1
|
Zhao P, Yang F, Jia X, Xiao Y, Hua C, Xing M, Lyu G. Extracellular Matrices as Bioactive Materials for In Situ Tissue Regeneration. Pharmaceutics 2023; 15:2771. [PMID: 38140112 PMCID: PMC10747903 DOI: 10.3390/pharmaceutics15122771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/28/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Bioactive materials based on a nature-derived extracellular matrix (NECM) represent a category of biomedical devices with versatile therapeutic applications in the realms of tissue repair and engineering. With advancements in decellularization technique, the inherent bioactive molecules and the innate nano-structural and mechanical properties are preserved in three-dimensional scaffolds mainly composed of collagens. Techniques such as electrospinning, three-dimensional printing, and the intricate fabrication of hydrogels are developed to mimic the physical structures, biosignalling and mechanical cues of ECM. Until now, there has been no approach that can fully account for the multifaceted properties and diverse applications of NECM. In this review, we introduce the main proteins composing NECMs and explicate the importance of them when used as therapeutic devices in tissue repair. Nano-structural features of NECM and their applications regarding tissue repair are summarized. The origins, degradability, and mechanical property of and immune responses to NECM are also introduced. Furthermore, we review their applications, and clinical features thereof, in the repair of acute and chronic wounds, abdominal hernia, breast deformity, etc. Some typical marketed devices based on NECM, their indications, and clinical relevance are summarized.
Collapse
Affiliation(s)
- Peng Zhao
- Burn & Trauma Treatment Center, Affiliated Hospital of Jiangnan University, Wuxi 214122, China
- Engineering Research Center of the Ministry of Education for Wound Repair Technology, Jiangnan University, Affiliated Hospital of Jiangnan University, Wuxi 214000, China; (F.Y.); (Y.X.)
| | - Fengbo Yang
- Engineering Research Center of the Ministry of Education for Wound Repair Technology, Jiangnan University, Affiliated Hospital of Jiangnan University, Wuxi 214000, China; (F.Y.); (Y.X.)
| | - Xiaoli Jia
- Engineering Research Center of the Ministry of Education for Wound Repair Technology, Jiangnan University, Affiliated Hospital of Jiangnan University, Wuxi 214000, China; (F.Y.); (Y.X.)
| | - Yuqin Xiao
- Engineering Research Center of the Ministry of Education for Wound Repair Technology, Jiangnan University, Affiliated Hospital of Jiangnan University, Wuxi 214000, China; (F.Y.); (Y.X.)
| | - Chao Hua
- Burn & Trauma Treatment Center, Affiliated Hospital of Jiangnan University, Wuxi 214122, China
| | - Malcolm Xing
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Guozhong Lyu
- Burn & Trauma Treatment Center, Affiliated Hospital of Jiangnan University, Wuxi 214122, China
- Engineering Research Center of the Ministry of Education for Wound Repair Technology, Jiangnan University, Affiliated Hospital of Jiangnan University, Wuxi 214000, China; (F.Y.); (Y.X.)
| |
Collapse
|
2
|
Mirzaeian L, Eivazkhani F, Saber M, Moini A, Esfandiari F, Valojerdi MR, Fathi R. In-vivo oogenesis of oogonial and mesenchymal stem cells seeded in transplanted ovarian extracellular matrix. J Ovarian Res 2023; 16:56. [PMID: 36941728 PMCID: PMC10029222 DOI: 10.1186/s13048-023-01131-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 02/27/2023] [Indexed: 03/23/2023] Open
Abstract
OBJECTIVE (S) One way to overcome the recurrence of cancer cells following ovarian tissue transplantation is to use decellularized tissues as a scaffold that does not have any cellular components. These cell-free scaffolds can be seeded with different type of stem cells for ovarian restoration. MATERIALS AND METHODS OSCs, PMSCs and BMSCs (oogonial, peritoneal and bone marrow mesenchymal stem cells, respectively) were seeded into human decellularized ovarian tissue as 4 groups: Scaffold + OSCs (SO), Scaffold + OSC + PMSCs (SOP), Scaffold + OSC + BMSCs (SOB) and Scaffold + OSC + PMSCs + BMSCs (SOPB). The produced grafts were transplanted into the sub-peritoneal space of ovariectomized NMRI mice as artificial ovary (AO). The expression of Vegf, CD34, Gdf9, Zp3, Ddx4, Amh and Lhr genes in AOs were measured by qRT-PCR. Also, histotechniques were considered to detect the anti GFP, PCNA, VEGF, GDF9, ZP3 and AMH proteins. RESULTS H & E staining showed follicle-like structures in all groups; the number of these structures, in the SOP and SOB groups, were the highest. In SO group, differentiation ability to oocyte and granulosa cells was observed. Endothelial, oocyte, germ, and granulosa cell-like cells were specially seen in SOP and angiogenesis capability was more in SOB group. However, angiogenesis ability and differentiation to theca cell-like cells were more often in SOPB group. While none of the groups showed a significant difference in AMH level, estradiol levels were significantly higher in SOPB group. CONCLUSION Integration of OSCs + PMSCs and those OSCs + BMSCs were more conducive to oogenesis.
Collapse
Affiliation(s)
- Leila Mirzaeian
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, 1665659911, Iran
| | - Farideh Eivazkhani
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, 1665659911, Iran
| | - Maryam Saber
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Ashraf Moini
- Breast Disease Research Center (BDRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Surgery, Arash Women's Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Department of Endocrinology and Female Infertility at Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Fereshteh Esfandiari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mojtaba Rezazadeh Valojerdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, 1665659911, Iran
- Department of Anatomy, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Rouhollah Fathi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, 1665659911, Iran.
| |
Collapse
|
3
|
Serrano S, Pereira I, Henriques A, Valentim Lourenço A. Neovagina in Mayer-Rokitansky-Küster-Hauser (MRKH) Syndrome: Vaginoplasty Using Ileal Flap. ACTA MEDICA PORT 2023. [PMID: 36599171 DOI: 10.20344/amp.18563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 09/23/2022] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Surgical treatment of patients with malformations of the female genital tract is a complex problem and there are different techniques described in the literature. The goal of all these techniques is the reconstruction of a neovagina that is anatomically similar to a vagina, with adequate length to facilitate sexual functioning and with the lowest risk of possible complications. The aim of this study is to describe the surgical technique for the reconstruction of a neovagina from an ileal segment without a vascular pedicle. MATERIAL AND METHODS Description of a surgical technique developed in our tertiary university center in a patient with Mayer-Rokitansky-Küster-Hauser syndrome. RESULTS The vaginoplasty surgery using ileal flap was performed in three steps. In the first part of the intervention a laparoscopic hysterectomy with bilateral salpingectomy was performed. The second step consisted of isolating the ileal segment, ileal anastomosis and preparing the ileal segment. After the isolated segment was prepared, it was repositioned in a vagina mold to configure the neovagina. Finally, the third step included the adaptation of the vaginal mold with the ileal mucosa to the vesicorectal space. CONCLUSION Ileal vaginoplasty without a vascular pedicle is an option that can be used to reconstruct the vagina, because it provides an excellent tissue for vaginal replacement. This technique can be used in patients with genital malformations of the genital tract with absence or vaginal hypoplasia.
Collapse
Affiliation(s)
- Sílvia Serrano
- Department of Obstetrics, Gynecology and Reproductive Medicine. Hospital de Santa Maria. Centro Hospitalar Universitário Lisboa Norte. Lisbon. Portugal
| | - Inês Pereira
- Department of Gynecology and Obstetrics. Hospital CUF Descobertas. Lisbon; Department of Gynecology and Obstetrics. Hospital CUF Torres Vedras. Torres Vedras. Portugal
| | - Alexandra Henriques
- Department of Obstetrics, Gynecology and Reproductive Medicine. Hospital de Santa Maria. Centro Hospitalar Universitário Lisboa Norte. Lisbon; Lisbon School of Medicine. Lisbon Academical Medical Center. Lisbon. Portugal
| | - Alexandre Valentim Lourenço
- Department of Obstetrics, Gynecology and Reproductive Medicine. Hospital de Santa Maria. Centro Hospitalar Universitário Lisboa Norte. Lisbon; Lisbon School of Medicine. Lisbon Academical Medical Center. Lisbon. Portugal
| |
Collapse
|
4
|
Palmosi T, Tolomeo AM, Cirillo C, Sandrin D, Sciro M, Negrisolo S, Todesco M, Caicci F, Santoro M, Dal Lago E, Marchesan M, Modesti M, Bagno A, Romanato F, Grumati P, Fabozzo A, Gerosa G. Small intestinal submucosa-derived extracellular matrix as a heterotopic scaffold for cardiovascular applications. Front Bioeng Biotechnol 2022; 10:1042434. [PMID: 36578513 PMCID: PMC9792098 DOI: 10.3389/fbioe.2022.1042434] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022] Open
Abstract
Structural cardiac lesions are often surgically repaired using prosthetic patches, which can be biological or synthetic. In the current clinical scenario, biological patches derived from the decellularization of a xenogeneic scaffold are gaining more interest as they maintain the natural architecture of the extracellular matrix (ECM) after the removal of the native cells and remnants. Once implanted in the host, these patches can induce tissue regeneration and repair, encouraging angiogenesis, migration, proliferation, and host cell differentiation. Lastly, decellularized xenogeneic patches undergo cell repopulation, thus reducing host immuno-mediated response against the graft and preventing device failure. Porcine small intestinal submucosa (pSIS) showed such properties in alternative clinical scenarios. Specifically, the US FDA approved its use in humans for urogenital procedures such as hernia repair, cystoplasties, ureteral reconstructions, stress incontinence, Peyronie's disease, penile chordee, and even urethral reconstruction for hypospadias and strictures. In addition, it has also been successfully used for skeletal muscle tissue reconstruction in young patients. However, for cardiovascular applications, the results are controversial. In this study, we aimed to validate our decellularization protocol for SIS, which is based on the use of Tergitol 15 S 9, by comparing it to our previous and efficient method (Triton X 100), which is not more available in the market. For both treatments, we evaluated the preservation of the ECM ultrastructure, biomechanical features, biocompatibility, and final bioinductive capabilities. The overall analysis shows that the SIS tissue is macroscopically distinguishable into two regions, one smooth and one wrinkle, equivalent to the ultrastructure and biochemical and proteomic profile. Furthermore, Tergitol 15 S 9 treatment does not modify tissue biomechanics, resulting in comparable to the native one and confirming the superior preservation of the collagen fibers. In summary, the present study showed that the SIS decellularized with Tergitol 15 S 9 guarantees higher performances, compared to the Triton X 100 method, in all the explored fields and for both SIS regions: smooth and wrinkle.
Collapse
Affiliation(s)
- Tiziana Palmosi
- Laboratory of Cardiovascular Medicine, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padua, Italy,L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region Padua, Italy
| | - Anna Maria Tolomeo
- Laboratory of Cardiovascular Medicine, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padua, Italy,L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region Padua, Italy
| | - Carmine Cirillo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Debora Sandrin
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region Padua, Italy,Optics and Bioimaging Lab, Department of Physics and Astronomy, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, University of Padova, Padua, Italy
| | | | - Susanna Negrisolo
- Laboratory of Immunopathology and Molecular Biology of the Kidney, Department of Women’s and Children’s Health, University of Padova, Padua, Italy
| | - Martina Todesco
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region Padua, Italy,Department of Industrial Engineering, University of Padova, Padua, Italy
| | | | - Michele Santoro
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Eleonora Dal Lago
- Department of Industrial Engineering, University of Padova, Padua, Italy
| | | | - Michele Modesti
- Department of Industrial Engineering, University of Padova, Padua, Italy
| | - Andrea Bagno
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region Padua, Italy,Department of Industrial Engineering, University of Padova, Padua, Italy
| | - Filippo Romanato
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region Padua, Italy,Department of Physics and Astronomy “G. Galilei”, University of Padova, Padua, Italy
| | - Paolo Grumati
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy,Department of Clinical Medicine and Surgery, University of Napoli Federico II, Naples, Italy
| | - Assunta Fabozzo
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region Padua, Italy,Cardiac Surgery Unit, Hospital University of Padova, Padua, Italy,*Correspondence: Assunta Fabozzo,
| | - Gino Gerosa
- Laboratory of Cardiovascular Medicine, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padua, Italy,L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region Padua, Italy,Cardiac Surgery Unit, Hospital University of Padova, Padua, Italy
| |
Collapse
|
5
|
Porcine Small Intestinal Submucosa Alters the Biochemical Properties of Wound Healing: A Narrative Review. Biomedicines 2022; 10:biomedicines10092213. [PMID: 36140314 PMCID: PMC9496019 DOI: 10.3390/biomedicines10092213] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Among the many biological scaffold materials currently available for clinical use, the small intestinal submucosa (SIS) is an effective material for wound healing. SIS contains numerous active forms of extracellular matrix that support angiogenesis, cell migration, and proliferation, providing growth factors involved in signaling for tissue formation and assisting wound healing. SIS not only serves as a bioscaffold for cell migration and differentiation, but also restores the impaired dynamic reciprocity between cells and the extracellular matrix, ultimately driving wound healing. Here, we review the evidence on how SIS can shift the biochemical balance in a wound from chronic to an acute state.
Collapse
|
6
|
Dias ML, Paranhos BA, Ferreira JRP, Fonseca RJC, Batista CMP, Martins-Santos R, de Andrade CBV, Faccioli LAP, da Silva AC, Nogueira FCS, Domont GB, Dos Santos Goldenberg RC. Improving hemocompatibility of decellularized liver scaffold using Custodiol solution. BIOMATERIALS ADVANCES 2022; 133:112642. [PMID: 35034821 DOI: 10.1016/j.msec.2022.112642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/02/2021] [Accepted: 01/02/2022] [Indexed: 10/19/2022]
Abstract
Organ decellularization is one of the most promising approaches of tissue engineering to overcome the shortage of organs available for transplantation. However, there are key hurdles that still hinder its clinical application, and the lack of hemocompatibility of decellularized materials is a central one. In this work, we demonstrate that Custodiol (HTK solution), a common solution used in organ transplantation, increased the hemocompatibility of acellular scaffolds obtained from rat livers. We showed that Custodiol inhibited ex vivo, in vitro, and in vivo blood coagulation to such extent that allowed successful transplantation of whole-liver scaffolds into recipient animals. Scaffolds previously perfused with Custodiol showed no signs of platelet aggregation and maintained in vitro and in vivo cellular compatibility. Proteomic analysis revealed that proteins related to platelet aggregation were reduced in Custodiol samples while control samples were enriched with thrombogenicity-related proteins. We also identified distinct components that could potentially be involved with this anti-thrombogenic effect and thus require further investigation. Therefore, Custodiol perfusion emerge as a promising strategy to reduce the thrombogenicity of decellularized biomaterials and could benefit several applications of whole-organ tissue engineering.
Collapse
Affiliation(s)
- Marlon Lemos Dias
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil; Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, INCT-REGENERA, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brasil
| | - Bruno Andrade Paranhos
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil; Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, INCT-REGENERA, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brasil
| | - Juliana Ribeiro Pinheiro Ferreira
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil; Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brasil
| | - Roberto José Castro Fonseca
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil; Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Cíntia Marina Paz Batista
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Ricardo Martins-Santos
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil; Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, INCT-REGENERA, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brasil
| | - Cherley Borba Vieira de Andrade
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil; Departamento de Histologia e Embriologia, Universidade do Estado do Rio de Janeiro, UERJ, Rio de Janeiro, RJ, Brasil
| | - Lanuza Alaby Pinheiro Faccioli
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil; Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | - Gilberto Barbosa Domont
- Laboratório de Proteômica /LADETEC, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Regina Coeli Dos Santos Goldenberg
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil; Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, INCT-REGENERA, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brasil.
| |
Collapse
|
7
|
Dias ML, Paranhos BA, Goldenberg RCDS. Liver scaffolds obtained by decellularization: A transplant perspective in liver bioengineering. J Tissue Eng 2022; 13:20417314221105305. [PMID: 35756167 PMCID: PMC9218891 DOI: 10.1177/20417314221105305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/19/2022] [Indexed: 11/15/2022] Open
Abstract
Liver transplantation is the only definitive treatment for many diseases that affect this organ, however, its quantity and viability are reduced. The study of liver scaffolds based on an extracellular matrix is a tissue bioengineering strategy with great application in regenerative medicine. Collectively, recent studies suggest that liver scaffold transplantation may assist in reestablishing hepatic function in preclinical diseased animals, which represents a great potential for application as a treatment for patients with liver disease in the future. This review focuses on useful strategies to promote liver scaffold transplantation and the main open questions about this context. We outline the current knowledge about ex vivo bioengineered liver transplantation, including the surgical techniques, recipient survival time, scaffold preparation before transplantation, and liver disease models. We also highlight the current limitations and future directions regarding in vivo bioengineering techniques.
Collapse
Affiliation(s)
- Marlon Lemos Dias
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa - INCT - REGENERA, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Bruno Andrade Paranhos
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa - INCT - REGENERA, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Regina Coeli Dos Santos Goldenberg
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa - INCT - REGENERA, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| |
Collapse
|
8
|
Histopathological Analysis of Decellularized Porcine Small Intestinal Submucosa after Treatment of Skin Ulcer. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2021; 9:e3967. [PMID: 34938643 PMCID: PMC8687724 DOI: 10.1097/gox.0000000000003967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/04/2021] [Indexed: 11/25/2022]
Abstract
Background: Decellularized porcine small intestinal submucosa (SIS), commercialized as an extracellular matrix rich in cell-inducing substrates and factors, has been clinically applied to treat intractable skin ulcers and has shown therapeutic effects. The SIS reportedly induces cell infiltration and integrates with the ulcer bed after 3–7 days of application. The attached SIS degenerates over time, and the remaining mass appears as slough, below which is granulation tissue that is essential for healing. This study aimed to determine whether the slough should be removed in clinical settings. Methods: Five patients with intractable skin ulcers were included in this case series. Seven days after applying a two-layer fenestrated-type SIS to the ulcer, the removed slough was histopathologically examined. Results: The collagen fibers of the SIS somewhat degenerated, and inflammatory cell infiltration was observed from the ulcer side to the surface side of the SIS. Neovascularization was similarly observed on the ulcer side. The degree of inflammatory cell infiltration decreased from the ulcer side to the surface side, whereas pus (ie, aggregates of neutrophils) was observed on the surface and ulcer edges. Additionally, the removed slough contained regenerative epithelium on the ulcer side of the remaining collagen fibers. Conclusions: After treating intractable skin ulcers using SIS, we recommend removal of the upper surface and ulcer edge of the degenerated SIS or slough to prevent infection and preservation of the lower side of the degenerated SIS to maintain the granulation tissue and regenerative epithelium.
Collapse
|
9
|
Jelodari S, Sadroddiny E. Decellularization of Small Intestinal Submucosa. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1345:71-84. [PMID: 34582015 DOI: 10.1007/978-3-030-82735-9_7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Small intestinal submucosa (SIS) is the most studied extracellular matrix (ECM) for repair and regeneration of different organs and tissues. Promising results of SIS-ECM as a vascular graft, led scientists to examine its applicability for repairing other tissues. Overall results indicated that SIS grafts induce tissue regeneration and remodeling to almost native condition. Investigating immunomodulatory effects of SIS is another interesting field of research. SIS can be utilized in different forms for multiple clinical and experimental studies. The aim of this chapter is to investigate the decellularization process of SIS and its common clinical application.
Collapse
Affiliation(s)
- Sahar Jelodari
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Esmaeil Sadroddiny
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Abstract
Various approaches have been evaluated for developing three-dimensional (3D) scaffolds for modeling or engineering of the bone tissue. However, most of such attempts have come up short in mimicking the natural bone tissue extracellular matrix (ECM) microenvironment, especially its natural bioactive content. Here we describe the methodology for the preparation of a natural ECM-based multichannel construct as a biomimetic 3D bone tissue model. We elucidate the construction of the composite scaffold incorporating decellularized small intestinal submucosa ECM, synthetic hydroxyapatite and poly(ε-caprolactone), and the mechanical stimulation of the cell-seeded construct under bioreactor culture.
Collapse
|
11
|
Nokhbatolfoghahaei H, Paknejad Z, Bohlouli M, Rezai Rad M, Aminishakib P, Derakhshan S, Mohammadi Amirabad L, Nadjmi N, Khojasteh A. Fabrication of Decellularized Engineered Extracellular Matrix through Bioreactor-Based Environment for Bone Tissue Engineering. ACS OMEGA 2020; 5:31943-31956. [PMID: 33344849 PMCID: PMC7745398 DOI: 10.1021/acsomega.0c04861] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/17/2020] [Indexed: 05/31/2023]
Abstract
Extracellular matrix (ECM)-contained grafts can be achieved by decellularization of native bones or synthetic scaffolds. Limitations associated with harvesting the native bone has raised interest in preparing in vitro ECM bioscaffold for bone tissue engineering. Here, we intend to develop an ECM-contained construct via decellularizing an engineered gelatin-coated β-tricalcium phosphate (gTCP) scaffold. In order to find an optimal protocol for decellularization of cell-loaded gTCP scaffolds, they were seeded with buccal fat pad-derived stem cells. Then, four decellularization protocols including sodium dodecyl sulfate, trypsin, Triton X-100, and combined solution methods were compared for the amounts of residual cells and remnant collagen and alteration of scaffold structure. Then, the efficacy of the selected protocol in removing cells from gTCP scaffolds incubated in a rotating and perfusion bioreactor for 24 days was evaluated and compared with static condition using histological analysis. Finally, decellularized scaffolds, reloaded with cells, and their cytotoxicity and osteoinductive capability were evaluated. Complete removal of cells from gTCP scaffolds was achieved from all protocols. However, treatment with Triton X-100 showed significantly higher amount of remnant ECM. Bioreactor-incubated scaffolds possessed greater magnitude of ECM proteins including collagen and glycosaminoglycans. Reseeding the decellularized scaffolds also represented higher osteoinductivity of bioreactor-based scaffolds. Application of Triton X-100 as decellularization protocol and usage of bioreactors are suggested as a suitable technique for designing ECM-contained grafts for bone tissue engineering.
Collapse
Affiliation(s)
- Hanieh Nokhbatolfoghahaei
- Dental
Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1983969413, Iran
- Student
Research Committee, Department of Tissue Engineering and Applied Cell
Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Zahrasadat Paknejad
- Department
of Tissue Engineering and Applied Cell Sciences, School of Advanced
Technologies in Medicine, Shahid Beheshti
University of Medical Sciences, Tehran 1985717443, Iran
- Medical
Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Mahboubeh Bohlouli
- Student
Research Committee, Department of Tissue Engineering and Applied Cell
Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Maryam Rezai Rad
- Dental
Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1983969413, Iran
| | - Pouyan Aminishakib
- Department
of Oral and Maxillofacial Pathology, School of Dentistry, Tehran University of Medical Sciences, Tehran 1439955991, Iran
| | - Samira Derakhshan
- Department
of Oral and Maxillofacial Pathology, School of Dentistry, Tehran University of Medical Sciences, Tehran 1439955991, Iran
| | | | - Nasser Nadjmi
- Department
of Cranio-Maxillofacial Surgery/University Hospital, Faculty of Medicine
& Health Sciences, University of Antwerp, Antwerp 2100, Belgium
- All
for Research vzw, Harmoniestraat
68, Antwerp 2018, Belgium
| | - Arash Khojasteh
- Dental
Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1983969413, Iran
- Department
of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran 1983969411, Iran
| |
Collapse
|
12
|
Antheraea mylitta Silk Films Support Corneal Re-epithelialisation as Inlay Grafts in Large-Sized Corneal Defect. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2020. [DOI: 10.1007/s40883-020-00159-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
Design and Characterization of a Fluidic Device for the Evaluation of SIS-Based Vascular Grafts. Processes (Basel) 2020. [DOI: 10.3390/pr8091198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Currently available small diameter vascular conduits present several long-term limitations, which has prevented their full clinical implementation. Commercially available vascular grafts show no regenerative capabilities and eventually require surgical replacement; therefore, it is of great interest to develop alternative regenerative vascular grafts (RVG). Decellularized Small Intestinal Submucosa (SIS) is an attractive material for RVG, however, the evaluation of the performance of these grafts is challenging due to the absence of devices that mimic the conditions found in vivo. Thereby, the objective of this study is to design, manufacture and validate in silico and in vitro, a novel fluidic system for the evaluation of human umbilical vein endothelial cells (HUVECs) proliferation on SIS-based RVG under dynamical conditions. Our perfusion and rotational fluidic system was designed in Autodesk Inventor 2018. In silico Computational Fluid Dynamics (CFD) validation of the system was carried out using Ansys Fluent software from ANSYS, Inc for dynamical conditions of a pulsatile pressure function measured experimentally over a rigid wall model. Mechanical and biological parameters such as flow regime, pressure gradient, wall shear stress (WSS), sterility and indirect cell viability (MTT assay) were also evaluated. Cell adhesion was confirmed by SEM imaging. The fluid flow regime within the system remains laminar. The system maintained sterility and showed low cytotoxicity levels. HUVECs were successfully cultured on SIS-based RVG under both perfusion and rotation conditions. In silico analysis agreed well with our experimental and theoretical results, and with recent in vitro and in vivo reports for WSS. The system presented is a tool for evaluating RVG and represents an alternative to develop new methods and protocols for a more comprehensive study of regenerative cardiovascular devices.
Collapse
|
14
|
Dias ML, Batista CMP, Secomandi VJK, Silva AC, Monteiro VRS, Faccioli LA, Goldenberg RCS. Surgical Models to Explore Acellular Liver Scaffold Transplantation: Step-by-Step. Organogenesis 2020; 16:95-112. [PMID: 32799604 DOI: 10.1080/15476278.2020.1801273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Acellular liver scaffolds (ALS) have arisen as potential candidates for transplantation. Until now, all reports involving ALS transplantation failed in surgical method descriptions and do not offer support to scientists to reproduce the procedures used in experimental microsurgery to make the results comparable to literature. To overcome the lack of detail information, we described surgical steps details to perform heterotopic and partial orthotopic surgical models to promote ALS transplantation. After preservation and vessel cannulation steps, the liver grafts were decellularized. In addition, ex vivo blood perfusion tests were performed to obtain a successful anticoagulation treatment prior in vivo transplantation. Then, methods of partial liver resection, combination of hand-suture and cuff techniques to complete end-to-end anastomosis between the scaffold and the recipient animal were performed. These procedures which take 30-60 min and were efficient to allow acellular liver scaffold viability and recellularization of different types of cell post-surgery. In conclusion, our methods are practical and simple promising approach that provides the opportunity to investigate ways to achieve sufficient liver function post-transplantation in vivo.
Collapse
Affiliation(s)
- Marlon L Dias
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio De Janeiro , Rio De Janeiro, Brazil
| | - Cíntia M P Batista
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio De Janeiro , Rio De Janeiro, Brazil
| | - Victor J K Secomandi
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio De Janeiro , Rio De Janeiro, Brazil
| | - Alexandre C Silva
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio De Janeiro , Rio De Janeiro, Brazil.,Department of Surgery, Clementino Fraga Filho Universitary Hospital, Federal University of Rio De Janeiro , Rio De Janeiro, Brazil
| | - Victoria R S Monteiro
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio De Janeiro , Rio De Janeiro, Brazil
| | - Lanuza A Faccioli
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio De Janeiro , Rio De Janeiro, Brazil
| | - Regina C S Goldenberg
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio De Janeiro , Rio De Janeiro, Brazil.,National Institute of Science and Technology in Regenerative Medicine- REGENERA, Federal University of Rio De Janeiro , Rio De Janeiro, Brazil
| |
Collapse
|
15
|
Kim W, Kim GH. An intestinal model with a finger-like villus structure fabricated using a bioprinting process and collagen/SIS-based cell-laden bioink. Am J Cancer Res 2020; 10:2495-2508. [PMID: 32194815 PMCID: PMC7052892 DOI: 10.7150/thno.41225] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/26/2019] [Indexed: 02/07/2023] Open
Abstract
The surface of the small intestine has a finger-like microscale villus structure, which provides a large surface area to realize efficient digestion and absorption. However, the fabrication of a villus structure using a cell-laden bioink containing a decellularized small intestine submucosa, SIS, which can induce significant cellular activities, has not been attempted owing to the limited mechanical stiffness, which sustains the complex projective finger-like 3D structure. In this work, we developed a human intestinal villi model with an innovative bioprinting process using a collagen/SIS cell-laden bioink. Methods: A Caco-2-laden microscale villus structure (geometry of the villus: height = 831.1 ± 36.2 μm and diameter = 190.9 ± 3.9 μm) using a bioink consisting of collagen type-I and SIS was generated using a vertically moving 3D bioprinting process. By manipulating various compositions of dECM and a crosslinking agent in the bioink and the processing factors (printing speed, printing time, and pneumatic pressure), the villus structure was achieved. Results: The epithelial cell-laden collagen/SIS villi showed significant cell proliferation (1.2-fold) and demonstrated meaningful results for the various cellular activities, such as the expression of tight-junction proteins (ZO-1 and E-cadherin), ALP and ANPEP activities, MUC17 expression, and the permeability coefficient and the glucose uptake ability, compared with the pure 3D collagen villus structure. Conclusion: In vitro cellular activities demonstrated that the proposed cell-laden collagen/dECM villus structure generates a more meaningful epithelium layer mimicking the intestinal structure, compared with the pure cell-laden collagen villus structure having a similar villus geometry. Based on the results, we believe that this dECM-based 3D villus model will be helpful in obtaining a more realistic physiological small-intestine model.
Collapse
|
16
|
Barachetti L, Zanni M, Stefanello D, Rampazzo A. Use of four-layer porcine small intestinal submucosa alone as a scaffold for the treatment of deep corneal defects in dogs and cats: preliminary results. Vet Rec 2020; 186:e28. [PMID: 31937546 DOI: 10.1136/vr.105513] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 10/20/2019] [Accepted: 12/05/2019] [Indexed: 01/18/2023]
Abstract
BACKGROUND To describe the efficacy of four-layer porcine small intestinal submucosa (Vetrix BioSIS plus+) as single scaffold for the treatment of deep corneal lesions in dogs and cats. METHODS 10 dogs and 3 cats with deep or full thickness corneal defects were treated surgically with BioSIS plus graft. Corneal transparency scores and vision were evaluated. RESULTS Lesions in dogs were four perforations, three descemetoceles, two limbal melanocytomas and one deep corneal ulcer. In cats, there were one limbal melanocytoma and two perforations. The average length of the follow-up was 86 days. In all, 12 out of 13 eyes treated were visual at last recheck (92.3 per cent). The scars were mild eight cases (66.7 per cent), but denser in four cases (33.4 per cent). Complication were partial collagenolysis in three cases (25 per cent), which resolved with medical therapy, mild corneal pigmentation in one case (8.4 per cent) and anterior synechia in one case (8.4 per cent). One case experienced severe collagenolysis and was enucleated 21 days postoperatively. CONCLUSIONS Four-layer porcine SIS graft was successfully used for surgical treatment of deep corneal lesions in selected corneal diseases in a small series of dogs and cats, with good results in terms of mechanic support and corneal transparency.
Collapse
Affiliation(s)
- Laura Barachetti
- Department of Veterinary Medicine, University of Milan, Milan, Italy .,Dipartimento di Oftalmologia, Istituto Veterinario di Novara, Granozzo con Monticello, Italy
| | - Marco Zanni
- Department of Veterinary Science and Public Health, University of Milan, Milan, Italy
| | | | - Antonella Rampazzo
- Equine Department, Universitat Zurich Vetsuisse-Fakultat, Zurich, Switzerland
| |
Collapse
|
17
|
Giobbe GG, Crowley C, Luni C, Campinoti S, Khedr M, Kretzschmar K, De Santis MM, Zambaiti E, Michielin F, Meran L, Hu Q, van Son G, Urbani L, Manfredi A, Giomo M, Eaton S, Cacchiarelli D, Li VSW, Clevers H, Bonfanti P, Elvassore N, De Coppi P. Extracellular matrix hydrogel derived from decellularized tissues enables endodermal organoid culture. Nat Commun 2019; 10:5658. [PMID: 31827102 PMCID: PMC6906306 DOI: 10.1038/s41467-019-13605-4] [Citation(s) in RCA: 314] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 11/11/2019] [Indexed: 12/19/2022] Open
Abstract
Organoids have extensive therapeutic potential and are increasingly opening up new avenues within regenerative medicine. However, their clinical application is greatly limited by the lack of effective GMP-compliant systems for organoid expansion in culture. Here, we envisage that the use of extracellular matrix (ECM) hydrogels derived from decellularized tissues (DT) can provide an environment capable of directing cell growth. These gels possess the biochemical signature of tissue-specific ECM and have the potential for clinical translation. Gels from decellularized porcine small intestine (SI) mucosa/submucosa enable formation and growth of endoderm-derived human organoids, such as gastric, hepatic, pancreatic, and SI. ECM gels can be used as a tool for direct human organoid derivation, for cell growth with a stable transcriptomic signature, and for in vivo organoid delivery. The development of these ECM-derived hydrogels opens up the potential for human organoids to be used clinically.
Collapse
Affiliation(s)
- Giovanni Giuseppe Giobbe
- Stem Cell and Regenerative Medicine Section, University College London GOS Institute of Child Health, London, UK
| | - Claire Crowley
- Stem Cell and Regenerative Medicine Section, University College London GOS Institute of Child Health, London, UK
| | - Camilla Luni
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, China
| | - Sara Campinoti
- Stem Cell and Regenerative Medicine Section, University College London GOS Institute of Child Health, London, UK
- Epithelial Stem Cell Biology & Regenerative Medicine Laboratory, the Francis Crick Institute, London, UK
| | - Moustafa Khedr
- Stem Cell and Regenerative Medicine Section, University College London GOS Institute of Child Health, London, UK
| | - Kai Kretzschmar
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center (UMC) Utrecht, Utrecht, Netherlands
| | - Martina Maria De Santis
- Stem Cell and Regenerative Medicine Section, University College London GOS Institute of Child Health, London, UK
| | - Elisa Zambaiti
- Stem Cell and Regenerative Medicine Section, University College London GOS Institute of Child Health, London, UK
| | - Federica Michielin
- Stem Cell and Regenerative Medicine Section, University College London GOS Institute of Child Health, London, UK
| | - Laween Meran
- Stem Cell and Regenerative Medicine Section, University College London GOS Institute of Child Health, London, UK
- Stem Cell and Cancer Biology Lab, the Francis Crick Institute, London, UK
| | - Qianjiang Hu
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, China
| | - Gijs van Son
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center (UMC) Utrecht, Utrecht, Netherlands
| | - Luca Urbani
- Stem Cell and Regenerative Medicine Section, University College London GOS Institute of Child Health, London, UK
| | - Anna Manfredi
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Monica Giomo
- Veneto Institute of Molecular Medicine & Dept. of Industrial Engineering, University of Padova, Padova, Italy
| | - Simon Eaton
- Stem Cell and Regenerative Medicine Section, University College London GOS Institute of Child Health, London, UK
| | | | - Vivian S W Li
- Stem Cell and Cancer Biology Lab, the Francis Crick Institute, London, UK
| | - Hans Clevers
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center (UMC) Utrecht, Utrecht, Netherlands
- Princess Máxima Center (PMC) for Pediatric Oncology, Utrecht, Netherlands
| | - Paola Bonfanti
- Stem Cell and Regenerative Medicine Section, University College London GOS Institute of Child Health, London, UK
- Epithelial Stem Cell Biology & Regenerative Medicine Laboratory, the Francis Crick Institute, London, UK
| | - Nicola Elvassore
- Stem Cell and Regenerative Medicine Section, University College London GOS Institute of Child Health, London, UK.
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, China.
- Veneto Institute of Molecular Medicine & Dept. of Industrial Engineering, University of Padova, Padova, Italy.
| | - Paolo De Coppi
- Stem Cell and Regenerative Medicine Section, University College London GOS Institute of Child Health, London, UK.
- Specialist Neonatal and Paediatric Surgery Unit, Great Ormond Street Hospital, London, UK.
| |
Collapse
|
18
|
Carvalho MS, Silva JC, Cabral JMS, da Silva CL, Vashishth D. Cultured cell-derived extracellular matrices to enhance the osteogenic differentiation and angiogenic properties of human mesenchymal stem/stromal cells. J Tissue Eng Regen Med 2019; 13:1544-1558. [PMID: 31151132 DOI: 10.1002/term.2907] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 01/02/2019] [Accepted: 02/13/2019] [Indexed: 12/20/2022]
Abstract
Cell-derived extracellular matrix (ECM) consists of a complex assembly of fibrillary proteins, matrix macromolecules, and associated growth factors that mimic the composition and organization of native ECM micro-environment. Therefore, cultured cell-derived ECM has been used as a scaffold for tissue engineering settings to create a biomimetic micro-environment, providing physical, chemical, and mechanical cues to cells, and support cell adhesion, proliferation, migration, and differentiation. Here, we present a new strategy to produce different combinations of decellularized cultured cell-derived ECM (dECM) obtained from different cultured cell types, namely, mesenchymal stem/stromal cells (MSCs) and human umbilical vein endothelial cells (HUVECs), as well as the coculture of MSC:HUVEC and investigate the effects of its various compositions on cell metabolic activity, osteogenic differentiation, and angiogenic properties of human bone marrow (BM)-derived MSCs, vital features for adult bone tissue regeneration and repair. Our findings demonstrate that dECM presented higher cell metabolic activity compared with tissue culture polystyrene. More importantly, we show that MSC:HUVEC ECM enhanced the osteogenic and angiogenic potential of BM MSCs, as assessed by in vitro assays. Interestingly, MSC:HUVEC (1:3) ECM demonstrated the best angiogenic response of MSCs in the conditions tested. To the best of our knowledge, this is the first study that demonstrates that dECM derived from a coculture of MSC:HUVEC impacts the osteogenic and angiogenic capabilities of BM MSCs, suggesting the potential use of MSC:HUVEC ECM as a therapeutic product to improve clinical outcomes in bone regeneration.
Collapse
Affiliation(s)
- Marta S Carvalho
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.,Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - João C Silva
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.,Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Joaquim M S Cabral
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Cláudia L da Silva
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Deepak Vashishth
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| |
Collapse
|
19
|
Sánchez Puccini P, Briceño Triana JC. Visco-elasto-plastic modeling of small intestinal submucosa (SIS) for application as a vascular graft. J Mech Behav Biomed Mater 2018; 88:386-394. [DOI: 10.1016/j.jmbbm.2018.08.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 08/11/2018] [Accepted: 08/28/2018] [Indexed: 11/30/2022]
|
20
|
Abstract
Decellularization technology promises to overcome some of the significant limitations in the regenerative medicine field by providing functional biocompatible grafts. The technique involves removal of the cells from the biological tissues or organs for further use in tissue engineering and clinical interventions. There are significant differences between decellularization protocols due to the intrinsic properties of different tissue types and purpose of use. This multistep, chemical-solution-based protocol is optimized for the preparation of decellularized bovine small intestinal submucosa (SIS).
Collapse
Affiliation(s)
- Mahmut Parmaksiz
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, and Ankara University Stem Cell Institute, Ankara, Turkey
| | - Ayşe Eser Elçin
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, and Ankara University Stem Cell Institute, Ankara, Turkey
| | - Yaşar Murat Elçin
- Biovalda Health Technologies, Inc., Ankara, Turkey.
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, Ankara, Turkey.
| |
Collapse
|
21
|
Burghartz M, Lennartz S, Schweinlin M, Hagen R, Kleinsasser N, Hackenberg S, Steußloff G, Scherzad A, Radeloff K, Ginzkey C, Walles H, Metzger M. Development of Human Salivary Gland-Like Tissue In Vitro. Tissue Eng Part A 2017; 24:301-309. [PMID: 28783453 DOI: 10.1089/ten.tea.2016.0466] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The loss of salivary gland function caused by radiation therapy of the head and neck is a serious condition and it affects a patient's quality of life. The current lack of effective therapies demands new options to be explored. This study tested whether human salivary gland epithelial cells (SGECs) could be successfully cultured on a decellularized porcine gut matrix (SIS-muc) in both mono- and coculture with microvascular endothelial cells (mvECs). By performing immunofluorescence imaging, transmission as well as scanning electron microscopy (SEM), quantitative polymerase chain reaction (qPCR), and an amylase enzyme assay, it was investigated as to what extent the three-dimensional (3D)-cultured cells could maintain their molecular differentiation and the production of working α-amylase (α-AMY) compared with two-dimensional (2D) culture. In both 3D mono- and coculture, SGECs were successfully cultured and formed acinar-like structures. Those findings were confirmed by SEM imaging. Immunofluorescence imaging revealed that 3D-cultured cells expressed α-AMY, Claudin-1 (CL-1), and water channel protein aquaporin-5 (AQP-5). Two-dimensional-cultured cells only were positive for α-AMY. Real time (RT)-qPCR analysis showed that α-AMY relative gene expression was higher in both 3D mono- and coculture than in 2D culture. In α-AMY enzyme assay, cocultured SGECs showed about 25 times increased enzyme activity compared with 2D-cultured cells. In conclusion, the SIS-muc combined with endothelial coculture seems a suitable culture setting for the tissue engineering of functional human salivary gland tissue.
Collapse
Affiliation(s)
- Marc Burghartz
- 1 Department of Otorhinolaryngology, Head and Neck Surgery , Klinikum Stuttgart, Stuttgart, Germany
| | - Simon Lennartz
- 2 Institute of Diagnostic and Interventional Radiology, University Hospital Cologne , Cologne, Germany
| | - Matthias Schweinlin
- 3 Department of Tissue Engineering and Regenerative Medicine (TERM), University Hospital Würzburg , Würzburg, Germany
| | - Rudolf Hagen
- 4 University Department of Otorhinolaryngology , Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Universitiy Hospital Würzburg, Würzburg, Germany
| | - Norbert Kleinsasser
- 4 University Department of Otorhinolaryngology , Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Universitiy Hospital Würzburg, Würzburg, Germany
| | - Stephan Hackenberg
- 4 University Department of Otorhinolaryngology , Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Universitiy Hospital Würzburg, Würzburg, Germany
| | - Gudrun Steußloff
- 4 University Department of Otorhinolaryngology , Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Universitiy Hospital Würzburg, Würzburg, Germany
| | - Agmal Scherzad
- 4 University Department of Otorhinolaryngology , Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Universitiy Hospital Würzburg, Würzburg, Germany
| | - Kathrin Radeloff
- 4 University Department of Otorhinolaryngology , Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Universitiy Hospital Würzburg, Würzburg, Germany
| | - Christian Ginzkey
- 5 Department of Otorhinolaryngology, Head and Neck Surgery "Otto-Körner", University Hospital Rostock , Rostock, Germany
| | - Heike Walles
- 3 Department of Tissue Engineering and Regenerative Medicine (TERM), University Hospital Würzburg , Würzburg, Germany
| | - Marco Metzger
- 3 Department of Tissue Engineering and Regenerative Medicine (TERM), University Hospital Würzburg , Würzburg, Germany
| |
Collapse
|
22
|
Lee C, Shim S, Jang H, Myung H, Lee J, Bae CH, Myung JK, Kim MJ, Lee SB, Jang WS, Lee SJ, Kim HY, Lee SS, Park S. Human umbilical cord blood-derived mesenchymal stromal cells and small intestinal submucosa hydrogel composite promotes combined radiation-wound healing of mice. Cytotherapy 2017; 19:1048-1059. [PMID: 28751152 DOI: 10.1016/j.jcyt.2017.06.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 05/19/2017] [Accepted: 06/19/2017] [Indexed: 01/16/2023]
Abstract
BACKGROUND AIMS Mesenchymal stromal cells (MSCs) are a promising agent for treating impaired wound healing, and their therapeutic potential may be enhanced by employing extracellular matrix scaffolds as cell culture scaffolds or transplant cell carriers. Here, we evaluated the effect of human umbilical cord blood-derived (hUCB)-MSCs and a porcine small intestinal submucosa (SIS)-derived extracellular matrix scaffold in a combined radiation-wound mouse model of impaired wound healing. METHODS hUCB-MSCs and SIS hydrogel composite was applied to the excisional wound of whole-body irradiated mice. Assessment of wound closing and histological evaluation were performed in vivo. We also cultured hUCB-MSCs on SIS gel and examined the angiogenic effect of conditioned medium on irradiated human umbilical vein endothelial cells (HUVECs) in vitro. RESULTS hUCB-MSCs and SIS hydrogel composite treatment enhanced wound healing and angiogenesis in the wound site of mice. Conditioned medium from hUCB-MSCs cultured on SIS hydrogel promoted the chemotaxis of irradiated HUVECs more than their proliferation. The secretion of angiogenic growth factors hepatocyte growth factor, vascular endothelial growth factor-A and angiopoietin-1 from hUCB-MSCs was significantly increased by SIS hydrogel, with HGF being the predominant angiogenic factor of irradiated HUVECs. CONCLUSIONS Our results suggest that the wound healing effect of hUCB-MSCs is enhanced by SIS hydrogel via a paracrine factor-mediated recruitment of vascular endothelial cells in a combined radiation-wound mouse model.
Collapse
Affiliation(s)
- Changsun Lee
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea; Department of Veterinary Surgery, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Sehwan Shim
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Hyosun Jang
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Hyunwook Myung
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea; Department of Veterinary Surgery, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Janet Lee
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Chang-Hwan Bae
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Jae Kyung Myung
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea; Department of Pathology, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Min-Jung Kim
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Seung Bum Lee
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Won-Suk Jang
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Sun-Joo Lee
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Hwi-Yool Kim
- Department of Veterinary Surgery, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Seung-Sook Lee
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea; Department of Pathology, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Sunhoo Park
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea; Department of Pathology, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea.
| |
Collapse
|
23
|
Li M, Zhang C, Cheng M, Gu Q, Zhao J. Small intestinal submucosa: A potential osteoconductive and osteoinductive biomaterial for bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 75:149-156. [DOI: 10.1016/j.msec.2017.02.042] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 12/26/2016] [Accepted: 02/10/2017] [Indexed: 01/13/2023]
|
24
|
Zhao L, Zhao J, Yu J, Sun R, Zhang X, Hu S. In vivo investigation of tissue-engineered periosteum for the repair of allogeneic critical size bone defects in rabbits. Regen Med 2017. [PMID: 28621175 DOI: 10.2217/rme-2016-0157] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Aim: The aim of the study was to evaluate the efficacy of tissue-engineered periosteum (TEP) in repairing allogenic bone defects in the long term. Materials & methods: TEP was biofabricated with osteoinduced rabbit bone marrow mesenchymal stem cells and porcine small intestinal submucosa (SIS). A total of 24 critical sized defects were created bilaterally in radii of 12 New Zealand White rabbits. TEP/SIS was implanted into the defect site. Bone defect repair was evaluated with radiographic and histological examination at 4, 8 and 12 weeks. Results: Bone defects were structurally reconstructed in the TEP group with mature cortical bone and medullary canals, however this was not observed in the SIS group at 12 weeks. Conclusion: The TEP approach can effectively restore allogenic critical sized defects, and achieve maturity of long-bone structure in 12 weeks in rabbit models.
Collapse
Affiliation(s)
- Lin Zhao
- Orthopaedic Department, Jinshan Branch of the Sixth People’s Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai 201500, China
| | - Junli Zhao
- Department of Nephrology, Shanghai ZhouPu Hospital, Shanghai 201318, China
| | - Jiajia Yu
- Orthopaedic Institute, the Second Hospital of Lanzhou University, Lanzhou 730030, China
| | - Rui Sun
- Orthopaedic Institute, the Second Hospital of Lanzhou University, Lanzhou 730030, China
| | - Xiaofeng Zhang
- Orthopaedic Department, Jinshan Branch of the Sixth People’s Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai 201500, China
| | - Shuhua Hu
- Orthopaedic Department, Jinshan Branch of the Sixth People’s Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai 201500, China
| |
Collapse
|
25
|
Choi JS, An HY, Shin HS, Kim YM, Lim JY. Enhanced tissue remodelling efficacy of adipose-derived mesenchymal stem cells using injectable matrices in radiation-damaged salivary gland model. J Tissue Eng Regen Med 2017; 12:e695-e706. [PMID: 27860388 DOI: 10.1002/term.2352] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 09/10/2016] [Accepted: 11/09/2016] [Indexed: 12/11/2022]
Abstract
The present study was conducted to introduce the use of a delivery carrier for local transplantation of human adipose tissue-derived mesenchymal stem cells (AdMSCs) into the salivary gland (SG) and analyse its ability to enhance radioprotection of AdMSCs against irradiation (IR)-induced damage. An injectable porcine small intestinal submucosa (SIS) matrix was used as a cell delivery carrier, and human AdMSCs were contained within SIS hydrogel (AdMSC/SIS). After local injection into SGs of mice following local IR, morphological and functional changes were evaluated in the sham, vehicle [phosphate-buffered saline (PBS)], SIS, AdMSC and AdMSC/SIS groups. Local transplantation of AdMSC resulted in less fibrosis, regardless of the use of a carrier, but the AdMSC/SIS group showed more mucin-producing acini relative to those in the PBS group. Functional restoration of salivation capacity and salivary protein synthesis was achieved in AdMSC and AdMSC/SIS groups, with a greater tendency being observed in the AdMSC/SIS group. AdMSC treatment resulted in tissue remodelling with a greater number of salivary epithelial cells (AQP-5), SG progenitor cells (c-Kit), endothelial cells (CD31) and myoepithelial cells (α-SMA), among which endothelial and myoepithelial cells significantly increased in the AdMSC/SIS group relative to the AdMSC group. AdMSC treatment alleviated IR-induced cell death, and the anti-apoptotic and anti-oxidative effects of AdMSC were enhanced in the AdMSC/SIS group relative to the AdMSC group. These results suggest local transplantation of AdMSC improves tissue remodelling following radiation damage in SG tissue, and that use of a carrier enhances the protective effects of AdMSC-mediated cellular protection against IR via paracrine secretion. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jeong-Seok Choi
- Department of Otorhinolaryngology - Head and Neck Surgery, Inha University School of Medicine, Incheon, Republic of Korea
| | - Hye-Young An
- Department of Otorhinolaryngology - Head and Neck Surgery, Inha University School of Medicine, Incheon, Republic of Korea
| | - Hyun-Soo Shin
- Department of Otorhinolaryngology - Head and Neck Surgery, Inha University School of Medicine, Incheon, Republic of Korea
| | - Young-Mo Kim
- Department of Otorhinolaryngology - Head and Neck Surgery, Inha University School of Medicine, Incheon, Republic of Korea
| | - Jae-Yol Lim
- Department of Otorhinolaryngology - Head and Neck Surgery, Inha University School of Medicine, Incheon, Republic of Korea
| |
Collapse
|
26
|
Lin Q, Wong HL, Tian FR, Huang YD, Xu J, Yang JJ, Chen PP, Fan ZL, Lu CT, Zhao YZ. Enhanced neuroprotection with decellularized brain extracellular matrix containing bFGF after intracerebral transplantation in Parkinson's disease rat model. Int J Pharm 2016; 517:383-394. [PMID: 28007548 DOI: 10.1016/j.ijpharm.2016.12.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 12/10/2016] [Accepted: 12/12/2016] [Indexed: 11/17/2022]
Abstract
Extracellular matrix-based biomaterials have many advantages over synthetic polymer materials for regenerative medicine applications. In central nervous system (CNS), basic fibroblast growth factor (bFGF) is widely studied as a potential agent for Parkinson's disease (PD). However, the poor stability of bFGF hampered its clinical use. In this study, CNS-derived biologic scaffold containing bFGF was used to enhance and extend the neuroprotective effect of bFGF on PD targeted therapy. Decellularized brain extracellular matrix (dcBECM) was prepared by chemical extraction. The biocompatibility of dcBECM was evaluated using CCK-8 assay and magnetic resonance imaging (MRI). The controlled-release behavior of dcBECM containing bFGF (bFGF+dcBECM) was confirmed by ELISA assay. Furthermore, the cytocompatibility and neuroprotective effect of bFGF+dcBECM was evaluated in vitro and in vivo. From results, dcBECM showed a three-dimensional network structure with high biocompatibility. MRI of dcBECM implanted rats showed nearly seamless fusion of dcBECM with the adjoining tissues. The cumulative release rate of bFGF+dcBECM in vitro reached to 75.88% at 10h and maintained sustained release trend during the observation. ELISA results in vivo further confirmed the sustained-release behavior (from 12h to 3d) of bFGF+dcBECM in brain tissues. Among the experimental groups, bFGF+dcBECM group showed the highest cell survival rate of PD model cells, improved behavioral recovery and positive expressions of neurotrophic proteins in PD recovered rats. In conclusion, sustained neuroprotection in PD rats was achieved by using bFGF+dcBECM. The combination of dcBECM and bFGF would be a promising therapeutic strategy to realize an effective and safe alternative for CNS disease treatment.
Collapse
Affiliation(s)
- Qian Lin
- College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China; The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325000, China; Departments of Pharmacology and toxicology, University of Louisville School of Medicine, Louisville, 40202, USA
| | - Ho Lun Wong
- School of Pharmacy, Temple University, Philadelphia, PA 19140, USA
| | - Fu-Rong Tian
- College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Ya-Dong Huang
- Biopharmaceutical R&D Center of Jinan University, Guangzhou, Guangdong Province 510000, China
| | - Jie Xu
- College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Jing-Jing Yang
- College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Pian-Pian Chen
- College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Zi-Liang Fan
- College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Cui-Tao Lu
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325000, China.
| | - Ying-Zheng Zhao
- College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China; The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325000, China.
| |
Collapse
|
27
|
Wang D, Ding X, Xue W, Zheng J, Tian X, Li Y, Wang X, Song H, Liu H, Luo X. A new scaffold containing small intestinal submucosa and mesenchymal stem cells improves pancreatic islet function and survival in vitro and in vivo. Int J Mol Med 2016; 39:167-173. [PMID: 27909715 PMCID: PMC5179187 DOI: 10.3892/ijmm.2016.2814] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 11/25/2016] [Indexed: 12/23/2022] Open
Abstract
It is unknown whether a scaffold containing both small intestinal submucosa (SIS) and mesenchymal stem cells (MSCs) for transplantation may improve pancreatic islet function and survival. In this study, we examined the effects of a SIS-MSC scaffold on islet function and survival in vitro and in vivo. MSCs and pancreatic islets were isolated from Sprague-Dawley rats, and SIS was isolated from Bamei pigs. The islets were apportioned among 3 experimental groups as follows: SIS-islets, SIS-MSC-islets and control-islets. In vitro, islet function was measured by a glucose-stimulated insulin secretion test; cytokines in cultured supernatants were assessed by enzyme-linked immunosorbent assay; and gene expression was analyzed by reverse transcription-quantitative PCR. In vivo, islet transplantation was performed in rats, and graft function and survival were monitored by measuring the blood glucose levels. In vitro, the SIS-MSC scaffold was associated with improved islet viability and enhanced insulin secretion compared with the controls, as well as with the increased the expression of insulin 1 (Ins1), pancreatic and duodenal homeobox 1 (Pdx1), platelet endothelial cell adhesion molecule 1 [Pecam1; also known as cluster of differentiation 31 (CD31)] and vascular endothelial growth factor A (Vegfa) in the islets, increased growth factor secretion, and decreased tumor necrosis factor (TNF) secretion. In vivo, the SIS-MSC scaffold was associated with improved islet function and graft survival compared with the SIS and control groups. On the whole, our findings demonstrate that the SIS-MSC scaffold significantly improved pancreatic islet function and survival in vitro and in vivo. This improvement may be associated with the upregulation of insulin expression, the improvement of islet microcirculation and the secretion of cytokines.
Collapse
Affiliation(s)
- Dan Wang
- Department of Renal Transplantation, Center of Nephropathy, The First Affiliated Hospital, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xiaoming Ding
- Department of Renal Transplantation, Center of Nephropathy, The First Affiliated Hospital, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Wujun Xue
- Department of Renal Transplantation, Center of Nephropathy, The First Affiliated Hospital, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jin Zheng
- Department of Renal Transplantation, Center of Nephropathy, The First Affiliated Hospital, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xiaohui Tian
- Department of Renal Transplantation, Center of Nephropathy, The First Affiliated Hospital, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yang Li
- Department of Renal Transplantation, Center of Nephropathy, The First Affiliated Hospital, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xiaohong Wang
- Department of Renal Transplantation, Center of Nephropathy, The First Affiliated Hospital, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Huanjin Song
- Department of Renal Transplantation, Center of Nephropathy, The First Affiliated Hospital, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Hua Liu
- Department of Renal Transplantation, Center of Nephropathy, The First Affiliated Hospital, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xiaohui Luo
- Department of Renal Transplantation, Center of Nephropathy, The First Affiliated Hospital, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
28
|
Hsia K, Yao CL, Chen WM, Chen JH, Lee H, Lu JH. Scaffolds and Cell-Based Tissue Engineering for Blood Vessel Therapy. Cells Tissues Organs 2016; 202:281-295. [PMID: 27548610 DOI: 10.1159/000448169] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2016] [Indexed: 11/19/2022] Open
Abstract
The increasing morbidity of cardiovascular diseases in modern society has made it crucial to develop a small-caliber blood vessel. In the absence of appropriate autologous vascular grafts, an alternative prosthesis must be constructed for cardiovascular disease patients. The aim of this article is to describe the advances in making cell-seeded cardiovascular prostheses. It also discusses the combinations of types of scaffolds and cells, especially autologous stem cells, which are suitable for application in tissue-engineered vessels with the favorable properties of mechanical strength, antithrombogenicity, biocompliance, anti-inflammation, fatigue resistance and long-term durability. This article highlights the advancements in cellular tissue-engineered vessels in recent years.
Collapse
|
29
|
Prasad CK, Resmi KR, Krishnan LK, Vaishnav R. Survival of Endothelial Cells in vitro on Paclitaxel-loaded Coronary Stents. J Biomater Appl 2016; 19:271-86. [PMID: 15788425 DOI: 10.1177/0885328205047397] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Coronary stents that are developed for use with balloon angioplasty are known to cause acute occlusion and long-term stenosis. It is likely that a controlled release of drugs at the site of stent implantation might inhibit the proliferation of vascular smooth muscle cells (VSMC) and reduce restenosis. However, if the drug is necrotic and affects cell survival near the implant, it may interrupt the local tissue regeneration. Different methods have been used for the immobilization of drugs with stents to get an effective concentration that inhibits cell proliferation. The objective of this study is to assess the effectiveness of Paclitaxel-loaded stents by immobilization with a biodegradable polymer, to inhibit cell proliferation. The cells used for the evaluation are human umbilical vein endothelial cells (HUVEC) and the proliferation rate of these cells on the drug-coated stent is compared against an uncoated stent for a 72-h period. Evaluations were also made to differentiate between cell apoptosis and necrosis to prove that the drug released is not deleterious to the surrounding tissue. While a similar initial cell adhesion is observed in bare and coated stents, the proliferation of HUVEC is negligible when grown on a drug-coated stent (p < 0.001). By specific staining techniques, the cells on the drug-coated stents are found to be apoptotic and not necrotic, throughout the evaluation period. In vitro leukocyte adhesion and platelet deposition on the drug-coated stents are found to be low when they are exposed to human blood and platelet-rich plasma (PRP), suggesting that the coated stents may not be thrombogenic in vivo. Therefore, drug coating of stents using the described technique may have a considerable promise for the prevention of neointimal proliferation, restenosis, and associated failure of angioplasty.
Collapse
Affiliation(s)
- C Krishna Prasad
- Thrombosis Research Unit, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Trivandrum-695 012, India
| | | | | | | |
Collapse
|
30
|
Keane TJ, DeWard A, Londono R, Saldin LT, Castleton AA, Carey L, Nieponice A, Lagasse E, Badylak SF. Tissue-Specific Effects of Esophageal Extracellular Matrix. Tissue Eng Part A 2016; 21:2293-300. [PMID: 26192009 DOI: 10.1089/ten.tea.2015.0322] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Biologic scaffolds composed of extracellular matrix (ECM) have been used to facilitate repair or remodeling of numerous tissues, including the esophagus. The theoretically ideal scaffold for tissue repair is the ECM derived from the particular tissue to be treated, that is, site-specific or homologous ECM. The preference or potential advantage for the use of site-specific ECM remains unknown in the esophageal location. The objective of the present study was to characterize the in vitro cellular response and in vivo host response to a homologous esophageal ECM (eECM) versus nonhomologous ECMs derived from small intestinal submucosa and urinary bladder. The in vitro response of esophageal stem cells was characterized by migration, proliferation, and three-dimensional (3D) organoid formation assays. The in vivo remodeling response was evaluated in a rat model of esophageal mucosal resection. Results of the study showed that the eECM retains favorable tissue-specific characteristics that enhance the migration of esophageal stem cells and supports the formation of 3D organoids to a greater extent than heterologous ECMs. Implantation of eECM facilitates the remodeling of esophageal mucosa following mucosal resection, but no distinct advantage versus heterologous ECM could be identified.
Collapse
Affiliation(s)
- Timothy J Keane
- 1 McGowan Institute for Regenerative Medicine , Pittsburgh, Pennsylvania.,2 Department of Bioengineering, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Aaron DeWard
- 1 McGowan Institute for Regenerative Medicine , Pittsburgh, Pennsylvania.,3 Department of Pathology, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Ricardo Londono
- 1 McGowan Institute for Regenerative Medicine , Pittsburgh, Pennsylvania.,4 School of Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Lindsey T Saldin
- 1 McGowan Institute for Regenerative Medicine , Pittsburgh, Pennsylvania.,2 Department of Bioengineering, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Arthur A Castleton
- 1 McGowan Institute for Regenerative Medicine , Pittsburgh, Pennsylvania
| | - Lisa Carey
- 1 McGowan Institute for Regenerative Medicine , Pittsburgh, Pennsylvania.,2 Department of Bioengineering, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Alejandro Nieponice
- 1 McGowan Institute for Regenerative Medicine , Pittsburgh, Pennsylvania.,5 Hospital Universitario , Fundación Favaloro, Buenos Aires, Argentina
| | - Eric Lagasse
- 1 McGowan Institute for Regenerative Medicine , Pittsburgh, Pennsylvania.,3 Department of Pathology, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Stephen F Badylak
- 1 McGowan Institute for Regenerative Medicine , Pittsburgh, Pennsylvania.,2 Department of Bioengineering, University of Pittsburgh , Pittsburgh, Pennsylvania.,6 Department of Surgery, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
31
|
Guided bone regeneration is promoted by the molecular events in the membrane compartment. Biomaterials 2016; 84:167-183. [DOI: 10.1016/j.biomaterials.2016.01.034] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 01/18/2016] [Indexed: 11/18/2022]
|
32
|
Ge L, Liu L, Wei H, Du L, Chen S, Huang Y, Huang R. Preparation of a small intestinal submucosa modified polypropylene hybrid mesh via a mussel-inspired polydopamine coating for pelvic reconstruction. J Biomater Appl 2016; 30:1385-91. [PMID: 26801474 DOI: 10.1177/0885328216628469] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Pelvic organ prolapse (POP) is a serious health issue that affects many adult women. Surgical treatments for POP patients comprise a common strategy in which scaffold materials are used to reconstruct the prolapsed pelvic. However, the existing materials for pelvic reconstruction cannot meet clinical requirements in terms of biocompatibility, mechanics and immunological rejection. To address these concerns, polypropylene (PP) mesh was selected because of its strong mechanical properties. Small intestinal submucosa (SIS) was used to modify the PP mesh via a mussel-inspired polydopamine coating to enhance its biocompatibility. The scanning electron microscopy (SEM) and atomic force microscopy (AFM) results demonstrated that SIS was successfully conjugated on the surface of the PP mesh. Moreover, the cytotoxicity results indicated that the PP mesh and SIS-modified PP mesh were safe to use. Furthermore, in vivo tests demonstrated that the fibroplasia around the implanted site in the SIS-modified PP mesh group was significantly less than the fibroplasia around the PP mesh group. In addition, the immunohistochemistry staining results indicated that the expression of pro-inflammatory macrophages (M1) was substantially lower and that the expression of pro-healing macrophages (M2) was higher in the SIS-modified PP mesh group. Furthermore, ELISA detection indicated that the expression of IL-1β and IL-6 in the SIS-modified PP mesh group was reduced compared with the PP mesh group. These findings suggest that a SIS-modified polypropylene hybrid mesh via a mussel-inspired polydopamine coating is a promising approach in pelvic reconstruction.
Collapse
Affiliation(s)
- Liangpeng Ge
- Chongqing Academy of Animal Sciences, Chongqing, China Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, China
| | - Lubin Liu
- Chongqing Health Center for Women and Children, Chongqing Obstetric and Gynecologic Hospital, Chongqing, China
| | - Haoche Wei
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Lei Du
- Chongqing Academy of Animal Sciences, Chongqing, China Department of Animal Sciences, Rongchang Campus, Southwest University, Chongqing, China
| | - Shixuan Chen
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yong Huang
- Chongqing Academy of Animal Sciences, Chongqing, China Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, China
| | - Renshu Huang
- Faculty of Biological and Pharmaceutical Engineering, West Anhui University, Liuan, China
| |
Collapse
|
33
|
In vitro study of bioactivity of homemade tissue-engineered periosteum. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 58:1170-6. [DOI: 10.1016/j.msec.2015.09.086] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 09/15/2015] [Accepted: 09/23/2015] [Indexed: 11/20/2022]
|
34
|
Effects of Fabrication on Early Patency and Regeneration of Small Intestinal Submucosa Vascular Grafts. ASAIO J 2015; 61:596-604. [DOI: 10.1097/mat.0000000000000254] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
35
|
Sánchez-Palencia D, Rathan S, Ankeny CJ, Fogg R, Briceño JC, Yoganathan AP. Mechanotransduction in small intestinal submucosa scaffolds: fabrication parameters potentially modulate the shear-induced expression of PECAM-1 and eNOS. J Tissue Eng Regen Med 2015. [PMID: 26220892 DOI: 10.1002/term.2040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In small intestinal submucosa (SIS) scaffolds for functional tissue engineering, the impact of scaffold fabrication parameters on cellular response and tissue regeneration may relate to the mechanotransductory properties of the final arrangement of collagen fibres. We previously proved that two fabrication parameters, (a) preservation (P) or removal (R) of a dense collagen layer present in SIS, and (b) SIS in a final dehydrated (D) or hydrated (H) state, have an effect on the micromechanical environment of SIS. In a continuation of our studies, we herein hypothesized that these fabrication parameters also modulate early mechanotransduction in cells populating the scaffold. Mechanotransduction was investigated by seeding human umbilical vein endothelial cells (HUVECs) on scaffolds, exposing them to pulsatile shear stress (12 ± 4 dyne/cm2 ) for 1 h (n = 5) in a cone-and-plate shear system, and evaluating the expression of the mechanosensitive genes Pecam1 and Enos by immunofluorescence and qPCR. Expression of mechanosensitive genes was highest in PD grafts, followed by PH and RH grafts. The RD group had similar expression to that of unsheared control cells, suggesting that the RD combination potentially reduced mechanotransduction of shear to cells. We concluded that the two fabrication parameters studied, which modify SIS micromechanics, also potentially modulated the early shear-induced expression of mechanosensitive genes in seeded HUVECs. Our findings suggest that fabrication parameters influence the outcome of SIS as a therapeutic scaffold. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Diana Sánchez-Palencia
- Department of Biomedical Engineering, Universidad de los Andes, Bogota, Colombia.,CEIBA Complex Systems Research Centre, School of Engineering, Bogota, Colombia
| | - Swetha Rathan
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Casey J Ankeny
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.,Arizona State University, School of Biological and Health Systems Engineering, Tempe, AR, USA
| | - Ruth Fogg
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Juan C Briceño
- Department of Biomedical Engineering, Universidad de los Andes, Bogota, Colombia.,CEIBA Complex Systems Research Centre, School of Engineering, Bogota, Colombia
| | - Ajit P Yoganathan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| |
Collapse
|
36
|
Laronda MM, Jakus AE, Whelan KA, Wertheim JA, Shah RN, Woodruff TK. Initiation of puberty in mice following decellularized ovary transplant. Biomaterials 2015; 50:20-9. [PMID: 25736492 PMCID: PMC4350019 DOI: 10.1016/j.biomaterials.2015.01.051] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 01/08/2015] [Accepted: 01/20/2015] [Indexed: 01/30/2023]
Abstract
Clinical interventions to preserve fertility and restore hormone levels in female patients with therapy-induced ovarian failure are insufficient, particularly for pediatric cancer patients. Laparoscopic isolation of cortical ovarian tissue followed by cryopreservation with subsequent autotransplantation has temporarily restored fertility in at least 27 women who survived cancer, and aided in pubertal transition for one pediatric patient. However, reintroducing cancer cells through ovarian transplantation has been a major concern. Decellularization is a process of removing cellular material, while maintaining the organ skeleton of extracellular matrices (ECM). The ECM that remains could be stripped of cancer cells and reseeded with healthy ovarian cells. We tested whether a decellularized ovarian scaffold could be created, recellularized and transplanted to initiate puberty in mice. Bovine and human ovaries were decellularized, and the ovarian skeleton microstructures were characterized. Primary ovarian cells seeded onto decellularized scaffolds produced estradiol in vitro. Moreover, the recellularized grafts initiated puberty in mice that had been ovariectomized, providing data that could be used to drive future human transplants and have broader implications on the bioengineering of other organs with endocrine function.
Collapse
Affiliation(s)
- Monica M Laronda
- Division of Reproductive Biology, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Adam E Jakus
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL, USA; Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Kelly A Whelan
- Division of Reproductive Biology, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jason A Wertheim
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL, USA; Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Surgery, Jesse Brown VA Medical Center, Chicago, IL, USA; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA; Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Ramille N Shah
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL, USA; Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA; Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Teresa K Woodruff
- Division of Reproductive Biology, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
37
|
Nandi SK, Kundu B, Mahato A, Thakur NL, Joardar SN, Mandal BB. In vitro and in vivo evaluation of the marine sponge skeleton as a bone mimicking biomaterial. Integr Biol (Camb) 2015; 7:250-62. [DOI: 10.1039/c4ib00289j] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This investigation was carried out to identify and characterize marine sponges as potential bioscaffolds in bone tissue engineering.
Collapse
Affiliation(s)
- Samit K. Nandi
- Department of Veterinary Surgery and Radiology
- West Bengal University of Animal and Fishery Sciences
- Kolkata
- India
| | - Biswanath Kundu
- Bioceramics and Coating Division
- CSIR-Central Glass and Ceramic Research Institute
- Kolkata
- India
| | - Arnab Mahato
- Bioceramics and Coating Division
- CSIR-Central Glass and Ceramic Research Institute
- Kolkata
- India
| | | | - Siddhartha N. Joardar
- Department of Veterinary Microbiology
- West Bengal University of Animal and Fishery Sciences
- Kolkata
- India
| | - Biman B. Mandal
- Department of Biotechnology
- Indian Institute of Technology
- Guwahati
- India
| |
Collapse
|
38
|
Ornamenting 3D printed scaffolds with cell-laid extracellular matrix for bone tissue regeneration. Biomaterials 2014; 37:230-41. [PMID: 25453953 DOI: 10.1016/j.biomaterials.2014.10.012] [Citation(s) in RCA: 224] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 10/02/2014] [Indexed: 12/31/2022]
Abstract
3D printing technique is the most sophisticated technique to produce scaffolds with tailorable physical properties. But, these scaffolds often suffer from limited biological functionality as they are typically made from synthetic materials. Cell-laid mineralized ECM was shown to be potential for improving the cellular responses and drive osteogenesis of stem cells. Here, we intend to improve the biological functionality of 3D-printed synthetic scaffolds by ornamenting them with cell-laid mineralized extracellular matrix (ECM) that mimics a bony microenvironment. We developed bone graft substitutes by using 3D printed scaffolds made from a composite of polycaprolactone (PCL), poly(lactic-co-glycolic acid) (PLGA), and β-tricalcium phosphate (β-TCP) and mineralized ECM laid by human nasal inferior turbinate tissue-derived mesenchymal stromal cells (hTMSCs). A rotary flask bioreactor was used to culture hTMSCs on the scaffolds to foster formation of mineralized ECM. A freeze/thaw cycle in hypotonic buffer was used to efficiently decellularize (97% DNA reduction) the ECM-ornamented scaffolds while preserving its main organic and inorganic components. The ECM-ornamented 3D printed scaffolds supported osteoblastic differentiation of newly-seeded hTMSCs by upregulating four typical osteoblastic genes (4-fold higher RUNX2; 3-fold higher ALP; 4-fold higher osteocalcin; and 4-fold higher osteopontin) and increasing calcium deposition compared to bare 3D printed scaffolds. In vivo, in ectopic and orthotopic models in rats, ECM-ornamented scaffolds induced greater bone formation than that of bare scaffolds. These results suggest a valuable method to produce ECM-ornamented 3D printed scaffolds as off-the-shelf bone graft substitutes that combine tunable physical properties with physiological presentation of biological signals.
Collapse
|
39
|
Abstract
With advancements in biological and engineering sciences, the definition of an ideal biomaterial has evolved over the past 50 years from a substance that is inert to one that has select bioinductive properties and integrates well with adjacent host tissue. Biomaterials are a fundamental component of tissue engineering, which aims to replace diseased, damaged, or missing tissue with reconstructed functional tissue. Most biomaterials are less than satisfactory for pediatric patients because the scaffold must adapt to the growth and development of the surrounding tissues and organs over time. The pediatric community, therefore, provides a distinct challenge for the tissue engineering community.
Collapse
Affiliation(s)
- Timothy J Keane
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, Bridgeside Point 2, 450 Technology Drive, Pittsburgh, Pennsylvania 15219; Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Stephen F Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, Bridgeside Point 2, 450 Technology Drive, Pittsburgh, Pennsylvania 15219; Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
40
|
Sánchez-Palencia DM, D'Amore A, González-Mancera A, Wagner WR, Briceño JC. Effects of fabrication on the mechanics, microstructure and micromechanical environment of small intestinal submucosa scaffolds for vascular tissue engineering. J Biomech 2014; 47:2766-73. [PMID: 24877881 DOI: 10.1016/j.jbiomech.2014.04.048] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 04/08/2014] [Accepted: 04/26/2014] [Indexed: 11/25/2022]
Abstract
In small intestinal submucosa scaffolds for functional tissue engineering, the impact of scaffold fabrication parameters on success rate may be related to the mechanotransductory properties of the final microstructural organization of collagen fibers. We hypothesized that two fabrication parameters, 1) preservation (P) or removal (R) of a dense collagen layer present in SIS and 2) SIS in a final dehydrated (D) or hydrated (H) state, have an effect on scaffold void area, microstructural anisotropy (fiber alignment) and mechanical anisotropy (global mechanical compliance). We further integrated our experimental measurements in a constitutive model to explore final effects on the micromechanical environment inside the scaffold volume. Our results indicated that PH scaffolds might exhibit recurrent and large force fluctuations between layers (up to 195 pN), while fluctuations in RH scaffolds might be larger (up to 256 pN) but not as recurrent. In contrast, both PD and RD groups were estimated to produce scarcer and smaller fluctuations (not larger than 50 pN). We concluded that the hydration parameter strongly affects the micromechanics of SIS and that an adequate choice of fabrication parameters, assisted by the herein developed method, might leverage the use of SIS for functional tissue engineering applications, where forces at the cellular level are of concern in the guidance of new tissue formation.
Collapse
Affiliation(s)
- Diana M Sánchez-Palencia
- Department of Biomedical Engineering, Universidad de los Andes, Bogota 111711, Colombia; CEIBA Complex Systems Research Center, Bogota 111711, Colombia.
| | - Antonio D'Amore
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; McGowan Institute for Regenerative Medicine, Pittsburgh, PA 15219-3110, USA; RiMED Foundation, Palermo 90133, Italy; Dipartimento di Ingegneria, Chimica, Gestionale, Informatica Meccanica (DICGIM), Universita' di Palermo, Palermo 90128, Italy
| | | | - William R Wagner
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; McGowan Institute for Regenerative Medicine, Pittsburgh, PA 15219-3110, USA; Department of Surgery, University of Pittsburgh, Pittsburgh 15213, PA, USA; Department of Chemical Engineering, University of Pittsburgh, Pittsburgh 15261, PA, USA
| | - Juan C Briceño
- Department of Biomedical Engineering, Universidad de los Andes, Bogota 111711, Colombia; CEIBA Complex Systems Research Center, Bogota 111711, Colombia
| |
Collapse
|
41
|
Fabrication and characteristics of chitosan sponge as a tissue engineering scaffold. BIOMED RESEARCH INTERNATIONAL 2014; 2014:786892. [PMID: 24804246 PMCID: PMC3997083 DOI: 10.1155/2014/786892] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 03/10/2014] [Indexed: 01/13/2023]
Abstract
Cells, growth factors, and scaffolds are the three main factors required to create a tissue-engineered construct. After the appearance of bovine spongiform encephalopathy (BSE), considerable attention has therefore been focused on nonbovine materials. In this study, we examined the properties of a chitosan porous scaffold. A porous chitosan sponge was prepared by the controlled freezing and lyophilization of different concentrations of chitosan solutions. The materials were examined by scanning electron microscopy, and the porosity, tensile strength, and basic fibroblast growth factor (bFGF) release profiles from chitosan sponge were examined in vitro. The morphology of the chitosan scaffolds presented a typical microporous structure, with the pore size ranging from 50 to 200 μm. The porosity of chitosan scaffolds with different concentrations was approximately 75–85%. A decreasing tendency for porosity was observed as the concentration of the chitosan increased. The relationship between the tensile properties and chitosan concentration indicated that the ultimate tensile strength for the sponge increased with a higher concentration. The in vitro bFGF release study showed that the higher the concentration of chitosan solution became, the longer the releasing time of the bFGF from the chitosan sponge was.
Collapse
|
42
|
|
43
|
Turner NJ, Keane TJ, Badylak SF. Lessons from developmental biology for regenerative medicine. ACTA ACUST UNITED AC 2013; 99:149-59. [DOI: 10.1002/bdrc.21040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 07/27/2013] [Accepted: 07/27/2013] [Indexed: 12/17/2022]
Affiliation(s)
- Neill J. Turner
- McGowan Institute for Regenerative Medicine; University of Pittsburgh, Pittsburgh, Pennsylvania and Department of Surgery, University of Pittsburgh; Pittsburgh Pennsylvania
| | - Timothy J. Keane
- McGowan Institute for Regenerative Medicine; University of Pittsburgh, Pittsburgh, Pennsylvania and Department of Bioengineering, University of Pittsburgh; Pittsburgh Pennsylvania
| | - Stephen F. Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, and Department of Bioengineering, University of Pittsburgh; Pittsburgh Pennsylvania
| |
Collapse
|
44
|
Keeping an eye on decellularized corneas: a review of methods, characterization and applications. J Funct Biomater 2013; 4:114-61. [PMID: 24956084 PMCID: PMC4030906 DOI: 10.3390/jfb4030114] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 05/08/2013] [Accepted: 05/28/2013] [Indexed: 12/13/2022] Open
Abstract
The worldwide limited availability of suitable corneal donor tissue has led to the development of alternatives, including keratoprostheses (Kpros) and tissue engineered (TE) constructs. Despite advances in bioscaffold design, there is yet to be a corneal equivalent that effectively mimics both the native tissue ultrastructure and biomechanical properties. Human decellularized corneas (DCs) could offer a safe, sustainable source of corneal tissue, increasing the donor pool and potentially reducing the risk of immune rejection after corneal graft surgery. Appropriate, human-specific, decellularization techniques and high-resolution, non-destructive analysis systems are required to ensure reproducible outputs can be achieved. If robust treatment and characterization processes can be developed, DCs could offer a supplement to the donor corneal pool, alongside superior cell culture systems for pharmacology, toxicology and drug discovery studies.
Collapse
|
45
|
Tan B, Wei RQ, Tan MY, Luo JC, Deng L, Chen XH, Hou JL, Li XQ, Yang ZM, Xie HQ. Tissue engineered esophagus by mesenchymal stem cell seeding for esophageal repair in a canine model. J Surg Res 2013; 182:40-8. [PMID: 22925499 DOI: 10.1016/j.jss.2012.07.054] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 06/20/2012] [Accepted: 07/20/2012] [Indexed: 02/05/2023]
Abstract
PURPOSE Acellular porcine small intestinal submucosa (SIS) has been successfully used for esophagoplasty in dogs. However, this has not led to complete epithelialization and muscular regeneration. We undertook the present study to assess the effect of tissue-engineered esophagus generated by seeding bone marrow mesenchymal stem cells (BMSCs) onto an SIS scaffold (BMSCs-SIS) in a canine model. METHODS We cultured, passaged, and measured autologous BMSCs and myoblasts with cell proliferation and immunohistochemical assays. We labeled the third passage of BMSCs with PKH-26, a fluorescent dye, before seeded it onto the SIS. We resected canine cervical esophagus to generate a defect 5 cm in length and 50% in circumference, which we repaired with BMSCs-SIS or SIS alone. RESULTS Four weeks later, barium esophagram demonstrated that esophageal lumen surface of the patch graft was smoother in the BMSCs-SIS group compared with the SIS group. Histological examination suggested a strong similarity between BMSCs and esophageal myoblasts in terms of morphology and function. Although both BMSCs-SIS and SIS repaired the esophageal defects, we noted complete re-epithelialization with almost no inflammation only in the former group. By 12 wk after the surgery, we observed long bundles of skeletal muscles only in the BMSCs-SIS group, where the microvessel density was also much greater. CONCLUSIONS Bone marrow mesenchymal stem cells on an SIS scaffold can promote re-epithelialization, revascularization, and muscular regeneration. This approach may provide an attractive option for esophageal regeneration.
Collapse
Affiliation(s)
- Bo Tan
- Laboratory of Stem Cell and Tissue Engineering, Regenerative Medicine Research Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Cytotoxic Effects of Polyhexanide on Cellular Repopulation and Calcification of Decellularized Equine Carotids in vitro and in vivo. Int J Artif Organs 2013; 36:184-94. [DOI: 10.5301/ijao.5000182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2012] [Indexed: 01/08/2023]
Abstract
Purpose Disinfection of biological implants is indispensable for clinical safety. Here, decellularized equine carotid arteries (dECAs) were disinfected by polyhexanide (PHX), an effective, well-tolerated and nontoxic wound disinfectant and evaluated as vascular grafts for their repopulation and local biocompatibility in vivo. Methods dECAs were terminally disinfected by a combination of 0.1% PHX and 70% ethanol (dECA_PHX-ET) or exclusively ethanol (dECA-ET) and subsequently implanted as arteriovenous shunts in sheep for 14 weeks. Repopulation was determined by immunohistochemistry for endothelial- (ECs) or smooth muscle cells (SMCs) using antibodies against CD31 and smooth muscle actin. Histological evaluation was performed on HE-stained sections. Cytotoxicity of dECAs was measured directly by seeding the scaffolds with L-929 fibroblasts, which were visualized by calcein staining. Indirect cytotoxicity was determined by WST-8 viability assay by incubation of L-929 with dECA extracts. Results dECA_PHX-ET completely lacked repopulation with ECs and SMCs, showed leukocyte infiltration, strong calcification and poor neovascularization indicating insufficient biocompatibility and inflammatory graft degeneration. PHX-treatment reduced cell viability to 33.2 ± 12.6% and disturbed cell growth at direct contact. In contrast, dECA_ET had no direct cytotoxic effect and only slightly influenced cell viability (82.9 ± 12.5%), showed a substantial repopulation by ECs and SMCs including neovascularization, and were only slightly calcified. Conclusion The disinfectant polyhexanide seems to exert severe cytotoxic effects when used for the processing of decellularized matrices and may result in degenerative graft deterioration. In contrast, dECAs exclusively disinfected with ethanol were well integrated. Thus, ethanol seems to be a more suitable tool for graft processing than polyhexanide.
Collapse
|
47
|
Andrée B, Bär A, Haverich A, Hilfiker A. Small intestinal submucosa segments as matrix for tissue engineering: review. TISSUE ENGINEERING PART B-REVIEWS 2013; 19:279-91. [PMID: 23216258 DOI: 10.1089/ten.teb.2012.0583] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tissue engineering (TE) is an emerging interdisciplinary field aiming at the restoration or improvement of impaired tissue function. A combination of cells, scaffold materials, engineering methods, and biochemical and physiological factors is employed to generate the desired tissue substitute. Scaffolds often play a pivotal role in the engineering process supporting a three-dimensional tissue formation. The ideal scaffold should mimic the native extracellular environment providing mechanical and biological properties to allow cell attachment, migration, and differentiation, as well as remodeling by the host organism. The scaffold should be nonimmunogenic and should ideally be resorbed by the host over time, leaving behind only the regenerated tissue. More than 40 years ago, a preparation of the small intestine was introduced for the replacement of vascular structures. Since then the small intestinal submucosa (SIS) has gained a lot of interest in TE and subsequent clinical applications, as this material exhibits key features of a highly supportive scaffold. This review will focus on the general properties of the SIS and its applications in therapeutical approaches as well as in generating tissue substitutes in vitro. Furthermore, the main problem of TE, which is the insufficient nourishment of cells within three-dimensional, artificial tissues exceeding certain dimensions is addressed. To solve this issue the implementation of another small intestine-derived preparation, the biological vascularized matrix (BioVaM), could be a feasible option. The BioVaM comprises in addition to SIS the arterial and venous mesenteric pedicles and exhibits thereby a perfusable vessel bed that is preserved after decellularization.
Collapse
|
48
|
Abstract
The field of tissue engineering is rapidly progressing. Much work has gone into developing a tissue engineered urethral graft. Current grafts, when long, can create initial donor site morbidity. In this article, we evaluate the progress made in finding a tissue engineered substitute for the human urethra. Researchers have investigated cell-free and cell-seeded grafts. We discuss different approaches to developing these grafts and review their reported successes in human studies. With further work, tissue engineered grafts may facilitate the management of lengthy urethral strictures requiring oral mucosa substitution urethroplasty.
Collapse
|
49
|
Kang Y, Kim S, Bishop J, Khademhosseini A, Yang Y. The osteogenic differentiation of human bone marrow MSCs on HUVEC-derived ECM and β-TCP scaffold. Biomaterials 2012; 33:6998-7007. [PMID: 22795852 DOI: 10.1016/j.biomaterials.2012.06.061] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 06/22/2012] [Indexed: 01/06/2023]
Abstract
Extracellular matrix (ECM) serves a key role in cell migration, attachment, and cell development. Here we report that ECM derived from human umbilical vein endothelial cells (HUVEC) promoted osteogenic differentiation of human bone marrow mesenchymal stem cells (hMSC). We first produced an HUVEC-derived ECM on a three-dimensional (3D) beta-tricalcium phosphate (β-TCP) scaffold by HUVEC seeding, incubation, and decellularization. The HUVEC-derived ECM was then characterized by SEM, FTIR, XPS, and immunofluorescence staining. The effect of HUVEC-derived ECM-containing β-TCP scaffold on hMSC osteogenic differentiation was subsequently examined. SEM images indicate a dense matrix layer deposited on the surface of struts and pore walls. FTIR and XPS measurements show the presence of new functional groups (amide and hydroxyl groups) and elements (C and N) in the ECM/β-TCP scaffold when compared to the β-TCP scaffold alone. Immunofluorescence images indicate that high levels of fibronectin and collagen IV and low level of laminin were present on the scaffold. ECM-containing β-TCP scaffolds significantly increased alkaline phosphatase (ALP) specific activity and up-regulated expression of osteogenesis-related genes such as runx2, alkaline phosphatase, osteopontin and osteocalcin in hMSC, compared to β-TCP scaffolds alone. This increased effect was due to the activation of MAPK/ERK signaling pathway since disruption of this pathway using an ERK inhibitor PD98059 results in down-regulation of these osteogenic genes. Cell-derived ECM-containing calcium phosphate scaffolds is a promising osteogenic-promoting bone void filler in bone tissue regeneration.
Collapse
Affiliation(s)
- Yunqing Kang
- Department of Orthopedic Surgery, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
50
|
Nelson MT, Keith JP, Li BB, Stocum DL, Li J. Electrospun composite polycaprolactone scaffolds for optimized tissue regeneration. ACTA ACUST UNITED AC 2012. [DOI: 10.1177/1740349912450828] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
There is evidence to suggest that the development of a stable microvasculature at the site of a critical-sized bone defect or fracture aids in repairing or regenerating bone. Identifying a tissue engineering scaffold that optimizes bone tissue and blood vessel development could improve regenerative capabilities. In this paper we study the proliferation and directed differentiation potentials of endothelial colony forming cells and mesenchymal stem cells cultured on electrospun polycaprolactone matrices and compare them with data obtained for composite polycaprolactone–hydroxyapatite, polycaprolactone–hydroxyapatite/β-tricalcium phosphate and polycaprolactone–small intestine submucosa electrospun matrices. Polycaprolactone–hydroxyapatite and polycaprolactone–hydroxyapatite/β-tricalcium phosphate fibers on average displayed a two-fold increase in fiber diameter and average pore-size area as compared with polycaprolactone or polycaprolactone–small intestine submucosa scaffolds. X-ray diffraction showed that significant additions of hydroxyapatite, hydroxyapatite/β-tricalcium phosphate and small intestine submucosa were present in the composite scaffolds. Incorporating hydroxyapatite or hydroxyapatite/β-tricalcium phosphate into the polycaprolactone fiber increased the modulus and ultimate tensile strength significantly. Both endothelial colony forming cell and mesenchymal stem cell proliferation was two-fold greater on polycaprolactone–small intestine submucosa scaffolds; whereas on polycaprolactone–hydroxyapatite and polycaprolactone–hydroxyapatite/β-tricalcium phosphate scaffolds only endothelial colony forming cell proliferation was observed to be significant. Alkaline phosphatase analysis for mesenchymal stem cell-seeded scaffolds indicated that only polycaprolactone–small intestine submucosa scaffolds displayed significant increases after 10 days of culture, suggesting an osteoblast phenotype. Electrospun polycaprolactone–small intestine submucosa scaffolds stimulated proliferation of both cell types and directed mesenchymal stem cell differentiation, providing a stable platform to investigate the potential of endothelial colony forming cell in directing bone tissue repair or regeneration.
Collapse
Affiliation(s)
- M Tyler Nelson
- Department of Biology, Indiana University–Purdue University Indianapolis, USA
| | - Joshua P Keith
- Department of Biology, Indiana University–Purdue University Indianapolis, USA
| | - Bing-Bing Li
- Department of Chemistry, Central Michigan University, USA
- Center for Regenerative Biology and Medicine, Indiana University–Purdue University Indianapolis, USA
| | - David L Stocum
- Department of Biology, Indiana University–Purdue University Indianapolis, USA
- Center for Regenerative Biology and Medicine, Indiana University–Purdue University Indianapolis, USA
| | - Jiliang Li
- Department of Biology, Indiana University–Purdue University Indianapolis, USA
- Center for Regenerative Biology and Medicine, Indiana University–Purdue University Indianapolis, USA
| |
Collapse
|