1
|
Shao Y, Du G, Luo B, Liu T, Zhao J, Zhang S, Wang J, Chi M, Cai C, Liu Y, Meng X, Liu Z, Wang S, Nie S. A Tough Monolithic-Integrated Triboelectric Bioplastic Enabled by Dynamic Covalent Chemistry. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311993. [PMID: 38183330 DOI: 10.1002/adma.202311993] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/30/2023] [Indexed: 01/08/2024]
Abstract
Electronic waste is a growing threat to the global environment and human health, raising particular concerns. Triboelectric devices synthesized from sustainable and degradable materials are a promising electronic alternative, but the mechanical mismatch at the interface between the polymer substrate and the electrodes remains unresolved in practical applications. This study uses the sulfhydryl silanization reaction and the chemical selectivity and site specificity of the thiol-disulfide exchange reaction in dynamic covalent chemistry to prepare a tough monolithic-integrated triboelectric bioplastic. The stress is dissipated by covalent bond adaptation to the interface interaction, which makes the polymer dielectric layer to the conductive layer have a good interface adhesion effect (220.55 kPa). The interfacial interlocking of the polymer substrate with the conductive layer gives the triboelectric bioplastic excellent tensile strength (87.4 MPa) and fracture toughness (33.3 MJ m-3). Even when subjected to a tension force of 10 000 times its weight, it still maintains a stable triboelectric output with no visible cracks. This study provides new insights into the design of reliable and environmentally friendly self-powered devices, which is significant for the development of flexible wearable electronics.
Collapse
Affiliation(s)
- Yuzheng Shao
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Guoli Du
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Bin Luo
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Tao Liu
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Jiamin Zhao
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Song Zhang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Jinlong Wang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Mingchao Chi
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Chenchen Cai
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Yanhua Liu
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Xiangjiang Meng
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Zhaomeng Liu
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Shuangfei Wang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Shuangxi Nie
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
| |
Collapse
|
2
|
Hage M, Khelissa S, Akoum H, Chihib NE, Jama C. Cold plasma surface treatments to prevent biofilm formation in food industries and medical sectors. Appl Microbiol Biotechnol 2022; 106:81-100. [PMID: 34889984 PMCID: PMC8661349 DOI: 10.1007/s00253-021-11715-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 10/28/2022]
Abstract
Environmental conditions in food and medical fields enable the bacteria to attach and grow on surfaces leading to resistant bacterial biofilm formation. Indeed, the first step in biofilm formation is the bacterial irreversible adhesion. Controlling and inhibiting this adhesion is a passive approach to fight against biofilm development. This strategy is an interesting path in the inhibition of biofilm formation since it targets the first step of biofilm development. Those pathogenic structures are responsible for several foodborne diseases and nosocomial infections. Therefore, to face this public health threat, researchers employed cold plasma technologies in coating development. In this review, the different factors influencing the bacterial adhesion to a substrate are outlined. The goal is to present the passive coating strategies aiming to prevent biofilm formation via cold plasma treatments, highlighting antiadhesive elaborated surfaces. General aspects of surface treatment, including physico-chemical modification and application of cold plasma technologies, were also presented. KEY POINTS: • Factors surrounding pathogenic bacteria influence biofilm development. • Controlling bacterial adhesion prevents biofilm formation. • Materials can be coated via cold plasma to inhibit bacterial adhesion.
Collapse
Affiliation(s)
- Mayssane Hage
- UMR 8207 - UMET - Unité Matériaux Et Transformations, Univ. Lille, CNRS, INRAE, Centrale Lille, 59000, Lille, France
- Laboratoire d'analyses Chimiques Et Microbiologiques, Faculté de Santé Publique - Université Libanaise, Saida, Lebanon
| | - Simon Khelissa
- UMR 8207 - UMET - Unité Matériaux Et Transformations, Univ. Lille, CNRS, INRAE, Centrale Lille, 59000, Lille, France
| | - Hikmat Akoum
- Laboratoire d'analyses Chimiques Et Microbiologiques, Faculté de Santé Publique - Université Libanaise, Saida, Lebanon
| | - Nour-Eddine Chihib
- UMR 8207 - UMET - Unité Matériaux Et Transformations, Univ. Lille, CNRS, INRAE, Centrale Lille, 59000, Lille, France
| | - Charafeddine Jama
- UMR 8207 - UMET - Unité Matériaux Et Transformations, Univ. Lille, CNRS, INRAE, Centrale Lille, 59000, Lille, France.
| |
Collapse
|
3
|
Tu C, Zhou T, Deng L, Gao C. Fabrication of poly(
PEGMA
) surface with controllable thickness gradient and its mediation on the gradient adhesion of cells. J Appl Polym Sci 2021. [DOI: 10.1002/app.50463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chenxi Tu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Tong Zhou
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Liwen Deng
- Department of Biomedical Engineering Zhejiang University Hangzhou China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| |
Collapse
|
4
|
Forman MB, Brewer EC, Brown ZR, Menshikova EV, Lowman AM, Jackson EK, Brewer. Novel Guidewire Design and Coating for Continuous Delivery of Adenosine During Interventional Procedures. J Am Heart Assoc 2021; 10:e019275. [PMID: 33496190 PMCID: PMC7955438 DOI: 10.1161/jaha.120.019275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background The “no‐reflow phenomenon” compromises percutaneous coronary intervention outcomes. There is an unmet need for a device that prevents no‐reflow phenomenon. Our goal was to develop a guidewire platform comprising a nondisruptive hydrophilic coating that allows continuous delivery of adenosine throughout a percutaneous coronary intervention. Methods and Results We developed a guidewire with spaced coils to increase surface area for drug loading. Guidewires were plasma treated to attach hydroxyl groups to metal surfaces, and a methoxy–polyethylene glycol–silanol primer layer was covalently linked to hydroxyl groups. Using polyvinyl alcohol, polyvinyl pyrrolidone, and polyvinyl acetate, a drug layer containing jet‐milled adenosine was hydrogen‐bonded to the polyethylene glycol–silanol layer and coated with an outer diffusive barrier layer. Coatings were processed with a freeze/thaw curing method. In vitro release studies were conducted followed by in vivo evaluation in pigs. Coating quality, performance, and stability with sterilization were also evaluated. Antiplatelet properties of the guidewire were also determined. Elution studies with adenosine‐containing guidewires showed curvilinear and complete release of adenosine over 60 minutes. Porcine studies demonstrated that upon insertion into a coronary artery, adenosine‐releasing guidewires induced immediate and robust increases (2.6‐fold) in coronary blood flow velocity, which were sustained for ≈30 minutes without systemic hemodynamic effects or arrhythmias. Adenosine‐loaded wires prevented and reversed coronary vasoconstriction induced by acetylcholine. The wires significantly inhibited platelet aggregation by >80% in vitro. Guidewires passed bench testing for lubricity, adherence, integrity, and tracking. Conclusions Our novel drug‐releasing guidewire platform represents a unique approach to prevent/treat no‐reflow phenomenon during percutaneous coronary intervention.
Collapse
Affiliation(s)
| | - Erik C Brewer
- Department of Biomedical Engineering Rowan University Glassboro NJ
| | - Zachary R Brown
- Department of Biomedical Engineering Rowan University Glassboro NJ
| | | | - Anthony M Lowman
- Department of Biomedical Engineering Rowan University Glassboro NJ
| | - Edwin K Jackson
- Department of Pharmacology and Chemical Biology University of Pittsburgh Pittsburgh PA
| | | |
Collapse
|
5
|
Promising electrodeposited biocompatible coatings for steel obtained from polymerized microemulsions. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124555] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Peng L, Chang L, Si M, Lin J, Wei Y, Wang S, Liu H, Han B, Jiang L. Hydrogel-Coated Dental Device with Adhesion-Inhibiting and Colony-Suppressing Properties. ACS APPLIED MATERIALS & INTERFACES 2020; 12:9718-9725. [PMID: 32027112 DOI: 10.1021/acsami.9b19873] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bacterial infection is the main cause of implantation failure worldwide, and the importance of antibiotics on medical devices has been undermined because of antibiotic resistance. Antimicrobial hydrogels have emerged as a promising approach to combat infections associated with medical devices and wound healing. However, hydrogel coatings that simultaneously possess both antifouling and antimicrobial attributes are scarce. Herein, we report an antimicrobial hydrogel that incorporates adhesion-inhibiting polyethylene glycol (PEG) and colony-suppressing chitosan (CS) as a dressing to combat bacterial infections. These two polymers have important environmentally benign characteristics including low toxicity, low volatility, and biocompatibility. Although hydrogels containing PEG and CS have been reported for applications in the fields of wound dressing, tissue repair, water purification, drug delivery, and scaffolds for bone regeneration, there still has been no report on the application of CS/PEG hydrogel coatings in dental applications. Herein, this biointerface shows superior activity in early-stage adhesion inhibition (98.8%, 5 h) and displays remarkably long-lasting colony-suppression activity (93.3%, 7 d). Thus, this novel nanomaterial, which has potential as a dual-functional platform with integrated antifouling and antimicrobial functions with excellent biocompatibility, might be used as a safe and effective antimicrobial coating in biomedical device applications.
Collapse
Affiliation(s)
- Liying Peng
- Department of Orthodontics , Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology , 22 Zhongguancun South Avenue , Haidian District, Beijing 100081 , P. R. China
| | - Li Chang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Mengting Si
- Department of Geriatric Dentistry , Peking University School and Hospital of Stomatology, Beijing Laboratory of Biomedical Materials , 22 Zhongguancun South Avenue , Haidian District, Beijing 100081 , P. R. China
| | - Jiuxiang Lin
- Department of Orthodontics , Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology , 22 Zhongguancun South Avenue , Haidian District, Beijing 100081 , P. R. China
| | - Yan Wei
- Department of Geriatric Dentistry , Peking University School and Hospital of Stomatology, Beijing Laboratory of Biomedical Materials , 22 Zhongguancun South Avenue , Haidian District, Beijing 100081 , P. R. China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Hongliang Liu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Bing Han
- Department of Orthodontics , Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology , 22 Zhongguancun South Avenue , Haidian District, Beijing 100081 , P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
| |
Collapse
|
7
|
Sen-Britain S, Britain DM, Hicks WL, Gardella JA. ToF-SIMS and TIRF microscopy investigation on the effects of HEMA copolymer surface chemistry on spatial localization, surface intensity, and release of fluorescently labeled keratinocyte growth factor. Biointerphases 2019; 14:051003. [PMID: 31547664 PMCID: PMC6905652 DOI: 10.1116/1.5119871] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/29/2019] [Accepted: 09/03/2019] [Indexed: 11/17/2022] Open
Abstract
The need for direct biomaterial-based delivery of growth factors to wound surfaces to aid in wound healing emphasizes the importance of interfacial interactions between the biomaterial and the wound surface. These interactions include the spatial localization of growth factor, the surface intensity of growth factor in contact with the wound, and the release profile of growth factor to the wound surface. The authors report the use of time-of-flight secondary ion mass spectrometry to determine the relationship between biomaterial surface chemistry and the spatial localization of growth factor. They have implemented a novel application of total internal reflectance fluorescence (TIRF) microscopy to measure the surface intensity and release of growth factor in contact with a glass substrate that has been used to model a wound surface. Detailed information regarding TIRF experiments has been included to aid in future studies regarding the biomaterial delivery to interfaces. The authors have evaluated the effects of (hydroxyethyl)methacrylate (HEMA) homopolymer, 5.89% methyl methacrylate/HEMA, and 5.89% methacrylic acid/HEMA surface chemistry on the spatial localization of AlexaFluor 488-labeled keratinocyte growth factor (AF488-KGF), AF488-KGF surface intensity at the copolymer surface, and release to a glass substrate. KGF is known to promote re-epithelialization in wound healing. The results show that the two copolymers allow for increased surface coverage, surface intensity, and release of AF488-KGF in comparison to the homopolymer. It is likely that differences in these three aspects could have a profound effect on the wound healing response.
Collapse
Affiliation(s)
- Shohini Sen-Britain
- Department of Chemistry, University at Buffalo-State University of New York, Buffalo, New York 14221
| | - Derek M Britain
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California 94158
| | - Wesley L Hicks
- Department of Head and Neck/Plastic and Reconstructive Surgery, Roswell Comprehensive Cancer Center, Buffalo, New York 14203
| | - Joseph A Gardella
- Department of Chemistry, University at Buffalo-State University of New York, Buffalo, New York 14221
| |
Collapse
|
8
|
Yang N, Yang T, Wang W, Chen H, Li W. Polydopamine modified polyaniline-graphene oxide composite for enhancement of corrosion resistance. JOURNAL OF HAZARDOUS MATERIALS 2019; 377:142-151. [PMID: 31158583 DOI: 10.1016/j.jhazmat.2019.05.063] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 04/03/2019] [Accepted: 05/25/2019] [Indexed: 06/09/2023]
Abstract
In this study, the composite of two-dimensional graphene oxide (GO) nanosheets and button-shaped polyaniline (PANI) was synthesized and further modified by polydopamine (PDA). The obtained PDA-PANI-GO composite was used to enhance the corrosion protection ability of nontoxic water-based alkyd varnish (WAV). The chemical composition, functional groups and surface morphologies of GO, PANI-GO and PDA-PANI-GO composites were characterized by XRD, FT-IR XPS and SEM. The anticorrosion performance was demonstrated by electrochemical impedance spectroscopy measurements and polarization tests. Due to the physical barrier effects and surface hydrophobicity of PANI-GO composite, the approaches of the caustic substances to the surface of the metal was inhibited, while the highly adhesive PDA molecules reinforced compatibility between fillers and WAV. As results, PDA-PANI-GO composite introduced WAV enhanced corrosion prevention performance. Under the optimal conditions, where the ratio of PDA to PANI-GO was kept at 2:1, the impedance values increased by over two orders of magnitude compared with bare steel.
Collapse
Affiliation(s)
- Ning Yang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, PR China; Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266000, PR China; University of Chinese Academy of Sciences, Beijing, 100039, PR China
| | - Tao Yang
- College of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, PR China
| | - Wei Wang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, PR China; Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266000, PR China; University of Chinese Academy of Sciences, Beijing, 100039, PR China
| | - Huaiyin Chen
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, PR China; Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266000, PR China; University of Chinese Academy of Sciences, Beijing, 100039, PR China
| | - Weihua Li
- College of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, PR China.
| |
Collapse
|
9
|
Deng F, Li Y, Hossain MJ, Kendig MD, Arnold R, Goldys EM, Morris MJ, Liu G. Polymer brush based fluorescent immunosensor for direct monitoring of interleukin-1β in rat blood. Analyst 2019; 144:5682-5690. [PMID: 31418433 DOI: 10.1039/c9an01300h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A sandwich immunosensor was successfully developed for monitoring of interleukin-1β (IL-1β) in rat whole blood. The substrate stainless steel (SS) was first coated with a polydopamine layer and subsequently grafted with poly(ethylene glycol) methacrylate brushes, onto which a sandwich immunosensor was modified for detection of IL-1β. The device has been successfully applied for monitoring of IL-1β with a limit of detection of 4.7 pg mL-1, and a linear detection range of 12.5-200 pg mL-1. Good specificity and selectivity for monitoring of IL-1β in rat macrophage secretion were achieved. Furthermore, this device was validated by detection of IL-1β in rat whole blood samples with greater concentrations observed in obese rats compared to control, and strong positive correlation between concentrations of IL-1β and blood glucose. These results suggest this device is feasible for direct detection of target analytes in biological samples.
Collapse
Affiliation(s)
- Fei Deng
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale Biophotonics, Faculty of Engineering, UNSW Sydney, NSW 2052, Australia. and Australian Centre for NanoMedicine, UNSW Sydney, NSW 2052, Australia
| | - Yi Li
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale Biophotonics, Faculty of Engineering, UNSW Sydney, NSW 2052, Australia. and Australian Centre for NanoMedicine, UNSW Sydney, NSW 2052, Australia
| | | | | | - Ria Arnold
- School of Medical Sciences, UNSW Sydney, NSW 2052, Australia
| | - Ewa M Goldys
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale Biophotonics, Faculty of Engineering, UNSW Sydney, NSW 2052, Australia. and Australian Centre for NanoMedicine, UNSW Sydney, NSW 2052, Australia
| | | | - Guozhen Liu
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale Biophotonics, Faculty of Engineering, UNSW Sydney, NSW 2052, Australia. and Australian Centre for NanoMedicine, UNSW Sydney, NSW 2052, Australia
| |
Collapse
|
10
|
Venault A, Chang Y. Designs of Zwitterionic Interfaces and Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1714-1726. [PMID: 30001622 DOI: 10.1021/acs.langmuir.8b00562] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Zwitterionic materials are the latest generation of materials for nonfouling interfaces and membranes. They outperform poly(ethylene glycol) derivatives because they form tighter bonds with water molecules and can trap more water molecules. This feature article summarizes our laboratory's fundamental developments related to the functionalization of interfaces and membranes using zwitterionic materials. Our molecular designs of zwitterionic polymers and copolymers, sulfobetaine-based, carboxybetaine-based, or phosphobetaine-based, are first reviewed. Then, the strategies used to functionalize surfaces/membranes by coating, grafting onto, grafting from, or in situ modification are examined and discussed, and the third part of this article shifts the focus to key applications of zwitterionic materials. Finally, some potential future directions for molecular designs, functionalization processes, and applications are presented.
Collapse
Affiliation(s)
- Antoine Venault
- Department of Chemical Engineering and R&D Center for Membrane Technology , Chung Yuan Christian University , Chungli District, Taoyuan 320 , Taiwan R.O.C
| | - Yung Chang
- Department of Chemical Engineering and R&D Center for Membrane Technology , Chung Yuan Christian University , Chungli District, Taoyuan 320 , Taiwan R.O.C
| |
Collapse
|
11
|
Modification of in vitro degradation behavior of pure iron with ultrasonication treatment: Comparison of two different pseudo-physiological solutions. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 95:275-285. [DOI: 10.1016/j.msec.2018.10.079] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 07/23/2018] [Accepted: 10/23/2018] [Indexed: 11/17/2022]
|
12
|
Subbiahdoss G, Zeng G, Aslan H, Ege Friis J, Iruthayaraj J, Zelikin AN, Meyer RL. Antifouling properties of layer by layer DNA coatings. BIOFOULING 2019; 35:75-88. [PMID: 30821496 DOI: 10.1080/08927014.2019.1568417] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 12/14/2018] [Accepted: 01/04/2019] [Indexed: 06/09/2023]
Abstract
Fouling is a major concern for solid/liquid interfaces of materials used in different applications. One approach of fouling control is the use of hydrophilic polymer coatings made from poly-anions and poly-cations using the layer-by-layer (LBL) method. The authors hypothesized that the poly-anionic properties and the poly-phosphate backbone of DNA would provide anti-biofouling and anti-scaling properties. To this end, poly(ethyleneimine)/DNA LBL coatings against microbial and inorganic fouling were developed, characterized and evaluated. DNA LBL coatings reduced inorganic fouling from tap water by 90% when incubated statically or under flow conditions mimicking surfaces in heat exchangers. The coatings also impaired biofilm formation by 93% on stainless steel from tap water, and resulted in a 97% lower adhesion force and reduced initial attachment of the human pathogens Staphylococcus aureus, Staphylococcus epidermidis and Pseudomonas aeruginosa on glass. This study demonstrates a proof of concept that LBL coatings with poly-anions harboring phosphate groups can address fouling in several applications.
Collapse
Affiliation(s)
| | - Guanghong Zeng
- a Interdisciplinary Nanoscience Center , Aarhus University , Aarhus , Denmark
| | - Hüsnü Aslan
- a Interdisciplinary Nanoscience Center , Aarhus University , Aarhus , Denmark
| | - Jakob Ege Friis
- b Department of Biological and Chemical Engineering , Aarhus University , Aarhus , Denmark
| | - Joseph Iruthayaraj
- b Department of Biological and Chemical Engineering , Aarhus University , Aarhus , Denmark
| | | | - Rikke Louise Meyer
- a Interdisciplinary Nanoscience Center , Aarhus University , Aarhus , Denmark
- d Department of Bioscience , Aarhus University , Aarhus , Denmark
| |
Collapse
|
13
|
Bekmurzayeva A, Duncanson WJ, Azevedo HS, Kanayeva D. Surface modification of stainless steel for biomedical applications: Revisiting a century-old material. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 93:1073-1089. [PMID: 30274039 DOI: 10.1016/j.msec.2018.08.049] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 07/06/2018] [Accepted: 08/22/2018] [Indexed: 12/12/2022]
Abstract
Stainless steel (SS) has been widely used as a material for fabricating cardiovascular stents/valves, orthopedic prosthesis, and other devices and implants used in biomedicine due to its malleability and resistance to corrosion and fatigue. Despite its good mechanical properties, SS (as other metals) lacks biofunctionality. To be successfully used as a biomaterial, SS must be made resistant to the biological environment by increasing its anti-fouling properties, preventing biofilm formation (passive surface modification), and imparting functionality for eluting a specific drug or capturing selected cells (active surface modification); these features depend on the final application. Various physico-chemical techniques, including plasma vapor deposition, electrochemical treatment, and attachment of different linkers that add functional groups, are used to obtain SS with increased corrosion resistance, improved osseointegration capabilities, added hemocompatibility, and enhanced antibacterial properties. Existing literature on this topic is extensive and has not been covered in an integrated way in previous reviews. This review aims to fill this gap, by surveying the literature on SS surface modification methods, as well as modification routes tailored for specific biomedical applications. STATEMENT OF SIGNIFICANCE Stainless steel (SS) is widely used in many biomedical applications including bone implants and cardiovascular stents due to its good mechanical properties, biocompatibility and low price. Surface modification allows improving its characteristics without compromising its important bulk properties. SS with improved blood compatibility (blood contacting implants), enhanced ability to resist bacterial infection (long-term devices), better integration with a tissue (bone implants) are examples of successful SS surface modifications. Existing literature on this topic is extensive and has not been covered in an integrated way in previous reviews. This review paper aims to fill this gap, by surveying the literature on SS surface modification methods, as well as to provide guidance for selecting appropriate modification routes tailored for specific biomedical applications.
Collapse
Affiliation(s)
- Aliya Bekmurzayeva
- Engineering and Technology Program, Nazarbayev University, Astana 010000, Kazakhstan; National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
| | - Wynter J Duncanson
- School of Engineering, Nazarbayev University, Astana 010000, Kazakhstan; College of Engineering, Boston University, Boston, MA 02215, USA
| | - Helena S Azevedo
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
| | - Damira Kanayeva
- School of Science and Technology, Nazarbayev University, Astana 010000, Kazakhstan.
| |
Collapse
|
14
|
Trzaskowska PA, Kuźmińska A, Butruk-Raszeja B, Rybak E, Ciach T. Electropolymerized hydrophilic coating on stainless steel for biomedical applications. Colloids Surf B Biointerfaces 2018; 167:499-508. [PMID: 29729627 DOI: 10.1016/j.colsurfb.2018.04.052] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 03/23/2018] [Accepted: 04/25/2018] [Indexed: 01/22/2023]
Abstract
Current metal implants (e.g. stents) covered with drug-eluting coatings are not robust for long-term usage. Other types and methods of coatings are needed, especially ones that are not prone to activity loss in vivo. In this paper, the method of stainless steel (SS) coating with poly(ethylene glycol) dimethacrylate (PEGDMA) with the use of electropolymerization (EP) is presented. The application of a specific and simple reaction mixture enabled the production of SS-PEGDMA materials that possessed a homogenous surface. The polymer coating was durable for 28 days of constant washing. The resulting materials were non-toxic and haemolysis did not occur after incubation with blood. Moreover, because the coating filled up scratches present on bare SS and hydrophilized the SS surface, it reduced fibrinogen adsorption five times in comparison to SS and, unlike on SS, no platelet activation was detected. The presented method is a very promising candidate for scale up due to its simplicity and low cost.
Collapse
Affiliation(s)
- Paulina A Trzaskowska
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warynskiego 1, 00-645 Warsaw, Poland; CEZAMAT PW, Poleczki 19, 02-822 Warsaw, Poland.
| | - Aleksandra Kuźmińska
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warynskiego 1, 00-645 Warsaw, Poland.
| | - Beata Butruk-Raszeja
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warynskiego 1, 00-645 Warsaw, Poland.
| | - Ewa Rybak
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warynskiego 1, 00-645 Warsaw, Poland
| | - Tomasz Ciach
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warynskiego 1, 00-645 Warsaw, Poland; CEZAMAT PW, Poleczki 19, 02-822 Warsaw, Poland.
| |
Collapse
|
15
|
Vivi VK, Martins-Franchetti SM, Attili-Angelis D. Biodegradation of PCL and PVC: Chaetomium globosum (ATCC 16021) activity. Folia Microbiol (Praha) 2018; 64:1-7. [DOI: 10.1007/s12223-018-0621-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 05/31/2018] [Indexed: 10/14/2022]
|
16
|
Bratek-Skicki A, Eloy P, Morga M, Dupont-Gillain C. Reversible Protein Adsorption on Mixed PEO/PAA Polymer Brushes: Role of Ionic Strength and PEO Content. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:3037-3048. [PMID: 29406751 DOI: 10.1021/acs.langmuir.7b04179] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Proteins at interfaces are a key for many applications in the biomedical field, in biotechnologies, in biocatalysis, in food industry, etc. The development of surface layers that allow to control and manipulate proteins is thus highly desired. In previous works, we have shown that mixed polymer brushes combining the protein-repellent properties of poly(ethylene oxide) (PEO) and the stimuli-responsive adsorption behavior of poly(acrylic acid) (PAA) could be synthesized and used to achieve switchable protein adsorption. With the present work, we bring more insight into the rational design of such smart thin films by unravelling the role of PEO on the adsorption/desorption of proteins. The PEO content of the mixed PEO/PAA brushes was regulated, on the one hand, by using PEO with different molar masses and, on the other hand, by varying the ratio of PEO and PAA in the solutions used to synthesize the brushes. The influence of ionic strength on the protein adsorption behavior was also further examined. The behavior of three proteins-human serum albumin, lysozyme, and human fibrinogen, which have very different size, shape, and isoelectric point-was investigated. X-ray photoelectron spectroscopy, quartz crystal microbalance, atomic force microscopy, and streaming potential measurements were used to characterize the mixed polymer brushes and, in particular, to estimate the fraction of each polymer within the brushes. Protein adsorption and desorption conditions were selected based on previous studies. While brushes with a lower PEO content allowed the higher protein adsorption to occur, fully reversible adsorption could only be achieved when the PEO surface density was at least 25 PEO units per nm2. Taken together, the results increase the ability to finely tune protein adsorption, especially with temporal control. This opens up possibilities of applications in biosensor design, separation technologies, nanotransport, etc.
Collapse
Affiliation(s)
- Anna Bratek-Skicki
- Institute of Condensed Matter and Nanosciences , Université catholique de Louvain , Place Louis Pasteur (L4.01.10) , 1348 Louvain-la-Neuve , Belgium
- Jerzy Haber Institute of Catalysis and Surface Chemistry , Polish Academy of Sciences , Niezapominajek 8 , PL30239 Krakow , Poland
| | - Pierre Eloy
- Institute of Condensed Matter and Nanosciences , Université catholique de Louvain , Place Louis Pasteur (L4.01.10) , 1348 Louvain-la-Neuve , Belgium
| | - Maria Morga
- Jerzy Haber Institute of Catalysis and Surface Chemistry , Polish Academy of Sciences , Niezapominajek 8 , PL30239 Krakow , Poland
| | - Christine Dupont-Gillain
- Institute of Condensed Matter and Nanosciences , Université catholique de Louvain , Place Louis Pasteur (L4.01.10) , 1348 Louvain-la-Neuve , Belgium
| |
Collapse
|
17
|
Kuliasha CA, Fedderwitz RL, Calvo PR, Sumerlin BS, Brennan AB. Engineering the Surface Properties of Poly(dimethylsiloxane) Utilizing Aqueous RAFT Photografting of Acrylate/Methacrylate Monomers. Macromolecules 2018. [DOI: 10.1021/acs.macromol.7b02575] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Cary A. Kuliasha
- Department of Materials Science and Engineering, §J. Crayton M. Pruitt Family Department of Biomedical Engineering, and ‡George & Josephine Butler Polymer Research Laboratory, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Rebecca L. Fedderwitz
- Department of Materials Science and Engineering, §J. Crayton M. Pruitt Family Department of Biomedical Engineering, and ‡George & Josephine Butler Polymer Research Laboratory, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Patricia R. Calvo
- Department of Materials Science and Engineering, §J. Crayton M. Pruitt Family Department of Biomedical Engineering, and ‡George & Josephine Butler Polymer Research Laboratory, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Brent S. Sumerlin
- Department of Materials Science and Engineering, §J. Crayton M. Pruitt Family Department of Biomedical Engineering, and ‡George & Josephine Butler Polymer Research Laboratory, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Anthony B. Brennan
- Department of Materials Science and Engineering, §J. Crayton M. Pruitt Family Department of Biomedical Engineering, and ‡George & Josephine Butler Polymer Research Laboratory, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
18
|
Li Z, Jiang Z, Zhao L, Yang X, Zhang J, Song X, Liu B, Ding J. PEGylated stereocomplex polylactide coating of stent for upregulated biocompatibility and drug storage. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 81:443-451. [PMID: 28887996 DOI: 10.1016/j.msec.2017.08.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 07/24/2017] [Accepted: 08/02/2017] [Indexed: 02/05/2023]
Abstract
Treatment of coronary heart disease by percutaneous coronary intervention (PCT) is usually limited to the high restenosis rate after implantation of bare-metal stent. To solve the problem, the coating of PEGylated stereocomplex poly(l-lactide) (PEG-cPLA) was utilized on the surface modification of stainless steel (SS) sheet. Specifically, the 3-aminopropyltriethoxysilane (APTES)-modified methoxy-poly(ethylene glycol)-poly(d-lactide) (mPEG-PDLA) was grafted onto the surface of hydroxylated SS sheet through coupling reaction, and poly(l-lactide)-poly(ethylene glycol)-poly(l-lactide) (PLLA-PEG-PLLA) was coated onto the surface through stereocomplex interaction between DLA and LLA units. The increase of contact angle firstly confirmed the changes of surface composition and hydrophilicity for the PEG-scPLA-modified SS sheet. The decreased fibrinogen adsorption, down-regulated platelet activation, and improved adhesion of human umbilical vein endothelial cells (HUVECs) indicated the excellent biocompatibility of PEG-scPLA-modified SS sheet. In addition, the drug loading capability of SS sheet was greatly upregulated through the formation of scPLA coating on the surface, where fluorescein (FLU) was chosen as a model molecule. Overall, the surface modification of SS sheet with PEG-scPLA could enhance the comprehensive performances, such as biocompatibility and drug loading capability, demonstrating that PEG-scPLA is a promising coating of coronary stent for PCT.
Collapse
Affiliation(s)
- Zhibo Li
- Department of Cardiology, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Zhongyu Jiang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Lei Zhao
- Department of Cardiology, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Xianrui Yang
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Jin Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, PR China
| | - Xianjing Song
- Department of Cardiology, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Bin Liu
- Department of Cardiology, The Second Hospital of Jilin University, Changchun 130041, PR China.
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| |
Collapse
|
19
|
Jin S, Zhang W, Yang Q, Dai L, Zhou P. An inorganic boronate affinity in-needle monolithic device for specific capture of cis-diol containing compounds. Talanta 2017; 178:710-715. [PMID: 29136885 DOI: 10.1016/j.talanta.2017.10.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 10/03/2017] [Accepted: 10/07/2017] [Indexed: 10/18/2022]
Abstract
In this work, inorganic boronate affinity monolith was prepared by in situ synthesis in 0.33mm i.d. stainless steel needle through sol-gel process using tetraethoxysilane and tetrabutyl orthotitanate as the co-precursors. The morphology, structure and composition of the monolith were characterized. In contrast to conventional boronate affinity materials, inorganic boric acid was used as affinity ligand. Different compounds were used for the evaluation of the boronate affinity of this inorganic monolithic material. The monolith exhibited good selectivity towards cis-diol containing compounds. Recovery of greater than 90% was achieved for in-needle extraction of catechol under neutral conditions. Owing to the hydrophilic property of the monolith, the procedure of affinity chromatography could be performed in aqueous solution. This monolithic in-needle device will be useful for boronate affinity extraction of small-volume samples.
Collapse
Affiliation(s)
- Shanxia Jin
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Wei Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Qin Yang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Lili Dai
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Ping Zhou
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China.
| |
Collapse
|
20
|
Mohammadiazar S, Fallahpour N, Roostaie A, Ebrahimi B. Improvement of solid-phase microextraction efficiency by the application of a carbon-nanotubes-based ternary microextraction fiber composite. J Sep Sci 2017; 40:3682-3689. [DOI: 10.1002/jssc.201700055] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 06/28/2017] [Accepted: 06/30/2017] [Indexed: 11/05/2022]
Affiliation(s)
- Sirwan Mohammadiazar
- Department of Chemistry; Sanandaj Branch; Islamic Azad University; Sanandaj Iran
| | - Nastaran Fallahpour
- Department of Chemistry; Sanandaj Branch; Islamic Azad University; Sanandaj Iran
| | - Ali Roostaie
- Technology Management Department; Police Sciences and Social Studies Institute; Tehran Iran
| | - Bahram Ebrahimi
- Department of Chemistry; Sanandaj Branch; Islamic Azad University; Sanandaj Iran
| |
Collapse
|
21
|
Narasimhan S, Maheshwaran S, Abu-Yousef IA, Majdalawieh AF, Rethavathi J, Das PE, Poltronieri P. Anti-Bacterial and Anti-Fungal Activity of Xanthones Obtained via Semi-Synthetic Modification of α-Mangostin from Garcinia mangostana. Molecules 2017; 22:275. [PMID: 28208680 PMCID: PMC6155947 DOI: 10.3390/molecules22020275] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/07/2017] [Accepted: 02/08/2017] [Indexed: 02/04/2023] Open
Abstract
The microbial contamination in food packaging has been a major concern that has paved the way to search for novel, natural anti-microbial agents, such as modified α-mangostin. In the present study, twelve synthetic analogs were obtained through semi-synthetic modification of α-mangostin by Ritter reaction, reduction by palladium-carbon (Pd-C), alkylation, and acetylation. The evaluation of the anti-microbial potential of the synthetic analogs showed higher bactericidal activity than the parent molecule. The anti-microbial studies proved that I E showed high anti-bacterial activity whereas I I showed the highest anti-fungal activity. Due to their microbicidal potential, modified α-mangostin derivatives could be utilized as active anti-microbial agents in materials for the biomedical and food industry.
Collapse
Affiliation(s)
- Srinivasan Narasimhan
- Asthagiri Herbal Research Foundation, 162A, Perungudi Industrial Estate, Perungudi, Chennai 600096, India.
| | - Shanmugam Maheshwaran
- Asthagiri Herbal Research Foundation, 162A, Perungudi Industrial Estate, Perungudi, Chennai 600096, India.
| | - Imad A Abu-Yousef
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, P.O. Box 26666 Sharjah, United Arab Emirates.
| | - Amin F Majdalawieh
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, P.O. Box 26666 Sharjah, United Arab Emirates.
| | - Janarthanam Rethavathi
- Asthagiri Herbal Research Foundation, 162A, Perungudi Industrial Estate, Perungudi, Chennai 600096, India.
| | - Prince Edwin Das
- Asthagiri Herbal Research Foundation, 162A, Perungudi Industrial Estate, Perungudi, Chennai 600096, India.
| | | |
Collapse
|
22
|
Friis JE, Brøns K, Salmi Z, Shimizu K, Subbiahdoss G, Holm AH, Santos O, Pedersen SU, Meyer RL, Daasbjerg K, Iruthayaraj J. Hydrophilic Polymer Brush Layers on Stainless Steel Using Multilayered ATRP Initiator Layer. ACS APPLIED MATERIALS & INTERFACES 2016; 8:30616-30627. [PMID: 27792314 DOI: 10.1021/acsami.6b10466] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Thin polymer coatings (in tens of nanometers to a micron thick) are desired on industrial surfaces such as stainless steel. In this thickness range coatings are difficult to produce using conventional methods. In this context, surface-initiated controlled polymerization method can offer a promising tool to produce thin polymer coatings via bottom-up approach. Furthermore, the industrial surfaces are chemically heterogeneous and exhibit surface features in the form of grain boundaries and grain surfaces. Therefore, the thin coatings must be equally effective on both the grain surfaces and the grain boundary regions. This study illustrates a novel "periodic rejuvenation of surface initiation" process using surface-initiated ATRP technique to amplify the graft density of poly(oligoethylene glycol)methacrylate (POEGMA) brush layers on stainless steel 316L surface. The optimized conditions demonstrate a controlled, macroscopically homogeneous, and stable POEGMA brush layer covering both the grain surface and the grain boundary region. Various relevant parameters-surface cleaning methods, controllability of thickness, graft density, homogeneity and stability-were studied using techniques such as ellipsometer, X-ray photoelectron spectroscopy, scanning electron microscopy-energy-dispersive X-ray, surface zeta potential, and infrared reflection-adsorption spectroscopy.
Collapse
Affiliation(s)
- Jakob Ege Friis
- Department of Biological and Chemical Engineering, Aarhus University , Hangøvej 2, DK-8200 Aarhus N, Denmark
| | - Kaare Brøns
- Department of Biological and Chemical Engineering, Aarhus University , Hangøvej 2, DK-8200 Aarhus N, Denmark
| | - Zakaria Salmi
- Department of Chemistry, Aarhus University , Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Kyoko Shimizu
- SACHEM Japan GK 5-6-27 Mizuhai, Higashi Osaka 578-0921, Japan
| | - Guruprakash Subbiahdoss
- Interdisciplinary Nanoscience Center, Aarhus Univeristy , Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Allan Hjarbæk Holm
- Grundfos Holding A/S , Poul Due Jensens Vej 7, DK-8850 Bjerringbro, Denmark
| | - Olga Santos
- Materials and Chemistry Center, Alfa Laval Lund AB , P.O. Box 74, SE-22100 Lund, Sweden
| | - Steen Uttrup Pedersen
- Department of Chemistry, Aarhus University , Langelandsgade 140, DK-8000 Aarhus C, Denmark
- Interdisciplinary Nanoscience Center, Aarhus Univeristy , Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Rikke Louise Meyer
- Department of Bioscience, Aarhus University , Ny Munkegade 116, DK-8000 Aarhus C, Denmark
- Interdisciplinary Nanoscience Center, Aarhus Univeristy , Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Kim Daasbjerg
- Department of Chemistry, Aarhus University , Langelandsgade 140, DK-8000 Aarhus C, Denmark
- Interdisciplinary Nanoscience Center, Aarhus Univeristy , Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
- Applied Physical Chemistry, KTH Royal Institute of Technology , SE-10044 Stockholm, Sweden
- Carbon Dioxide Activation Center , Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Joseph Iruthayaraj
- Department of Biological and Chemical Engineering, Aarhus University , Hangøvej 2, DK-8200 Aarhus N, Denmark
- Interdisciplinary Nanoscience Center, Aarhus Univeristy , Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
- Carbon Dioxide Activation Center , Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| |
Collapse
|
23
|
Zhou J, Yang Y, Alonso Frank M, Detsch R, Boccaccini AR, Virtanen S. Accelerated Degradation Behavior and Cytocompatibility of Pure Iron Treated with Sandblasting. ACS APPLIED MATERIALS & INTERFACES 2016; 8:26482-26492. [PMID: 27598975 DOI: 10.1021/acsami.6b07068] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Fe-based materials are of interest for use in biodegradable implants. However, their corrosion rate in the biological environment may be too slow for the targeted applications. In this work, sandblasting is applied as a successful surface treatment for increasing the degradation rate of pure iron in simulated body fluid. Two sandblasting surfaces with different roughness present various surface morphologies but similar degradation products. Electrochemistry tests revealed that sandblasted samples have a higher corrosion rate compared to that of bare iron, and even more noteworthy, the degradation rate of sandblasted samples remains significantly higher during long-term immersion tests. On the basis of our experimental results, the most plausible reasons behind the fast degradation rate are the special properties of sandblasted surfaces, including the change of surface composition (for the early stage), high roughness (occluded surface sites), and high density of dislocations. Furthermore, the cytocompatibility was studied on sandblasting surfaces using human osteoblast-like cells (MG-63) by indirect and direct contact methods. Results revealed that sandblasting treatment brings no adverse effect to the growth of MG-63 cells. This work demonstrates the significant potential of sandblasting for controlling the degradation behavior of iron-based materials for biomedical applications.
Collapse
Affiliation(s)
- Juncen Zhou
- Institute for Surface Science and Corrosion, Department of Materials Science and Engineering, University of Erlangen-Nuremberg , Erlangen, Germany
| | - Yuyun Yang
- Institute for Surface Science and Corrosion, Department of Materials Science and Engineering, University of Erlangen-Nuremberg , Erlangen, Germany
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg , Erlangen, Germany
| | - Micael Alonso Frank
- Institute for Surface Science and Corrosion, Department of Materials Science and Engineering, University of Erlangen-Nuremberg , Erlangen, Germany
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg , Erlangen, Germany
| | - Rainer Detsch
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg , Erlangen, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg , Erlangen, Germany
| | - Sannakaisa Virtanen
- Institute for Surface Science and Corrosion, Department of Materials Science and Engineering, University of Erlangen-Nuremberg , Erlangen, Germany
| |
Collapse
|
24
|
Zhou Z, Rajabzadeh S, Shaikh AR, Kakihana Y, Ma W, Matsuyama H. Effect of surface properties on antifouling performance of poly(vinyl chloride-co-poly(ethylene glycol)methyl ether methacrylate)/PVC blend membrane. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2016.05.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
Zhou Z, Rajabzadeh S, Rajjak Shaikh A, Kakihana Y, Ishigami T, Sano R, Matsuyama H. Preparation and characterization of antifouling poly(vinyl chloride- co -poly(ethylene glycol)methyl ether methacrylate) membranes. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2015.05.071] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
26
|
Shahabi S, Döscher S, Bollhorst T, Treccani L, Maas M, Dringen R, Rezwan K. Enhancing Cellular Uptake and Doxorubicin Delivery of Mesoporous Silica Nanoparticles via Surface Functionalization: Effects of Serum. ACS APPLIED MATERIALS & INTERFACES 2015; 7:26880-91. [PMID: 26562468 DOI: 10.1021/acsami.5b09483] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In this study, we demonstrate how functional groups on the surface of mesoporous silica nanoparticles (MSNPs) can influence the encapsulation and release of the anticancer drug doxorubicin, as well as cancer cell response in the absence or presence of serum proteins. To this end, we synthesized four differently functionalized MSNPs with amine, sulfonate, polyethylene glycol, or polyethylene imine functional surface groups, as well as one type of antibody-conjugated MSNP for specific cellular targeting, and we characterized these MSNPs regarding their physicochemical properties, colloidal stability in physiological media, and uptake and release of doxorubicin in vitro. Then, the MSNPs were investigated for their cytotoxic potential on cancer cells. Cationic MSNPs could not be loaded with doxorubicin and did therefore not show any cytotoxic and antiproliferative potential on osteosarcoma cells, although they were efficiently taken up into the cells in the presence or absence of serum. In contrast, substantial amounts of doxorubicin were loaded into negatively charged and unfunctionalized MSNPs. Especially, sulfonate-functionalized doxorubicin-loaded MSNPs were efficiently taken up into the cells in the presence of serum and showed an accelerated toxic and antiproliferative potential compared to unfunctionalized MSNPs, antibody-conjugated MSNPs, and even free doxorubicin. These findings stress the high importance of the surface charge as well as of the protein corona for designing and applying nanoparticles for targeted drug delivery.
Collapse
Affiliation(s)
- Shakiba Shahabi
- Advanced Ceramics, University of Bremen , Am Biologischen Garten 2, 28359 Bremen, Germany
| | - Svea Döscher
- Advanced Ceramics, University of Bremen , Am Biologischen Garten 2, 28359 Bremen, Germany
| | - Tobias Bollhorst
- Advanced Ceramics, University of Bremen , Am Biologischen Garten 2, 28359 Bremen, Germany
| | - Laura Treccani
- Advanced Ceramics, University of Bremen , Am Biologischen Garten 2, 28359 Bremen, Germany
| | - Michael Maas
- Advanced Ceramics, University of Bremen , Am Biologischen Garten 2, 28359 Bremen, Germany
- MAPEX Center for Materials and Processes, University of Bremen , 28359 Bremen, Germany
| | - Ralf Dringen
- Centre for Biomolecular Interactions Bremen and Centre for Environmental Research and Sustainable Technology, Faculty 2 (Biology/Chemistry), University of Bremen , Leobener Strasse, NW2, 28359 Bremen, Germany
| | - Kurosch Rezwan
- Advanced Ceramics, University of Bremen , Am Biologischen Garten 2, 28359 Bremen, Germany
- MAPEX Center for Materials and Processes, University of Bremen , 28359 Bremen, Germany
| |
Collapse
|
27
|
Strehmel C, Perez-Hernandez H, Zhang Z, Löbus A, Lasagni AF, Lensen MC. Geometric Control of Cell Alignment and Spreading within the Confinement of Antiadhesive Poly(Ethylene Glycol) Microstructures on Laser-Patterned Surfaces. ACS Biomater Sci Eng 2015; 1:747-752. [PMID: 33445251 DOI: 10.1021/ab5001657] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this study, a mask-less laser-assisted patterning method is used to fabricate well-defined cell-adhesive microdomains delimited by protein-repellent poly(ethylene glycol) (PEG) microstructures prepared from multiarm (8-PEG) macromonomers. The response of murine fibroblasts (L-929) toward these microdomains is investigated, revealing effective cell confinement within the cell-adhesive areas surrounded by nonadhesive 8-PEG microstructures. Moreover, the spatial positioning of cells in microdomains of various sizes and geometries is analyzed, indicating control of cell density, size, and elongated cell shape induced by the size of the microdomains and the geometric confinement.
Collapse
Affiliation(s)
- Christine Strehmel
- Department of Chemistry, Technische Universität Berlin, Straße des 17. Juni 124, D-10623 Berlin, Germany
| | - Heidi Perez-Hernandez
- Institute of Manufacturing Technology, Technische Universität Dresden, George-Bähr-Straße 3c, D-01062 Dresden, Germany.,Fraunhofer Institute for Material and Beam Technology IWS, Winterbergstraße 28, D-01277 Dresden, Germany
| | - Zhenfang Zhang
- Department of Chemistry, Technische Universität Berlin, Straße des 17. Juni 124, D-10623 Berlin, Germany
| | - Axel Löbus
- Department of Chemistry, Technische Universität Berlin, Straße des 17. Juni 124, D-10623 Berlin, Germany
| | - Andrés F Lasagni
- Institute of Manufacturing Technology, Technische Universität Dresden, George-Bähr-Straße 3c, D-01062 Dresden, Germany.,Fraunhofer Institute for Material and Beam Technology IWS, Winterbergstraße 28, D-01277 Dresden, Germany
| | - Marga C Lensen
- Department of Chemistry, Technische Universität Berlin, Straße des 17. Juni 124, D-10623 Berlin, Germany
| |
Collapse
|
28
|
Xiao Y, Zhao L, Shi Y, Liu N, Liu Y, Liu B, Xu Q, He C, Chen X. Surface modification of 316L stainless steel by grafting methoxy poly(ethylene glycol) to improve the biocompatibility. Chem Res Chin Univ 2015. [DOI: 10.1007/s40242-015-5027-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Sokolovskaya E, Rahmani S, Misra AC, Bräse S, Lahann J. Dual-stimuli-responsive microparticles. ACS APPLIED MATERIALS & INTERFACES 2015; 7:9744-51. [PMID: 25886692 PMCID: PMC5665401 DOI: 10.1021/acsami.5b01592] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The need for smart materials in the area of biotechnology has fueled the development of numerous stimuli-responsive polymers. Many of these polymers are responsive to pH, light, temperature, or oxidative stress, and yet very few are responsive toward multiple stimuli. Here we report on the synthesis of a novel dual-stimuli-responsive poly(ethylene glycol)-based polymer capable of changing its hydrophilic properties upon treatment with UV light (exogenous stimulus) and markers of oxidative stress (endogenous stimulus). From this polymer, smart microparticles and fibers were fabricated and their responses to either stimulus separately and in conjunction were examined. Comparison of the degradation kinetics demonstrated that the polymer became water-soluble only after both oxidation and irradiation with UV light, which resulted in selective degradation of the corresponding particles. Furthermore, in vitro experiments demonstrated successful uptake of these particles by Raw 264.7 cells. Such dual-stimuli-responsive particles could have potential applications in drug delivery, imaging, and tissue engineering.
Collapse
Affiliation(s)
- Ekaterina Sokolovskaya
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Campus Nord, 76344 Eggenstein-Leopoldshafen, Germany
| | - Sahar Rahmani
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Campus Nord, 76344 Eggenstein-Leopoldshafen, Germany
- Biointerfaces Institute and Departments of Biomedical Engineering and Chemical Engineering, University of Michigan 2800 Plymouth Road, Ann Arbor, Michigan 48109, United States
| | - Asish C. Misra
- Biointerfaces Institute and Departments of Biomedical Engineering and Chemical Engineering, University of Michigan 2800 Plymouth Road, Ann Arbor, Michigan 48109, United States
| | - Stefan Bräse
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Campus Nord, 76344 Eggenstein-Leopoldshafen, Germany
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Campus Süd, D-76131 Karlsruhe, Germany
| | - Joerg Lahann
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Campus Nord, 76344 Eggenstein-Leopoldshafen, Germany
- Biointerfaces Institute and Departments of Biomedical Engineering and Chemical Engineering, University of Michigan 2800 Plymouth Road, Ann Arbor, Michigan 48109, United States
- Corresponding Author:
| |
Collapse
|
30
|
Grafting of ionic liquids on stainless steel surface for antibacterial application. Colloids Surf B Biointerfaces 2015; 126:162-8. [DOI: 10.1016/j.colsurfb.2014.12.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 12/05/2014] [Accepted: 12/09/2014] [Indexed: 01/04/2023]
|
31
|
Gutowski SM, Shoemaker JT, Templeman KL, Wei Y, Latour RA, Bellamkonda RV, LaPlaca MC, García AJ. Protease-degradable PEG-maleimide coating with on-demand release of IL-1Ra to improve tissue response to neural electrodes. Biomaterials 2015; 44:55-70. [PMID: 25617126 DOI: 10.1016/j.biomaterials.2014.12.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 12/01/2014] [Accepted: 12/16/2014] [Indexed: 01/18/2023]
Abstract
Neural electrodes are an important part of brain-machine interface devices that can restore functionality to patients with sensory and movement disorders. Chronically implanted neural electrodes induce an unfavorable tissue response which includes inflammation, scar formation, and neuronal cell death, eventually causing loss of electrode function. We developed a poly(ethylene glycol) hydrogel coating for neural electrodes with non-fouling characteristics, incorporated an anti-inflammatory agent, and engineered a stimulus-responsive degradable portion for on-demand release of the anti-inflammatory agent in response to inflammatory stimuli. This coating reduces in vitro glial cell adhesion, cell spreading, and cytokine release compared to uncoated controls. We also analyzed the in vivo tissue response using immunohistochemistry and microarray qRT-PCR. Although no differences were observed among coated and uncoated electrodes for inflammatory cell markers, lower IgG penetration into the tissue around PEG+IL-1Ra coated electrodes indicates an improvement in blood-brain barrier integrity. Gene expression analysis showed higher expression of IL-6 and MMP-2 around PEG+IL-1Ra samples, as well as an increase in CNTF expression, an important marker for neuronal survival. Importantly, increased neuronal survival around coated electrodes compared to uncoated controls was observed. Collectively, these results indicate promising findings for an engineered coating to increase neuronal survival and improve tissue response around implanted neural electrodes.
Collapse
Affiliation(s)
- Stacie M Gutowski
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA; Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - James T Shoemaker
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA; Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Kellie L Templeman
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA; Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Yang Wei
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Robert A Latour
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Ravi V Bellamkonda
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA; Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Michelle C LaPlaca
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA; Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Andrés J García
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA; Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
32
|
Ramana LN, Sharma S, Sethuraman S, Ranga U, Krishnan UM. Stealth anti-CD4 conjugated immunoliposomes with dual antiretroviral drugs--modern Trojan horses to combat HIV. Eur J Pharm Biopharm 2014; 89:300-11. [PMID: 25500283 DOI: 10.1016/j.ejpb.2014.11.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 10/28/2014] [Accepted: 11/25/2014] [Indexed: 11/25/2022]
Abstract
Highly active antiretroviral therapy (HAART) is the currently employed therapeutic intervention against AIDS where a drug combination is used to reduce the viral load. The present work envisages the development of a stealth anti-CD4 conjugated immunoliposomes containing two anti-retroviral drugs (nevirapine and saquinavir) that can selectively home into HIV infected cells through the CD4 receptor. The nanocarrier was characterized using transmission electron microscopy, FTIR, differential scanning calorimetry, particle size and zeta potential. The cell uptake was also evaluated qualitatively using confocal microscopy and quantitatively by flow cytometry. The drug to lipid composition was optimized for maximum encapsulation of the two drugs. Both drugs were found to localize in different regions of the liposome. The release of the reverse transcriptase inhibitor was dominant during the early phases of the release while in the later phases, the protease inhibitor is the major constituent released. The drugs delivered via anti-CD4 conjugated immunoliposomes inhibited viral proliferation at a significantly lower concentration as compared to free drugs. In vitro studies of nevirapine to saquinavir combination at a ratio of 6.2:5 and a concentration as low as 5 ng/mL efficiently blocked viral proliferation suggesting that co-delivery of anti-retroviral drugs holds a greater promise for efficient management of HIV-1 infection.
Collapse
Affiliation(s)
| | - Shilpee Sharma
- HIV-AIDS Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, India
| | - Swaminathan Sethuraman
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA University, Thanjavur, India
| | - Udaykumar Ranga
- HIV-AIDS Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, India
| | - Uma Maheswari Krishnan
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA University, Thanjavur, India.
| |
Collapse
|
33
|
Jin W, Yang L, Yang W, Chen B, Chen J. Grafting of HEMA onto dopamine coated stainless steel by 60Co-γ irradiation method. Radiat Phys Chem Oxf Engl 1993 2014. [DOI: 10.1016/j.radphyschem.2014.06.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
34
|
Jiang H, Tian C, Zhang L, Cheng Z, Zhu X. Facile and highly efficient “living” radical polymerization of hydrophilic vinyl monomers in water. RSC Adv 2014. [DOI: 10.1039/c4ra09439e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
35
|
Falentin-Daudre C. Functionalization of Biomaterials and Applications. Biomaterials 2014. [DOI: 10.1002/9781119043553.ch6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
36
|
Yu K, Mei Y, Hadjesfandiari N, Kizhakkedathu JN. Engineering biomaterials surfaces to modulate the host response. Colloids Surf B Biointerfaces 2014; 124:69-79. [PMID: 25193153 DOI: 10.1016/j.colsurfb.2014.08.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 07/29/2014] [Accepted: 08/09/2014] [Indexed: 12/16/2022]
Abstract
Undesirable host response is responsible for the surface induced thrombus generation, activation of the complement system and the inflammatory reactions by the blood-contacting biomaterials. The surface interaction of biomaterials with different blood components is thought to be the critical factor that dictates the host response to biomaterials. Surface engineering can be utilized as a method to enhance the biocompatibility and tailor the biological response to biomaterials. This review provides a brief account of various polymer brush based approaches used for biomaterials surface modification, both passive and bioactive, to make the material surfaces biocompatible and antibacterial. Initially we discuss the utilization of polymer brushes with different structure and chemistry as a novel strategy to design the surface non-fouling that passively prevent the subsequent biological responses. Further we explore the utility of different bioactive agents including peptides, carbohydrates and proteins which can be conjugated the polymer brush to make the surface actively interact with the body and modulate the host response. A number of such avenues have also been explored in this review.
Collapse
Affiliation(s)
- Kai Yu
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Yan Mei
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Narges Hadjesfandiari
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Jayachandran N Kizhakkedathu
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6 T 1Z3, Canada.
| |
Collapse
|
37
|
Li W, Liu Q, Liu L. Amino acid-based zwitterionic polymers: antifouling properties and low cytotoxicity. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2014; 25:1730-42. [DOI: 10.1080/09205063.2014.948332] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
38
|
Ryan Stanfield J, Bamberg S. Durability evaluation of biopolymer coating on titanium alloy substrate. J Mech Behav Biomed Mater 2014; 35:9-17. [DOI: 10.1016/j.jmbbm.2014.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 03/11/2014] [Accepted: 03/13/2014] [Indexed: 10/25/2022]
|
39
|
Liu Q, Li W, Wang H, Liu L. A facile method of using sulfobetaine-containing copolymers for biofouling resistance. J Appl Polym Sci 2014. [DOI: 10.1002/app.40789] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Qingsheng Liu
- Department of Chemical and Biomolecular Engineering; University of Akron; Akron Ohio 44325
| | - Wenchen Li
- Department of Chemical and Biomolecular Engineering; University of Akron; Akron Ohio 44325
| | - Hua Wang
- Department of Chemical and Biomolecular Engineering; University of Akron; Akron Ohio 44325
| | - Lingyun Liu
- Department of Chemical and Biomolecular Engineering; University of Akron; Akron Ohio 44325
| |
Collapse
|
40
|
Meng J, Li J, Zhang Y, Ma S. A novel controlled grafting chemistry fully regulated by light for membrane surface hydrophilization and functionalization. J Memb Sci 2014. [DOI: 10.1016/j.memsci.2014.01.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
41
|
Preparation, characterization, and applications of a novel solid-phase microextraction fiber by sol-gel technology on the surface of stainless steel wire for determination of poly cyclic aromatic hydrocarbons in aquatic environmental samples. Anal Chim Acta 2014; 813:48-55. [DOI: 10.1016/j.aca.2014.01.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 12/24/2013] [Accepted: 01/01/2014] [Indexed: 11/20/2022]
|
42
|
Sin MC, Sun YM, Chang Y. Zwitterionic-based stainless steel with well-defined polysulfobetaine brushes for general bioadhesive control. ACS APPLIED MATERIALS & INTERFACES 2014; 6:861-873. [PMID: 24351074 DOI: 10.1021/am4041256] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Stainless steels are widely used as orthopaedic and dental implant; however, bioadhesion in the case of thrombosis, inflammation, and infection is one of their major limitations. One way to tackle this problem is to graft the stainless steel surface with a zwitterionic polymer known for being anti-bioadhesive. Controlled atom transfer radical polymerization (ATRP) of zwitterionic poly(sulfobetaine methacrylate) (polySBMA) grafted from biomedical grade stainless steel surface was employed in this study. The interactions of polySBMA-grafted surfaces with biomacromolecules were demonstrated in vitro by the adhesion tests of plasma protein, blood cells, human MG63 osteoblast- and HT1080 fibroblast-like cells in biological complex media to evaluate their bioadhesive properties. Anti-microbial effects were also assessed for two most ordinary seen clinical bacteria, i.e., Escherichia coli and Staphylococcus epidermidis. Results showed that polySBMA-grafted surface exhibited evident bioadhesion resistance and conferring antibacterial efficacy. This work is also dedicated to deduce the effectiveness of polySBMA brushes' conformational structure on the prevention of bioadhesion. To this aim, the anti-bioadhesive effect of polySBMA brushes prepared by dopamine- and silane-surfaced immobilization method was evaluated. Results show that polySBMA grafted from immobilized polydopamine interfacial layers achieved better bioadhesion resistance, which could be causally related to their greater grafting coverage, flexible brush conformational structures, and greater hydration capabilities.
Collapse
Affiliation(s)
- Mei-Chan Sin
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University , Chung-Li, Taoyuan 320, Taiwan
| | | | | |
Collapse
|
43
|
Wu Y, Qin Z, Ji J, Yang R, Zhang X, Li Y, Yin L, Pu Y, Li X. Galactosylated poly(ethylene glycol) methacrylate-st-3-guanidinopropyl methacrylamide copolymers as siRNA carriers for inhibiting Survivin expressionin vitroandin vivo. J Drug Target 2014; 22:352-64. [DOI: 10.3109/1061186x.2013.877466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
44
|
Kusnezow W, Syagailo YV, Goychuk I, Hoheisel JD, Wild DG. Antibody microarrays: the crucial impact of mass transport on assay kinetics and sensitivity. Expert Rev Mol Diagn 2014; 6:111-24. [PMID: 16359272 DOI: 10.1586/14737159.6.1.111] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although they are superficially similar to DNA microarrays, immunoassay microarrays represent a daunting technological challenge owing to the much wider diversity of proteins. Yet, as the leading edge of bioscience migrates from genomics to proteomics, the complexity and enormous dynamic range of proteins in a cell necessitate an analytic tool with exceptional specificity and sensitivity. In theory, microspot immunoassays could fulfill this need. However, antibody microarrays have had limited success to date, and have often required a highly sensitive detection system and/or sophisticated immobilization approach to be of any use for the profiling of complex specimens. There is a solid body of work on the theory of microspot reaction kinetics, yet much of the published experimental work on protein microarray development pays insufficient attention to the kinetic aspects of this interaction. This review explains that one of the main limitations for the sensitivity of current generation microspot immunoassays is the strong dependence of antibody microspot kinetics upon mass flux to the spot. This not only involves migration of analyte in solution, but also across the surface of the solid phase. Understanding of this effect will be discussed, along with several related effects and their significance to improving existing microarray designs. It is concluded that current efforts may be too focused on areas that cannot improve performance significantly, and that other critical areas of design should receive more attention. Finally, the review addresses the question of whether ambient analyte immunoassay is truly a separate category of microspot assay, with the conclusion that this may be a flawed concept.
Collapse
Affiliation(s)
- Wlad Kusnezow
- Division of Functional Genome Analysis, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
45
|
van Swaay D, Mächler JP, Stanley C, deMello A. A chip-to-world connector with a built-in reservoir for simple small-volume sample injection. LAB ON A CHIP 2014; 14:178-81. [PMID: 24226110 DOI: 10.1039/c3lc51065d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We present a novel connector that allows for easy handling and injection of sample volumes between 1 and 20 μl. All tubing connections between external pumps and the microfluidic device are established before the sample is introduced into a sealable reservoir built into the connector. This approach allows for multiple injections of small sample volumes without the need to dismantle the chip-tubing assembly. We demonstrate that the connector reservoir seal can withstand pressures of up to 6 bar, that opening or closing the reservoir does not dislocate the sample by more than 35 nl, and that the connector can be used for injecting samples into both miscible and immiscible carrier fluids.
Collapse
Affiliation(s)
- Dirk van Swaay
- Institute for Chemical and Bioengineering, ETH Zurich, Wolfgang-Pauli-Str. 10, 8093 Zurich, Switzerland.
| | | | | | | |
Collapse
|
46
|
Mantripragada VP, Lecka-Czernik B, Ebraheim NA, Jayasuriya AC. An overview of recent advances in designing orthopedic and craniofacial implants. J Biomed Mater Res A 2013; 101:3349-64. [PMID: 23766134 PMCID: PMC4854641 DOI: 10.1002/jbm.a.34605] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 01/11/2013] [Accepted: 01/11/2013] [Indexed: 01/22/2023]
Abstract
Great deal of research is still going on in the field of orthopedic and craniofacial implant development to resolve various issues being faced by the industry today. Despite several disadvantages of the metallic implants, they continue to be used, primarily because of their superior mechanical properties. In order to minimize the harmful effects of the metallic implants and its by-products, several modifications are being made to these materials, for instance nickel-free stainless steel, cobalt-chromium and titanium alloys are being introduced to eliminate the toxic effects of nickel being released from the alloys, introduce metallic implants with lower modulus, reduce the cost of these alloys by replacing rare elements with less expensive elements etc. New alloys like tantalum, niobium, zirconium, and magnesium are receiving attention given their satisfying mechanical and biological properties. Non-oxide ceramics like silicon nitride and silicon carbide are being currently developed as a promising implant material possessing a combination of properties such as good wear and corrosion resistance, increased ductility, good fracture and creep resistance, and relatively high hardness in comparison to alumina. Polymer/magnesium composites are being developed to improve mechanical properties as well as retain polymer's property of degradation. Recent advances in orthobiologics are proving interesting as well. This paper thus deals with the latest improvements being made to the existing implant materials and includes new materials being introduced in the field of biomaterials.
Collapse
|
47
|
Wolfram J, Suri K, Yang Y, Shen J, Celia C, Fresta M, Zhao Y, Shen H, Ferrari M. Shrinkage of pegylated and non-pegylated liposomes in serum. Colloids Surf B Biointerfaces 2013; 114:294-300. [PMID: 24216620 DOI: 10.1016/j.colsurfb.2013.10.009] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 09/24/2013] [Accepted: 10/08/2013] [Indexed: 12/15/2022]
Abstract
An essential requisite for the design of nanodelivery systems is the ability to characterize the size, homogeneity and zeta potential of nanoparticles. Such properties can be tailored in order to create the most efficient drug delivery platforms. An important question is whether these characteristics change upon systemic injection. Here, we have studied the behavior of phosphatidylcholine/cholesterol liposomes exposed to serum proteins. The results reveal a serum-induced reduction in the size and homogeneity of both pegylated and non-pegylated liposomes, implicating the possible role of osmotic forces. In addition, changes to zeta-potential were observed upon exposing liposomes to serum. The liposomes with polyethylene glycol expressed different characteristics than their non-polymeric counterparts, suggesting the potential formation of a denser protein corona around the non-pegylated liposomes.
Collapse
Affiliation(s)
- Joy Wolfram
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience & Technology of China, Beijing 100190, China; Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA.
| | - Krishna Suri
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Yong Yang
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Jianliang Shen
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Christian Celia
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Pharmacy, University G. d'Annunzio of Chieti, Pescara, 66013 Chieti, Italy
| | - Massimo Fresta
- Department of Health Science, University Magna Græcia of Catanzaro, Germaneto 88100, Italy
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience & Technology of China, Beijing 100190, China; Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Haifa Shen
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Mauro Ferrari
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
48
|
Barish JA, Goddard JM. Anti-fouling surface modified stainless steel for food processing. FOOD AND BIOPRODUCTS PROCESSING 2013. [DOI: 10.1016/j.fbp.2013.01.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
49
|
Jing B, Wang H, Lin KY, McGinn PJ, Na C, Zhu Y. A facile method to functionalize engineering solid membrane supports for rapid and efficient oil–water separation. POLYMER 2013. [DOI: 10.1016/j.polymer.2013.08.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
50
|
Müller WEG, Wang X, Proksch P, Perry CC, Osinga R, Gardères J, Schröder HC. Principles of biofouling protection in marine sponges: a model for the design of novel biomimetic and bio-inspired coatings in the marine environment? MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2013; 15:375-398. [PMID: 23525893 DOI: 10.1007/s10126-013-9497-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 03/09/2013] [Indexed: 06/02/2023]
Abstract
The process of biofouling of marine structures and substrates, such as platforms or ship hulls, proceeds in multiple steps. Soon after the formation of an initial conditioning film, formed via the adsorption of organic particles to natural or man-made substrates, a population of different bacterial taxa associates under the formation of a biofilm. These microorganisms communicate through a complex quorum sensing network. Macro-foulers, e.g., barnacles, then settle and form a fouling layer on the marine surfaces, a process that globally has severe impacts both on the economy and on the environment. Since the ban of tributyltin, an efficient replacement of this antifouling compound by next-generation antifouling coatings that are environmentally more acceptable and also showing longer half-lives has not yet been developed. The sponges, as sessile filter-feeder animals, have evolved antifouling strategies to protect themselves against micro- and subsequent macro-biofouling processes. Experimental data are summarized and suggest that coating of the sponge surface with bio-silica contributes to the inhibition of the formation of a conditioning film. A direct adsorption of the surfaces by microorganisms can be impaired through poisoning the organisms with direct-acting secondary metabolites or toxic peptides. In addition, first, compounds from sponges have been identified that interfere with the anti-quorum sensing network. Sponge secondary metabolites acting selectively on diatom colonization have not yet been identified. Finally, it is outlined that direct-acting secondary metabolites inhibiting the growth of macro-fouling animals and those that poison the multidrug resistance pump are available. It is concluded that rational screening programs for inhibitors of the complex and dynamic problem of biofilm production, based on multidisciplinary studies and using sponges as a model, are required in the future.
Collapse
Affiliation(s)
- Werner E G Müller
- ERC Advanced Investigator Grant Research Group at Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany.
| | | | | | | | | | | | | |
Collapse
|