pathogen isolated from larval and juvenile bivalve molluscs that causes bacillary necrosis. Recent studies demonstrated the isolation of this species in a French experimental hatchery/nursery affecting Crassostrea gigas spat in 2007. Here, using larvae of C. gigas as an interaction model, we showed that the French V. tubiashii is virulent to larvae and can cause bacillary necrosis symptoms with an LD50 of about 2.3 × 10(3) c.f.u. ml(-1) after 24 h. Moreover, complete or gel permeation HPLC fractionated extracellular products (ECPs) of this strain appeared toxic to larvae. MS-MS analysis of the different ECP fractions revealed the existence of an extracellular metalloprotease and other suspected virulence factors. This observation is also supported by the expression level of some potential virulence factors. The overall results suggest that the pathology caused by the French V. tubiashii in C. gigas oysters is caused by a group of toxic factors and not only the metalloprotease.
Collapse
Affiliation(s)
- Rachida Mersni-Achour
- Fédération de Recherche en Environnement et Développement Durable, FR CNRS 3097, Université de La Rochelle, La Rochelle, France
- IFREMER, SG2M-LGPMM, Laboratoire de Génétique et Pathologie des Mollusques Marins Avenue de Mus de Loup, 17390 La Tremblade, France
- UMR 7266 CNRS-ULR, LIENSs, Equipe Approches Moléculaires, Environnement-Santé, Université de La Rochelle, Avenue Michel Crépeau, 17042 La Rochelle, France
| | - Yosra Ben Cheikh
- UMR 7266 CNRS-ULR, LIENSs, Equipe Approches Moléculaires, Environnement-Santé, Université de La Rochelle, Avenue Michel Crépeau, 17042 La Rochelle, France
| | - Vianney Pichereau
- Laboratoire des Sciences de l'Environnement Marin LEMAR, UMR 6539 CNRS/UBO/IRD/IFREMER, Université de Bretagne Occidentale, Institut Universitaire Européen de la Mer, Université Européenne de Bretagne, 29280 Plouzané, France
| | - Ibtissem Doghri
- UMR 7266 CNRS-ULR, LIENSs, Equipe Approches Moléculaires, Environnement-Santé, Université de La Rochelle, Avenue Michel Crépeau, 17042 La Rochelle, France
| | - Cédric Etien
- UMR 7266 CNRS-ULR, LIENSs, Equipe Approches Moléculaires, Environnement-Santé, Université de La Rochelle, Avenue Michel Crépeau, 17042 La Rochelle, France
| | - Lionel Dégremont
- IFREMER, SG2M-LGPMM, Laboratoire de Génétique et Pathologie des Mollusques Marins Avenue de Mus de Loup, 17390 La Tremblade, France
| | - Denis Saulnier
- IFREMER, Centre Ifremer du Pacifique, UMR 241 Ecosystèmes Insulaires Océaniens, Tahiti, 98719 Taravao, French Polynesia
- IFREMER, SG2M-LGPMM, Laboratoire de Génétique et Pathologie des Mollusques Marins Avenue de Mus de Loup, 17390 La Tremblade, France
| | - Ingrid Fruitier-Arnaudin
- Fédération de Recherche en Environnement et Développement Durable, FR CNRS 3097, Université de La Rochelle, La Rochelle, France
- UMR 7266 CNRS-ULR, LIENSs, Equipe Approches Moléculaires, Environnement-Santé, Université de La Rochelle, Avenue Michel Crépeau, 17042 La Rochelle, France
| | - Marie-Agnès Travers
- IFREMER, SG2M-LGPMM, Laboratoire de Génétique et Pathologie des Mollusques Marins Avenue de Mus de Loup, 17390 La Tremblade, France
| |
Collapse
|
20
|
Patil N, Patil S, Govindwar S, Jadhav J. Molecular characterization of intergeneric hybrid between Aspergillus oryzae
and Trichoderma harzianum
by protoplast fusion. J Appl Microbiol 2015; 118:390-8. [DOI: 10.1111/jam.12711] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 11/18/2014] [Accepted: 11/19/2014] [Indexed: 11/29/2022]
Affiliation(s)
- N.S. Patil
- Department of Biotechnology; Shivaji University; Kolhapur India
| | - S.M. Patil
- Department of Biotechnology; Shivaji University; Kolhapur India
| | - S.P. Govindwar
- Department of Biochemistry; Shivaji University; Kolhapur India
| | - J.P. Jadhav
- Department of Biotechnology; Shivaji University; Kolhapur India
- Department of Biochemistry; Shivaji University; Kolhapur India
| |
Collapse
|
21
|
Paul T, Chatterjee S, Bandyopadhyay A, Chattopadhyay D, Basu S, Sarkar K. A Simple One Pot Purification of Bacterial Amylase From Fermented Broth Based on Affinity Toward Starch-Functionalized Magnetic Nanoparticle. Prep Biochem Biotechnol 2014; 45:501-14. [DOI: 10.1080/10826068.2014.923454] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Expression patterns of chitinase and chitosanase produced from Bacillus cereus in suppression of phytopathogen. Microb Pathog 2014; 73:31-6. [PMID: 24942773 DOI: 10.1016/j.micpath.2014.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 05/22/2014] [Accepted: 05/23/2014] [Indexed: 11/21/2022]
Abstract
Bacillus cereus MP-310 was incubated on various culture media substrates as LB, colloidal chitin, chitosan powder, and chitosan beads to investigate the concurrent expression patterns of chitinase and chitosanase isozymes by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Chitinase activity increased rapidly with a maximum level after 6 days of incubation in CM-chitin medium. Major bands of chitinase isozymes were strongly expressed on SDS-PAGE in LB medium (four bands) and in colloidal chitin medium (five bands) after 6 days after incubation, and in chitosan powder medium (one band) and in chitosan beads medium (five bands) after 12 days after incubation. A major band of chitosanase isozymes was strongly expressed on SDS-PAGE in chitosan powder medium (one band) and in chitosan beads medium (one band) after 12 days of incubation.
Collapse
|
23
|
Sinha S, Chand S, Tripathi P. Microbial degradation of chitin waste for production of chitosanase and food related bioactive compounds. APPL BIOCHEM MICRO+ 2014. [DOI: 10.1134/s0003683814020173] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Han KI, Patnaik BB, Kim YH, Kwon HJ, Han YS, Han MD. Isolation and Characterization of Chitinase-ProducingBacillusandPaenibacillusStrains from Salted and Fermented Shrimp,Acetes japonicus. J Food Sci 2014; 79:M665-74. [DOI: 10.1111/1750-3841.12387] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 01/07/2014] [Indexed: 11/26/2022]
Affiliation(s)
- Kook-Il Han
- Dept. of Biology; Soonchunhyang Univ; Asan Chungnam 336-745 Republic of Korea
| | - Bharat Bhusan Patnaik
- Div. of Plant Biotechnology; College of Agriculture and Life Science; Chonnam Natl. Univ; Gwangju 500-757 Republic of Korea
| | - Yong Hyun Kim
- Dept. of Biology; Soonchunhyang Univ; Asan Chungnam 336-745 Republic of Korea
| | - Hyun-Jung Kwon
- Dept. of Biology; Soonchunhyang Univ; Asan Chungnam 336-745 Republic of Korea
| | - Yeon Soo Han
- Div. of Plant Biotechnology; College of Agriculture and Life Science; Chonnam Natl. Univ; Gwangju 500-757 Republic of Korea
| | - Man-Deuk Han
- Dept. of Biology; Soonchunhyang Univ; Asan Chungnam 336-745 Republic of Korea
| |
Collapse
|
25
|
Shivakumar S, Karmali AN, Ruhimbana C. PARTIAL PURIFICATION, CHARACTERIZATION, AND KINETIC STUDIES OF A LOW-MOLECULAR-WEIGHT, ALKALI-TOLERANT CHITINASE ENZYME FROMBacillus subtilisJN032305, A POTENTIAL BIOCONTROL STRAIN. Prep Biochem Biotechnol 2014; 44:617-32. [DOI: 10.1080/10826068.2013.844708] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
26
|
Liang TW, Chen YY, Pan PS, Wang SL. Purification of chitinase/chitosanase from Bacillus cereus and discovery of an enzyme inhibitor. Int J Biol Macromol 2014; 63:8-14. [DOI: 10.1016/j.ijbiomac.2013.10.027] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 10/08/2013] [Accepted: 10/21/2013] [Indexed: 10/26/2022]
|
27
|
Liang TW, Hsieh TY, Wang SL. Purification of a thermostable chitinase from Bacillus cereus by chitin affinity and its application in microbial community changes in soil. Bioprocess Biosyst Eng 2013; 37:1201-9. [DOI: 10.1007/s00449-013-1092-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 11/06/2013] [Indexed: 10/25/2022]
|
28
|
Meruvu H, Donthireddy SRR. Purification and Characterization of an Antifungal Chitinase from Citrobacter freundii str. nov. haritD11. Appl Biochem Biotechnol 2013; 172:196-205. [DOI: 10.1007/s12010-013-0540-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Accepted: 09/15/2013] [Indexed: 11/29/2022]
|
29
|
Moscoso F, Ferreira L, Fernández de Dios M, Deive F, Longo M, Sanromán M. Development of an Industrial Microbial System for Chitinolytic Enzymes Production. Ind Eng Chem Res 2013. [DOI: 10.1021/ie400687n] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- F. Moscoso
- Department
of Chemical Engineering, University of Vigo, Isaac Newton Building, Campus As Lagoas, Marcosende
36310 Vigo, Spain
| | - L. Ferreira
- Department
of Chemical Engineering, University of Vigo, Isaac Newton Building, Campus As Lagoas, Marcosende
36310 Vigo, Spain
| | - M.A. Fernández de Dios
- Department
of Chemical Engineering, University of Vigo, Isaac Newton Building, Campus As Lagoas, Marcosende
36310 Vigo, Spain
| | - F.J. Deive
- Department
of Chemical Engineering, University of Vigo, Isaac Newton Building, Campus As Lagoas, Marcosende
36310 Vigo, Spain
| | - M.A. Longo
- Department
of Chemical Engineering, University of Vigo, Isaac Newton Building, Campus As Lagoas, Marcosende
36310 Vigo, Spain
| | - M.A. Sanromán
- Department
of Chemical Engineering, University of Vigo, Isaac Newton Building, Campus As Lagoas, Marcosende
36310 Vigo, Spain
| |
Collapse
|
30
|
Barghini P, Moscatelli D, Garzillo AMV, Crognale S, Fenice M. High production of cold-tolerant chitinases on shrimp wastes in bench-top bioreactor by the Antarctic fungus Lecanicillium muscarium CCFEE 5003: bioprocess optimization and characterization of two main enzymes. Enzyme Microb Technol 2013; 53:331-8. [PMID: 24034432 DOI: 10.1016/j.enzmictec.2013.07.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 06/18/2013] [Accepted: 07/12/2013] [Indexed: 11/29/2022]
Abstract
The Antarctic fungus Lecanicillium muscarium CCFEE-5003 was preliminary cultivated in shaken flasks to check its chitinase production on rough shrimp and crab wastes. Production on shrimp shells was much higher than that on crab shells (104.6±9.3 and 48.6±3.1U/L, respectively). For possible industrial applications, bioprocess optimization was studied on shrimp shells in bioreactor using RSM to state best conditions of pH and substrate concentration. Optimization improved the production by 137% (243.6±17.3). Two chitinolytic enzymes (CHI1 and CHI2) were purified and characterized. CHI1 (MW ca. 61kDa) showed optima at pH 5.5 and 45°C while CHI2 (MW ca. 25kDa) optima were at pH 4.5 and 40°C. Both enzymes maintained high activity levels at 5°C and were inhibited by Fe(++), Hg(++) and Cu(++). CHI2 was strongly allosamidin-sensitive. Both proteins were N-acetyl-hexosaminidases (E.C. 3.2.1.52) but showed different roles in chitin hydrolysis: CHI1 could be defined as "chitobiase" while CHI2 revealed a main "eso-chitinase" activity.
Collapse
Affiliation(s)
- Paolo Barghini
- Dipartimento di Scienze Ecologiche e Biologiche, Agroalimentari e Forestali, Largo Università snc, University of Tuscia, I-01100 Viterbo, Italy
| | | | | | | | | |
Collapse
|
31
|
Abstract
Biological control of phytopathogenic fungi and insects continues to inspire the research and development of environmentally friendly bioactive alternatives. Potentially lytic enzymes, chitinases can act as a biocontrol agent against agriculturally important fungi and insects. The cell wall in fungi and protective covers, i.e. cuticle in insects shares a key structural polymer, chitin, a β-1,4-linked N-acetylglucosamine polymer. Therefore, it is advantageous to develop a common biocontrol agent against both of these groups. As chitin is absent in plants and mammals, targeting its metabolism will signify an eco-friendly strategy for the control of agriculturally important fungi and insects but is innocuous to mammals, plants, beneficial insects and other organisms. In addition, development of chitinase transgenic plant varieties probably holds the most promising method for augmenting agricultural crop protection and productivity, when properly integrated into traditional systems. Recently, human proteins with chitinase activity and chitinase-like proteins were identified and established as biomarkers for human diseases. This review covers the recent advances of chitinases as a biocontrol agent and its various applications including preparation of medically important chitooligosaccharides, bioconversion of chitin as well as in implementing chitinases as diagnostic and prognostic markers for numerous diseases and the prospect of their future utilization.
Collapse
Affiliation(s)
- Anand Nagpure
- University School of Biotechnology, Guru Gobind Singh Indraprastha University , New Delhi , India
| | | | | |
Collapse
|
32
|
Hammami I, Siala R, Jridi M, Ktari N, Nasri M, Triki M. Partial purification and characterization of chiIO8, a novel antifungal chitinase produced by Bacillus cereus
IO8. J Appl Microbiol 2013; 115:358-66. [DOI: 10.1111/jam.12242] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Revised: 03/08/2013] [Accepted: 03/12/2013] [Indexed: 11/29/2022]
Affiliation(s)
- I. Hammami
- Unité de Recherche Protection des Plantes Cultivées et Environnement; Institut de l'Olivier; Sfax Tunisia
| | - R. Siala
- Laboratoire de Génie Enzymatique et de Microbiologie; Université de sfax Ecole Nationale d'Ingénieurs de Sfax; Sfax Tunisia
| | - M. Jridi
- Laboratoire de Génie Enzymatique et de Microbiologie; Université de sfax Ecole Nationale d'Ingénieurs de Sfax; Sfax Tunisia
| | - N. Ktari
- Laboratoire de Génie Enzymatique et de Microbiologie; Université de sfax Ecole Nationale d'Ingénieurs de Sfax; Sfax Tunisia
| | - M. Nasri
- Laboratoire de Génie Enzymatique et de Microbiologie; Université de sfax Ecole Nationale d'Ingénieurs de Sfax; Sfax Tunisia
| | - M.A. Triki
- Unité de Recherche Protection des Plantes Cultivées et Environnement; Institut de l'Olivier; Sfax Tunisia
| |
Collapse
|
33
|
Shen CR, Liu CL, Lee HP, Chen JK. The identification and characterization of chitotriosidase activity in pancreatin from porcine pancreas. Molecules 2013; 18:2978-87. [PMID: 23459306 PMCID: PMC6269984 DOI: 10.3390/molecules18032978] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 12/17/2012] [Accepted: 02/17/2013] [Indexed: 11/16/2022] Open
Abstract
The versatile oligosaccharide biopolymers, chitin and chitosan, are typically produced using enzymatic processes. However, these processes are usually costly because chitinases and chitosanases are available in limited quantities. Fortunately, a number of commercial enzymes can hydrolyze chitin and chitosan to produce long chain chitin or chitosan oligosaccharides. Here, a platform to screen for enzymes with chitinase and chitosanase activities using a single gel with glycol chitin or glycol chitosan as a substrate was applied. SDS-resistant chitinase and chitosanase activities were observed for pancreatin. Its chitotriosidase had an optimal hydrolysis pH of 4 in the substrate specificity assay. This activity was thermally unstable, but independent of 2-mercaptoethanol. This is the first time a chitotriosidase has been identified in the hog. This finding suggests that oligochitosaccharides can be mass-produced inexpensively using pancreatin.
Collapse
Affiliation(s)
- Chia-Rui Shen
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kweishan, Taoyuan 33302, Taiwan; E-Mail:
| | - Chao-Lin Liu
- Department of Chemical Engineering and Graduate School of Biochemical Engineering, Ming Chi University of Technology, 84 Gung-Juan Road, Taishan, Taipei 24301, Taiwan
- Authors to whom correspondence should be addressed; E-Mails: (C.-L.L.); (J.-K.C.); Tel.: +886-2-2908-9899; Fax: +886-5-222-4171
| | - Hsiao-Ping Lee
- Department of Environment and Biotechnology, Refining & Manufacturing Research Institute, CPC Corporation, 217 Min-Sheng S. Rd, Chiayi 60051, Taiwan; E-Mail:
| | - Jeen-Kuan Chen
- Department of Environment and Biotechnology, Refining & Manufacturing Research Institute, CPC Corporation, 217 Min-Sheng S. Rd, Chiayi 60051, Taiwan; E-Mail:
- Authors to whom correspondence should be addressed; E-Mails: (C.-L.L.); (J.-K.C.); Tel.: +886-2-2908-9899; Fax: +886-5-222-4171
| |
Collapse
|
34
|
Patil NS, Waghmare SR, Jadhav JP. Purification and characterization of an extracellular antifungal chitinase from Penicillium ochrochloron MTCC 517 and its application in protoplast formation. Process Biochem 2013. [DOI: 10.1016/j.procbio.2012.11.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Wang SL, Liu CP, Liang TW. Fermented and enzymatic production of chitin/chitosan oligosaccharides by extracellular chitinases from Bacillus cereus TKU027. Carbohydr Polym 2012; 90:1305-13. [PMID: 22939345 DOI: 10.1016/j.carbpol.2012.06.077] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 06/25/2012] [Accepted: 06/27/2012] [Indexed: 10/28/2022]
Abstract
Two chitinases, Chi I and Chi II, were purified from the culture supernatant of Bacillus cereus TKU027 with shrimp head powder (SHP) as the sole carbon/nitrogen source. The molecular masses of Chi I and Chi II determined using SDS-PAGE were approximately 65kDa and 63kDa, respectively. Chi I toward various surfactants showed high stability, such as SDS, Tween 20, Tween 40 and Triton X-100, and these surfactants were stimulator of Chi I chitinase activity. Concomitant with the production of Chi I and Chi II, chitin oligosaccharides were also observed in the culture supernatant, including chitobiose, chitotriose, chitotetrose and chitopentose at concentrations of 0.44mg/mL, 0.08mg/mL, 0.09mg/mL and 0.43mg/mL, respectively. Chitosan with 60% deacetylation was degraded by TKU027 crude enzyme to prepare chitooligosaccharides. MALDI-TOF MS analysis of the enzymatic hydrolyzates indicated that the products were mainly chitooligosaccharides with degree of polymerization (DP) in the 4-9 range.
Collapse
Affiliation(s)
- San-Lang Wang
- Life Science Development Center, Tamkang University, New Taipei City 25137, Taiwan.
| | | | | |
Collapse
|
36
|
Jankiewicz U, Brzezinska MS, Saks E. Identification and characterization of a chitinase of Stenotrophomonas maltophilia, a bacterium that is antagonistic towards fungal phytopathogens. J Biosci Bioeng 2012; 113:30-5. [DOI: 10.1016/j.jbiosc.2011.08.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 08/18/2011] [Accepted: 08/25/2011] [Indexed: 11/15/2022]
|
37
|
Sharma V, Shanmugam V. Purification and characterization of an extracellular 24 kDa chitobiosidase from the mycoparasitic fungus Trichoderma saturnisporum. J Basic Microbiol 2011; 52:324-31. [PMID: 21953631 DOI: 10.1002/jobm.201100145] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Accepted: 05/07/2011] [Indexed: 11/08/2022]
Abstract
A Trichoderma saturnisporum Hamill isolate GITX-Panog (C) exhibiting strong chitinolytic and antifungal activity against Fusarium oxysporum f.sp. dianthi, the causal agent of vascular wilt in carnation was used to purify extracellular chitobiosidase using Czapek-Dox broth amended with the fungal mycelium as the carbon source. The protein was purified by precipitation with ammonium sulphate, followed by DEAE-Cellulose anion-exchange and Sephacryl S-200 high resolution gel filtration chromatography. The purity of the enzyme was determined by SDS-PAGE, with an estimated molecular mass of 24 kDa. In native gel assay with 4-methylumbelliferyl -N,N ' diacetyl-β-D-chitobioside (4-Mu-(GluNAc)(2) , the purified chitobiosidase was visualized as single fluorescent band. Enzyme activity towards short oligomeric natural substrates indicated that the enzyme has properties that are characteristic to exochitinases. The enzyme was active up to 60 °C and at pH 4.0, and displayed maximum stability at 50 °C. Mn(2+) and Zn(2+) stimulated the enzyme activity by 63% and 41%, respectively. The K(m) and V(max) values of the purified enzyme for 4-Mu-(GluNAc)(2) were 338.9 μM ml(-1) and 0.119 μM ml(-1) min(-1) , respectively. This appears to be the first report of characterization of a chitobiosidase from antagonistic Trichoderma saturnisporum.
Collapse
Affiliation(s)
- Vivek Sharma
- Floriculture Pathology Laboratory, Institute of Himalayan Bioresource Technology, Council of Scientific and Industrial Research, Palampur, Himachal Pradesh, India
| | | |
Collapse
|
38
|
N-acetyl glucosamine obtained from chitin by chitin degrading factors in Chitinbacter tainanesis. Int J Mol Sci 2011; 12:1187-95. [PMID: 21541052 PMCID: PMC3083699 DOI: 10.3390/ijms12021187] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 02/15/2011] [Accepted: 02/15/2011] [Indexed: 12/02/2022] Open
Abstract
A novel chitin-degrading aerobe, Chitinibacter tainanensis, was isolated from a soil sample from southern Taiwan, and was proved to produce N-acetyl glucosamine (NAG). Chitin degrading factors (CDFs) were proposed to be the critical factors to degrade chitin in this work. When C. tainanensis was incubated with chitin, CDFs were induced and chitin was converted to NAG. CDFs were found to be located on the surface of C. tainanensis. N-Acetylglucosaminidase (NAGase) and endochitinase activities were found in the debris, and the activity of NAGase was much higher than that of endochitinase. The optimum pH of the enzymatic activity was about 7.0, while that of NAG production by the debris was 5.3. These results suggested that some factors in the debris, in addition to NAGase and endochitinase, were crucial for chitin degradation.
Collapse
|
39
|
Waghmare SR, Ghosh JS. Chitobiose production by using a novel thermostable chitinase from Bacillus licheniformis strain JS isolated from a mushroom bed. Carbohydr Res 2010; 345:2630-5. [DOI: 10.1016/j.carres.2010.09.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 09/15/2010] [Accepted: 09/21/2010] [Indexed: 10/19/2022]
|
40
|
Mokni-Tlili S, Ben Abdelmalek I, Jedidi N, Belghith H, Gargouri A, Abdennaceur H, Marzouki MN. Exploitation of biological wastes for the production of value-added hydrolases by Streptomyces sp. MSWC1 isolated from municipal solid waste compost. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2010; 28:828-837. [PMID: 20022900 DOI: 10.1177/0734242x09357078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Actinomycetes with the ability to degrade natural polysaccharides were isolated during a screening programme from soil, farmyard manure and municipal solid waste compost. One of the most potent isolates was identified as Streptomyces sp. MSWC1 using morphological and biochemical properties along with 16S rDNA partial sequence analysis. The highest enzyme production by Streptomyces was observed for the xylanase and chitinase activity on different carbon sources with an optimum of 12,100 IU ml(-1) and 110 IU ml(-1) at 3 days' culture on 1% of xylan and chitin, respectively. To meet the demand of industry, low-cost medium is required for the production of hydrolases by Streptomyces sp. Strain MSWC1 grown on manure, compost, and a natural carbon source was used to evaluate the re-utilisation of biological wastes for the production of value-added products. Despite the presence of a high amount of toxic heavy metals in the compost, Streptomyces produced interesting enzymes that have been biochemically characterized.
Collapse
Affiliation(s)
- Sonia Mokni-Tlili
- Laboratoire de Traitement et Recyclage des Eaux Usées, Centre des Recherches et des Technologies des Eaux, Technopole de Borj Cedria, Soliman, Tunisia
| | | | | | | | | | | | | |
Collapse
|
41
|
Purification and partial characterization of a 36-kDa chitinase from Bacillus thuringiensis subsp. colmeri, and its biocontrol potential. Enzyme Microb Technol 2010. [DOI: 10.1016/j.enzmictec.2009.10.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
42
|
Study of thermostable chitinases from Oerskovia xanthineolytica NCIM 2839. Appl Microbiol Biotechnol 2010; 86:1849-56. [DOI: 10.1007/s00253-009-2432-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Revised: 12/28/2009] [Accepted: 12/28/2009] [Indexed: 10/19/2022]
|
43
|
Production and partial characterization of chitinase from a halotolerant Planococcus rifitoensis strain M2-26. World J Microbiol Biotechnol 2009. [DOI: 10.1007/s11274-009-0259-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
44
|
|
45
|
Kao PM, Chen CI, Huang SC, Lin KM, Chang YC, Liu YC. Preparation of fermentation-processed chitin and its application in chitinase affinity adsorption. Process Biochem 2009. [DOI: 10.1016/j.procbio.2008.11.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
Liu CL, Shen CR, Hsu FF, Chen JK, Wu PT, Guo SH, Lee WC, Yu FW, Mackey ZB, Turk J, Gross ML. Isolation and identification of two novel SDS-resistant secreted chitinases from Aeromonas schubertii. Biotechnol Prog 2009; 25:124-31. [PMID: 19197977 PMCID: PMC2647588 DOI: 10.1002/btpr.100] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Two SDS-resistant endochitinases, designated as ASCHI53 and ASCHI61, were isolated from Aeromonas schubertii in a soil sample from southern Taiwan. MALDI-TOF mass measurement indicates the molecular weights of 53,527 for ASCHI53 and 61,202 for ASCHI61. N-terminal and internal amino acid sequences were obtained, and BLAST analysis of the sequences and MS/MS peptide sequencing showed that they were novel proteins. Degradation of chitin by these two endochitinases gave rise to hexameric chitin oligosaccharide, a compound known to have several potent biomedical functions. ASCHI53 and ASCHI61 retained, respectively, 65% and 75%, of their chitinase activity in the presence of 5% SDS and 100% of their activity in the presence of 10% beta-mercaptoethanol. These results demonstrate that they are SDS-resistant endochitinases and probably have a rigid structure.
Collapse
Affiliation(s)
- Chao-Lin Liu
- Graduate School of Biochemical Engineering, and Dept. of Safety Health and Environmental Engineering, MingChi University of Technology, Taipei, Taiwan, Republic of China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Purification and characterization of chitinases from Paecilomyces variotii DG-3 parasitizing on Meloidogyne incognita eggs. J Ind Microbiol Biotechnol 2008; 36:195-203. [DOI: 10.1007/s10295-008-0485-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Accepted: 09/24/2008] [Indexed: 11/26/2022]
|
48
|
Behravan J, al Ahmadi KJ, Yazdi MT, Najafi MF, Shahverdi A, Faramarzi M, Zarrini G. Isolation and Characterization of a Chitionolytic Enzyme Producing Microorganism, Paenibacillus chitinolyticus JK2 from Iran. ACTA ACUST UNITED AC 2008. [DOI: 10.3923/jm.2008.395.404] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
49
|
. SAA, . TLS, . NA, . NS, . KK. Microbial Degradation of Chitin Materials by Trichoderma virens UKM1. ACTA ACUST UNITED AC 2007. [DOI: 10.3923/jbs.2008.52.59] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
50
|
Purification and characterization of a thermophilic chitinase produced by Aeromonas sp. DYU-Too7. KOREAN J CHEM ENG 2007. [DOI: 10.1007/s11814-007-0045-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|