1
|
Li X, Niu P, Wang X, Huang F, Wang J, Qu H, Han C, Gao Q. Genetic Comparison and Selection of Reproductive and Growth-Related Traits in Qinchuan Cattle and Two Belgian Cattle Breeds. Animals (Basel) 2025; 15:608. [PMID: 40003088 PMCID: PMC11851807 DOI: 10.3390/ani15040608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/11/2025] [Accepted: 02/18/2025] [Indexed: 02/27/2025] Open
Abstract
This study investigates the genetic structure of Belgian Red (BR), Belgian Red and White (BWR), and Qinchuan (QinC) cattle, with a focus on identifying genes associated with reproductive functions, growth, and development. A total of 270 Belgian cattle (91 BR and 179 BWR) and 286 Qinchuan cattle were genotyped using the Illumina Bovine SNP 50K microarray. Data analysis was conducted using PLINK and Beagle 5.1 to estimate linkage disequilibrium (LD) and effective population size (Ne). Candidate SNP loci were identified by selecting the top 5% based on the weighted fixation index (Fst) and nucleotide diversity (θπ ratio), followed by gene annotation. The analysis revealed 160 candidate genes under selection between Qinchuan and Belgian Red cattle, and 98 candidate genes between Qinchuan and Belgian Red and White cattle. Key genes associated with reproductive functions, including NFKBIA, PTHLH, UGT2B10, TRPC4, and ALOX5AP, were identified. Additionally, genes involved in growth and muscle development were highlighted, particularly those influencing protein synthesis, fatty acid metabolism, and collagen synthesis. These findings provide valuable molecular markers for enhancing reproductive efficiency, growth, and meat production through genetic selection and selective breeding strategies.
Collapse
Affiliation(s)
- Xiaopeng Li
- College of Animal Science and Technology, Tarim University, Alar 843300, China; (X.L.)
| | - Peng Niu
- College of Life Science and Technology, Tarim University, Alar 843300, China
| | - Xueyan Wang
- College of Animal Science and Technology, Tarim University, Alar 843300, China; (X.L.)
| | - Fei Huang
- College of Life Science and Technology, Tarim University, Alar 843300, China
| | - Jieru Wang
- College of Life Science and Technology, Tarim University, Alar 843300, China
| | - Huimin Qu
- College of Animal Science and Technology, Tarim University, Alar 843300, China; (X.L.)
| | - Chunmei Han
- College of Animal Science and Technology, Tarim University, Alar 843300, China; (X.L.)
- Key Laboratory of Livestock and Grass Resources Utilization around Tarim, Ministry of Agriculture and Rural Areas (Co-Construction by Ministries and Provinces) & Construction Corps, Alar 843300, China
| | - Qinghua Gao
- College of Animal Science and Technology, Tarim University, Alar 843300, China; (X.L.)
- College of Life Science and Technology, Tarim University, Alar 843300, China
- Key Laboratory of Livestock and Grass Resources Utilization around Tarim, Ministry of Agriculture and Rural Areas (Co-Construction by Ministries and Provinces) & Construction Corps, Alar 843300, China
| |
Collapse
|
2
|
Huffer K, Denley MCS, Oskoui EV, Swartz KJ. Conservation of the cooling agent binding pocket within the TRPM subfamily. eLife 2024; 13:RP99643. [PMID: 39485376 PMCID: PMC11530238 DOI: 10.7554/elife.99643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024] Open
Abstract
Transient receptor potential (TRP) channels are a large and diverse family of tetrameric cation-selective channels that are activated by many different types of stimuli, including noxious heat or cold, organic ligands such as vanilloids or cooling agents, or intracellular Ca2+. Structures available for all subtypes of TRP channels reveal that the transmembrane domains are closely related despite their unique sensitivity to activating stimuli. Here, we use computational and electrophysiological approaches to explore the conservation of the cooling agent binding pocket identified within the S1-S4 domain of the Melastatin subfamily member TRPM8, the mammalian sensor of noxious cold, with other TRPM channel subtypes. We find that a subset of TRPM channels, including TRPM2, TRPM4, and TRPM5, contain pockets very similar to the cooling agent binding pocket in TRPM8. We then show how the cooling agent icilin modulates activation of mouse TRPM4 to intracellular Ca2+, enhancing the sensitivity of the channel to Ca2+ and diminishing outward-rectification to promote opening at negative voltages. Mutations known to promote or diminish activation of TRPM8 by cooling agents similarly alter activation of TRPM4 by icilin, suggesting that icilin binds to the cooling agent binding pocket to promote opening of the channel. These findings demonstrate that TRPM4 and TRPM8 channels share related ligand binding pockets that are allosterically coupled to opening of the pore.
Collapse
Affiliation(s)
- Kate Huffer
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaUnited States
| | - Matthew CS Denley
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaUnited States
| | - Elisabeth V Oskoui
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaUnited States
| | - Kenton J Swartz
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
3
|
Kelly MJ, Wagner EJ. Canonical transient receptor potential channels and hypothalamic control of homeostatic functions. J Neuroendocrinol 2024; 36:e13392. [PMID: 38631680 PMCID: PMC11444909 DOI: 10.1111/jne.13392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 04/19/2024]
Abstract
Recent molecular biological and electrophysiological studies have identified multiple transient receptor potential (TRP) channels in hypothalamic neurons as critical modulators of homeostatic functions. In particular, the canonical transient receptor potential channels (TRPCs) are expressed in hypothalamic neurons that are vital for the control of fertility and energy homeostasis. Classical neurotransmitters such as serotonin and glutamate and peptide neurotransmitters such as kisspeptin, neurokinin B and pituitary adenylyl cyclase-activating polypeptide signal through their cognate G protein-coupled receptors to activate TPRC 4, 5 channels, which are essentially ligand-gated calcium channels. In addition to neurotransmitters, circulating hormones like insulin and leptin signal through insulin receptor (InsR) and leptin receptor (LRb), respectively, to activate TRPC 5 channels in hypothalamic arcuate nucleus pro-opiomelanocortin (POMC) and kisspeptin (arcuate Kiss1 [Kiss1ARH]) neurons to have profound physiological (excitatory) effects. Besides its overt depolarizing effects, TRPC channels conduct calcium ions into the cytoplasm, which has a plethora of downstream effects. Moreover, not only the expression of Trpc5 mRNA but also the coupling of receptors to TRPC 5 channel opening are regulated in different physiological states. In particular, the mRNA expression of Trpc5 is highly regulated in kisspeptin neurons by circulating estrogens, which ultimately dictates the firing pattern of kisspeptin neurons. In obesity states, InsRs are "uncoupled" from opening TRPC 5 channels in POMC neurons, rendering them less excitable. Therefore, in this review, we will focus on the critical role of TRPC 5 channels in regulating the excitability of Kiss1ARH and POMC neurons in different physiological and pathological states.
Collapse
Affiliation(s)
- Martin J. Kelly
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon, 97239, USA
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon, 97001, USA
| | - Edward J. Wagner
- Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Pomona, CA 91766, USA
| |
Collapse
|
4
|
Huffer K, Denley MC, Oskoui EV, Swartz KJ. Conservation of the cooling agent binding pocket within the TRPM subfamily. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.20.595003. [PMID: 38826484 PMCID: PMC11142142 DOI: 10.1101/2024.05.20.595003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Transient Receptor Potential (TRP) channels are a large and diverse family of tetrameric cation selective channels that are activated by many different types of stimuli, including noxious heat or cold, organic ligands such as vanilloids or cooling agents, or intracellular Ca2+. Structures available for all subtypes of TRP channels reveal that the transmembrane domains are closely related despite their unique sensitivity to activating stimuli. Here we use computational and electrophysiological approaches to explore the conservation of the cooling agent binding pocket identified within the S1-S4 domain of the Melastatin subfamily member TRPM8, the mammalian sensor of noxious cold, with other TRPM channel subtypes. We find that a subset of TRPM channels, including TRPM2, TRPM4 and TRPM5, contain pockets very similar to the cooling agent binding pocket in TRPM8. We then show how the cooling agent icilin modulates activation of TRPM4 to intracellular Ca2+, enhancing the sensitivity of the channel to Ca2+ and diminishing outward-rectification to promote opening at negative voltages. Mutations known to promote or diminish activation of TRPM8 by cooling agents similarly alter activation of TRPM4 by icilin, suggesting that icilin binds to the cooling agent binding pocket to promote opening of the channel. These findings demonstrate that TRPM4 and TRPM8 channels share related ligand binding pockets that are allosterically coupled to opening of the pore.
Collapse
Affiliation(s)
- Kate Huffer
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Matthew C.S. Denley
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Elisabeth V. Oskoui
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
- Present Address: Imperial College London, Exhibition Rd, South Kensington, London SW7 2AZ, UK
| | - Kenton J. Swartz
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
5
|
Shi L, Zhao W, Jiu Z, Guo J, Zhu Q, Sun Y, Zhu B, Chang J, Xin P. Redox-Regulated Synthetic Channels: Enabling Reversible Ion Transport by Modulating the Ion-Permeation Pathway. Angew Chem Int Ed Engl 2024; 63:e202403667. [PMID: 38407803 DOI: 10.1002/anie.202403667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 02/27/2024]
Abstract
Natural redox-regulated channel proteins often utilize disulfide bonds as redox sensors for adaptive regulation of channel conformations in response to diverse physiological environments. In this study, we developed novel synthetic ion channels capable of reversibly switching their ion-transport capabilities by incorporating multiple disulfide bonds into artificial systems. X-ray structural analysis and electrophysiological experiments demonstrated that these disulfide-bridged molecules possess well-defined tubular cavities and can be efficiently inserted into lipid bilayers to form artificial ion channels. More importantly, the disulfide bonds in these molecules serve as redox-tunable switches to regulate the formation and disruption of ion-permeation pathways, thereby achieving a transition in the transmembrane transport process between the ON and OFF states.
Collapse
Affiliation(s)
- Linlin Shi
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Wen Zhao
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Zhihui Jiu
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Jingjing Guo
- Centre in Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao, 999078, China
| | - Qiuhui Zhu
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Yonghui Sun
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Bo Zhu
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Junbiao Chang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Pengyang Xin
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
6
|
El-Dehaibi F, Zamora R, Radder J, Yin J, Shah AM, Namas RA, Situ M, Zhao Y, Bain W, Morris A, McVerry BJ, Barclay DA, Billiar TR, Zhang Y, Kitsios GD, Vodovotz Y. A common single nucleotide polymorphism is associated with inflammation and critical illness outcomes. iScience 2023; 26:108333. [PMID: 38034362 PMCID: PMC10684809 DOI: 10.1016/j.isci.2023.108333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/25/2023] [Accepted: 10/22/2023] [Indexed: 12/02/2023] Open
Abstract
Acute inflammation is heterogeneous in critical illness and predictive of outcome. We hypothesized that genetic variability in novel, yet common, gene variants contributes to this heterogeneity and could stratify patient outcomes. We searched algorithmically for significant differences in systemic inflammatory mediators associated with any of 551,839 SNPs in one derivation (n = 380 patients with blunt trauma) and two validation (n = 75 trauma and n = 537 non-trauma patients) cohorts. This analysis identified rs10404939 in the LYPD4 gene. Trauma patients homozygous for the A allele (rs10404939AA; 27%) had different trajectories of systemic inflammation along with persistently elevated multiple organ dysfunction (MOD) indices vs. patients homozygous for the G allele (rs10404939GG; 26%). rs10404939AA homozygotes in the trauma validation cohort had elevated MOD indices, and non-trauma patients displayed more complex inflammatory networks and worse 90-day survival compared to rs10404939GG homozygotes. Thus, rs10404939 emerged as a common, broadly prognostic SNP in critical illness.
Collapse
Affiliation(s)
- Fayten El-Dehaibi
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Ruben Zamora
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Josiah Radder
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jinling Yin
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Ashti M. Shah
- Physician Scientist Training Program, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Rami A. Namas
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Michelle Situ
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yanwu Zhao
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - William Bain
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Alison Morris
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Bryan J. McVerry
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Derek A. Barclay
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Timothy R. Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yingze Zhang
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Georgios D. Kitsios
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
7
|
Gupta V, Ben-Mahmoud A, Ku B, Velayutham D, Jan Z, Yousef Aden A, Kubbar A, Alshaban F, Stanton LW, Jithesh PV, Layman LC, Kim HG. Identification of two novel autism genes, TRPC4 and SCFD2, in Qatar simplex families through exome sequencing. Front Psychiatry 2023; 14:1251884. [PMID: 38025430 PMCID: PMC10644705 DOI: 10.3389/fpsyt.2023.1251884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
This study investigated the genetic underpinnings of autism spectrum disorder (ASD) in a Middle Eastern cohort in Qatar using exome sequencing. The study identified six candidate autism genes in independent simplex families, including both four known and two novel autosomal dominant and autosomal recessive genes associated with ASD. The variants consisted primarily of de novo and homozygous missense and splice variants. Multiple individuals displayed more than one candidate variant, suggesting the potential involvement of digenic or oligogenic models. These variants were absent in the Genome Aggregation Database (gnomAD) and exhibited extremely low frequencies in the local control population dataset. Two novel autism genes, TRPC4 and SCFD2, were discovered in two Qatari autism individuals. Furthermore, the D651A substitution in CLCN3 and the splice acceptor variant in DHX30 were identified as likely deleterious mutations. Protein modeling was utilized to evaluate the potential impact of three missense variants in DEAF1, CLCN3, and SCFD2 on their respective structures and functions, which strongly supported the pathogenic natures of these variants. The presence of multiple de novo mutations across trios underscored the significant contribution of de novo mutations to the genetic etiology of ASD. Functional assays and further investigations are necessary to confirm the pathogenicity of the identified genes and determine their significance in ASD. Overall, this study sheds light on the genetic factors underlying ASD in Qatar and highlights the importance of considering diverse populations in ASD research.
Collapse
Affiliation(s)
- Vijay Gupta
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Qatar Foundation, Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Afif Ben-Mahmoud
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Qatar Foundation, Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Bonsu Ku
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Dinesh Velayutham
- College of Health & Life Sciences, Qatar Foundation, Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Zainab Jan
- College of Health & Life Sciences, Qatar Foundation, Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Abdi Yousef Aden
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Qatar Foundation, Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Ahmad Kubbar
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Qatar Foundation, Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Fouad Alshaban
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Qatar Foundation, Hamad Bin Khalifa University (HBKU), Doha, Qatar
- College of Health & Life Sciences, Qatar Foundation, Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Lawrence W. Stanton
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Qatar Foundation, Hamad Bin Khalifa University (HBKU), Doha, Qatar
- College of Health & Life Sciences, Qatar Foundation, Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Puthen Veettil Jithesh
- College of Health & Life Sciences, Qatar Foundation, Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Lawrence C. Layman
- Section of Reproductive Endocrinology, Infertility and Genetics, Department of Obstetrics and Gynecology, Augusta University, Augusta, GA, United States
- Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, GA, United States
| | - Hyung-Goo Kim
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Qatar Foundation, Hamad Bin Khalifa University (HBKU), Doha, Qatar
- College of Health & Life Sciences, Qatar Foundation, Hamad Bin Khalifa University (HBKU), Doha, Qatar
| |
Collapse
|
8
|
Interactions between the Polysialylated Neural Cell Adhesion Molecule and the Transient Receptor Potential Canonical Channels 1, 4, and 5 Induce Entry of Ca 2+ into Neurons. Int J Mol Sci 2022; 23:ijms231710027. [PMID: 36077460 PMCID: PMC9456277 DOI: 10.3390/ijms231710027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
The neural cell adhesion molecule (NCAM) plays important functional roles in the developing and mature nervous systems. Here, we show that the transient receptor potential canonical (TRPC) ion channels TRPC1, -4, and -5 not only interact with the intracellular domains of the transmembrane isoforms NCAM140 and NCAM180, but also with the glycan polysialic acid (PSA) covalently attached to the NCAM protein backbone. NCAM antibody treatment leads to the opening of TRPC1, -4, and -5 hetero- or homomers at the plasma membrane and to the influx of Ca2+ into cultured cortical neurons and CHO cells expressing NCAM, PSA, and TRPC1 and -4 or TRPC1 and -5. NCAM-stimulated Ca2+ entry was blocked by the TRPC inhibitor Pico145 or the bacterial PSA homolog colominic acid. NCAM-stimulated Ca2+ influx was detectable neither in NCAM-deficient cortical neurons nor in TRPC1/4- or TRPC1/5-expressing CHO cells that express NCAM, but not PSA. NCAM-induced neurite outgrowth was reduced by TRPC inhibitors and a function-blocking TRPC1 antibody. A characteristic signaling feature was that extracellular signal-regulated kinase 1/2 phosphorylation was also reduced by TRPC inhibitors. Our findings indicate that the interaction of NCAM with TRPC1, -4, and -5 contributes to the NCAM-stimulated and PSA-dependent Ca2+ entry into neurons thereby influencing essential neural functions.
Collapse
|
9
|
Audero MM, Prevarskaya N, Fiorio Pla A. Ca 2+ Signalling and Hypoxia/Acidic Tumour Microenvironment Interplay in Tumour Progression. Int J Mol Sci 2022; 23:7377. [PMID: 35806388 PMCID: PMC9266881 DOI: 10.3390/ijms23137377] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 01/18/2023] Open
Abstract
Solid tumours are characterised by an altered microenvironment (TME) from the physicochemical point of view, displaying a highly hypoxic and acidic interstitial fluid. Hypoxia results from uncontrolled proliferation, aberrant vascularization and altered cancer cell metabolism. Tumour cellular apparatus adapts to hypoxia by altering its metabolism and behaviour, increasing its migratory and metastatic abilities by the acquisition of a mesenchymal phenotype and selection of aggressive tumour cell clones. Extracellular acidosis is considered a cancer hallmark, acting as a driver of cancer aggressiveness by promoting tumour metastasis and chemoresistance via the selection of more aggressive cell phenotypes, although the underlying mechanism is still not clear. In this context, Ca2+ channels represent good target candidates due to their ability to integrate signals from the TME. Ca2+ channels are pH and hypoxia sensors and alterations in Ca2+ homeostasis in cancer progression and vascularization have been extensively reported. In the present review, we present an up-to-date and critical view on Ca2+ permeable ion channels, with a major focus on TRPs, SOCs and PIEZO channels, which are modulated by tumour hypoxia and acidosis, as well as the consequent role of the altered Ca2+ signals on cancer progression hallmarks. We believe that a deeper comprehension of the Ca2+ signalling and acidic pH/hypoxia interplay will break new ground for the discovery of alternative and attractive therapeutic targets.
Collapse
Affiliation(s)
- Madelaine Magalì Audero
- U1003—PHYCEL—Laboratoire de Physiologie Cellulaire, Inserm, University of Lille, Villeneuve d’Ascq, 59000 Lille, France; (M.M.A.); (N.P.)
- Laboratory of Cellular and Molecular Angiogenesis, Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy
| | - Natalia Prevarskaya
- U1003—PHYCEL—Laboratoire de Physiologie Cellulaire, Inserm, University of Lille, Villeneuve d’Ascq, 59000 Lille, France; (M.M.A.); (N.P.)
| | - Alessandra Fiorio Pla
- U1003—PHYCEL—Laboratoire de Physiologie Cellulaire, Inserm, University of Lille, Villeneuve d’Ascq, 59000 Lille, France; (M.M.A.); (N.P.)
- Laboratory of Cellular and Molecular Angiogenesis, Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy
| |
Collapse
|
10
|
Sarcoplasmic Reticulum Ca2+ Dysregulation in the Pathophysiology of Inherited Arrhythmia: An Update. Biochem Pharmacol 2022; 200:115059. [DOI: 10.1016/j.bcp.2022.115059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 11/19/2022]
|
11
|
Ma H, He C, Li L, Gao P, Lu Z, Hu Y, Wang L, Zhao Y, Cao T, Cui Y, Zheng H, Yang G, Yan Z, Liu D, Zhu Z. TRPC5 deletion in the central amygdala antagonizes high-fat diet-induced obesity by increasing sympathetic innervation. Int J Obes (Lond) 2022; 46:1544-1555. [PMID: 35589963 DOI: 10.1038/s41366-022-01151-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 11/09/2022]
Abstract
Transient receptor potential channel 5 (TRPC5) is predominantly distributed in the brain, especially in the central amygdala (CeA), which is closely associated with pain and addiction. Although mounting evidence indicates that the CeA is related to energy homeostasis, the possible regulatory effect of TRPC5 in the CeA on metabolism remains unclear. Here, we reported that the expression of TRPC5 in the CeA of mice was increased under a high-fat diet (HFD). Specifically, the deleted TRPC5 protein in the CeA of mice using adeno-associated virus resisted HFD-induced weight gain, accompanied by increased food intake. Furthermore, the energy expenditure of CeA-specific TRPC5 deletion mice (TRPC5 KO) was elevated due to augmented white adipose tissue (WAT) browning and brown adipose tissue (BAT) activity. Mechanistically, deficiency of TRPC5 in the CeA boosted nonshivering thermogenesis under cold stimulation by stimulating sympathetic nerves, as the β3-adrenoceptor (Adrb3) antagonist SR59230A blocked the effect of TRPC5 KO on this process. In summary, TRPC5 deletion in the CeA alleviated the metabolic deterioration of mice fed a HFD, and these phenotypic improvements were correlated with the increased sympathetic distribution and activity of adipose tissue.
Collapse
Affiliation(s)
- Huan Ma
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Chengkang He
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Li Li
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Peng Gao
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Zongshi Lu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Yingru Hu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Lijuan Wang
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Yu Zhao
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Tingbing Cao
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Yuanting Cui
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Hongting Zheng
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Gangyi Yang
- Department of Endocrinology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Zhencheng Yan
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Daoyan Liu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Zhiming Zhu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China. .,Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, 400064, China.
| |
Collapse
|
12
|
Downregulation of TRPC4 and TRPC5 Inhibits Smooth Muscle Cell Proliferation without Affecting Endothelial Cell Proliferation. Genet Res (Camb) 2021; 2021:2949986. [PMID: 34899056 PMCID: PMC8643255 DOI: 10.1155/2021/2949986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/09/2021] [Indexed: 12/04/2022] Open
Abstract
Aims The main treatment for coronary heart disease is percutaneous coronary intervention (PCI), and drug-eluting stents are designed to inhibit vascular smooth muscle cell (VSMCs) proliferation and migration causing restenosis by releasing pharmacological agents into the vessel wall. Once drug-eluting stents are deployed, these pharmacological agents exert many biological effects in the coronary circulation, not only inhibition of VSMCs but also extension to vascular endothelial cells (VECs). The purpose of this study was to explore target molecules that inhibit VSMCs proliferation without affecting VECs. Methods mRNA and protein expressions of transient receptor potential channels (TRPCs) in cultured VSMCs and VECs were determined by western blotting and RT-qPCR. VSMCs and VECs proliferation was evaluated using CCK-8 assays and western blotting of proliferating cell nuclear antigen (PCNA). Calcium backfilling assays were performed to detect intracellular calcium ion concentration in cultured VSMCs and VECs. Results The TRPC6 expression was more abundant in VECs than VSMCs, while TRPC4 and TRPC5 expressions were more abundant in VSMCs than VECs. Knockdown of TRPC4 or TRPC5 alone had no remarkable inhibitory effect on VSMC proliferation. Synergistic knockdown of TRPC4 and TRPC5 inhibited the proliferation of VSMCs, declined the expression of the PCNA, and reduced the intracellular calcium ion concentration but not VECs. Conclusion These data suggest that concurrent inhibition of TRPC4 and TRPC5 inhibits VSMCs proliferation without affecting VECs, thus providing novel targets for developing pharmacological agents for drug-eluting stents.
Collapse
|
13
|
Vinayagam D, Quentin D, Yu-Strzelczyk J, Sitsel O, Merino F, Stabrin M, Hofnagel O, Yu M, Ledeboer MW, Nagel G, Malojcic G, Raunser S. Structural basis of TRPC4 regulation by calmodulin and pharmacological agents. eLife 2020; 9:e60603. [PMID: 33236980 PMCID: PMC7735759 DOI: 10.7554/elife.60603] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
Canonical transient receptor potential channels (TRPC) are involved in receptor-operated and/or store-operated Ca2+ signaling. Inhibition of TRPCs by small molecules was shown to be promising in treating renal diseases. In cells, the channels are regulated by calmodulin (CaM). Molecular details of both CaM and drug binding have remained elusive so far. Here, we report structures of TRPC4 in complex with three pyridazinone-based inhibitors and CaM. The structures reveal that all the inhibitors bind to the same cavity of the voltage-sensing-like domain and allow us to describe how structural changes from the ligand-binding site can be transmitted to the central ion-conducting pore of TRPC4. CaM binds to the rib helix of TRPC4, which results in the ordering of a previously disordered region, fixing the channel in its closed conformation. This represents a novel CaM-induced regulatory mechanism of canonical TRP channels.
Collapse
Affiliation(s)
| | - Dennis Quentin
- Department of Structural Biochemistry, Max Planck Institute of Molecular PhysiologyDortmundGermany
| | - Jing Yu-Strzelczyk
- Department of Neurophysiology, Physiological Institute, Julius-Maximilians-Universität WürzburgWürzburgGermany
| | - Oleg Sitsel
- Department of Structural Biochemistry, Max Planck Institute of Molecular PhysiologyDortmundGermany
| | - Felipe Merino
- Department of Structural Biochemistry, Max Planck Institute of Molecular PhysiologyDortmundGermany
| | - Markus Stabrin
- Department of Structural Biochemistry, Max Planck Institute of Molecular PhysiologyDortmundGermany
| | - Oliver Hofnagel
- Department of Structural Biochemistry, Max Planck Institute of Molecular PhysiologyDortmundGermany
| | | | | | - Georg Nagel
- Department of Neurophysiology, Physiological Institute, Julius-Maximilians-Universität WürzburgWürzburgGermany
| | | | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute of Molecular PhysiologyDortmundGermany
| |
Collapse
|
14
|
Abstract
Transient receptor potential (TRP) channels comprise a diverse family of ion channels, the majority of which are calcium permeable and show sophisticated regulatory patterns in response to various environmental cues. Early studies led to the recognition of TRP channels as environmental and chemical sensors. Later studies revealed that TRP channels mediated the regulation of intracellular calcium. Mutations in TRP channel genes result in abnormal regulation of TRP channel function or expression, and interfere with normal spatial and temporal patterns of intracellular local Ca2+ distribution. The resulting dysregulation of multiple downstream effectors, depending on Ca2+ homeostasis, is associated with hallmarks of cancer pathophysiology, including enhanced proliferation, survival and invasion of cancer cells. These findings indicate that TRP channels affect multiple events that control cellular fate and play a key role in cancer progression. This review discusses the accumulating evidence supporting the role of TRP channels in tumorigenesis, with emphasis on prostate cancer. [BMB Reports 2020; 53(3): 125-132].
Collapse
Affiliation(s)
- Dongki Yang
- Departments of Physiology, College of Medicine, Gachon University, Incheon 21999, Korea
| | - Jaehong Kim
- Departments of Biochemistry, College of Medicine, Gachon University, Incheon 21999, Korea
| |
Collapse
|
15
|
Thakur DP, Wang Q, Jeon J, Tian JB, Zhu MX. Intracellular acidification facilitates receptor-operated TRPC4 activation through PLCδ1 in a Ca 2+ -dependent manner. J Physiol 2020; 598:2651-2667. [PMID: 32338378 DOI: 10.1113/jp279658] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/20/2020] [Indexed: 12/28/2022] Open
Abstract
KEY POINTS Receptor-operated activation of TRPC4 cation channels requires Gi/o proteins and phospholipase-Cδ1 (PLCδ1) activation by intracellular Ca2+ . Concurrent stimulation of the Gq/11 pathway accelerates Gi/o activation of TRPC4, which is not mimicked by increasing cytosolic Ca2+ . The kinetic effect of Gq/11 was diminished by alkaline intracellular pH (pHi ) and increased pHi buffer capacity. Acidic pHi (6.75-6.25) together with the cytosolic Ca2+ rise accelerated Gi/o -mediated TRPC4 activation. Protons exert their facilitation effect through Ca2+ -dependent activation of PLCδ1. The data suggest that the Gq/11 -PLCβ pathway facilitates Gi/o activation of TRPC4 through hydrolysing phosphatidylinositol 4,5-bisphosphate (PIP2 ) to produce the initial proton signal that triggers a self-propagating PLCδ1 activity supported by regenerative H+ and Ca2+ . The findings provide novel mechanistic insights into receptor-operated TRPC4 activation by coincident Gq/11 and Gi/o pathways and shed light on how aberrant activation of TRPC4 may occur under pathological conditions to cause cell damage. ABSTRACT Transient Receptor Potential Canonical 4 (TRPC4) forms non-selective cation channels activated downstream from receptors that signal through G proteins. Our recent work suggests that TRPC4 channels are particularly coupled to pertussis toxin-sensitive Gi/o proteins, with a co-dependence on phospholipase-Cδ1 (PLCδ1). The Gi/o -mediated TRPC4 activation is dually dependent on and bimodally regulated by phosphatidylinositol 4,5-bisphosphate (PIP2 ), the substrate hydrolysed by PLC, and intracellular Ca2+ . As a byproduct of PLC-mediated PIP2 hydrolysis, protons have been shown to play an important role in the activation of Drosophila TRP channels. However, how intracellular pH affects mammalian TRPC channels remains obscure. Here, using patch-clamp recordings of HEK293 cells heterologously co-expressing mouse TRPC4β and the Gi/o -coupled μ opioid receptor, we investigated the role of intracellular protons on Gi/o -mediated TRPC4 activation. We found that acidic cytosolic pH greatly accelerated the rate of TRPC4 activation without altering the maximal current density and this effect was dependent on intracellular Ca2+ elevation. However, protons did not accelerate channel activation by directly acting upon TRPC4. We additionally demonstrated that protons exert their effect through sensitization of PLCδ1 to Ca2+ , which in turn promotes PLCδ1 activity and further potentiates TRPC4 via a positive feedback mechanism. The mechanism elucidated here helps explain how Gi/o and Gq/11 co-stimulation induces a faster activation of TRPC4 than Gi/o activation alone and highlights again the critical role of PLCδ1 in TRPC4 gating.
Collapse
Affiliation(s)
- Dhananjay P Thakur
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Qiaochu Wang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Jaepyo Jeon
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Jin-Bin Tian
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Michael X Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| |
Collapse
|
16
|
Kepura F, Braun E, Dietrich A, Plant TD. TRPC1 Regulates the Activity of a Voltage-Dependent Nonselective Cation Current in Hippocampal CA1 Neurons. Cells 2020; 9:cells9020459. [PMID: 32085504 PMCID: PMC7072794 DOI: 10.3390/cells9020459] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/26/2022] Open
Abstract
The cation channel subunit TRPC1 is strongly expressed in central neurons including neurons in the CA1 region of the hippocampus where it forms complexes with TRPC4 and TRPC5. To investigate the functional role of TRPC1 in these neurons and in channel function, we compared current responses to group I metabotropic glutamate receptor (mGluR I) activation and looked for major differences in dendritic morphology in neurons from TRPC1+/+ and TRPC1-/- mice. mGluR I stimulation resulted in the activation of a voltage-dependent nonselective cation current in both genotypes. Deletion of TRPC1 resulted in a modification of the shape of the current-voltage relationship, leading to an inward current increase. In current clamp recordings, the percentage of neurons that responded to depolarization in the presence of an mGluR I agonist with a plateau potential was increased in TRPC1-/- mice. There was also a small increase in the minor population of CA1 neurons that have more than one apical dendrite in TRPC1-/- mice. We conclude that TRPC1 has an inhibitory effect on receptor-operated nonselective cation channels in hippocampal CA1 neurons probably as a result of heterotetramer formation with other TRPC isoforms, and that TRPC1 deletion has only minor effects on dendritic morphology.
Collapse
Affiliation(s)
- Frauke Kepura
- Pharmakologisches Institut, BPC-Marburg, Fachbereich Medizin, Philipps-Universität Marburg, Karl-von-Frisch-Straße 2, 35043 Marburg, Germany; (F.K.); (E.B.); (A.D.)
| | - Eva Braun
- Pharmakologisches Institut, BPC-Marburg, Fachbereich Medizin, Philipps-Universität Marburg, Karl-von-Frisch-Straße 2, 35043 Marburg, Germany; (F.K.); (E.B.); (A.D.)
| | - Alexander Dietrich
- Pharmakologisches Institut, BPC-Marburg, Fachbereich Medizin, Philipps-Universität Marburg, Karl-von-Frisch-Straße 2, 35043 Marburg, Germany; (F.K.); (E.B.); (A.D.)
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, 80336 München, Germany
| | - Tim D. Plant
- Pharmakologisches Institut, BPC-Marburg, Fachbereich Medizin, Philipps-Universität Marburg, Karl-von-Frisch-Straße 2, 35043 Marburg, Germany; (F.K.); (E.B.); (A.D.)
- Center for Mind, Brain and Behavior, Philipps-Universität Marburg, 35032 Marburg, Germany
- Correspondence: ; Tel.: +49-6421-28-65038
| |
Collapse
|
17
|
Dattilo M, Penington NJ, Williams K. Regulation of TRPC5 currents by intracellular ATP: Single channel studies. J Cell Physiol 2020; 235:7056-7066. [PMID: 31994734 DOI: 10.1002/jcp.29602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/10/2020] [Indexed: 11/09/2022]
Abstract
TRPC5 channels are nonselective cation channels activated by G-protein-coupled receptors. It was previously found that recombinant TRPC5 currents are inhibited by intracellular ATP, when studied by whole-cell patch-clamp recording. In the present study, we investigated the mechanism of ATP inhibition at the single-channel level using patches from HEK-293 cells transiently transfected with TRPC5 and the M1 muscarinic receptor. In inside-out patches, application of ATP to the intracellular face of the membrane reduced TRPC5 channel activity at both positive and negative potentials without affecting the unitary current amplitude or open dwell time of the channel. The effect of ATP was rapidly reversible. These results suggest that ATP may bind to the channel protein and affect the ability of the channel to open or to remain in an open, nondesensitized state. The activity of TRPC5 channels may be influenced by cellular metabolism via changes in ATP levels.
Collapse
Affiliation(s)
- Michael Dattilo
- Department of Physiology and Pharmacology, State University of New York, Downstate Health Sciences University, Brooklyn, New York.,Program in Neural and Behavioral Science and Robert F. Furchgott, Center for Neural and Behavioral Science, State University of New York, Downstate Health Sciences University, Brooklyn, New York
| | - Nicholas J Penington
- Department of Physiology and Pharmacology, State University of New York, Downstate Health Sciences University, Brooklyn, New York.,Program in Neural and Behavioral Science and Robert F. Furchgott, Center for Neural and Behavioral Science, State University of New York, Downstate Health Sciences University, Brooklyn, New York
| | - Keith Williams
- Department of Physiology and Pharmacology, State University of New York, Downstate Health Sciences University, Brooklyn, New York.,Program in Neural and Behavioral Science and Robert F. Furchgott, Center for Neural and Behavioral Science, State University of New York, Downstate Health Sciences University, Brooklyn, New York
| |
Collapse
|
18
|
Minard A, Bauer CC, Chuntharpursat‐Bon E, Pickles IB, Wright DJ, Ludlow MJ, Burnham MP, Warriner SL, Beech DJ, Muraki K, Bon RS. Potent, selective, and subunit-dependent activation of TRPC5 channels by a xanthine derivative. Br J Pharmacol 2019; 176:3924-3938. [PMID: 31277085 PMCID: PMC6811774 DOI: 10.1111/bph.14791] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 06/27/2019] [Accepted: 07/02/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE The TRPC1, TRPC4, and TRPC5 proteins form homotetrameric or heterotetrameric, calcium-permeable cation channels that are involved in various disease states. Recent research has yielded specific and potent xanthine-based TRPC1/4/5 inhibitors. Here, we investigated the possibility of xanthine-based activators of these channels. EXPERIMENTAL APPROACH An analogue of the TRPC1/4/5 inhibitor Pico145, AM237, was synthesized and its activity was investigated using HEK cells overexpressing TRPC4, TRPC5, TRPC4-C1, TRPC5-C1, TRPC1:C4 or TRPC1:C5 channels, and in A498 cells expressing native TRPC1:C4 channels. TRPC1/4/5 channel activities were assayed by measuring intracellular concentration of Ca2+ ([Ca2+ ]i ) and by patch-clamp electrophysiology. Selectivity of AM237 was tested against TRPC3, TRPC6, TRPV4, or TRPM2 channels. KEY RESULTS AM237 potently activated TRPC5:C5 channels (EC50 15-20 nM in [Ca2+ ]i assay) and potentiated their activation by sphingosine-1-phosphate but suppressed activation evoked by (-)-englerin A (EA). In patch-clamp studies, AM237 activated TRPC5:C5 channels, with greater effect at positive voltages, but with lower efficacy than EA. Pico145 competitively inhibited AM237-induced TRPC5:C5 activation. AM237 did not activate TRPC4:C4, TRPC4-C1, TRPC5-C1, TRPC1:C5, and TRPC1:C4 channels, or native TRPC1:C4 channels in A498 cells, but potently inhibited EA-dependent activation of these channels with IC50 values ranging from 0.9 to 7 nM. AM237 (300 nM) did not activate or inhibit TRPC3, TRPC6, TRPV4, or TRPM2 channels. CONCLUSIONS AND IMPLICATIONS This study suggests the possibility for selective activation of TRPC5 channels by xanthine derivatives and supports the general principle that xanthine-based compounds can activate, potentiate, or inhibit these channels depending on subunit composition.
Collapse
Affiliation(s)
- Aisling Minard
- School of ChemistryUniversity of LeedsLeedsUK
- Department of Discovery and Translational Science, Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | - Claudia C. Bauer
- Department of Discovery and Translational Science, Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | - Eulashini Chuntharpursat‐Bon
- Department of Discovery and Translational Science, Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | - Isabelle B. Pickles
- School of ChemistryUniversity of LeedsLeedsUK
- Department of Discovery and Translational Science, Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | - David J. Wright
- Department of Discovery and Translational Science, Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | - Melanie J. Ludlow
- Department of Discovery and Translational Science, Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | | | | | - David J. Beech
- Department of Discovery and Translational Science, Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | - Katsuhiko Muraki
- Laboratory of Cellular Pharmacology, School of PharmacyAichi‐Gakuin UniversityNagoyaJapan
| | - Robin S. Bon
- Department of Discovery and Translational Science, Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| |
Collapse
|
19
|
Aung T, Asam C, Haerteis S. Ion channels in sarcoma: pathophysiology and treatment options. Pflugers Arch 2019; 471:1163-1171. [PMID: 31377822 DOI: 10.1007/s00424-019-02299-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 07/22/2019] [Accepted: 07/25/2019] [Indexed: 12/21/2022]
Abstract
Sarcomas are characterized by aggressive growth and a high metastasis potentially leading in most cases to a lethal outcome. These malignant tumors of the connective tissue have a high heterogeneity with numerous genetic mutations resulting in more than 100 types of sarcoma that can be grouped into two main kinds: soft tissue sarcoma and bone sarcoma. Sarcomas are often diagnosed at late disease stage, whereas a guaranteed diagnosis of the sarcoma type is fundamental for successful therapy. However, there is no appropriate therapy available. Therefore, the need for new therapies, which prolong survival and improve quality of life, is high. In the last two decades, the role of ion channels in cancer has emerged. Ion channels seem to be an ideal target for anti-tumor therapies. However, different cancer types have their own altered ion channel pattern, and the knowledge about the tumor-associated ion channel expression is fundamental. Here, we focus on the role of different ion channels in sarcoma, their pathophysiology, and possible treatment options.
Collapse
Affiliation(s)
- Thiha Aung
- Abteilung für Plastische, Hand- und Wiederherstellungschirurgie, Universitätsklinikum Regensburg, Regensburg, Germany
| | - Claudia Asam
- Lehrstuhl für Molekulare und Zelluläre Anatomie, Universität Regensburg, 93053, Regensburg, Germany
| | - Silke Haerteis
- Lehrstuhl für Molekulare und Zelluläre Anatomie, Universität Regensburg, 93053, Regensburg, Germany.
| |
Collapse
|
20
|
Sharma S, Hopkins CR. Review of Transient Receptor Potential Canonical (TRPC5) Channel Modulators and Diseases. J Med Chem 2019; 62:7589-7602. [PMID: 30943030 DOI: 10.1021/acs.jmedchem.8b01954] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Transient receptor potential canonical (TRPC) channels are highly homologous, nonselective cation channels that form many homo- and heterotetrameric channels. These channels are highly abundant in the brain and kidney and have been implicated in numerous diseases, such as depression, addiction, and chronic kidney disease, among others. Historically, there have been very few selective modulators of the TRPC family in order to fully understand their role in disease despite their physiological significance. However, that has changed recently and there has been a significant increase in interest in this family of channels which has led to the emergence of selective tool compounds, and even preclinical drug candidates, over the past few years. This review will cover these new advancements in the discovery of TRPC modulators and the emergence of newly reported structural information which will undoubtedly lead to even greater advancements.
Collapse
Affiliation(s)
- Swagat Sharma
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Nebraska Medical Center , Omaha , Nebraska 68198-6125 , United States
| | - Corey R Hopkins
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Nebraska Medical Center , Omaha , Nebraska 68198-6125 , United States
| |
Collapse
|
21
|
Ko J, Myeong J, Shin YC, So I. Differential PI(4,5)P 2 sensitivities of TRPC4, C5 homomeric and TRPC1/4, C1/5 heteromeric channels. Sci Rep 2019; 9:1849. [PMID: 30755645 PMCID: PMC6372716 DOI: 10.1038/s41598-018-38443-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/27/2018] [Indexed: 12/25/2022] Open
Abstract
Transient receptor potential canonical (TRPC) 4 and TRPC5 channels are modulated by the Gαq-PLC pathway. Since phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) maintains TRPC4 and TRPC5 channel function, the Gαq-PLC pathway inhibits channel activity by depleting PI(4,5)P2. Here we investigated the difference in PI(4,5)P2 sensitivity between homomeric and heteromeric TRPC channels. First, by using a Danio rerio voltage-sensing phosphatase (DrVSP), we show that PI(4,5)P2 dephosphorylation robustly inhibits TRPC4α, TRPC4β, and TRPC5 homotetramer currents and also TRPC1/4α, TRPC1/4β, and TRPC1/5 heterotetramer currents. Secondly, sensitivity of channels to PI(4,5)P2 dephosphorylation was suggested through the usage of FRET in combination with patch clamping. The sensitivity increased in the sequence TRPC4β < TRPC4α < TRPC5 in homotetramers, whereas when forming heterotetramers with TRPC1, the sensitivity was approximately equal between the channels. Thirdly, we determined putative PI(4,5)P2 binding sites based on a TRPC4 prediction model. By neutralization of basic residues, we identified putative PI(4,5)P2 binding sites because the mutations reduced FRET to a PI(4,5)P2 sensor and reduced the current amplitude. Therefore, one functional TRPC4 has 8 pockets with the two main binding regions; K419, K664/R511, K518, H630. We conclude that TRPC1 channel function as a regulator in setting PI(4,5)P2 affinity for TRPC4 and TRPC5 that changes PI(4,5)P2 sensitivity.
Collapse
Affiliation(s)
- Juyeon Ko
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jongyun Myeong
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.,Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Young-Cheul Shin
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Insuk So
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| |
Collapse
|
22
|
Kelly MJ, Qiu J, Rønnekleiv OK. TRPCing around the hypothalamus. Front Neuroendocrinol 2018; 51:116-124. [PMID: 29859883 PMCID: PMC6175656 DOI: 10.1016/j.yfrne.2018.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/29/2018] [Accepted: 05/30/2018] [Indexed: 01/13/2023]
Abstract
All of the canonical transient receptor potential channels (TRPC) with the exception of TRPC 2 are expressed in hypothalamic neurons and are involved in multiple homeostatic functions. Although the metabotropic glutamate receptors have been shown to be coupled to TRPC channel activation in cortical and sub-cortical brain regions, in the hypothalamus multiple amine and peptidergic G protein-coupled receptors (GPCRs) and growth factor/cytokine receptors are linked to activation of TRPC channels that are vital for reproduction, temperature regulation, arousal and energy homeostasis. In addition to the neurotransmitters, circulating hormones like insulin and leptin through their cognate receptors activate TRPC channels in POMC neurons. Many of the post-synaptic effects of the neurotransmitters and hormones are regulated in different physiological states by expression of TRPC channels in the post-synaptic neurons. Therefore, TRPC channels are key targets not only for neurotransmitters but circulating hormones in their vital role to control multiple hypothalamic functions, which is the focus of this review.
Collapse
Affiliation(s)
- Martin J Kelly
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR, USA; Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA.
| | - Jian Qiu
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR, USA
| | - Oline K Rønnekleiv
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR, USA; Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA
| |
Collapse
|
23
|
Myeong J, Ko J, Kwak M, Kim J, Woo J, Ha K, Hong C, Yang D, Kim HJ, Jeon JH, So I. Dual action of the Gα q-PLCβ-PI(4,5)P 2 pathway on TRPC1/4 and TRPC1/5 heterotetramers. Sci Rep 2018; 8:12117. [PMID: 30108272 PMCID: PMC6092394 DOI: 10.1038/s41598-018-30625-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 08/03/2018] [Indexed: 11/09/2022] Open
Abstract
The transient receptor potential canonical (TRPC) 1 channel is widely distributed in mammalian cells and is involved in many physiological processes. TRPC1 is primarily considered a regulatory subunit that forms heterotetrameric channels with either TRPC4 or TRPC5 subunits. Here, we suggest that the regulation of TRPC1/4 and TRPC1/5 heterotetrameric channels by the Gαq-PLCβ pathway is self-limited and dynamically mediated by Gαq and PI(4,5)P2. We provide evidence indicating that Gαq protein directly interacts with either TRPC4 or TRPC5 of the heterotetrameric channels to permit activation. Simultaneously, Gαq-coupled PLCβ activation leads to the breakdown of PI(4,5)P2, which inhibits activity of TRPC1/4 and 1/5 channels.
Collapse
Affiliation(s)
- Jongyun Myeong
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.,Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Juyeon Ko
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Misun Kwak
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jinsung Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Joohan Woo
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Kotdaji Ha
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Chansik Hong
- Department of Physiology, Chosun University School of Medicine, Kwangju, 61452, Republic of Korea
| | - Dongki Yang
- Department of Physiology, Gachon University College of Medicine, Incheon, 21936, Republic of Korea
| | - Hyun Jin Kim
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea.
| | - Ju-Hong Jeon
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Insuk So
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| |
Collapse
|
24
|
Minard A, Bauer CC, Wright DJ, Rubaiy HN, Muraki K, Beech DJ, Bon RS. Remarkable Progress with Small-Molecule Modulation of TRPC1/4/5 Channels: Implications for Understanding the Channels in Health and Disease. Cells 2018; 7:E52. [PMID: 29865154 PMCID: PMC6025525 DOI: 10.3390/cells7060052] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/21/2018] [Accepted: 05/23/2018] [Indexed: 12/12/2022] Open
Abstract
Proteins of the TRPC family can form many homo- and heterotetrameric cation channels permeable to Na⁺, K⁺ and Ca2+. In this review, we focus on channels formed by the isoforms TRPC1, TRPC4 and TRPC5. We review evidence for the formation of different TRPC1/4/5 tetramers, give an overview of recently developed small-molecule TRPC1/4/5 activators and inhibitors, highlight examples of biological roles of TRPC1/4/5 channels in different tissues and pathologies, and discuss how high-quality chemical probes of TRPC1/4/5 modulators can be used to understand the involvement of TRPC1/4/5 channels in physiological and pathophysiological processes.
Collapse
Affiliation(s)
- Aisling Minard
- School of Chemistry, University of Leeds, Leeds LS2 9JT, UK.
| | - Claudia C Bauer
- Department of Discovery and Translational Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK.
| | - David J Wright
- Department of Discovery and Translational Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK.
| | - Hussein N Rubaiy
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, Hull HU6 7RX, UK.
| | - Katsuhiko Muraki
- Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, 1-100 Kusumoto, Chikusa, Nagoya 464-8650, Japan.
| | - David J Beech
- Department of Discovery and Translational Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK.
| | - Robin S Bon
- Department of Discovery and Translational Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
25
|
Vinayagam D, Mager T, Apelbaum A, Bothe A, Merino F, Hofnagel O, Gatsogiannis C, Raunser S. Electron cryo-microscopy structure of the canonical TRPC4 ion channel. eLife 2018; 7:e36615. [PMID: 29717981 PMCID: PMC5951680 DOI: 10.7554/elife.36615] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 04/30/2018] [Indexed: 12/31/2022] Open
Abstract
Canonical transient receptor channels (TRPC) are non-selective cation channels. They are involved in receptor-operated Ca2+ signaling and have been proposed to act as store-operated channels (SOC). Their malfunction is related to cardiomyopathies and their modulation by small molecules has been shown to be effective against renal cancer cells. The molecular mechanism underlying the complex activation and regulation is poorly understood. Here, we report the electron cryo-microscopy structure of zebrafish TRPC4 in its unliganded (apo), closed state at an overall resolution of 3.6 Å. The structure reveals the molecular architecture of the cation conducting pore, including the selectivity filter and lower gate. The cytoplasmic domain contains two key hubs that have been shown to interact with modulating proteins. Structural comparisons with other TRP channels give novel insights into the general architecture and domain organization of this superfamily of channels and help to understand their function and pharmacology.
Collapse
Affiliation(s)
| | - Thomas Mager
- Department of Biophysical ChemistryMax Planck Institute of BiophysicsFrankfurt am MainGermany
| | - Amir Apelbaum
- Department of Structural BiochemistryMax Planck Institute of Molecular PhysiologyDortmundGermany
| | - Arne Bothe
- Department of Structural BiochemistryMax Planck Institute of Molecular PhysiologyDortmundGermany
| | - Felipe Merino
- Department of Structural BiochemistryMax Planck Institute of Molecular PhysiologyDortmundGermany
| | - Oliver Hofnagel
- Department of Structural BiochemistryMax Planck Institute of Molecular PhysiologyDortmundGermany
| | - Christos Gatsogiannis
- Department of Structural BiochemistryMax Planck Institute of Molecular PhysiologyDortmundGermany
| | - Stefan Raunser
- Department of Structural BiochemistryMax Planck Institute of Molecular PhysiologyDortmundGermany
| |
Collapse
|
26
|
Maddox JW, Khorsandi N, Gleason E. TRPC5 is required for the NO-dependent increase in dendritic Ca 2+ and GABA release from chick retinal amacrine cells. J Neurophysiol 2017; 119:262-273. [PMID: 28978766 DOI: 10.1152/jn.00500.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
GABAergic signaling from amacrine cells (ACs) is a fundamental aspect of visual signal processing in the inner retina. We have previously shown that nitric oxide (NO) can elicit release of GABA independently from activation of voltage-gated Ca2+ channels in cultured retinal ACs. This voltage-independent quantal GABA release relies on a Ca2+ influx mechanism with pharmacological characteristics consistent with the involvement of the transient receptor potential canonical (TRPC) channels TRPC4 and/or TRPC5. To determine the identity of these channels, we evaluated the ability of NO to elevate dendritic Ca2+ and to stimulate GABA release from cultured ACs under conditions known to alter the function of TRPC4 and 5. We found that these effects of NO are phospholipase C dependent, have a biphasic dependence on La3+, and are unaffected by moderate concentrations of the TRPC4-selective antagonist ML204. Together, these results suggest that NO promotes GABA release by activating TRPC5 channels in AC dendrites. To confirm a role for TRPC5, we knocked down the expression of TRPC5 using CRISPR/Cas9-mediated gene knockdown and found that both the NO-dependent Ca2+ elevations and increase in GABA release are dependent on the expression of TRPC5. These results demonstrate a novel NO-dependent mechanism for regulating neurotransmitter output from retinal ACs. NEW & NOTEWORTHY Elucidating the mechanisms regulating GABAergic synaptic transmission in the inner retina is key to understanding the flexibility of retinal ganglion cell output. Here, we demonstrate that nitric oxide (NO) can activate a transient receptor potential canonical 5 (TRPC5)-mediated Ca2+ influx, which is sufficient to drive vesicular GABA release from retinal amacrine cells. This NO-dependent mechanism can bypass the need for depolarization and may have an important role in processing the visual signal by enhancing retinal amacrine cell GABAergic inhibitory output.
Collapse
Affiliation(s)
- J Wesley Maddox
- Department of Biological Sciences, Louisiana State University , Baton Rouge, Louisiana
| | - Nikka Khorsandi
- Department of Biological Sciences, Louisiana State University , Baton Rouge, Louisiana
| | - Evanna Gleason
- Department of Biological Sciences, Louisiana State University , Baton Rouge, Louisiana
| |
Collapse
|
27
|
Xiao X, Liu HX, Shen K, Cao W, Li XQ. Canonical Transient Receptor Potential Channels and Their Link with Cardio/Cerebro-Vascular Diseases. Biomol Ther (Seoul) 2017; 25:471-481. [PMID: 28274093 PMCID: PMC5590790 DOI: 10.4062/biomolther.2016.096] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 12/04/2016] [Accepted: 12/27/2016] [Indexed: 12/29/2022] Open
Abstract
The canonical transient receptor potential channels (TRPCs) constitute a series of nonselective cation channels with variable degrees of Ca2+ selectivity. TRPCs consist of seven mammalian members, TRPC1, TRPC2, TRPC3, TRPC4, TRPC5, TRPC6, and TRPC7, which are further divided into four subtypes, TRPC1, TRPC2, TRPC4/5, and TRPC3/6/7. These channels take charge of various essential cell functions such as contraction, relaxation, proliferation, and dysfunction. This review, organized into seven main sections, will provide an overview of current knowledge about the underlying pathogenesis of TRPCs in cardio/cerebrovascular diseases, including hypertension, pulmonary arterial hypertension, cardiac hypertrophy, atherosclerosis, arrhythmia, and cerebrovascular ischemia reperfusion injury. Collectively, TRPCs could become a group of drug targets with important physiological functions for the therapy of human cardio/cerebro-vascular diseases.
Collapse
Affiliation(s)
- Xiong Xiao
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Hui-Xia Liu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China.,Cadet Brigade, Fourth Military Medical University, Xi'an 710032, China
| | - Kuo Shen
- Cadet Brigade, Fourth Military Medical University, Xi'an 710032, China
| | - Wei Cao
- Department of Natural Medicine & Institute of Materia Medica, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Xiao-Qiang Li
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
28
|
Alonso-Carbajo L, Kecskes M, Jacobs G, Pironet A, Syam N, Talavera K, Vennekens R. Muscling in on TRP channels in vascular smooth muscle cells and cardiomyocytes. Cell Calcium 2017; 66:48-61. [PMID: 28807149 DOI: 10.1016/j.ceca.2017.06.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/08/2017] [Accepted: 06/08/2017] [Indexed: 02/07/2023]
Abstract
The human TRP protein family comprises a family of 27 cation channels with diverse permeation and gating properties. The common theme is that they are very important regulators of intracellular Ca2+ signaling in diverse cell types, either by providing a Ca2+ influx pathway, or by depolarising the membrane potential, which on one hand triggers the activation of voltage-gated Ca2+ channels, and on the other limits the driving force for Ca2+ entry. Here we focus on the role of these TRP channels in vascular smooth muscle and cardiac striated muscle. We give an overview of highlights from the recent literature, and highlight the important and diverse roles of TRP channels in the pathophysiology of the cardiovascular system. The discovery of the superfamily of Transient Receptor Potential (TRP) channels has significantly enhanced our knowledge of multiple signal transduction mechanisms in cardiac muscle and vascular smooth muscle cells (VSMC). In recent years, multiple studies have provided evidence for the involvement of these channels, not only in the regulation of contraction, but also in cell proliferation and remodeling in pathological conditions. The mammalian family of TRP cation channels is composed by 28 genes which can be divided into 6 subfamilies groups based on sequence similarity: TRPC (Canonical), TRPM (Melastatin), TRPML (Mucolipins), TRPV (Vanilloid), TRPP (Policystin) and TRPA (Ankyrin-rich protein). Functional TRP channels are believed to form four-unit complexes in the plasma, each of them expressed with six transmembrane domain and intracellular N and C termini. Here we review the current knowledge on the expression of TRP channels in both muscle types, and discuss their functional properties and role in physiological and pathophysiological processes.
Collapse
Affiliation(s)
- Lucía Alonso-Carbajo
- Laboratory of Ion Channel Research, TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Miklos Kecskes
- Laboratory of Ion Channel Research, TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Griet Jacobs
- Laboratory of Ion Channel Research, TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Andy Pironet
- Laboratory of Ion Channel Research, TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Ninda Syam
- Laboratory of Ion Channel Research, TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Karel Talavera
- Laboratory of Ion Channel Research, TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium.
| | - Rudi Vennekens
- Laboratory of Ion Channel Research, TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
29
|
Jung HJ, Im SS, Song DK, Bae JH. Effects of chlorogenic acid on intracellular calcium regulation in lysophosphatidylcholine-treated endothelial cells. BMB Rep 2017; 50:323-328. [PMID: 28088946 PMCID: PMC5498143 DOI: 10.5483/bmbrep.2017.50.6.182] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 11/16/2016] [Accepted: 01/10/2017] [Indexed: 12/31/2022] Open
Abstract
Lysophosphatidylcholine (LPC) is a major phospholipid component of oxidized low-density lipoprotein (ox-LDL) and is implicated in its atherogenic activity. This study investigated the effects of LPC on cell viability, intracellular calcium homeostasis, and the protective mechanisms of chlorogenic acid (CGA) in human umbilical vein endothelial cells (HUVECs). LPC increased intracellular calcium ([Ca2+]i) by releasing Ca2+ from intracellular stores and via Ca2+ influx through store-operated channels (SOCs). LPC also increased the generation of reactive oxygen species (ROS) and decreased cell viability. The mRNA expression of Transient receptor potential canonical (TRPC) channel 1 was increased significantly by LPC treatment and suppressed by CGA. CGA inhibited LPC-induced Ca2+ influx and ROS generation, and restored cell viability. These results suggested that CGA inhibits SOC-mediated Ca2+ influx and ROS generation by attenuating TRPC1 expression in LPC-treated HUVECs. Therefore, CGA might protect endothelial cells against LPC injury, thereby inhibiting atherosclerosis. [BMB Reports 2017; 50(6): 323-328].
Collapse
Affiliation(s)
| | | | - Dae-Kyu Song
- Department of Physiology, Keimyung University School of Medicine, Daegu 42601,
Korea
| | - Jae-Hoon Bae
- Department of Physiology, Keimyung University School of Medicine, Daegu 42601,
Korea
| |
Collapse
|
30
|
Shao G, Wang Y, Guan S, Burlingame AL, Lu F, Knox R, Ferriero DM, Jiang X. Proteomic Analysis of Mouse Cortex Postsynaptic Density following Neonatal Brain Hypoxia-Ischemia. Dev Neurosci 2017; 39:66-81. [PMID: 28315865 PMCID: PMC5519436 DOI: 10.1159/000456030] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 01/11/2017] [Indexed: 02/02/2023] Open
Abstract
Proteomics of the synapses and postsynaptic densities (PSDs) have provided a deep understanding of protein composition and signal networks in the adult brain, which underlie neuronal plasticity and neurodegenerative or psychiatric disorders. However, there is a paucity of knowledge about the architecture and organization of PSDs in the immature brain, and how it is modified by brain injury in an early developing stage. Mass spectrometry (MS)-based proteomic analysis was performed on PSDs prepared from cortices of postnatal day 9 naïve mice or pups which had suffered hypoxic-ischemic (HI) brain injury. 512 proteins of different functional groups were identified from PSDs collected 1 h after HI injury, among which 60 have not been reported previously. Seven newly identified proteins involved in neural development were highlighted. HI injury increased the yield of PSDs at early time points upon reperfusion, and multiple proteins were recruited into PSDs following the insult. Quantitative analysis was performed using spectral counting, and proteins whose relative expression was more than 50% up- or downregulated compared to the sham animals 1 h after HI insult were reported. Validation with Western blotting demonstrated changes in expression and phosphorylation of the N-methyl-D-aspartate receptor, activation of a series of postsynaptic protein kinases and dysregulation of scaffold and adaptor proteins in response to neonatal HI insult. This work, along with other recent studies of synaptic protein profiling in the immature brain, builds a foundation for future investigation on the molecular mechanisms underlying developing plasticity. Furthermore, it provides insights into the biochemical changes of PSDs following early brain hypoxia-ischemia, which is helpful for understanding not only the injury mechanisms, but also the process of repair or replenishment of neuronal circuits during recovery from brain damage.
Collapse
Affiliation(s)
- Guo Shao
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou, China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Tykocki NR, Boerman EM, Jackson WF. Smooth Muscle Ion Channels and Regulation of Vascular Tone in Resistance Arteries and Arterioles. Compr Physiol 2017; 7:485-581. [PMID: 28333380 DOI: 10.1002/cphy.c160011] [Citation(s) in RCA: 241] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vascular tone of resistance arteries and arterioles determines peripheral vascular resistance, contributing to the regulation of blood pressure and blood flow to, and within the body's tissues and organs. Ion channels in the plasma membrane and endoplasmic reticulum of vascular smooth muscle cells (SMCs) in these blood vessels importantly contribute to the regulation of intracellular Ca2+ concentration, the primary determinant of SMC contractile activity and vascular tone. Ion channels provide the main source of activator Ca2+ that determines vascular tone, and strongly contribute to setting and regulating membrane potential, which, in turn, regulates the open-state-probability of voltage gated Ca2+ channels (VGCCs), the primary source of Ca2+ in resistance artery and arteriolar SMCs. Ion channel function is also modulated by vasoconstrictors and vasodilators, contributing to all aspects of the regulation of vascular tone. This review will focus on the physiology of VGCCs, voltage-gated K+ (KV) channels, large-conductance Ca2+-activated K+ (BKCa) channels, strong-inward-rectifier K+ (KIR) channels, ATP-sensitive K+ (KATP) channels, ryanodine receptors (RyRs), inositol 1,4,5-trisphosphate receptors (IP3Rs), and a variety of transient receptor potential (TRP) channels that contribute to pressure-induced myogenic tone in resistance arteries and arterioles, the modulation of the function of these ion channels by vasoconstrictors and vasodilators, their role in the functional regulation of tissue blood flow and their dysfunction in diseases such as hypertension, obesity, and diabetes. © 2017 American Physiological Society. Compr Physiol 7:485-581, 2017.
Collapse
Affiliation(s)
- Nathan R Tykocki
- Department of Pharmacology, University of Vermont, Burlington, Vermont, USA
| | - Erika M Boerman
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA
| | - William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
32
|
Flores-Soto E, Reyes-García J, Carbajal-García A, Campuzano-González E, Perusquía M, Sommer B, Montaño LM. Sex steroids effects on guinea pig airway smooth muscle tone and intracellular Ca 2+ basal levels. Mol Cell Endocrinol 2017; 439:444-456. [PMID: 27717744 DOI: 10.1016/j.mce.2016.10.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/06/2016] [Accepted: 10/03/2016] [Indexed: 02/07/2023]
Abstract
UNLABELLED Testosterone (TES), other androgens and female sex steroids induce non-genomic rapid relaxing effects in airway smooth muscle (ASM). In guinea pig ASM, basal tension was relaxed by dehydroepiandrosterone (DHEA) and TES; 17β-estradiol (E2) had a small effect. Blockers of L-type voltage dependent Ca2+ channel (L-VDCC, D-600) and store operated Ca2+ channel (SOC, 2-APB) also relaxed the basal tone. In tracheal myocytes, DHEA and TES diminished intracellular basal Ca2+ concentrations (b[Ca2+]i) as D-600+2-APB but to a higher extend. TES after D-600+2APB or Pyr3, a blocker of canonical transient receptor potential 3 (TRPC3), further decreased b[Ca2+]i rendering this response equal to TES alone. With indomethacin, the b[Ca2+]i decrease induced by the blockade of L-VDCC and TRPC3 was not changed by the addition of TES. PGE2 or forskolin addition after D600+2-APB, decreased b[Ca2+]i resembling TES response. An adenylate cyclase inhibitor followed by D-600+2-APB lowered b[Ca2+]i, TES showed no further effect. Carbachol-induced [Ca2+]i increment was reduced by TES or DHEA. 17β-estradiol diminished KCl-induced contraction and, in tracheal myocytes, the voltage-dependent inward Ca2+ current. CONCLUSION DHEA and TES diminish ASM tone and b[Ca2+]i by blocking L-VDCC and probably a constitutively active TRPC3, and by PGE2 synthesis. E2 lowers ASM basal tone by blocking only L-VDCC.
Collapse
Affiliation(s)
- Edgar Flores-Soto
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico
| | - Jorge Reyes-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico
| | - Abril Carbajal-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico
| | - Elías Campuzano-González
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico
| | - Mercedes Perusquía
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico
| | - Bettina Sommer
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias, 14080, Ciudad de México, Mexico
| | - Luis M Montaño
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico.
| |
Collapse
|
33
|
Ludlow MJ, Gaunt HJ, Rubaiy HN, Musialowski KE, Blythe NM, Vasudev NS, Muraki K, Beech DJ. (-)-Englerin A-evoked Cytotoxicity Is Mediated by Na+ Influx and Counteracted by Na+/K+-ATPase. J Biol Chem 2016; 292:723-731. [PMID: 27875305 PMCID: PMC5241745 DOI: 10.1074/jbc.m116.755678] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/09/2016] [Indexed: 11/21/2022] Open
Abstract
(−)-Englerin A ((−)-EA) has a rapid and potent cytotoxic effect on several types of cancer cell that is mediated by plasma membrane ion channels containing transient receptor potential canonical 4 (TRPC4) protein. Because these channels are Ca2+-permeable, it was initially thought that the cytotoxicity arose as a consequence of Ca2+ overload. Here we show that this is not the case and that the effect of (−)-EA is mediated by a heteromer of TRPC4 and TRPC1 proteins. Both TRPC4 and TRPC1 were required for (−)-EA cytotoxicity; however, although TRPC4 was necessary for the (−)-EA-evoked Ca2+ elevation, TRPC1 was not. TRPC1 either had no role or was a negative regulator of Ca2+ entry. By contrast, both TRPC4 and TRPC1 were necessary for monovalent cation entry evoked by (−)-EA, and (−)-EA-evoked cell death was dependent upon entry of the monovalent cation Na+. We therefore hypothesized that Na+/K+-ATPase might act protectively by counteracting the Na+ load resulting from sustained Na+ entry. Indeed, inhibition of Na+/K+-ATPase by ouabain potently and strongly increased (−)-EA-evoked cytotoxicity. The data suggest that (−)-EA achieves cancer cell cytotoxicity by inducing sustained Na+ entry through heteromeric TRPC1/TRPC4 channels and that the cytotoxic effect of (−)-EA can be potentiated by Na+/K+-ATPase inhibition.
Collapse
Affiliation(s)
- Melanie J Ludlow
- From the Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom and
| | - Hannah J Gaunt
- From the Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom and
| | - Hussein N Rubaiy
- From the Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom and
| | - Katie E Musialowski
- From the Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom and
| | - Nicola M Blythe
- From the Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom and
| | - Naveen S Vasudev
- From the Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom and
| | - Katsuhiko Muraki
- the School of Pharmacy, Aichi-Gakuin University, 1-100 Kusumoto, Chikusa, Nagoya 464-8650, Japan
| | - David J Beech
- From the Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom and
| |
Collapse
|
34
|
Ku CY, Babich L, Word RA, Zhong M, Ulloa A, Monga M, Sanborn BM. Expression of Transient Receptor Channel Proteins in Human Fundal Myometrium in Pregnancy. ACTA ACUST UNITED AC 2016; 13:217-25. [PMID: 16527499 DOI: 10.1016/j.jsgi.2005.12.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Indexed: 10/24/2022]
Abstract
OBJECTIVE Cation channels comprised of transient receptor potential (TrpC) proteins may play a role in signal-regulated calcium entry and calcium homeostasis in myometrium. The objective of this study was to determine the relative abundance of specific TrpC mRNAs expressed in human myometrium and determine if TrpC mRNA and protein concentrations differ in fundal myometrium before and after the onset of labor. METHODS A quantitative real-time polymerase chain reaction (Q-RT-PCR) procedure was developed for determining the concentration of TrpC mRNA expression in immortalized and primary human myometrial cells and myometrial fundus tissues from patients before and after the onset of labor. The corresponding TrpC proteins were detected by Western blot analysis and immunohistochemistry. RESULTS hTrpC1, 3, 4, 5, 6, and 7 mRNAs were expressed in two lines of immortalized human myometrial cells and in primary human myocytes. In all of these cells, hTrpC1 and hTrpC4 mRNAs were the most abundant, followed by hTrpC6. A similar distribution was observed in fundal myometrium samples from patients before and after the onset of labor. hTrpC4 mRNA was significantly lower after the onset of labor; there were no significant changes in the concentrations of other TrpC mRNAs. Immunohistochemistry identified hTrpC1, 3, 4, and 6 proteins in myometrial smooth muscle cells. Western blot analysis of myometrial membranes demonstrated no statistically significant changes in hTrpC1, 3, 4, and 6 proteins between samples collected before and after the onset of labor. CONCLUSIONS We have demonstrated that hTrpC1 and hTrpC4 are the most abundant TrpC mRNAs in human myometrium, with TrpC6 being the next most abundant. There was no increase in TrpC mRNA or protein in fundal myometrium with the onset of labor. Nonetheless, these isoforms may play significant roles in signal regulated calcium entry in human myometrium.
Collapse
Affiliation(s)
- Chun-Ying Ku
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, USA.
| | | | | | | | | | | | | |
Collapse
|
35
|
Regulator of G-protein signalling and GoLoco proteins suppress TRPC4 channel function via acting at Gαi/o. Biochem J 2016; 473:1379-90. [PMID: 26987813 DOI: 10.1042/bcj20160214] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 03/16/2016] [Indexed: 01/09/2023]
Abstract
Transient receptor potential canonical 4 (TRPC4) forms non-selective cation channels implicated in the regulation of diverse physiological functions. Previously, TRPC4 was shown to be activated by the Gi/o subgroup of heterotrimeric G-proteins involving Gαi/o, rather than Gβγ, subunits. Because the lifetime and availability of Gα-GTP are regulated by regulators of G-protein signalling (RGS) and Gαi/o-Loco (GoLoco) domain-containing proteins via their GTPase-activating protein (GAP) and guanine-nucleotide-dissociation inhibitor (GDI) functions respectively, we tested how RGS and GoLoco domain proteins affect TRPC4 currents activated via Gi/o-coupled receptors. Using whole-cell patch-clamp recordings, we show that both RGS and GoLoco proteins [RGS4, RGS6, RGS12, RGS14, LGN or activator of G-protein signalling 3 (AGS3)] suppress receptor-mediated TRPC4 activation without causing detectable basal current or altering surface expression of the channel protein. The inhibitory effects are dependent on the GAP and GoLoco domains and facilitated by enhancing membrane targeting of the GoLoco protein AGS3. In addition, RGS, but not GoLoco, proteins accelerate desensitization of receptor-activation evoked TRPC4 currents. The inhibitory effects of RGS and GoLoco domains are additive and are most prominent with RGS12 and RGS14, which contain both RGS and GoLoco domains. Our data support the notion that the Gα, but not Gβγ, arm of the Gi/o signalling is involved in TRPC4 activation and unveil new roles for RGS and GoLoco domain proteins in fine-tuning TRPC4 activities. The versatile and diverse functions of RGS and GoLoco proteins in regulating G-protein signalling may underlie the complexity of receptor-operated TRPC4 activation in various cell types under different conditions.
Collapse
|
36
|
Muscarinic receptor-mediated excitation of rat intracardiac ganglion neurons. Neuropharmacology 2015; 95:395-404. [DOI: 10.1016/j.neuropharm.2015.04.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 03/13/2015] [Accepted: 04/14/2015] [Indexed: 11/23/2022]
|
37
|
Carson C, Raman P, Tullai J, Xu L, Henault M, Thomas E, Yeola S, Lao J, McPate M, Verkuyl JM, Marsh G, Sarber J, Amaral A, Bailey S, Lubicka D, Pham H, Miranda N, Ding J, Tang HM, Ju H, Tranter P, Ji N, Krastel P, Jain RK, Schumacher AM, Loureiro JJ, George E, Berellini G, Ross NT, Bushell SM, Erdemli G, Solomon JM. Englerin A Agonizes the TRPC4/C5 Cation Channels to Inhibit Tumor Cell Line Proliferation. PLoS One 2015; 10:e0127498. [PMID: 26098886 PMCID: PMC4476799 DOI: 10.1371/journal.pone.0127498] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 04/14/2015] [Indexed: 01/19/2023] Open
Abstract
Englerin A is a structurally unique natural product reported to selectively inhibit growth of renal cell carcinoma cell lines. A large scale phenotypic cell profiling experiment (CLiP) of englerin A on ¬over 500 well characterized cancer cell lines showed that englerin A inhibits growth of a subset of tumor cell lines from many lineages, not just renal cell carcinomas. Expression of the TRPC4 cation channel was the cell line feature that best correlated with sensitivity to englerin A, suggesting the hypothesis that TRPC4 is the efficacy target for englerin A. Genetic experiments demonstrate that TRPC4 expression is both necessary and sufficient for englerin A induced growth inhibition. Englerin A induces calcium influx and membrane depolarization in cells expressing high levels of TRPC4 or its close ortholog TRPC5. Electrophysiology experiments confirmed that englerin A is a TRPC4 agonist. Both the englerin A induced current and the englerin A induced growth inhibition can be blocked by the TRPC4/C5 inhibitor ML204. These experiments confirm that activation of TRPC4/C5 channels inhibits tumor cell line proliferation and confirms the TRPC4 target hypothesis generated by the cell line profiling. In selectivity assays englerin A weakly inhibits TRPA1, TRPV3/V4, and TRPM8 which suggests that englerin A may bind a common feature of TRP ion channels. In vivo experiments show that englerin A is lethal in rodents near doses needed to activate the TRPC4 channel. This toxicity suggests that englerin A itself is probably unsuitable for further drug development. However, since englerin A can be synthesized in the laboratory, it may be a useful chemical starting point to identify novel modulators of other TRP family channels.
Collapse
Affiliation(s)
- Cheryl Carson
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Pichai Raman
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Jennifer Tullai
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Lei Xu
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Martin Henault
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Emily Thomas
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Sarita Yeola
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Jianmin Lao
- Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Mark McPate
- Novartis Institutes for Biomedical Research, Horsham, United Kingdom
| | - J. Martin Verkuyl
- Novartis Institutes for Biomedical Research, Horsham, United Kingdom
| | - George Marsh
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Jason Sarber
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Adam Amaral
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Scott Bailey
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Danuta Lubicka
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Helen Pham
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Nicolette Miranda
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Jian Ding
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Hai-Ming Tang
- Novartis Institutes for Biomedical Research, East Hanover, New Jersey, United States of America
| | - Haisong Ju
- Novartis Institutes for Biomedical Research, East Hanover, New Jersey, United States of America
| | - Pamela Tranter
- Novartis Institutes for Biomedical Research, Horsham, United Kingdom
| | - Nan Ji
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Philipp Krastel
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Rishi K. Jain
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Andrew M. Schumacher
- Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Joseph J. Loureiro
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Elizabeth George
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Giuliano Berellini
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Nathan T. Ross
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Simon M. Bushell
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Gül Erdemli
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Jonathan M. Solomon
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
38
|
Zhu Y, Lu Y, Qu C, Miller M, Tian J, Thakur DP, Zhu J, Deng Z, Hu X, Wu M, McManus OB, Li M, Hong X, Zhu MX, Luo HR. Identification and optimization of 2-aminobenzimidazole derivatives as novel inhibitors of TRPC4 and TRPC5 channels. Br J Pharmacol 2015; 172:3495-509. [PMID: 25816897 DOI: 10.1111/bph.13140] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 02/16/2015] [Accepted: 03/18/2015] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE Transient receptor potential canonical (TRPC) channels play important roles in a broad array of physiological functions and are involved in various diseases. However, due to a lack of potent subtype-specific inhibitors the exact roles of TRPC channels in physiological and pathophysiological conditions have not been elucidated. EXPERIMENTAL APPROACH Using fluorescence membrane potential and Ca(2+) assays and electrophysiological recordings, we characterized new 2-aminobenzimidazole-based small molecule inhibitors of TRPC4 and TRPC5 channels identified from cell-based fluorescence high-throughput screening. KEY RESULTS The original compound, M084, was a potent inhibitor of both TRPC4 and TRPC5, but was also a weak inhibitor of TRPC3. Structural modifications of the lead compound resulted in the identification of analogues with improved potency and selectivity for TRPC4 and TRPC5 channels. The aminobenzimidazole derivatives rapidly inhibited the TRPC4- and TRPC5-mediated currents when applied from the extracellular side and this inhibition was independent of the mode of activation of these channels. The compounds effectively blocked the plateau potential mediated by TRPC4-containing channels in mouse lateral septal neurons, but did not affect the activity of heterologously expressed TRPA1, TRPM8, TRPV1 or TRPV3 channels or that of the native voltage-gated Na(+) , K(+) and Ca(2) (+) channels in dissociated neurons. CONCLUSIONS AND IMPLICATIONS The TRPC4/C5-selective inhibitors developed here represent novel and useful pharmaceutical tools for investigation of physiological and pathophysiological functions of TRPC4/C5 channels.
Collapse
Affiliation(s)
- Yingmin Zhu
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yungang Lu
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX, USA.,The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chunrong Qu
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan, Hubei, China
| | - Melissa Miller
- Department of Neuroscience, High Throughput Biology Center and Johns Hopkins Ion Channel Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jinbin Tian
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Dhananjay P Thakur
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jinmei Zhu
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan, Hubei, China
| | - Zixin Deng
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan, Hubei, China
| | - Xianming Hu
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Meng Wu
- Department of Neuroscience, High Throughput Biology Center and Johns Hopkins Ion Channel Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Owen B McManus
- Department of Neuroscience, High Throughput Biology Center and Johns Hopkins Ion Channel Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Min Li
- Department of Neuroscience, High Throughput Biology Center and Johns Hopkins Ion Channel Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xuechuan Hong
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan, Hubei, China
| | - Michael X Zhu
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Huai-Rong Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, The Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
39
|
Wang L, Jirka G, Rosenberg PB, Buckley AF, Gomez JA, Fields TA, Winn MP, Spurney RF. Gq signaling causes glomerular injury by activating TRPC6. J Clin Invest 2015; 125:1913-26. [PMID: 25844902 DOI: 10.1172/jci76767] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 02/27/2015] [Indexed: 01/07/2023] Open
Abstract
Familial forms of focal segmental glomerulosclerosis (FSGS) have been linked to gain-of-function mutations in the gene encoding the transient receptor potential channel C6 (TRPC6). GPCRs coupled to Gq signaling activate TRPC6, suggesting that Gq-dependent TRPC6 activation underlies glomerular diseases. Here, we developed a murine model in which a constitutively active Gq α subunit (Gq(Q209L), referred to herein as GqQ>L) is specifically expressed in podocytes and examined the effects of this mutation in response to puromycin aminonucleoside (PAN) nephrosis. We found that compared with control animals, animals expressing GqQ>L exhibited robust albuminuria, structural features of FSGS, and reduced numbers of glomerular podocytes. Gq activation stimulated calcineurin (CN) activity, resulting in CN-dependent upregulation of TRPC6 in murine kidneys. Deletion of TRPC6 in GqQ>L-expressing mice prevented FSGS development and inhibited both tubular damage and podocyte loss induced by PAN nephrosis. Similarly, administration of the CN inhibitor FK506 reduced proteinuria and tubular injury but had more modest effects on glomerular pathology and podocyte numbers in animals with constitutive Gq activation. Moreover, these Gq-dependent effects on podocyte injury were generalizable to diabetic kidney disease, as expression of GqQ>L promoted albuminuria, mesangial expansion, and increased glomerular basement membrane width in diabetic mice. Together, these results suggest that targeting Gq/TRPC6 signaling may have therapeutic benefits for the treatment of glomerular diseases.
Collapse
MESH Headings
- Albuminuria/chemically induced
- Animals
- Calcineurin/metabolism
- Diabetes Mellitus, Type 1/complications
- Diabetes Mellitus, Type 1/genetics
- Diabetic Nephropathies/genetics
- Diabetic Nephropathies/metabolism
- Diabetic Nephropathies/pathology
- GTP-Binding Protein alpha Subunits, Gq-G11/genetics
- GTP-Binding Protein alpha Subunits, Gq-G11/physiology
- Gene Deletion
- Genes, Reporter
- Glomerulosclerosis, Focal Segmental/chemically induced
- Glomerulosclerosis, Focal Segmental/genetics
- Glomerulosclerosis, Focal Segmental/pathology
- HEK293 Cells
- Humans
- Kidney Glomerulus/pathology
- Kidney Tubules/pathology
- Mice
- Mice, Mutant Strains
- Mice, Transgenic
- NFATC Transcription Factors/metabolism
- Podocytes/metabolism
- Point Mutation
- Puromycin Aminonucleoside/toxicity
- Recombinant Fusion Proteins/metabolism
- Signal Transduction
- TRPC Cation Channels/biosynthesis
- TRPC Cation Channels/deficiency
- TRPC Cation Channels/genetics
- TRPC Cation Channels/physiology
- TRPC6 Cation Channel
- Tacrolimus/pharmacology
Collapse
|
40
|
Dual depolarization responses generated within the same lateral septal neurons by TRPC4-containing channels. Pflugers Arch 2015; 466:1301-16. [PMID: 24121765 DOI: 10.1007/s00424-013-1362-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 09/11/2013] [Indexed: 10/26/2022]
Abstract
In the central nervous system, canonical transient receptor potential (TRPC) channels have been implicated in mediating neuronal excitation induced by stimulating metabotropic receptors, including group 1 metabotropic glutamate receptors (mGluRs). Lateral septal (LS) neurons express high levels of TRPC4 and group I mGluRs. However, to what extent native TRPC4-containing channels (TRPC4-cc) are activated as well as the impact of different levels of TRPC4-cc activation on neuronal excitability remain elusive. Here, we report that stimulating LS neurons with group I mGluR agonist, (S)-3,5-DHPG, causes either an immediate increase in firing rate or an initial burst followed by a pause of firing, which can be correlated with below-threshold-depolarization (BTD) or above-threshold-plateau-depolarization (ATPD), respectively, in whole-cell recordings. The early phase of BTD and the entire ATPD are completely absent in neurons from TRPC4−/− mice. Moreover, in the same LS neurons, BTD can be converted to ATPD at more depolarized potentials or with a brief current injection, suggesting that BTD and ATPD may represent partial and full activations of TRPC4-cc, respectively. We show that coincident mGluR stimulation and depolarization is required to evoke strong TRPC4-cc current, and Na+ and Ca2+ influx, together with dynamic changes of intracellular Ca(2+), are essential for ATPD induction. Our results suggest that TRPC4-cc integrates metabotropic receptor stimulation with intracellular Ca(2+) signals to generate two interconvertible depolarization responses to affect excitability of LS neurons in distinct fashions.
Collapse
|
41
|
Fu J, Gao Z, Shen B, Zhu MX. Canonical transient receptor potential 4 and its small molecule modulators. SCIENCE CHINA-LIFE SCIENCES 2014; 58:39-47. [PMID: 25480324 DOI: 10.1007/s11427-014-4772-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 09/06/2014] [Indexed: 02/04/2023]
Abstract
Canonical transient receptor potential 4 (TRPC4) forms non-selective cation channels that contribute to phospholipase C-dependent Ca(2+) entry into cells following stimulation of G protein coupled receptors and receptor tyrosine kinases. Moreover, the channels are regulated by pertussis toxin-sensitive Gi/o proteins, lipids, and various other signaling mechanisms. TRPC4-containing channels participate in the regulation of a variety of physiological functions, including excitability of both gastrointestinal smooth muscles and brain neurons. This review is to present recent advances in the understanding of physiology and development of small molecular modulators of TRPC4 channels.
Collapse
Affiliation(s)
- Jie Fu
- Department of Physiology, Anhui Medical University, Hefei, 230032, China
| | | | | | | |
Collapse
|
42
|
Zhang X, Beckel JM, Daugherty SL, Wang T, Woodcock SR, Freeman BA, de Groat WC. Activation of TRPC channels contributes to OA-NO2-induced responses in guinea-pig dorsal root ganglion neurons. J Physiol 2014; 592:4297-312. [PMID: 25128576 DOI: 10.1113/jphysiol.2014.271783] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Effects of nitro-oleic acid (OA-NO2) on TRP channels were examined in guinea-pig dissociated dorsal root ganglia (DRG) neurons using calcium imaging and patch clamp techniques. OA-NO2 increased intracellular Ca(2+) in 60-80% DRG neurons. 1-Oleoyl-2acetyl-sn-glycerol (OAG), a TRPC agonist, elicited responses in 36% of OA-NO2-sensitive neurons while capsaicin (TRPV1 agonist) or allyl-isothiocyanate (AITC, TRPA1 agonist) elicited responses in only 16% and 10%, respectively, of these neurons. A TRPV1 antagonist (diarylpiperazine, 5 μm) in combination with a TRPA1 antagonist (HC-030031, 30 μm) did not change the amplitude of the Ca(2+) transients or percentage of neurons responding to OA-NO2; however, a reducing agent DTT (50 mm) or La(3+) (50 μm) completely abolished OA-NO2 responses. OA-NO2 also induced a transient inward current associated with a membrane depolarization followed by a prolonged outward current and hyperpolarization in 80% of neurons. The reversal potentials of inward and outward currents were approximately -20 mV and -60 mV, respectively. Inward current was reduced when extracellular Na(+) was absent, but unchanged by niflumic acid (100 μm), a Cl(-) channel blocker. Outward current was abolished in the absence of extracellular Ca(2+) or a combination of two Ca(2+)-activated K(+) channel blockers (iberiotoxin, 100 nm and apamin, 1 μm). BTP2 (1 or 10 μm), a broad spectrum TRPC antagonist, or La(3+) (50 μm) completely abolished OA-NO2 currents. RT-PCR performed on mRNA extracted from DRGs revealed the expression of all seven subtypes of TRPC channels. These results support the hypothesis that OA-NO2 activates TRPC channels other than the TRPV1 and TRPA1 channels already known to be targets in rat and mouse sensory neurons and challenge the prevailing view that electrophilic compounds act specifically on TRPA1 or TRPV1 channels. The modulation of sensory neuron excitability via actions on multiple TRP channels can contribute to the anti-inflammatory effect of OA-NO2.
Collapse
Affiliation(s)
- Xiulin Zhang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA Department of Urology, The Second Hospital of Shandong University, Jinan, Shandong, 250032, P. R. China
| | - Jonathan M Beckel
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Stephanie L Daugherty
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Ting Wang
- Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Stephen R Woodcock
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Bruce A Freeman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - William C de Groat
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| |
Collapse
|
43
|
Abstract
TRPC4 proteins comprise six transmembrane domains, a putative pore-forming region, and an intracellularly located amino- and carboxy-terminus. Among eleven splice variants identified so far, TRPC4α and TRPC4β are the most abundantly expressed and functionally characterized. TRPC4 is expressed in various organs and cell types including the soma and dendrites of numerous types of neurons; the cardiovascular system including endothelial, smooth muscle, and cardiac cells; myometrial and skeletal muscle cells; kidney; and immune cells such as mast cells. Both recombinant and native TRPC4-containing channels differ tremendously in their permeability and other biophysical properties, pharmacological modulation, and mode of activation depending on the cellular environment. They vary from inwardly rectifying store-operated channels with a high Ca(2+) selectivity to non-store-operated channels predominantly carrying Na(+) and activated by Gαq- and/or Gαi-coupled receptors with a complex U-shaped current-voltage relationship. Thus, individual TRPC4-containing channels contribute to agonist-induced Ca(2+) entry directly or indirectly via depolarization and activation of voltage-gated Ca(2+) channels. The differences in channel properties may arise from variations in the composition of the channel complexes, in the specific regulatory pathways in the corresponding cell system, and/or in the expression pattern of interaction partners which comprise other TRPC proteins to form heteromultimeric channels. Additional interaction partners of TRPC4 that can mediate the activity of TRPC4-containing channels include (1) scaffolding proteins (e.g., NHERF) that may mediate interactions with signaling molecules in or in close vicinity to the plasma membrane such as Gα proteins or phospholipase C and with the cytoskeleton, (2) proteins in specific membrane microdomains (e.g., caveolin-1), or (3) proteins on cellular organelles (e.g., Stim1). The diversity of TRPC4-containing channels hampers the development of specific agonists or antagonists, but recently, ML204 was identified as a blocker of both recombinant and endogenous TRPC4-containing channels with an IC50 in the lower micromolar range that lacks activity on most voltage-gated channels and other TRPs except TRPC5 and TRPC3. Lanthanides are specific activators of heterologously expressed TRPC4- and TRPC5-containing channels but can block individual native TRPC4-containing channels. The biological relevance of TRPC4-containing channels was demonstrated by knockdown of TRPC4 expression in numerous native systems including gene expression, cell differentiation and proliferation, formation of myotubes, and axonal regeneration. Studies of TRPC4 single and TRPC compound knockout mice uncovered their role for the regulation of vascular tone, endothelial permeability, gastrointestinal contractility and motility, neurotransmitter release, and social exploratory behavior as well as for excitotoxicity and epileptogenesis. Recently, a single-nucleotide polymorphism (SNP) in the Trpc4 gene was associated with a reduced risk for experience of myocardial infarction.
Collapse
Affiliation(s)
- Marc Freichel
- Pharmakologisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany,
| | | | | |
Collapse
|
44
|
Alexander SPH, Benson HE, Faccenda E, Pawson AJ, Sharman JL, Catterall WA, Spedding M, Peters JA, Harmar AJ. The Concise Guide to PHARMACOLOGY 2013/14: ion channels. Br J Pharmacol 2013; 170:1607-51. [PMID: 24528239 PMCID: PMC3892289 DOI: 10.1111/bph.12447] [Citation(s) in RCA: 225] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full. Ion channels are one of the seven major pharmacological targets into which the Guide is divided, with the others being G protein-coupled receptors, ligand-gated ion channels, catalytic receptors, nuclear hormone receptors, transporters and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets. It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors and Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and the Guide to Receptors and Channels, providing a permanent, citable, point-in-time record that will survive database updates.
Collapse
Affiliation(s)
- Stephen PH Alexander
- School of Life Sciences, University of Nottingham Medical SchoolNottingham, NG7 2UH, UK
- *
Author for correspondence;
| | - Helen E Benson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Elena Faccenda
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Adam J Pawson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Joanna L Sharman
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - William A Catterall
- University of Washington, School of Medicine, Department of PharmacologyBox 357280, Seattle, WA 98195-7280, USA
| | | | - John A Peters
- Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of DundeeDundee, DD1 9SY, UK
| | - Anthony J Harmar
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| |
Collapse
|
45
|
Abstract
Transient receptor potential (TRP) channels are cellular sensors for a wide spectrum of physical and chemical stimuli. They are involved in the formation of sight, hearing, touch, smell, taste, temperature, and pain sensation. TRP channels also play fundamental roles in cell signaling and allow the host cell to respond to benign or harmful environmental changes. As TRP channel activation is controlled by very diverse processes and, in many cases, exhibits complex polymodal properties, understanding how each TRP channel responds to its unique forms of activation energy is both crucial and challenging. The past two decades witnessed significant advances in understanding the molecular mechanisms that underlie TRP channels activation. This review focuses on our current understanding of the molecular determinants for TRP channel activation.
Collapse
Affiliation(s)
- Jie Zheng
- Department of Physiology and Membrane Biology, University of California School of Medicine, Davis, California, USA.
| |
Collapse
|
46
|
Leptin promotes K(ATP) channel trafficking by AMPK signaling in pancreatic β-cells. Proc Natl Acad Sci U S A 2013; 110:12673-8. [PMID: 23858470 DOI: 10.1073/pnas.1216351110] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Leptin is a pivotal regulator of energy and glucose homeostasis, and defects in leptin signaling result in obesity and diabetes. The ATP-sensitive potassium (K(ATP)) channels couple glucose metabolism to insulin secretion in pancreatic β-cells. In this study, we provide evidence that leptin modulates pancreatic β-cell functions by promoting K(ATP) channel translocation to the plasma membrane via AMP-activated protein kinase (AMPK) signaling. K(ATP) channels were localized mostly to intracellular compartments of pancreatic β-cells in the fed state and translocated to the plasma membrane in the fasted state. This process was defective in leptin-deficient ob/ob mice, but restored by leptin treatment. We discovered that the molecular mechanism of leptin-induced AMPK activation involves canonical transient receptor potential 4 and calcium/calmodulin-dependent protein kinase kinase β. AMPK activation was dependent on both leptin and glucose concentrations, so at optimal concentrations of leptin, AMPK was activated sufficiently to induce K(ATP) channel trafficking and hyperpolarization of pancreatic β-cells in a physiological range of fasting glucose levels. There was a close correlation between phospho-AMPK levels and β-cell membrane potentials, suggesting that AMPK-dependent K(ATP) channel trafficking is a key mechanism for regulating β-cell membrane potentials. Our results present a signaling pathway whereby leptin regulates glucose homeostasis by modulating β-cell excitability.
Collapse
|
47
|
Rønnekleiv OK, Kelly MJ. Kisspeptin excitation of GnRH neurons. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 784:113-31. [PMID: 23550004 PMCID: PMC4019505 DOI: 10.1007/978-1-4614-6199-9_6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Kisspeptin binding to its cognate G protein-coupled receptor (GPR54, aka Kiss1R) in gonadotropin-releasing hormone (GnRH) neurons stimulates peptide release and activation of the reproductive axis in mammals. Kisspeptin has pronounced pre- and postsynaptic effects, with the latter dominating the excitability of GnRH neurons. Presynaptically, kisspeptin increases the excitatory drive (both GABA-A and glutamate) to GnRH neurons and postsynaptically, kisspeptin inhibits an A-type and inwardly rectifying K(+) (Kir 6.2 and GIRK) currents and activates nonselective cation (TRPC) currents to cause long-lasting depolarization and increased action potential firing. The signaling cascades and the multiple intracellular targets of kisspeptin actions in native GnRH neurons are continuing to be elucidated. This review summarizes our current state of knowledge about kisspeptin signaling in GnRH neurons.
Collapse
Affiliation(s)
- Oline K Rønnekleiv
- Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239, USA.
| | | |
Collapse
|
48
|
Kim H, Kim J, Jeon JP, Myeong J, Wie J, Hong C, Kim HJ, Jeon JH, So I. The roles of G proteins in the activation of TRPC4 and TRPC5 transient receptor potential channels. Channels (Austin) 2012; 6:333-43. [PMID: 22878724 PMCID: PMC3508772 DOI: 10.4161/chan.21198] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
TRPC4 and TRPC5 channels are important regulators of electrical excitability in both gastrointestinal myocytes and neurons. Much is known regarding the assembly and function of these channels including TRPC1 as a homotetramer or a heteromultimer and the roles that their interacting proteins play in controlling these events. Further, they are one of the best-studied targets of G protein-coupled receptors and growth factors in general and Gαq protein coupled receptor or epidermal growth factor in particular. However, our understanding of the roles of Gαi/o proteins on TRPC4/5 channels is still rudimentary. We discuss potential roles for Gαi/o proteins in channel activation in addition to their known role in cellular signaling.
Collapse
Affiliation(s)
- Hana Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Grisanti LA, Kurada L, Cilz NI, Porter JE, Lei S. Phospholipase C not protein kinase C is required for the activation of TRPC5 channels by cholecystokinin. Eur J Pharmacol 2012; 689:17-24. [PMID: 22683873 DOI: 10.1016/j.ejphar.2012.05.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 05/12/2012] [Accepted: 05/24/2012] [Indexed: 01/09/2023]
Abstract
Cholecystokinin (CCK) is one of the most abundant neuropeptides in the brain where it interacts with two G protein-coupled receptors (CCK1 and CCK2). Both types of CCK receptors are coupled to G(q/11) proteins resulting in increased function of phospholipase C (PLC) pathway. Whereas CCK has been suggested to increase neuronal excitability in the brain via activation of cationic channels, the types of cationic channels have not yet been identified. Here, we co-expressed CCK2 receptors and TRPC5 channels in human embryonic kidney (HEK) 293 cells and studied the effects of CCK on TRPC5 channels using patch-clamp techniques. Our results demonstrate that activation of CCK2 receptors robustly potentiates the function of TRPC5 channels. CCK-induced activation of TRPC5 channels requires the functions of G-proteins and PLC and depends on extracellular Ca(2+). The activation of TRPC5 channels mediated by CCK2 receptors is independent of IP(3) receptors and protein kinase C. CCK-induced opening of TRPC5 channels is not store-operated because application of thapsigargin to deplete intracellular Ca(2+) stores failed to alter CCK-induced TRPC5 channel currents significantly. Bath application of CCK also significantly increased the open probability of TRPC5 single channel currents in cell-attached patches. Because CCK exerts extensive effects in the brain, our results may provide a novel mechanism to explain its roles in modulating neuronal excitability.
Collapse
Affiliation(s)
- Laurel A Grisanti
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | | | | | | | | |
Collapse
|
50
|
Li W, Ehrich M. Transient alterations of the blood-brain barrier tight junction and receptor potential channel gene expression by chlorpyrifos. J Appl Toxicol 2012; 33:1187-91. [PMID: 22611033 DOI: 10.1002/jat.2762] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 03/02/2012] [Accepted: 03/02/2012] [Indexed: 11/08/2022]
Abstract
The blood-brain barrier (BBB) is formed by specialized endothelial cells lining capillaries in the central nervous system (CNS). We previously demonstrated that exposure to very low concentrations of the organophosphorus insecticide chlorpyrifos (CPF) decreased electrical resistance across the BBB in vitro, indicating a loss of BBB integrity. The present study examined the transient effects of CPF on expression of genes contributing to tight junctions of the BBB. Rat brain endothelial cells (RBE4) were co-cultured with rat astrocytes on membrane inserts to form an in vitro BBB. The RBE4 cells in the BBB were then exposed to CPF for 2, 4 and 12 h. Total RNA was extracted from RBE4 cells and quantitative real-time PCR (qRT-PCR) was used to quantify levels of gene expression of tight junction proteins claudin5, scaffold proteins zona occludens (ZO1) and transient receptor potential (canonical) channels (TRPC4). Gene expression decreased 2 h after exposure to CPF, especially TRPC4, but the effects were reversed 12 h later. CPF exposure for only 15 min caused less effect than longer exposures, with TRPC4 gene expression above the control at 4 h. These results suggest that altering gene expression for claudin5, TRPC4 and ZO1 by CPF may directly contribute to BBB disruption, and that the alteration is reversible upon removal of CPF.
Collapse
Affiliation(s)
- Wen Li
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061-0442, USA
| | | |
Collapse
|