1
|
Wang J, Yang X. Dynamic modeling of astrocyte-neuron interactions under the influence of Aβ deposition. Cogn Neurodyn 2025; 19:60. [PMID: 40226235 PMCID: PMC11985881 DOI: 10.1007/s11571-025-10246-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 02/18/2025] [Accepted: 03/13/2025] [Indexed: 04/15/2025] Open
Abstract
β-amyloid (Aβ) protein accumulation is recognized as a key factor in Alzheimer's disease (AD) pathogenesis. Its effects on astrocyte function appear primarily as disturbances to intracellular calcium signaling, which, in turn, affects neuronal excitability. We propose an innovative neuron-astrocyte interaction model to examine how Aβ accumulation influences astrocyte calcium oscillation and neuronal excitability, emphasizing its significance in AD pathogenesis. This comprehensive model describes not only the response of the astrocyte to presynaptic neuron stimulation but also the release of the downstream signaling glutamate and its consequential feedback on neurons. Our research concentrates on changes within two prominent pathways affected by Aβ: the creation of Aβ astrocyte membrane pores and the enhanced sensitivity of ryanodine receptors. By incorporating these adjustments into our astrocyte model, we can reproduce previous experimental findings regarding aberrant astrocyte calcium activity and neural behavior associated with Aβ from a neural computational viewpoint. Within a specified range of Aβ influence, our numerical analysis reveals that astrocyte cytoplasmic calcium rises, calcium oscillation frequency increases, and the time to the first calcium peak shortens, indicating the disrupted astrocyte calcium signaling. Simultaneously, the neuronal firing rate and cytosolic calcium concentration increase while the threshold current for initiating repetitive firing diminishes, implying heightened neuronal excitability. Given that increased neuronal excitability commonly occurs in early AD patients and correlates with cognitive decline, our findings may highlight the importance of Aβ accumulation in AD pathogenesis and provide a theoretical basis for identifying neuronal markers in the early stages of the disease.
Collapse
Affiliation(s)
- JiangNing Wang
- School of Mathematics and Statistics, Shaanxi Normal University, Xi’an, 710119 China
| | - XiaoLi Yang
- School of Mathematics and Statistics, Shaanxi Normal University, Xi’an, 710119 China
| |
Collapse
|
2
|
Almeida ZL, Vaz DC, Brito RMM. Morphological and Molecular Profiling of Amyloid-β Species in Alzheimer's Pathogenesis. Mol Neurobiol 2025; 62:4391-4419. [PMID: 39446217 PMCID: PMC11880078 DOI: 10.1007/s12035-024-04543-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024]
Abstract
Alzheimer's disease (AD) is the most common form of dementia around the world (~ 65%). Here, we portray the neuropathology of AD, biomarkers, and classification of amyloid plaques (diffuse, non-cored, dense core, compact). Tau pathology and its involvement with Aβ plaques and cell death are discussed. Amyloid cascade hypotheses, aggregation mechanisms, and molecular species formed in vitro and in vivo (on- and off-pathways) are described. Aβ42/Aβ40 monomers, dimers, trimers, Aβ-derived diffusible ligands, globulomers, dodecamers, amylospheroids, amorphous aggregates, protofibrils, fibrils, and plaques are characterized (structure, size, morphology, solubility, toxicity, mechanistic steps). An update on AD-approved drugs by regulatory agencies, along with new Aβ-based therapies, is presented. Beyond prescribing Aβ plaque disruptors, cholinergic agonists, or NMDA receptor antagonists, other therapeutic strategies (RNAi, glutaminyl cyclase inhibitors, monoclonal antibodies, secretase modulators, Aβ aggregation inhibitors, and anti-amyloid vaccines) are already under clinical trials. New drug discovery approaches based on "designed multiple ligands", "hybrid molecules", or "multitarget-directed ligands" are also being put forward and may contribute to tackling this highly debilitating and fatal form of human dementia.
Collapse
Affiliation(s)
- Zaida L Almeida
- Chemistry Department and Coimbra Chemistry Centre - Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535, Coimbra, Portugal.
| | - Daniela C Vaz
- Chemistry Department and Coimbra Chemistry Centre - Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535, Coimbra, Portugal.
- School of Health Sciences, Polytechnic Institute of Leiria, 2411-901, Leiria, Portugal.
- LSRE-LCM, Laboratory of Separation and Reaction Engineering and Laboratory of Catalysis and Materials, Leiria, 2411-901, Portugal.
- ALiCE - Associate Laboratory in Chemical Engineering, University of Porto, 4200-465, Porto, Portugal.
| | - Rui M M Brito
- Chemistry Department and Coimbra Chemistry Centre - Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535, Coimbra, Portugal.
| |
Collapse
|
3
|
Rahmatkar SN, Singh D. Decoding the Role of Neurotrophins in Glycogen Synthase Kinase 3-Beta Regulation in Alzheimer's Disease. Mol Neurobiol 2025:10.1007/s12035-025-04776-x. [PMID: 40014269 DOI: 10.1007/s12035-025-04776-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 02/11/2025] [Indexed: 02/28/2025]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most prevalent contributor to dementia in elderly individuals. Numerous signalling pathways influencing AD pathophysiology, involving glycogen synthase kinase-3β (Gsk-3β), have been investigated extensively as potential therapeutic targets. Gsk-3β is a critical factor in AD pathogenesis that affects several key hallmarks of the disease notably tau phosphorylation, amyloid-β generation, cognition, neurogenesis, and synaptic integrity. Neurotrophins are small proteins that are critical for maintaining neuronal health and function and may be used to treat neurodegenerative diseases. Notably, the dysregulation of certain neurotrophins and their receptors is also linked with AD which is a major contributor to neurodegeneration. Studies indicated that neurotrophins and their modulators are capable of protecting neurons by blocking the Gsk-3β activity suggesting a potential link for neuroprotection. Neurotrophins support the survival of neurons by regulating Gsk-3β activity. Brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) signalling pathways activate Trk receptors that trigger downstream signalling cascades that subsequently inhibit Gsk-3β activity and reduce AD-related neuropathology. We also explore the role of modulators including phosphatases, kinase cascades, and other regulatory proteins that cross paths with neurotrophin-Gsk-3β signalling. In conclusion, this manuscript summarizes both direct and indirect regulatory roles of neurotrophins and modulators on Gsk-3β to understand the intricate mechanisms driving neurodegeneration in AD.
Collapse
Affiliation(s)
- Shubham Nilkanth Rahmatkar
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR)), Ghaziabad, 201002, India
| | - Damanpreet Singh
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India.
- Academy of Scientific and Innovative Research (AcSIR)), Ghaziabad, 201002, India.
| |
Collapse
|
4
|
Jang YJ, Kang SJ, Park HS, Lee DH, Kim JH, Kim JE, Kim DI, Chung CH, Yoon JK, Bhang SH. Drug delivery strategies with lipid-based nanoparticles for Alzheimer's disease treatment. J Nanobiotechnology 2025; 23:99. [PMID: 39930497 PMCID: PMC11809104 DOI: 10.1186/s12951-025-03109-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 01/11/2025] [Indexed: 02/14/2025] Open
Abstract
Alzheimer's disease (AD) is a distinctive form of dementia characterized by age-related cognitive decline and memory impairment. A key hallmark of AD is the irreversible overaccumulation of beta-amyloid (Aβ) in the brain, associated with neuroinflammation and neuronal death. Although Aβ clearance and immunoregulation have been the major therapeutic strategies for AD, highly selective transport across the blood-brain barrier (BBB) negatively affects the delivery efficacy of the drugs without the ability to cross the BBB. In this review, we discuss the potential of lipid-based nanoparticles (LBNs) as promising vehicles for drug delivery in AD treatment. LBNs, composed of phospholipid mono- or bilayer, have attracted attention due to their exceptional cellular penetration capabilities and drug loading capabilities, which also facilitate cargo transcytosis across the BBB. Recent advances in the development and engineering of LBNs overcome the existing limitations of the current clinical approaches for AD treatment by addressing off-target effects and low therapeutic efficacy. Here, we review the transport pathways across the BBB, as well as various types of LBNs for AD therapy, including exosomes, liposomes, solid lipid nanoparticles (SLNs), and nanostructured lipid carriers (NLCs), to elucidate their distinctive properties, preparation methodologies, and therapeutic efficacy, thereby offering innovative avenues for novel drug development for clinical translation in AD therapy.
Collapse
Affiliation(s)
- Young-Ju Jang
- School of Chemical Engineering, Sungkyunkwan University, Suwon-si, 16419, Gyeonggi-do, Republic of Korea
| | - Seong-Jun Kang
- Department of Systems Biotechnology, Chung-Ang University, Anseong-si, 17546, Gyeonggi-do, Republic of Korea
| | - Hyun Su Park
- School of Chemical Engineering, Sungkyunkwan University, Suwon-si, 16419, Gyeonggi-do, Republic of Korea
| | - Dong-Hyun Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon-si, 16419, Gyeonggi-do, Republic of Korea
| | - Jae Hoon Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong-si, 17546, Gyeonggi-do, Republic of Korea
| | - Ju-El Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong-si, 17546, Gyeonggi-do, Republic of Korea
| | - Dong-Ik Kim
- Division of Vascular Surgery, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, 06351, Republic of Korea
| | - Chan-Hwa Chung
- School of Chemical Engineering, Sungkyunkwan University, Suwon-si, 16419, Gyeonggi-do, Republic of Korea
| | - Jeong-Kee Yoon
- Department of Systems Biotechnology, Chung-Ang University, Anseong-si, 17546, Gyeonggi-do, Republic of Korea.
| | - Suk Ho Bhang
- School of Chemical Engineering, Sungkyunkwan University, Suwon-si, 16419, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
5
|
Sollazzo R, Li Puma DD, Aceto G, Paciello F, Colussi C, Vita MG, Giuffrè GM, Pastore F, Casamassa A, Rosati J, Novelli A, Maietta S, Tiziano FD, Marra C, Ripoli C, Grassi C. Structural and functional alterations of neurons derived from sporadic Alzheimer's disease hiPSCs are associated with downregulation of the LIMK1-cofilin axis. Alzheimers Res Ther 2024; 16:267. [PMID: 39702316 DOI: 10.1186/s13195-024-01632-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 11/26/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND Alzheimer's Disease (AD) is a neurodegenerative disorder characterized by the accumulation of pathological proteins and synaptic dysfunction. This study aims to investigate the molecular and functional differences between human induced pluripotent stem cells (hiPSCs) derived from patients with sporadic AD (sAD) and age-matched controls (healthy subjects, HS), focusing on their neuronal differentiation and synaptic properties in order to better understand the cellular and molecular mechanisms underlying AD pathology. METHODS Skin fibroblasts from sAD patients (n = 5) and HS subjects (n = 5) were reprogrammed into hiPSCs using non-integrating Sendai virus vectors. Through karyotyping, we assessed pluripotency markers (OCT4, SOX2, TRA-1-60) and genomic integrity. Neuronal differentiation was evaluated by immunostaining for MAP2 and NEUN. Electrophysiological properties were measured using whole-cell patch-clamp, while protein expression of Aβ, phosphorylated tau, Synapsin-1, Synaptophysin, PSD95, and GluA1 was quantified by western blot. We then focused on PAK1-LIMK1-Cofilin signaling, which plays a key role in regulating synaptic structure and function, both of which are disrupted in neurodegenerative diseases such as AD. RESULTS sAD and HS hiPSCs displayed similar stemness features and genomic stability. However, they differed in neuronal differentiation and function. sAD-derived neurons (sAD-hNs) displayed increased levels of AD-related proteins, including Aβ and phosphorylated tau. Electrophysiological analyses revealed that while both sAD- and HS-hNs generated action potentials, sAD-hNs exhibited decreased spontaneous synaptic activity. Significant reductions in the expression of synaptic proteins such as Synapsin-1, Synaptophysin, PSD95, and GluA1 were found in sAD-hNs, which are also characterized by reduced neurite length, indicating impaired differentiation. Notably, sAD-hNs demonstrated a marked reduction in LIMK1 phosphorylation, which could be the underlying cause for the changes in cytoskeletal dynamics that we found, leading to the morphological and functional modifications observed in sAD-hNs. To further investigate the involvement of the LIMK1 pathway in the morphological and functional changes observed in sAD neurons, we conducted perturbation experiments using the specific LIMK1 inhibitor, BMS-5. Neurons obtained from healthy subjects treated with the inhibitor showed similar morphological changes to those observed in sAD neurons, confirming that LIMK1 activity is crucial for maintaining normal neuronal structure. Furthermore, administration of the inhibitor to sAD neurons did not exacerbate the morphological alterations, suggesting that LIMK1 activity is already compromised in these cells. CONCLUSION Our findings demonstrate that although sAD- and HS-hiPSCs are similar in their stemness and genomic stability, sAD-hNs exhibit distinct functional and structural anomalies mirroring AD pathology. These anomalies include synaptic dysfunction, altered cytoskeletal organization, and accumulation of AD-related proteins. Our study underscores the usefulness of hiPSCs in modeling AD and provides insights into the disease's molecular underpinnings, thus highlighting potential therapeutic targets.
Collapse
Affiliation(s)
- Raimondo Sollazzo
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Domenica Donatella Li Puma
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - Giuseppe Aceto
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - Fabiola Paciello
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - Claudia Colussi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
- Department of Engineering, Istituto Di Analisi Dei Sistemi Ed Informatica "Antonio Ruberti", National Research Council, 00185, Rome, Italy
| | | | | | - Francesco Pastore
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Alessia Casamassa
- Cellular Reprogramming Unit, Fondazione IRCCS Casa, Sollievo Della Sofferenza, 71013 - San Giovanni, Rotondo, Italy
| | - Jessica Rosati
- Cellular Reprogramming Unit, Fondazione IRCCS Casa, Sollievo Della Sofferenza, 71013 - San Giovanni, Rotondo, Italy
- Saint Camillus International, University of Health Sciences, 00131, Rome, Italy
| | - Agnese Novelli
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Sabrina Maietta
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Francesco Danilo Tiziano
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Camillo Marra
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - Cristian Ripoli
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy.
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy.
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| |
Collapse
|
6
|
Gao Y, Zhang H, Hu Y. Baseline serum glutamate: Implications for diagnosis and prediction in mild cognitive impairment and Alzheimer's disease of the Alzheimer's Disease Neuroimaging Initiative. J Clin Neurosci 2024; 129:110828. [PMID: 39265358 DOI: 10.1016/j.jocn.2024.110828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/28/2024] [Accepted: 09/04/2024] [Indexed: 09/14/2024]
Abstract
PURPOSE Numerous studies have highlighted a close link between metabolic imbalances and Alzheimer's Disease (AD). The advancement of metabolomics has recently enabled the exploration of characteristic metabolic changes associated with AD. Studies indicate that serum glutamate (Glu) levels may correlate with mild cognitive impairment (MCI) and AD. This study aims to further elucidate the characteristics of baseline serum Glu levels in MCI and AD. METHODS This study included 783 participants from the Alzheimer's Disease Neuroimaging Initiative-1 (ADNI-1) cohort, categorized into cognitively normal (CN, n = 224), stable MCI (sMCI, n = 181), progressive MCI (pMCI, n = 193), and AD (n = 185). The study aimed to analyze the diagnostic value of baseline serum Glu, to explore its predictive capability for the progression from CN to MCI or AD, and from MCI to AD, and to analyze the relationship between serum Glu and cerebrospinal fluid (CSF) biomarkers and cognitive functions in different diagnostic groups. RESULTS Compared to the CN and sMCI groups, the pMCI group showed significantly lower levels of serum Glu, and the AD group also had lower Glu levels compared to the sMCI group. However, serum Glu did not show significant diagnostic value for MCI and AD. Lower levels of serum Glu could predict the progression from MCI to AD. CONCLUSION Serum Glu levels can predict the progression from MCI to AD, suggesting that it could provide new insights into the pathophysiological mechanisms of AD. However, serum Glu may not be an ideal peripheral biomarker for AD.
Collapse
Affiliation(s)
- Ying Gao
- Department of General Medical Wards Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy. Chongqing 400014, China
| | - Hua Zhang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yuming Hu
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
7
|
Abed S, Ebrahimi A, Fattahi F, Kouchakali G, Shekari-Khaniani M, Mansoori-Derakhshan S. The Role of Non-Coding RNAs in Mitochondrial Dysfunction of Alzheimer's Disease. J Mol Neurosci 2024; 74:100. [PMID: 39466447 DOI: 10.1007/s12031-024-02262-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/25/2024] [Indexed: 10/30/2024]
Abstract
Although brain amyloid-β (Aβ) peptide buildup is the main cause of Alzheimer's disease (AD), mitochondrial abnormalities can also contribute to the illness's development, as either a primary or secondary factor, as programmed cell death and efficient energy generation depend on the proper operation of mitochondria. As a result, non-coding RNAs (ncRNAs) may play a crucial role in ensuring that nuclear genes related to mitochondria and mitochondrial genes function normally. Interestingly, a significant number of recent studies have focused on the impact of ncRNAs on the expression of nucleus and mitochondrial genes. Additionally, researchers have proposed some intriguing therapeutic approaches to treat and reduce the severity of AD by adjusting the levels of these ncRNAs. The goal of this work was to consolidate the existing knowledge in this field of study by systematically investigating ncRNAs, with a particular emphasis on microRNAs (miRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and small nucleolar RNAs (snoRNAs). Therefore, the impact and processes by which ncRNAs govern mitochondrial activity in the onset and progression of AD are thoroughly reviewed in this article. Collectively, the effects of ncRNAs on physiological and molecular mechanisms associated with mitochondrial abnormalities that exacerbate AD are thoroughly reviewed in the current research, while also emphasizing the relationship between disturbed mitophagy in AD and ncRNAs.
Collapse
Affiliation(s)
- Samin Abed
- Department of Genetics, Tabriz University of Medical University, Tabriz, Iran
| | - Amir Ebrahimi
- Department of Genetics, Tabriz University of Medical University, Tabriz, Iran
| | - Fatemeh Fattahi
- Department of Genetics, Tabriz University of Medical University, Tabriz, Iran
| | - Ghazal Kouchakali
- Department of Genetics, Tabriz University of Medical University, Tabriz, Iran
| | | | | |
Collapse
|
8
|
Wang HS, Karnik SJ, Margetts TJ, Plotkin LI, Movila A, Fehrenbacher JC, Kacena MA, Oblak AL. Mind Gaps and Bone Snaps: Exploring the Connection Between Alzheimer's Disease and Osteoporosis. Curr Osteoporos Rep 2024; 22:483-494. [PMID: 38236512 PMCID: PMC11420299 DOI: 10.1007/s11914-023-00851-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/21/2023] [Indexed: 01/19/2024]
Abstract
PURPOSE OF REVIEW This comprehensive review discusses the complex relationship between Alzheimer's disease (AD) and osteoporosis, two conditions that are prevalent in the aging population and result in adverse complications on quality of life. The purpose of this review is to succinctly elucidate the many commonalities between the two conditions, including shared pathways, inflammatory and oxidative mechanisms, and hormonal deficiencies. RECENT FINDINGS AD and osteoporosis share many aspects of their respective disease-defining pathophysiology. These commonalities include amyloid beta deposition, the Wnt/β-catenin signaling pathway, and estrogen deficiency. The shared mechanisms and risk factors associated with AD and osteoporosis result in a large percentage of patients that develop both diseases. Previous literature has established that the progression of AD increases the risk of sustaining a fracture. Recent findings demonstrate that the reverse may also be true, suggesting that a fracture early in the life course can predispose one to developing AD due to the activation of these shared mechanisms. The discovery of these commonalities further guides the development of novel therapeutics in which both conditions are targeted. This detailed review delves into the commonalities between AD and osteoporosis to uncover the shared players that bring these two seemingly unrelated conditions together. The discussion throughout this review ultimately posits that the occurrence of fractures and the mechanism behind fracture healing can predispose one to developing AD later on in life, similar to how AD patients are at an increased risk of developing fractures. By focusing on the shared mechanisms between AD and osteoporosis, one can better understand the conditions individually and as a unit, thus informing therapeutic approaches and further research. This review article is part of a series of multiple manuscripts designed to determine the utility of using artificial intelligence for writing scientific reviews.
Collapse
Affiliation(s)
- Hannah S Wang
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Sonali J Karnik
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Tyler J Margetts
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Lilian I Plotkin
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, 46202, USA
| | - Alexandru Movila
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, 46202, USA
| | - Jill C Fehrenbacher
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, 46202, USA.
| | - Adrian L Oblak
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Department of Radiology & Imaging Sciences, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
9
|
Rishabh, Rohilla M, Bansal S, Bansal N, Chauhan S, Sharma S, Goyal N, Gupta S. Estrogen signalling and Alzheimer's disease: Decoding molecular mechanisms for therapeutic breakthrough. Eur J Neurosci 2024; 60:3466-3490. [PMID: 38726764 DOI: 10.1111/ejn.16360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/19/2024] [Accepted: 04/02/2024] [Indexed: 07/06/2024]
Abstract
In females, Alzheimer's disease (AD) incidences increases as compared to males due to estrogen deficiency after menopause. Estrogen therapy is the mainstay therapy for menopause and associated complications. Estrogen, a hormone with multifaceted physiological functions, has been implicated in AD pathophysiology. Estrogen plays a crucial role in amyloid precursor protein (APP) processing and overall neuronal health by regulating various factors such as brain-derived neurotrophic factor (BDNF), intracellular calcium signalling, death domain-associated protein (Daxx) translocation, glutamatergic excitotoxicity, Voltage-Dependent Anion Channel, Insulin-Like Growth Factor 1 Receptor, estrogen-metabolising enzymes and apolipoprotein E (ApoE) protein polymorphisms. All these factors impact the physiology of postmenopausal women. Estrogen replacement therapies play an important treatment strategy to prevent AD after menopause. However, use of these therapies may lead to increased risks of breast cancer, venous thromboembolism and cardiovascular disease. Various therapeutic approaches have been used to mitigate the effects of estrogen on AD. These include hormone replacement therapy, Selective Estrogen Receptor Modulators (SERMs), Estrogen Receptor Beta (ERβ)-Selective Agonists, Transdermal Estrogen Delivery, Localised Estrogen Delivery, Combination Therapies, Estrogen Metabolism Modulation and Alternative Estrogenic Compounds like genistein from soy, a notable phytoestrogen from plant sources. However, mechanism via which these approaches modulate AD in postmenopausal women has not been explained earlier thoroughly. Present review will enlighten all the molecular mechanisms of estrogen and estrogen replacement therapies in AD. Along-with this, the association between estrogen, estrogen-metabolising enzymes and ApoE protein polymorphisms will also be discussed in postmenopausal AD.
Collapse
Affiliation(s)
- Rishabh
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Ambala, Haryana, India
| | - Manni Rohilla
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Seema Bansal
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Ambala, Haryana, India
| | - Nitin Bansal
- Department of Pharmacy, Chaudhary Bansilal University, Bhiwani, India
| | - Samrat Chauhan
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Sheenam Sharma
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Ambala, Haryana, India
| | - Navjyoti Goyal
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Ambala, Haryana, India
| | - Sumeet Gupta
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Ambala, Haryana, India
| |
Collapse
|
10
|
Bhole RP, Chikhale RV, Rathi KM. Current biomarkers and treatment strategies in Alzheimer disease: An overview and future perspectives. IBRO Neurosci Rep 2024; 16:8-42. [PMID: 38169888 PMCID: PMC10758887 DOI: 10.1016/j.ibneur.2023.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 01/05/2024] Open
Abstract
Alzheimer's disease (AD), a progressive degenerative disorder first identified by Alois Alzheimer in 1907, poses a significant public health challenge. Despite its prevalence and impact, there is currently no definitive ante mortem diagnosis for AD pathogenesis. By 2050, the United States may face a staggering 13.8 million AD patients. This review provides a concise summary of current AD biomarkers, available treatments, and potential future therapeutic approaches. The review begins by outlining existing drug targets and mechanisms in AD, along with a discussion of current treatment options. We explore various approaches targeting Amyloid β (Aβ), Tau Protein aggregation, Tau Kinases, Glycogen Synthase kinase-3β, CDK-5 inhibitors, Heat Shock Proteins (HSP), oxidative stress, inflammation, metals, Apolipoprotein E (ApoE) modulators, and Notch signaling. Additionally, we examine the historical use of Estradiol (E2) as an AD therapy, as well as the outcomes of Randomized Controlled Trials (RCTs) that evaluated antioxidants (e.g., vitamin E) and omega-3 polyunsaturated fatty acids as alternative treatment options. Notably, positive effects of docosahexaenoic acid nutriment in older adults with cognitive impairment or AD are highlighted. Furthermore, this review offers insights into ongoing clinical trials and potential therapies, shedding light on the dynamic research landscape in AD treatment.
Collapse
Affiliation(s)
- Ritesh P. Bhole
- Department of Pharmaceutical Chemistry, Dr. D. Y. Patil institute of Pharmaceutical Sciences & Research, Pimpri, Pune, India
- Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune 411018, India
| | | | - Karishma M. Rathi
- Department of Pharmacy Practice, Dr. D. Y. Patil institute of Pharmaceutical Sciences & Research, Pimpri, Pune, India
| |
Collapse
|
11
|
Bertagna F, Ahmad S, Lewis R, Silva SRP, McFadden J, Huang CLH, Matthews HR, Jeevaratnam K. Loose-patch clamp analysis applied to voltage-gated ionic currents following pharmacological ryanodine receptor modulation in murine hippocampal cornu ammonis-1 pyramidal neurons. Front Physiol 2024; 15:1359560. [PMID: 38720787 PMCID: PMC11076846 DOI: 10.3389/fphys.2024.1359560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/04/2024] [Indexed: 05/12/2024] Open
Abstract
Introduction The loose-patch clamp technique was first developed and used in native amphibian skeletal muscle (SkM), offering useful features complementing conventional sharp micro-electrode, gap, or conventional patch voltage clamping. It demonstrated the feedback effects of pharmacological modification of ryanodine receptor (RyR)-mediated Ca2+ release on the Na+ channel (Nav1.4) currents, initiating excitation-contraction coupling in native murine SkM. The effects of the further RyR and Ca2+-ATPase (SERCA) antagonists, dantrolene and cyclopiazonic acid (CPA), additionally implicated background tubular-sarcoplasmic Ca2+ domains in these actions. Materials and methods We extend the loose-patch clamp approach to ion current measurements in murine hippocampal brain slice cornu ammonis-1 (CA1) pyramidal neurons. We explored the effects on Na+ currents of pharmacologically manipulating RyR and SERCA-mediated intracellular store Ca2+ release and reuptake. We adopted protocols previously applied to native skeletal muscle. These demonstrated Ca2+-mediated feedback effects on the Na+ channel function. Results Experiments applying depolarizing 15 ms duration loose-patch clamp steps to test voltages ranging from -40 to 120 mV positive to the resting membrane potential demonstrated that 0.5 mM caffeine decreased inward current amplitudes, agreeing with the previous SkM findings. It also decreased transient but not prolonged outward current amplitudes. However, 2 mM caffeine affected neither inward nor transient outward but increased prolonged outward currents, in contrast to its increasing inward currents in SkM. Furthermore, similarly and in contrast to previous SkM findings, both dantrolene (10 μM) and CPA (1 μM) pre-administration left both inward and outward currents unchanged. Nevertheless, dantrolene pretreatment still abrogated the effects of subsequent 0.5- and 2-mM caffeine challenges on both inward and outward currents. Finally, CPA abrogated the effects of 0.5 mM caffeine on both inward and outward currents, but with 2 mM caffeine, inward and transient outward currents were unchanged, but sustained outward currents increased. Conclusion We, thus, extend loose-patch clamping to establish pharmacological properties of murine CA1 pyramidal neurons and their similarities and contrasts with SkM. Here, evoked though not background Ca2+-store release influenced Nav and Kv excitation, consistent with smaller contributions of background store Ca2+ release to resting [Ca2+]. This potential non-canonical mechanism could modulate neuronal membrane excitability or cellular firing rates.
Collapse
Affiliation(s)
- Federico Bertagna
- Leverhulme Quantum Biology Doctoral Training Centre, University of Surrey, Guildford, United Kingdom
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Shiraz Ahmad
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Rebecca Lewis
- Leverhulme Quantum Biology Doctoral Training Centre, University of Surrey, Guildford, United Kingdom
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - S. Ravi P. Silva
- Leverhulme Quantum Biology Doctoral Training Centre, University of Surrey, Guildford, United Kingdom
- Advanced Technology Institute, University of Surrey, Guildford, United Kingdom
| | - Johnjoe McFadden
- Leverhulme Quantum Biology Doctoral Training Centre, University of Surrey, Guildford, United Kingdom
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Christopher L.-H. Huang
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
- Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Hugh R. Matthews
- Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Kamalan Jeevaratnam
- Leverhulme Quantum Biology Doctoral Training Centre, University of Surrey, Guildford, United Kingdom
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
12
|
Krut' VG, Kalinichenko AL, Maltsev DI, Jappy D, Shevchenko EK, Podgorny OV, Belousov VV. Optogenetic and chemogenetic approaches for modeling neurological disorders in vivo. Prog Neurobiol 2024; 235:102600. [PMID: 38548126 DOI: 10.1016/j.pneurobio.2024.102600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/26/2024] [Accepted: 03/22/2024] [Indexed: 04/01/2024]
Abstract
Animal models of human neurological disorders provide valuable experimental tools which enable us to study various aspects of disorder pathogeneses, ranging from structural abnormalities and disrupted metabolism and signaling to motor and mental deficits, and allow us to test novel therapies in preclinical studies. To be valid, these animal models should recapitulate complex pathological features at the molecular, cellular, tissue, and behavioral levels as closely as possible to those observed in human subjects. Pathological states resembling known human neurological disorders can be induced in animal species by toxins, genetic factors, lesioning, or exposure to extreme conditions. In recent years, novel animal models recapitulating neuropathologies in humans have been introduced. These animal models are based on synthetic biology approaches: opto- and chemogenetics. In this paper, we review recent opto- and chemogenetics-based animal models of human neurological disorders. These models allow for the creation of pathological states by disrupting specific processes at the cellular level. The artificial pathological states mimic a range of human neurological disorders, such as aging-related dementia, Alzheimer's and Parkinson's diseases, amyotrophic lateral sclerosis, epilepsy, and ataxias. Opto- and chemogenetics provide new opportunities unavailable with other animal models of human neurological disorders. These techniques enable researchers to induce neuropathological states varying in severity and ranging from acute to chronic. We also discuss future directions for the development and application of synthetic biology approaches for modeling neurological disorders.
Collapse
Affiliation(s)
- Viktoriya G Krut'
- Pirogov Russian National Research Medical University, Moscow 117997, Russia; Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow 117997, Russia
| | - Andrei L Kalinichenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Dmitry I Maltsev
- Pirogov Russian National Research Medical University, Moscow 117997, Russia; Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow 117997, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - David Jappy
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow 117997, Russia
| | - Evgeny K Shevchenko
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow 117997, Russia
| | - Oleg V Podgorny
- Pirogov Russian National Research Medical University, Moscow 117997, Russia; Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow 117997, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia.
| | - Vsevolod V Belousov
- Pirogov Russian National Research Medical University, Moscow 117997, Russia; Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow 117997, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; Life Improvement by Future Technologies (LIFT) Center, Skolkovo, Moscow 143025, Russia.
| |
Collapse
|
13
|
Yang J, Ran K, Ma W, Chen Y, Chen Y, Zhang C, Ye H, Lu Y, Ran C. Degradation of Amyloid-β Species by Multi-Copper Oxidases. J Alzheimers Dis 2024; 101:525-539. [PMID: 39213075 DOI: 10.3233/jad-240625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Background Reduction of the production of amyloid-β (Aβ) species has been intensively investigated as potential therapeutic approaches for Alzheimer's disease (AD). However, the degradation of Aβ species, another potential beneficial approach, has been far less explored. Objective To investigate the potential of multi-copper oxidases (MCOs) in degrading Aβ peptides and their potential benefits for AD treatment. Methods We investigated the degradation efficiency of MCOs by using electrophoresis and validated the ceruloplasmin (CP)-Aβ interaction using total internal reflection fluorescence microscopy, fluorescence photometer, and fluorescence polarization measurement. We also investigated the therapeutic effect of ascorbate oxidase (AO) by using induced pluripotent stem (iPS) neuron cells and electrophysiological analysis with brain slices. Results We discovered that CP, an important MCO in human blood, could degrade Aβ peptides. We also found that other MCOs could induce Aβ degradation as well. Remarkably, we revealed that AO had the strongest degrading effect among the tested MCOs. Using iPS neuron cells, we observed that AO could rescue neuron toxicity which induced by Aβ oligomers. In addition, our electrophysiological analysis with brain slices suggested that AO could prevent an Aβ-induced deficit in synaptic transmission in the hippocampus. Conclusions To the best of our knowledge, our report is the first to demonstrate that MCOs have a degrading function for peptides/proteins. Further investigations are warranted to explore the possible benefits of MCOs for future AD treatment.
Collapse
Affiliation(s)
- Jing Yang
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Charlestown, Boston, MA, USA
- School of Engineering, China Pharmaceutical University, Nanjing, China
| | - Kathleen Ran
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Charlestown, Boston, MA, USA
| | - Wenzhe Ma
- Department of System Biology, Harvard Medical School, Boston, MA, USA
| | - Yanshi Chen
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Charlestown, Boston, MA, USA
| | - Yanxin Chen
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Charlestown, Boston, MA, USA
| | - Can Zhang
- Department of Neurology, Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Hui Ye
- Department of Biology, Loyola University Chicago, IL, USA
| | - Ying Lu
- Department of System Biology, Harvard Medical School, Boston, MA, USA
| | - Chongzhao Ran
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Charlestown, Boston, MA, USA
| |
Collapse
|
14
|
Perluigi M, Di Domenico F, Butterfield DA. Oxidative damage in neurodegeneration: roles in the pathogenesis and progression of Alzheimer disease. Physiol Rev 2024; 104:103-197. [PMID: 37843394 PMCID: PMC11281823 DOI: 10.1152/physrev.00030.2022] [Citation(s) in RCA: 68] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/30/2023] [Accepted: 05/24/2023] [Indexed: 10/17/2023] Open
Abstract
Alzheimer disease (AD) is associated with multiple etiologies and pathological mechanisms, among which oxidative stress (OS) appears as a major determinant. Intriguingly, OS arises in various pathways regulating brain functions, and it seems to link different hypotheses and mechanisms of AD neuropathology with high fidelity. The brain is particularly vulnerable to oxidative damage, mainly because of its unique lipid composition, resulting in an amplified cascade of redox reactions that target several cellular components/functions ultimately leading to neurodegeneration. The present review highlights the "OS hypothesis of AD," including amyloid beta-peptide-associated mechanisms, the role of lipid and protein oxidation unraveled by redox proteomics, and the antioxidant strategies that have been investigated to modulate the progression of AD. Collected studies from our groups and others have contributed to unraveling the close relationships between perturbation of redox homeostasis in the brain and AD neuropathology by elucidating redox-regulated events potentially involved in both the pathogenesis and progression of AD. However, the complexity of AD pathological mechanisms requires an in-depth understanding of several major intracellular pathways affecting redox homeostasis and relevant for brain functions. This understanding is crucial to developing pharmacological strategies targeting OS-mediated toxicity that may potentially contribute to slow AD progression as well as improve the quality of life of persons with this severe dementing disorder.
Collapse
Affiliation(s)
- Marzia Perluigi
- Department of Biochemical Sciences "A. Rossi Fanelli," Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Fabio Di Domenico
- Department of Biochemical Sciences "A. Rossi Fanelli," Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - D Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States
| |
Collapse
|
15
|
Khananshvili D. Neuronal and astrocyte NCX isoform/splice variants: How do they participate in Na + and Ca 2+ signalling? Cell Calcium 2023; 116:102818. [PMID: 37918135 DOI: 10.1016/j.ceca.2023.102818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 11/04/2023]
Abstract
NCX1, NCX2, and NCX3 gene isoforms and their splice variants are characteristically expressed in different regions of the brain. The tissue-specific splice variants of NCX1-3 isoforms show specific expression profiles in neurons and astrocytes, whereas the relevant NCX isoform/splice variants exhibit diverse allosteric modes of Na+- and Ca2+-dependent regulation. In general, overexpression of NCX1-3 genes leads to neuroprotective effects, whereas their ablation gains the opposite results. At this end, the partial contributions of NCX isoform/splice variants to neuroprotective effects remain unresolved. The glutamate-dependent Na+ entry generates Na+ transients (in response to neuronal cell activities), whereas the Na+-driven Ca2+ entry (through the reverse NCX mode) raises Ca2+ transients. This special mode of signal coupling translates Na+ transients into the Ca2+ signals while being a part of synaptic neurotransmission. This mechanism is of general interest since disease-related conditions (ischemia, metabolic stress, and stroke among many others) trigger Na+ and Ca2+ overload with deadly outcomes of downstream apoptosis and excitotoxicity. The recently discovered mechanisms of NCX allosteric regulation indicate that some NCX variants might play a critical role in the dynamic coupling of Na+-driven Ca2+ entry. In contrast, the others are less important or even could be dangerous under altered conditions (e.g., metabolic stress). This working hypothesis can be tested by applying advanced experimental approaches and highly focused computational simulations. This may allow the development of structure-based blockers/activators that can selectively modulate predefined NCX variants to lessen the life-threatening outcomes of excitotoxicity, ischemia, apoptosis, metabolic deprivation, brain injury, and stroke.
Collapse
Affiliation(s)
- Daniel Khananshvili
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
16
|
Postnov D, Semyachkina-Glushkovskaya O, Litvinenko E, Kurths J, Penzel T. Mechanisms of Activation of Brain's Drainage during Sleep: The Nightlife of Astrocytes. Cells 2023; 12:2667. [PMID: 37998402 PMCID: PMC10670149 DOI: 10.3390/cells12222667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023] Open
Abstract
The study of functions, mechanisms of generation, and pathways of movement of cerebral fluids has a long history, but the last decade has been especially productive. The proposed glymphatic hypothesis, which suggests a mechanism of the brain waste removal system (BWRS), caused an active discussion on both the criticism of some of the perspectives and our intensive study of new experimental facts. It was especially found that the intensity of the metabolite clearance changes significantly during the transition between sleep and wakefulness. Interestingly, at the cellular level, a number of aspects of this problem have been focused on, such as astrocytes-glial cells, which, over the past two decades, have been recognized as equal partners of neurons and perform many important functions. In particular, an important role was assigned to astrocytes within the framework of the glymphatic hypothesis. In this review, we return to the "astrocytocentric" view of the BWRS function and the explanation of its activation during sleep from the viewpoint of new findings over the last decade. Our main conclusion is that the BWRS's action may be analyzed both at the systemic (whole-brain) and at the local (cellular) level. The local level means here that the neuro-glial-vascular unit can also be regarded as the smallest functional unit of sleep, and therefore, the smallest functional unit of the BWRS.
Collapse
Affiliation(s)
- Dmitry Postnov
- Department of Optics and Biophotonics, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia;
| | - Oxana Semyachkina-Glushkovskaya
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (O.S.-G.); (J.K.)
- Physics Department, Humboldt University, Newtonstrasse 15, 12489 Berlin, Germany
| | - Elena Litvinenko
- Department of Optics and Biophotonics, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia;
| | - Jürgen Kurths
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (O.S.-G.); (J.K.)
- Physics Department, Humboldt University, Newtonstrasse 15, 12489 Berlin, Germany
- Potsdam Institute for Climate Impact Research, Telegrafenberg A31, 14473 Potsdam, Germany
| | - Thomas Penzel
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (O.S.-G.); (J.K.)
- Charité — Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
17
|
Yang J, Ran K, Ma W, Chen L, Chen C, Zhang C, Ye H, Lu Y, Ran C. Degradation of amyloid beta species by multi-copper oxidases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.02.547398. [PMID: 37461701 PMCID: PMC10350030 DOI: 10.1101/2023.07.02.547398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Reduction of the production of amyloid beta (Aβ) species has been intensively investigated as potential therapeutic approaches for Alzheimer's disease (AD). However, the degradation of Aβ species, another potential beneficial approach, has been far less explored. In this study, we discovered that ceruloplasmin (CP), an important multi-copper oxidase (MCO) in human blood, could degrade Aβ peptides. We also found that the presence of Vitamin C could enhance the degrading effect in a concentration-dependent manner. We then validated the CP-Aβ interaction using total internal reflection fluorescence (TIRF) microscopy, fluorescence photometer, and fluorescence polarization measurement. Based on the above discovery, we hypothesized that other MCOs had similar Aβ-degrading functions. Indeed, we found that other MCOs could induce Aβ degradation as well. Remarkably, we revealed that ascorbate oxidase (AO) had the strongest degrading effect among the tested MCOs. Using induced pluripotent stem (iPS) neuron cells, we observed that AO could rescue neuron toxicity which induced by Aβ oligomers. In addition, our electrophysiological analysis with brain slices suggested that AO could prevent an Ab-induced deficit in synaptic transmission in the hippocampus. To the best of our knowledge, our report is the first to demonstrate that MCOs have a degrading function for peptides/proteins. Further investigations are warranted to explore the possible benefits of MCOs for future AD treatment.
Collapse
Affiliation(s)
- Jing Yang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, Massachusetts 02129
- School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Kathleen Ran
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, Massachusetts 02129
| | - Wenzhe Ma
- Department of Systems Biology, Harvard Medical School, Boston, MA, United States
| | - Lucy Chen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, Massachusetts 02129
| | - Cindy Chen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, Massachusetts 02129
| | - Can Zhang
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Hui Ye
- Department of Biology, Loyola University Chicago, Chicago, IL, 60660
| | - Ying Lu
- Department of Systems Biology, Harvard Medical School, Boston, MA, United States
| | - Chongzhao Ran
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, Massachusetts 02129
| |
Collapse
|
18
|
Ghatak S, Nakamura T, Lipton SA. Aberrant protein S-nitrosylation contributes to hyperexcitability-induced synaptic damage in Alzheimer's disease: Mechanistic insights and potential therapies. Front Neural Circuits 2023; 17:1099467. [PMID: 36817649 PMCID: PMC9932935 DOI: 10.3389/fncir.2023.1099467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Alzheimer's disease (AD) is arguably the most common cause of dementia in the elderly and is marked by progressive synaptic degeneration, which in turn leads to cognitive decline. Studies in patients and in various AD models have shown that one of the early signatures of AD is neuronal hyperactivity. This excessive electrical activity contributes to dysregulated neural network function and synaptic damage. Mechanistically, evidence suggests that hyperexcitability accelerates production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) that contribute to neural network impairment and synapse loss. This review focuses on the pathways and molecular changes that cause hyperexcitability and how RNS-dependent posttranslational modifications, represented predominantly by protein S-nitrosylation, mediate, at least in part, the deleterious effects of hyperexcitability on single neurons and the neural network, resulting in synaptic loss in AD.
Collapse
Affiliation(s)
- Swagata Ghatak
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India
| | - Tomohiro Nakamura
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States,*Correspondence: Tomohiro Nakamura,
| | - Stuart A. Lipton
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States,Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, CA, United States,Stuart A. Lipton,
| |
Collapse
|
19
|
Kabir ER, Chowdhury NM, Yasmin H, Kabir MT, Akter R, Perveen A, Ashraf GM, Akter S, Rahman MH, Sweilam SH. Unveiling the Potential of Polyphenols as Anti-Amyloid Molecules in Alzheimer's Disease. Curr Neuropharmacol 2023; 21:787-807. [PMID: 36221865 PMCID: PMC10227919 DOI: 10.2174/1570159x20666221010113812] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 08/03/2022] [Accepted: 08/15/2022] [Indexed: 11/22/2022] Open
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disease that mostly affects the elderly population. Mechanisms underlying AD pathogenesis are yet to be fully revealed, but there are several hypotheses regarding AD. Even though free radicals and inflammation are likely to be linked with AD pathogenesis, still amyloid-beta (Aβ) cascade is the dominant hypothesis. According to the Aβ hypothesis, a progressive buildup of extracellular and intracellular Aβ aggregates has a significant contribution to the AD-linked neurodegeneration process. Since Aβ plays an important role in the etiology of AD, therefore Aβ-linked pathways are mainly targeted in order to develop potential AD therapies. Accumulation of Aβ plaques in the brains of AD individuals is an important hallmark of AD. These plaques are mainly composed of Aβ (a peptide of 39-42 amino acids) aggregates produced via the proteolytic cleavage of the amyloid precursor protein. Numerous studies have demonstrated that various polyphenols (PPHs), including cyanidins, anthocyanins, curcumin, catechins and their gallate esters were found to markedly suppress Aβ aggregation and prevent the formation of Aβ oligomers and toxicity, which is further suggesting that these PPHs might be regarded as effective therapeutic agents for the AD treatment. This review summarizes the roles of Aβ in AD pathogenesis, the Aβ aggregation pathway, types of PPHs, and distribution of PPHs in dietary sources. Furthermore, we have predominantly focused on the potential of food-derived PPHs as putative anti-amyloid drugs.
Collapse
Affiliation(s)
- Eva Rahman Kabir
- School of Pharmacy, BRAC University, 66 Mohakhali, Dhaka 1212, Bangladesh
| | | | - Hasina Yasmin
- School of Pharmacy, BRAC University, 66 Mohakhali, Dhaka 1212, Bangladesh
| | - Md. Tanvir Kabir
- School of Pharmacy, BRAC University, 66 Mohakhali, Dhaka 1212, Bangladesh
| | - Rokeya Akter
- Department of Pharmacy, Jagannath University, Dhaka, Bangladesh
| | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Mirzapur Pole, Saharanpur, Uttar Pradesh, India
| | - Ghulam Md. Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Shamima Akter
- Department of Bioinformatics and Computational Biology, George Mason University, Fairfax, Virginia 22030, USA
| | | | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City 11829, Egypt
| |
Collapse
|
20
|
TRPV1 Modulator Ameliorates Alzheimer-Like Amyloid- β Neuropathology via Akt/Gsk3 β-Mediated Nrf2 Activation in the Neuro-2a/APP Cell Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1544244. [PMID: 36065437 PMCID: PMC9440841 DOI: 10.1155/2022/1544244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 08/01/2022] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is a progressive and irreversible neurodegenerative disorder for which there is no effective therapeutic strategy. PcActx peptide from the transcriptome of zoantharian Palythoa caribaeorum has recently been identified and verified as a novel antagonist of transient receptor potential cation channel subfamily V member 1 (TRPV1). In the present study, we further investigated the neuroprotective potential of PcActx peptide and its underlying mechanism of action, in an N2a/APP cell model of AD. Both Western blot and RT-PCR analysis revealed that PcActx peptide markedly inhibited the production of amyloid-related proteins and the expression of BACE1, PSEN1, and PSEN2. Moreover, PcActx peptide notably attenuated the capsaicin-stimulated calcium response and prevented the phosphorylation of CaMKII and CaMKIV (calcium-mediated proteins) in N2a/APP cells. Further investigation indicated that PcActx peptide significantly suppressed ROS generation through Nrf2 activation, followed by enhanced NQO1 and HO-1 levels. In addition, PcActx peptide remarkably improved Akt phosphorylation at Ser 473 (active) and Gsk3β phosphorylation at Ser 9 (inactive), while pharmacological inhibition of the Akt/Gsk3β pathway significantly attenuated PcActx-induced Nrf2 activation and amyloid downregulation. In conclusion, PcActx peptide functions as a TRPV1 modulator of intercellular calcium homeostasis, prevents AD-like amyloid neuropathology via Akt/Gsk3β-mediated Nrf2 activation, and shows promise as an alternative therapeutic agent for AD.
Collapse
|
21
|
Shen L, Yang A, Chen X, Xiao S, Liu X, Lin J, Zhao Y, Zhang K, Li C, Ke J, Zhang H, Khan NU. Proteomic Profiling of Cerebrum Mitochondria, Myelin Sheath, and Synaptosome Revealed Mitochondrial Damage and Synaptic Impairments in Association with 3 × Tg-AD Mice Model. Cell Mol Neurobiol 2022; 42:1745-1763. [PMID: 33560469 PMCID: PMC11421756 DOI: 10.1007/s10571-021-01052-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/29/2021] [Indexed: 12/23/2022]
Abstract
Alzheimer's disease (AD) is the most common age-associated dementia with complex pathological hallmarks. Mitochondrion, synaptosome, and myelin sheath appear to be vulnerable and play a key role in the pathogenesis of AD. To clarify the early mechanism associated with AD, followed by subcellular components separation, we performed iTRAQ (isobaric tags for relative and absolute quantification)-based proteomics analysis to simultaneously investigate the differentially expressed proteins (DEPs) within the mitochondria, synaptosome, and myelin sheath in the cerebrum of the 6-month-old triple transgenic AD (3 × Tg-AD) and 6-month-old wild-type (WT) mice. A large number of DEPs between the AD and WT mice were identified. Most of them are related to mitochondria and synaptic dysfunction and cytoskeletal protein change. Differential expressions of Lrpprc, Nefl, and Sirpa were verified by Western blot analysis. The results suggest that decreased energy metabolism, impaired amino acid metabolism and neurotransmitter synthesis, increase compensatory fatty acid metabolism, up-regulated cytoskeletal protein expression, and oxidative stress are the early events of AD. Among these, mitochondrial damage, synaptic dysfunction, decreased energy metabolism, and abnormal amino acid metabolism are the most significant events. The results indicate that it is feasible to separate and simultaneously perform proteomics analysis on the three subcellular components.
Collapse
Affiliation(s)
- Liming Shen
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, P. R. China.
| | - Aochu Yang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Xinqian Chen
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Shifeng Xiao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Xukun Liu
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Jing Lin
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, P. R. China
- Shenzhen Bay Laboratory, Shenzhen, 518055, P.R. China
| | - Yuxi Zhao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Kaoyuan Zhang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Cuihua Li
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Junyan Ke
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Huajie Zhang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, P. R. China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, P. R. China
| | - Naseer Ullah Khan
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, P. R. China
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen, 518060, P. R. China
| |
Collapse
|
22
|
Bhatia S, Rawal R, Sharma P, Singh T, Singh M, Singh V. Mitochondrial Dysfunction in Alzheimer's Disease: Opportunities for Drug Development. Curr Neuropharmacol 2022; 20:675-692. [PMID: 33998995 PMCID: PMC9878959 DOI: 10.2174/1570159x19666210517114016] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/24/2021] [Accepted: 04/28/2021] [Indexed: 11/22/2022] Open
Abstract
Alzheimer's disease (AD) is one of the major reasons for 60-80% cases of senile dementia occurring as a result of the accumulation of plaques and tangles in the hippocampal and cortical neurons of the brain leading to neurodegeneration and cell death. The other pathological features of AD comprise abnormal microvasculature, network abnormalities, interneuronal dysfunction, increased β-amyloid production and reduced clearance, increased inflammatory response, elevated production of reactive oxygen species, impaired brain metabolism, hyperphosphorylation of tau, and disruption of acetylcholine signaling. Among all these pathologies, Mitochondrial Dysfunction (MD), regardless of it being an inciting insult or a consequence of the alterations, is related to all the associated AD pathologies. Observed altered mitochondrial morphology, distribution and movement, increased oxidative stress, dysregulation of enzymes involved in mitochondrial functioning, impaired brain metabolism, and impaired mitochondrial biogenesis in AD subjects suggest the involvement of mitochondrial malfunction in the progression of AD. Here, various pre-clinical and clinical evidence establishing MD as a key mediator in the progression of neurodegeneration in AD are reviewed and discussed with an aim to foster future MD based drug development research for the management of AD.
Collapse
Affiliation(s)
- Shiveena Bhatia
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Rishi Rawal
- School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Pratibha Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Tanveer Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Manjinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India;,Address correspondence to this author at the Chitkara College of Pharmacy, Chitkara University, Punjab, India; E-mails: ;
| | - Varinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India;,Address correspondence to this author at the Chitkara College of Pharmacy, Chitkara University, Punjab, India; E-mails: ;
| |
Collapse
|
23
|
Weerasinghe-Mudiyanselage PDE, Ang MJ, Kang S, Kim JS, Moon C. Structural Plasticity of the Hippocampus in Neurodegenerative Diseases. Int J Mol Sci 2022; 23:3349. [PMID: 35328770 PMCID: PMC8955928 DOI: 10.3390/ijms23063349] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 12/10/2022] Open
Abstract
Neuroplasticity is the capacity of neural networks in the brain to alter through development and rearrangement. It can be classified as structural and functional plasticity. The hippocampus is more susceptible to neuroplasticity as compared to other brain regions. Structural modifications in the hippocampus underpin several neurodegenerative diseases that exhibit cognitive and emotional dysregulation. This article reviews the findings of several preclinical and clinical studies about the role of structural plasticity in the hippocampus in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis. In this study, literature was surveyed using Google Scholar, PubMed, Web of Science, and Scopus, to review the mechanisms that underlie the alterations in the structural plasticity of the hippocampus in neurodegenerative diseases. This review summarizes the role of structural plasticity in the hippocampus for the etiopathogenesis of neurodegenerative diseases and identifies the current focus and gaps in knowledge about hippocampal dysfunctions. Ultimately, this information will be useful to propel future mechanistic and therapeutic research in neurodegenerative diseases.
Collapse
Affiliation(s)
- Poornima D. E. Weerasinghe-Mudiyanselage
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea; (P.D.E.W.-M.); (M.J.A.); (S.K.); (J.-S.K.)
| | - Mary Jasmin Ang
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea; (P.D.E.W.-M.); (M.J.A.); (S.K.); (J.-S.K.)
- College of Veterinary Medicine, University of the Philippines Los Baños, Los Baños 4031, Philippines
| | - Sohi Kang
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea; (P.D.E.W.-M.); (M.J.A.); (S.K.); (J.-S.K.)
| | - Joong-Sun Kim
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea; (P.D.E.W.-M.); (M.J.A.); (S.K.); (J.-S.K.)
| | - Changjong Moon
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea; (P.D.E.W.-M.); (M.J.A.); (S.K.); (J.-S.K.)
| |
Collapse
|
24
|
Manzoor S, Khan A, Hasan B, Mushtaq S, Ahmed N. Expression Analysis of 4-Hydroxynonenal Modified Proteins in Schizophrenia Brain; Relevance to Involvement in Redox Dysregulation. CURR PROTEOMICS 2022. [DOI: 10.2174/1570164618666210121151004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Oxidative damage contributes to the pathophysiology of schizophrenia (SZ). Redox imbalance may
lead to increased lipid peroxidation, which produces toxic aldehydes like 4-hydroxynonenal (4-HNE) ultimately leading to
oxidative stress. Conversely, implications of oxidative stress points towards an alteration in HNE-protein adducts and
activities of enzymatic and antioxidant systems in schizophrenia.
Objectives:
Present study focuses on identification of HNE-protein adducts and its related molecular consequences in
schizophrenia pathology due to oxidative stress, particularly lipid peroxidation.
Material and Methods:
Oxyblotting was performed on seven autopsied brain samples each from cortex and hippocampus
region of schizophrenia patients and their respective normal healthy controls. Additionally, thiobarbituric acid substances
(TBARS), reduced glutathione (GSH) levels and catalase (CAT) activities associated with oxidative stress, were also
estimated.
Results:
Obtained results indicates substantially higher levels of oxidative stress in schizophrenia patients than healthy
control group represented by elevated expression of HNE-protein adducts. Interestingly, hippocampus region of
schizophrenia brain shows increased HNE protein adducts compared to cortex. An increase in catalase activity (4.8876 ±
1.7123) whereas decrease in antioxidant GSH levels (0.213 ± 0.015µmol/ml) have been observed in SZ brain. Elevated
TBARS level (0.3801 ± 0.0532ug/ml) were obtained in brain regions SZ patients compared with their controls that reflects
an increased lipid peroxidation (LPO).
Conclusion:
Conclusion: We propose the role of HNE modified proteins possibly associated with the pathology of
schizophrenia. Our data revealed increase lipid peroxidation as a consequence of increased TBARS production.
Furthermore, altered cellular antioxidants pathways related to GSH and CAT also highlight the involvement of oxidative
stress in schizophrenia pathology.
Collapse
Affiliation(s)
- Sobia Manzoor
- Neurochemistry Research Laboratory, Department of Biochemistry, University of Karachi, Karachi, Pakistan
| | - Ayesha Khan
- Neurochemistry Research Laboratory, Department of Biochemistry, University of Karachi, Karachi, Pakistan
| | - Beena Hasan
- Neurochemistry Research Laboratory, Department of Biochemistry, University of Karachi, Karachi, Pakistan
| | - Shamim Mushtaq
- Department of Biochemistry, Ziauddin University, Karachi, Pakistan
| | - Nikhat Ahmed
- Neurochemistry Research Laboratory, Department of Biochemistry, University of Karachi, Karachi, Pakistan
| |
Collapse
|
25
|
Liu L, Gao H, Zaikin A, Chen S. Unraveling Aβ-Mediated Multi-Pathway Calcium Dynamics in Astrocytes: Implications for Alzheimer's Disease Treatment From Simulations. Front Physiol 2021; 12:767892. [PMID: 34777023 PMCID: PMC8581622 DOI: 10.3389/fphys.2021.767892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/08/2021] [Indexed: 02/02/2023] Open
Abstract
The accumulation of amyloid β peptide (Aβ) in the brain is hypothesized to be the major factor driving Alzheimer's disease (AD) pathogenesis. Mounting evidence suggests that astrocytes are the primary target of Aβ neurotoxicity. Aβ is known to interfere with multiple calcium fluxes, thus disrupting the calcium homeostasis regulation of astrocytes, which are likely to produce calcium oscillations. Ca2+ dyshomeostasis has been observed to precede the appearance of clinical symptoms of AD; however, it is experimentally very difficult to investigate the interactions of many mechanisms. Given that Ca2+ disruption is ubiquitously involved in AD progression, it is likely that focusing on Ca2+ dysregulation may serve as a potential therapeutic approach to preventing or treating AD, while current hypotheses concerning AD have so far failed to yield curable therapies. For this purpose, we derive and investigate a concise mathematical model for Aβ-mediated multi-pathway astrocytic intracellular Ca2+ dynamics. This model accounts for how Aβ affects various fluxes contributions through voltage-gated calcium channels, Aβ-formed channels and ryanodine receptors. Bifurcation analysis of Aβ level, which reflected the corresponding progression of the disease, revealed that Aβ significantly induced the increasing [Ca2+] i and frequency of calcium oscillations. The influence of inositol 1,4,5-trisphosphate production (IP3) is also investigated in the presence of Aβ as well as the impact of changes in resting membrane potential. In turn, the Ca2+ flux can be considerably changed by exerting specific interventions, such as ion channel blockers or receptor antagonists. By doing so, a "combination therapy" targeting multiple pathways simultaneously has finally been demonstrated to be more effective. This study helps to better understand the effect of Aβ, and our findings provide new insight into the treatment of AD.
Collapse
Affiliation(s)
- Langzhou Liu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Huayi Gao
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Alexey Zaikin
- Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia.,Institute for Women's Health and Department of Mathematics, University College London, London, United Kingdom.,World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow, Russia
| | - Shangbin Chen
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
26
|
Walia V, Kaushik D, Mittal V, Kumar K, Verma R, Parashar J, Akter R, Rahman MH, Bhatia S, Al-Harrasi A, Karthika C, Bhattacharya T, Chopra H, Ashraf GM. Delineation of Neuroprotective Effects and Possible Benefits of AntioxidantsTherapy for the Treatment of Alzheimer's Diseases by Targeting Mitochondrial-Derived Reactive Oxygen Species: Bench to Bedside. Mol Neurobiol 2021; 59:657-680. [PMID: 34751889 DOI: 10.1007/s12035-021-02617-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/19/2021] [Indexed: 12/25/2022]
Abstract
Alzheimer's disease (AD) is considered the sixth leading cause of death in elderly patients and is characterized by progressive neuronal degeneration and impairment in memory, language, etc. AD is characterized by the deposition of senile plaque, accumulation of fibrils, and neurofibrillary tangles (NFTs) which are responsible for neuronal degeneration. Amyloid-β (Aβ) plays a key role in the process of neuronal degeneration in the case of AD. It has been reported that Aβ is responsible for the production of reactive oxygen species (ROS), depletion of endogenous antioxidants, increase in intracellular Ca2+ which further increases mitochondria dysfunctions, oxidative stress, release of pro-apoptotic factors, neuronal apoptosis, etc. Thus, oxidative stress plays a key role in the pathogenesis of AD. Antioxidants are compounds that have the ability to counteract the oxidative damage conferred by ROS. Therefore, the antioxidant therapy may provide benefits and halt the progress of AD to advance stages by counteracting neuronal degeneration. However, despite the beneficial effects imposed by the antioxidants, the findings from the clinical studies suggested inconsistent results which might be due to poor study design, selection of the wrong antioxidant, inability of the molecule to cross the blood-brain barrier (BBB), treatment in the advanced state of disease, etc. The present review insights into the neuroprotective effects and limitations of the antioxidant therapy for the treatment of AD by targeting mitochondrial-derived ROS. This particular article will certainly help the researchers to search new avenues for the treatment of AD by utilizing mitochondrial-derived ROS-targeted antioxidant therapies.
Collapse
Affiliation(s)
- Vaibhav Walia
- SGT College of Pharmacy, SGT University, Gurugram, Haryana, India
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Vineet Mittal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Kuldeep Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
- University Institute of Pharmaceutical Sciences (UIPS), Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Ravinder Verma
- Department of Pharmacy, School of Medical and Allied Sciences, G.D. Goenka University, Gurugram, 122103, India
| | - Jatin Parashar
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Rokeya Akter
- Department of Pharmacy, Jagannath University, Sadarghat, Dhaka, 1100, Bangladesh
| | - Md Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka, 1213, Bangladesh.
| | - Saurabh Bhatia
- School of Health Science University of Petroleum and Energy Studies, Dehrandun, Uttarkhand, 248007, India
- Natural & Medical Sciences Research Center, University of Nizwa, 616 Birkat Al Mouz, P.O. Box 33, Nizwa, Oman
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, 616 Birkat Al Mouz, P.O. Box 33, Nizwa, Oman
| | - Chenmala Karthika
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, The Nilgiris, Ooty, 643001, Tamil Nadu, India
| | - Tanima Bhattacharya
- College of Chemistry & Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
27
|
Razani E, Pourbagheri-Sigaroodi A, Safaroghli-Azar A, Zoghi A, Shanaki-Bavarsad M, Bashash D. The PI3K/Akt signaling axis in Alzheimer's disease: a valuable target to stimulate or suppress? Cell Stress Chaperones 2021; 26:871-887. [PMID: 34386944 PMCID: PMC8578535 DOI: 10.1007/s12192-021-01231-3] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/23/2021] [Accepted: 08/09/2021] [Indexed: 12/12/2022] Open
Abstract
Among the long list of age-related complications, Alzheimer's disease (AD) has the most dreadful impact on the quality of life due to its devastating effects on memory and cognitive abilities. Although a plausible correlation between the phosphatidylinositol 3-kinase (PI3K) signaling and different processes involved in neurodegeneration has been evidenced, few articles reviewed the task. The current review aims to unravel the mechanisms by which the PI3K pathway plays pro-survival roles in normal conditions, and also to discuss the original data obtained from international research laboratories on this topic. Responses to questions on how alterations of the PI3K/Akt signaling pathway affect Tau phosphorylation and the amyloid cascade are given. In addition, we provide a general overview of the association between oxidative stress, neuroinflammation, alterations of insulin signaling, and altered autophagy with aberrant activation of this axis in the AD brain. The last section provides a special focus on the therapeutic possibility of the PI3K/Akt/mTOR modulators, either categorized as chemicals or herbals, in AD. In conclusion, determining the correct timing for the administration of the drugs seems to be one of the most important factors in the success of these agents. Also, the role of the PI3K/Akt signaling axis in the progression or repression of AD widely depends on the context of the cells; generally speaking, while PI3K/Akt activation in neurons and neural stem cells is favorable, its activation in microglia cells may be harmful.
Collapse
Affiliation(s)
- Elham Razani
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ava Safaroghli-Azar
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anahita Zoghi
- Department of Neurology, School of Medicine, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Shanaki-Bavarsad
- Institute of Neuroscience, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
28
|
Kim J, Choi H, Kang EK, Ji GY, Kim Y, Choi IS. In Vitro Studies on Therapeutic Effects of Cannabidiol in Neural Cells: Neurons, Glia, and Neural Stem Cells. Molecules 2021; 26:molecules26196077. [PMID: 34641624 PMCID: PMC8512311 DOI: 10.3390/molecules26196077] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 11/25/2022] Open
Abstract
(‒)-Cannabidiol (CBD) is one of the major phytocannabinoids extracted from the Cannabis genus. Its non-psychoactiveness and therapeutic potential, partly along with some anecdotal—if not scientific or clinical—evidence on the prevention and treatment of neurological diseases, have led researchers to investigate the biochemical actions of CBD on neural cells. This review summarizes the previously reported mechanistic studies of the CBD actions on primary neural cells at the in vitro cell-culture level. The neural cells are classified into neurons, microglia, astrocytes, oligodendrocytes, and neural stem cells, and the CBD effects on each cell type are described. After brief introduction on CBD and in vitro studies of CBD actions on neural cells, the neuroprotective capability of CBD on primary neurons with the suggested operating actions is discussed, followed by the reported CBD actions on glia and the CBD-induced regeneration from neural stem cells. A summary section gives a general overview of the biochemical actions of CBD on neural cells, with a future perspective. This review will provide a basic and fundamental, but crucial, insight on the mechanistic understanding of CBD actions on neural cells in the brain, at the molecular level, and the therapeutic potential of CBD in the prevention and treatment of neurological diseases, although to date, there seem to have been relatively limited research activities and reports on the cell culture-level, in vitro studies of CBD effects on primary neural cells.
Collapse
Affiliation(s)
- Jungnam Kim
- Department of Chemistry, KAIST, Daejeon 34141, Korea; (J.K.); (H.C.); (E.K.K.)
| | - Hyunwoo Choi
- Department of Chemistry, KAIST, Daejeon 34141, Korea; (J.K.); (H.C.); (E.K.K.)
| | - Eunhye K. Kang
- Department of Chemistry, KAIST, Daejeon 34141, Korea; (J.K.); (H.C.); (E.K.K.)
| | - Gil Yong Ji
- Cannabis Medical, Inc., Sandong-ro 433-31, Eumbong-myeon, Asan-si 31418, Korea; (G.Y.J.); (Y.K.)
| | - Youjeong Kim
- Cannabis Medical, Inc., Sandong-ro 433-31, Eumbong-myeon, Asan-si 31418, Korea; (G.Y.J.); (Y.K.)
| | - Insung S. Choi
- Department of Chemistry, KAIST, Daejeon 34141, Korea; (J.K.); (H.C.); (E.K.K.)
- Correspondence:
| |
Collapse
|
29
|
Uddin MS, Yu WS, Lim LW. Exploring ER stress response in cellular aging and neuroinflammation in Alzheimer's disease. Ageing Res Rev 2021; 70:101417. [PMID: 34339860 DOI: 10.1016/j.arr.2021.101417] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 02/06/2023]
Abstract
One evident hallmark of Alzheimer's disease (AD) is the irregular accumulation of proteins due to changes in proteostasis involving endoplasmic reticulum (ER) stress. To alleviate ER stress and reinstate proteostasis, cells undergo an integrated signaling cascade called the unfolded protein response (UPR) that reduces the number of misfolded proteins and inhibits abnormal protein accumulation. Aging is associated with changes in the expression of ER chaperones and folding enzymes, leading to the impairment of proteostasis, and accumulation of misfolded proteins. The disrupted initiation of UPR prevents the elimination of unfolded proteins, leading to ER stress. In AD, the accumulation of misfolded proteins caused by sustained cellular stress leads to neurodegeneration and neuronal death. Current research has revealed that ER stress can trigger an inflammatory response through diverse transducers of UPR. Although the involvement of a neuroinflammatory component in AD has been documented for decades, whether it is a contributing factor or part of the neurodegenerative events is so far unknown. Besides, a feedback loop occurs between neuroinflammation and ER stress, which is strongly associated with neurodegenerative processes in AD. In this review, we focus on the current research on ER stress and UPR in cellular aging and neuroinflammatory processes, leading to memory impairment and synapse dysfunction in AD.
Collapse
|
30
|
Bai B, Vanderwall D, Li Y, Wang X, Poudel S, Wang H, Dey KK, Chen PC, Yang K, Peng J. Proteomic landscape of Alzheimer's Disease: novel insights into pathogenesis and biomarker discovery. Mol Neurodegener 2021; 16:55. [PMID: 34384464 PMCID: PMC8359598 DOI: 10.1186/s13024-021-00474-z] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 07/18/2021] [Indexed: 12/15/2022] Open
Abstract
Mass spectrometry-based proteomics empowers deep profiling of proteome and protein posttranslational modifications (PTMs) in Alzheimer's disease (AD). Here we review the advances and limitations in historic and recent AD proteomic research. Complementary to genetic mapping, proteomic studies not only validate canonical amyloid and tau pathways, but also uncover novel components in broad protein networks, such as RNA splicing, development, immunity, membrane transport, lipid metabolism, synaptic function, and mitochondrial activity. Meta-analysis of seven deep datasets reveals 2,698 differentially expressed (DE) proteins in the landscape of AD brain proteome (n = 12,017 proteins/genes), covering 35 reported AD genes and risk loci. The DE proteins contain cellular markers enriched in neurons, microglia, astrocytes, oligodendrocytes, and epithelial cells, supporting the involvement of diverse cell types in AD pathology. We discuss the hypothesized protective or detrimental roles of selected DE proteins, emphasizing top proteins in "amyloidome" (all biomolecules in amyloid plaques) and disease progression. Comprehensive PTM analysis represents another layer of molecular events in AD. In particular, tau PTMs are correlated with disease stages and indicate the heterogeneity of individual AD patients. Moreover, the unprecedented proteomic coverage of biofluids, such as cerebrospinal fluid and serum, procures novel putative AD biomarkers through meta-analysis. Thus, proteomics-driven systems biology presents a new frontier to link genotype, proteotype, and phenotype, accelerating the development of improved AD models and treatment strategies.
Collapse
Affiliation(s)
- Bing Bai
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children’s Research Hospital, 38105 Memphis, TN USA
- Current address: Center for Precision Medicine, Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Jiangsu 210008 Nanjing, China
| | - David Vanderwall
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children’s Research Hospital, 38105 Memphis, TN USA
| | - Yuxin Li
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children’s Research Hospital, 38105 Memphis, TN USA
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, 38105 Memphis, TN USA
| | - Xusheng Wang
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, 38105 Memphis, TN USA
- Current address: Department of Biology, University of North Dakota, ND 58202 Grand Forks, USA
| | - Suresh Poudel
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children’s Research Hospital, 38105 Memphis, TN USA
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, 38105 Memphis, TN USA
| | - Hong Wang
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children’s Research Hospital, 38105 Memphis, TN USA
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, 38105 Memphis, TN USA
| | - Kaushik Kumar Dey
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children’s Research Hospital, 38105 Memphis, TN USA
| | - Ping-Chung Chen
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children’s Research Hospital, 38105 Memphis, TN USA
| | - Ka Yang
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children’s Research Hospital, 38105 Memphis, TN USA
| | - Junmin Peng
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children’s Research Hospital, 38105 Memphis, TN USA
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, 38105 Memphis, TN USA
| |
Collapse
|
31
|
Thapak P, Bishnoi M, Sharma SS. Tranilast, a Transient Receptor Potential Vanilloid 2 Channel (TRPV2) Inhibitor Attenuates Amyloid β-Induced Cognitive Impairment: Possible Mechanisms. Neuromolecular Med 2021; 24:183-194. [PMID: 34231190 DOI: 10.1007/s12017-021-08675-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 06/24/2021] [Indexed: 02/08/2023]
Abstract
Alzheimer's disease (AD) is associated with the accumulation of β-amyloid and leads to cognitive impairment. Numerous studies have established that neuronal calcium homeostasis is perturbed in AD. Recently, transient receptor potential vanilloid 2 (TRPV2) channels, a non-selective calcium-permeable channel, have been investigated in several diseases. However, the role of the TRPV2 channel has not been investigated in AD yet. In this study, intracerebroventricular administration of β-amyloid (10 μg) to Sprague Dawley rats resulted in cognitive impairment which was evident from the assessment of cognitive tests. Also, TRPV2 mRNA and protein expression were found to be upregulated, while the expression of Ca2+/calmodulin-dependent protein kinase II (p-CaMKII-Thr-286), glycogen synthase kinase 3β (p-GSK-3β-Ser-9), cAMP response element-binding protein (p-CREB-Ser-133), and postsynaptic density protein 95 (PSD-95) were downregulated in the hippocampus of β-amyloid-treated animals. Even, β-amyloid-treated animals showed upregulation of mRNA level of calcium buffering proteins (parvalbumin and calsequestrin) and calcineurin A (PPP3CA) in the hippocampus. Acetylcholinesterase activity was also increased in the cortex of β-amyloid-treated animals. Three-week treatment with tranilast showed improvement in the cognitive parameters which was associated with a decrease in TRPV2 expression and AChE activity. Additionally, an increase in the protein expression of p-CaMKII, p-GSK-3β, p-CREB and PSD-95 in the hippocampus was found. Downregulation in the mRNA level of calcium buffering proteins (parvalbumin and calsequestrin) and calcineurin A in the hippocampus was also seen. These results reveal the importance of TRPV2 channels in the β-amyloid-induced cognitive deficits and suggest TRPV2 as a potential target for AD.
Collapse
Affiliation(s)
- Pavan Thapak
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, Punjab, 160062, India
| | - Mahendra Bishnoi
- National Agri-Food Biotechnology Institute, S.A.S. Nagar, Punjab, India
| | - Shyam Sunder Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, Punjab, 160062, India.
| |
Collapse
|
32
|
Callens M, Kraskovskaya N, Derevtsova K, Annaert W, Bultynck G, Bezprozvanny I, Vervliet T. The role of Bcl-2 proteins in modulating neuronal Ca 2+ signaling in health and in Alzheimer's disease. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2021; 1868:118997. [PMID: 33711363 PMCID: PMC8041352 DOI: 10.1016/j.bbamcr.2021.118997] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/11/2022]
Abstract
The family of B-cell lymphoma-2 (Bcl-2) proteins exerts key functions in cellular health. Bcl-2 primarily acts in mitochondria where it controls the initiation of apoptosis. However, during the last decades, it has become clear that this family of proteins is also involved in controlling intracellular Ca2+ signaling, a critical process for the function of most cell types, including neurons. Several anti- and pro-apoptotic Bcl-2 family members are expressed in neurons and impact neuronal function. Importantly, expression levels of neuronal Bcl-2 proteins are affected by age. In this review, we focus on the emerging roles of Bcl-2 proteins in neuronal cells. Specifically, we discuss how their dysregulation contributes to the onset, development, and progression of neurodegeneration in the context of Alzheimer's disease (AD). Aberrant Ca2+ signaling plays an important role in the pathogenesis of AD, and we propose that dysregulation of the Bcl-2-Ca2+ signaling axis may contribute to the progression of AD and that herein, Bcl-2 may constitute a potential therapeutic target for the treatment of AD.
Collapse
Affiliation(s)
- Manon Callens
- KU Leuven, Laboratory of Molecular & Cellular Signaling, Department of Cellular & Molecular Medicine, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, BE-3000 Leuven, Belgium
| | - Nina Kraskovskaya
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg State Polytechnic University, Saint Petersburg, Russia
| | - Kristina Derevtsova
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg State Polytechnic University, Saint Petersburg, Russia
| | - Wim Annaert
- Laboratory for Membrane Trafficking, VIB Center for Brain and Disease Research & KU Leuven, Department of Neurosciences, Gasthuisberg, O&N5, Rm 7.357, B-3000 Leuven, Belgium
| | - Geert Bultynck
- KU Leuven, Laboratory of Molecular & Cellular Signaling, Department of Cellular & Molecular Medicine, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, BE-3000 Leuven, Belgium.
| | - Ilya Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg State Polytechnic University, Saint Petersburg, Russia; Department of Physiology, UT Southwestern Medical Center at Dallas, Dallas, TX, United States.
| | - Tim Vervliet
- KU Leuven, Laboratory of Molecular & Cellular Signaling, Department of Cellular & Molecular Medicine, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, BE-3000 Leuven, Belgium
| |
Collapse
|
33
|
Abstract
Significance: Unique to the branched-chain aminotransferase (BCAT) proteins is their redox-active CXXC motif. Subjected to post-translational modification by reactive oxygen species and reactive nitrogen species, these proteins have the potential to adopt numerous cellular roles, which may be fundamental to their role in oncogenesis and neurodegenerative diseases. An understanding of the interplay of the redox regulation of BCAT with important cell signaling mechanisms will identify new targets for future therapeutics. Recent Advances: The BCAT proteins have been assigned novel thiol oxidoreductase activity that can accelerate the refolding of proteins, in particular when S-glutathionylated, supporting a chaperone role for BCAT in protein folding. Other metabolic proteins were also shown to have peroxide-mediated redox associations with BCAT, indicating that the cellular function of BCAT is more diverse. Critical Issues: While the role of branched-chain amino acid metabolism and its metabolites has dominated aspects of cancer research, less is known about the role of BCAT. The importance of the CXXC motif in regulating the BCAT activity under hypoxic conditions, a characteristic of tumors, has not been addressed. Understanding how these proteins operate under various cellular redox conditions will become important, in particular with respect to their moonlighting roles. Future Directions: Advances in the quantification of thiols, their measurement, and the manipulation of metabolons that rely on redox-based interactions should accelerate the investigation of the cellular role of moonlighting proteins such as BCAT. Given the importance of cross talk between signaling pathways, research should focus more on these "housekeeping" proteins paying attention to their wider application. Antioxid. Redox Signal. 34, 1048-1067.
Collapse
Affiliation(s)
- Myra Elizabeth Conway
- Department of Applied Science, University of the West of England, Bristol, United Kingdom
| |
Collapse
|
34
|
Serum Calcium Level as a Useful Surrogate for Risk of Elevated Intraocular Pressure. J Clin Med 2021; 10:jcm10091839. [PMID: 33922687 PMCID: PMC8122949 DOI: 10.3390/jcm10091839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Uncontrolled intraocular pressure (IOP) plays a principal role in the deterioration of glaucoma, and the intraocular pressure is also accepted as the most important modifiable factor. Calcium ion has been found to play a vital role in regulating the resistance of the trabecular meshwork in humans. However, the relationship between serum total calcium and IOP has not been well-established. METHODS We investigated the association between serum total calcium and the IOP in a large population (14,037 eligible participants, consisting of 7712 men and 6325 women, were included) at the Tri-Service General Hospital from 2010 to 2016. Several models of covariate adjustments associated with IOP were designed. Univariate and multivariate regression analysis was performed for gender differences in the association between the serum total calcium level and IOP. RESULTS There was a significant relationship between serum total calcium levels and IOP in women and men with a β coefficient of 0.050 (95% confidence interval (CI), 0.030-0.069) and 0.025 (95%CI, 0.007-0.043). Notably, participants in the highest tertiles of serum total calcium levels had significantly higher IOP, in both the male and female participants. CONCLUSIONS Our study shows that IOP is significantly associated with serum total calcium levels in a large Asian population. This study supports the notion that serum total calcium may play an important role in groups at high risk for elevated IOP.
Collapse
|
35
|
Song M, Zhao X, Song F. Aging-Dependent Mitophagy Dysfunction in Alzheimer's Disease. Mol Neurobiol 2021; 58:2362-2378. [PMID: 33417222 DOI: 10.1007/s12035-020-02248-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is the most common late-onset dementia characterized by the deposition of extracellular amyloid plaques and formation of intracellular neurofibrillary tangles, which eventually lead to neuronal loss and cognitive deficits. Multiple lines of evidence indicate that mitochondrial dysfunction is involved in the initiation and progression of AD. As essential machinery for mitochondrial quality control, mitophagy plays a housekeeping role in neuronal cells by eliminating dysfunctional or excessive mitochondria. At present, mounting evidence support that the activity of mitophagy markedly declines in human brains during aging. Impaired mitophagy and mitochondrial dysfunction were causally linked to bioenergetic deficiency, oxidative stress, microglial activation, and chronic inflammation, thereby aggravating the Aβ and tau pathologies and leading to neuron loss in AD. This review summarizes recent evidence for age-associated mitophagy decline during human aging and provides an overview of mitochondrial dysfunction involved in the process of AD. It also discusses the underlying mechanisms through which defective mitophagy leads to neuronal cell death in AD. Therapeutic interventions aiming to restore mitophagy functions can be used as a strategy for ameliorating AD pathogenesis.
Collapse
Affiliation(s)
- Mingxue Song
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Xiulan Zhao
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Fuyong Song
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, 250012, Shandong, People's Republic of China.
| |
Collapse
|
36
|
Karatzas E, Zachariou M, Bourdakou MM, Minadakis G, Oulas A, Kolios G, Delis A, Spyrou GM. PathWalks: identifying pathway communities using a disease-related map of integrated information. Bioinformatics 2020; 36:4070-4079. [PMID: 32369599 PMCID: PMC7332569 DOI: 10.1093/bioinformatics/btaa291] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/11/2020] [Accepted: 04/27/2020] [Indexed: 12/17/2022] Open
Abstract
MOTIVATION Understanding the underlying biological mechanisms and respective interactions of a disease remains an elusive, time consuming and costly task. Computational methodologies that propose pathway/mechanism communities and reveal respective relationships can be of great value as they can help expedite the process of identifying how perturbations in a single pathway can affect other pathways. RESULTS We present a random-walks-based methodology called PathWalks, where a walker crosses a pathway-to-pathway network under the guidance of a disease-related map. The latter is a gene network that we construct by integrating multi-source information regarding a specific disease. The most frequent trajectories highlight communities of pathways that are expected to be strongly related to the disease under study.We apply the PathWalks methodology on Alzheimer's disease and idiopathic pulmonary fibrosis and establish that it can highlight pathways that are also identified by other pathway analysis tools as well as are backed through bibliographic references. More importantly, PathWalks produces additional new pathways that are functionally connected with those already established, giving insight for further experimentation. AVAILABILITY AND IMPLEMENTATION https://github.com/vagkaratzas/PathWalks. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Evangelos Karatzas
- Department of Informatics and Telecommunications, University of Athens, Athens 15703, Greece
| | - Margarita Zachariou
- Department of Bioinformatics, The Cyprus Institute of Neurology and Genetics, Nicosia 2370, Cyprus.,The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia 2370, Cyprus
| | - Marilena M Bourdakou
- Department of Bioinformatics, The Cyprus Institute of Neurology and Genetics, Nicosia 2370, Cyprus.,Department of Medicine, Laboratory of Pharmacology, Democritus University of Thrace, Komotini, Greece
| | - George Minadakis
- Department of Bioinformatics, The Cyprus Institute of Neurology and Genetics, Nicosia 2370, Cyprus.,The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia 2370, Cyprus
| | - Anastasis Oulas
- Department of Bioinformatics, The Cyprus Institute of Neurology and Genetics, Nicosia 2370, Cyprus.,The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia 2370, Cyprus
| | - George Kolios
- Department of Medicine, Laboratory of Pharmacology, Democritus University of Thrace, Komotini, Greece
| | - Alex Delis
- Department of Informatics and Telecommunications, University of Athens, Athens 15703, Greece
| | - George M Spyrou
- Department of Bioinformatics, The Cyprus Institute of Neurology and Genetics, Nicosia 2370, Cyprus.,The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia 2370, Cyprus
| |
Collapse
|
37
|
Cioffi F, Adam RHI, Broersen K. Molecular Mechanisms and Genetics of Oxidative Stress in Alzheimer's Disease. J Alzheimers Dis 2020; 72:981-1017. [PMID: 31744008 PMCID: PMC6971833 DOI: 10.3233/jad-190863] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Alzheimer’s disease is the most common neurodegenerative disorder that can cause dementia in elderly over 60 years of age. One of the disease hallmarks is oxidative stress which interconnects with other processes such as amyloid-β deposition, tau hyperphosphorylation, and tangle formation. This review discusses current thoughts on molecular mechanisms that may relate oxidative stress to Alzheimer’s disease and identifies genetic factors observed from in vitro, in vivo, and clinical studies that may be associated with Alzheimer’s disease-related oxidative stress.
Collapse
Affiliation(s)
- Federica Cioffi
- Nanobiophysics Group, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Rayan Hassan Ibrahim Adam
- Nanobiophysics Group, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Kerensa Broersen
- Applied Stem Cell Technologies, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| |
Collapse
|
38
|
Effect specificity of the early intervention with moxibustion at “BL23” in Alzheimer's disease rats modeled by ovariectomy and D-Galactose injection 艾灸“肾俞”早期干预去卵巢合D-半乳糖注射AD样大鼠效应中的特异性. WORLD JOURNAL OF ACUPUNCTURE-MOXIBUSTION 2020. [DOI: 10.1016/j.wjam.2020.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
39
|
Butterfield DA. Brain lipid peroxidation and alzheimer disease: Synergy between the Butterfield and Mattson laboratories. Ageing Res Rev 2020; 64:101049. [PMID: 32205035 PMCID: PMC7502429 DOI: 10.1016/j.arr.2020.101049] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/08/2020] [Accepted: 03/12/2020] [Indexed: 02/05/2023]
Abstract
Brains from persons with Alzheimer disease (AD) and its earlier stage, amnestic mild cognitive impairment (MCI), exhibit high levels of oxidative damage, including that to phospholipids. One type of oxidative damage is lipid peroxidation, the most important index of which is protein-bound 4-hydroxy-2-trans-nonenal (HNE). This highly reactive alkenal changes the conformations and lowers the activities of brain proteins to which HNE is covalently bound. Evidence exists that suggests that lipid peroxidation is the first type of oxidative damage associated with amyloid β-peptide (Aβ), a 38-42 amino acid peptide that is highly neurotoxic and critical to the pathophysiology of AD. The Butterfield laboratory is one of, if not the, first research group to show that Aβ42 oligomers led to lipid peroxidation and to demonstrate this modification in brains of subjects with AD and MCI. The Mattson laboratory, particularly when Dr. Mattson was a faculty member at the University of Kentucky, also showed evidence for lipid peroxidation associated with Aβ peptides, mostly in in vitro systems. Consequently, there is synergy between our two laboratories. Since this special tribute issue of Aging Research Reviews is dedicated to the career of Dr. Mattson, a review of some aspects of this synergy of lipid peroxidation and its relevance to AD, as well as the role of lipid peroxidation in the progression of this dementing disorder seems germane. Accordingly, this review outlines some of the individual and/or complementary research on lipid peroxidation related to AD published from our two laboratories either separately or jointly.
Collapse
Affiliation(s)
- D Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University Of Kentucky, Lexington, KY, 40506, United States.
| |
Collapse
|
40
|
Ghoweri AO, Ouillette L, Frazier HN, Anderson KL, Lin RL, Gant JC, Parent R, Moore S, Murphy GG, Thibault O. Electrophysiological and Imaging Calcium Biomarkers of Aging in Male and Female 5×FAD Mice. J Alzheimers Dis 2020; 78:1419-1438. [PMID: 33164928 PMCID: PMC7836067 DOI: 10.3233/jad-200109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND In animal models and tissue preparations, calcium dyshomeostasis is a biomarker of aging and Alzheimer's disease that is associated with synaptic dysfunction, neuritic pruning, and dysregulated cellular processes. It is unclear, however, whether the onset of calcium dysregulation precedes, is concurrent with, or is the product of pathological cellular events (e.g., oxidation, amyloid-β production, and neuroinflammation). Further, neuronal calcium dysregulation is not always present in animal models of amyloidogenesis, questioning its reliability as a disease biomarker. OBJECTIVE Here, we directly tested for the presence of calcium dysregulation in dorsal hippocampal neurons in male and female 5×FAD mice on a C57BL/6 genetic background using sharp electrodes coupled with Oregon-green Bapta-1 imaging. We focused on three ages that coincide with the course of amyloid deposition: 1.5, 4, and 10 months old. METHODS Outcome variables included measures of the afterhyperpolarization, short-term synaptic plasticity, and calcium kinetics during synaptic activation. Quantitative analyses of spatial learning and memory were also conducted using the Morris water maze. Main effects of sex, age, and genotype were identified on measures of electrophysiology and calcium imaging. RESULTS Measures of resting Oregon-green Bapta-1 fluorescence showed significant reductions in the 5×FAD group compared to controls. Deficits in spatial memory, along with increases in Aβ load, were detectable at older ages, allowing us to test for temporal associations with the onset of calcium dysregulation. CONCLUSION Our results provide evidence that reduced, rather than elevated, neuronal calcium is identified in this 5×FAD model and suggests that this surprising result may be a novel biomarker of AD.
Collapse
Affiliation(s)
- Adam O Ghoweri
- UKMC MS313, Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Lara Ouillette
- 5037 BSRB, Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Hilaree N Frazier
- UKMC MS313, Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Katie L Anderson
- UKMC MS313, Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Ruei-Lung Lin
- UKMC MS313, Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - John C Gant
- UKMC MS313, Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Rachel Parent
- 5037 BSRB, Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Shannon Moore
- 5037 BSRB, Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.,5037 BSRB, Molecular and Integrative Physiology, Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Geoffrey G Murphy
- 5037 BSRB, Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.,5037 BSRB, Molecular and Integrative Physiology, Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Olivier Thibault
- UKMC MS313, Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
41
|
Behl T, Kaur I, Fratila O, Brata R, Bungau S. Exploring the Potential of Therapeutic Agents Targeted towards Mitigating the Events Associated with Amyloid-β Cascade in Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21207443. [PMID: 33050199 PMCID: PMC7589257 DOI: 10.3390/ijms21207443] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/02/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023] Open
Abstract
One of the most commonly occurring neurodegenerative disorders, Alzheimer's disease (AD), encompasses the loss of cognitive and memory potential, impaired learning, dementia and behavioral defects, and has been prevalent since the 1900s. The accelerating occurrence of AD is expected to reach 65.7 million by 2030. The disease results in neural atrophy and disrupted inter-neuronal connections. Amongst multiple AD pathogenesis hypotheses, the amyloid beta (Aβ) cascade is the most relevant and accepted form of the hypothesis, which suggests that Aβ monomers are formed as a result of the cleavage of amyloid precursor protein (APP), followed by the conversion of these monomers to toxic oligomers, which in turn develop β-sheets, fibrils and plaques. The review targets the events in the amyloid hypothesis and elaborates suitable therapeutic agents that function by hindering the steps of plaque formation and lowering Aβ levels in the brain. The authors discuss treatment possibilities, including the inhibition of β- and γ-secretase-mediated enzymatic cleavage of APP, the immune response generating active immunotherapy and passive immunotherapeutic approaches targeting monoclonal antibodies towards Aβ aggregates, the removal of amyloid aggregates by the activation of enzymatic pathways or the regulation of Aβ circulation, glucagon-like peptide-1 (GLP-1)-mediated curbed accumulation and the neurotoxic potential of Aβ aggregates, bapineuzumab-mediated vascular permeability alterations, statin-mediated Aβ peptide degradation, the potential role of ibuprofen and the significance of natural drugs and dyes in hindering the amyloid cascade events. Thus, the authors aim to highlight the treatment perspective, targeting the amyloid hypothesis, while simultaneously emphasizing the need to conduct further investigations, in order to provide an opportunity to neurologists to develop novel and reliable treatment therapies for the retardation of AD progression.
Collapse
Affiliation(s)
- Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India;
- Correspondence: (T.B.); (S.B.); Tel.: +40-726-776-588 (S.B.)
| | - Ishnoor Kaur
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India;
| | - Ovidiu Fratila
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, Oradea 410073, Romania; (O.F.); (R.B.)
| | - Roxana Brata
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, Oradea 410073, Romania; (O.F.); (R.B.)
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea 410028, Romania
- Correspondence: (T.B.); (S.B.); Tel.: +40-726-776-588 (S.B.)
| |
Collapse
|
42
|
Therapeutic potential of pharmacological agents targeting TRP channels in CNS disorders. Pharmacol Res 2020; 159:105026. [PMID: 32562815 DOI: 10.1016/j.phrs.2020.105026] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 05/21/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023]
Abstract
Central nervous system (CNS) disorders like Alzheimer's disease (AD), Parkinson disease (PD), stroke, epilepsy, depression, and bipolar disorder have a high impact on both medical and social problems due to the surge in their prevalence. All of these neuronal disorders share some common etiologies including disruption of Ca2+ homeostasis and accumulation of misfolded proteins. These misfolded proteins further disrupt the intracellular Ca2+ homeostasis by disrupting the activity of several ion channels including transient receptor potential (TRP) channels. TRP channel families include non-selective Ca2+ permeable channels, which act as cellular sensors activated by various physio-chemical stimuli, exogenous, and endogenous ligands responsible for maintaining the intracellular Ca2+ homeostasis. TRP channels are abundantly expressed in the neuronal cells and disturbance in their activity leads to various neuronal diseases. Under the pathological conditions when the activity of TRP channels is perturbed, there is a disruption of the neuronal homeostasis through increased inflammatory response, generation of reactive oxygen species, and mitochondrial dysfunction. Therefore, there is a potential of pharmacological interventions targeting TRP channels in CNS disorders. This review focuses on the role of TRP channels in neurological diseases; also, we have highlighted the current insights into the pharmacological modulators targeting TRP channels.
Collapse
|
43
|
Kapoulea EA, Murphy C. Older, non-demented apolipoprotein ε 4 carrier males show hyperactivation and structural differences in odor memory regions: a blood-oxygen-level-dependent and structural magnetic resonance imaging study. Neurobiol Aging 2020; 93:25-34. [PMID: 32447009 PMCID: PMC7605173 DOI: 10.1016/j.neurobiolaging.2020.04.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 11/18/2022]
Abstract
The current study sought to examine the interaction of sex and Apolipoprotein ε4 status on olfactory recognition memory within non-demented, older individuals. We separated 39 participants into groups based on ε4 status and sex. Each participant completed an olfactory memory recognition task during 2 functional magnetic resonance imaging scans and 1 structural scan. The ε4 carriers had greater functional recruitment of memory regions during false positives relative to ε4 non-carriers. During hits, the male ε4 carriers showed greater functional recruitment compared to female ε4 carriers. The ε4 carriers had larger bilateral putamen volumes relative to ε4 non-carriers. Neuroimaging data were significantly associated with Dementia Rating Scale scores solely in males. Results suggest differential olfactory memory processing in relation to sex and ε4 status. Male ε4 carriers in particular, demonstrated hyperactivation during recognition memory, which we suspect reflects neuronal compensation to maintain functional performance. Future studies should consider examining underlying mechanisms that contribute to these sex differences within ε4 carriers.
Collapse
Affiliation(s)
- Eleni A Kapoulea
- Department of Psychology, San Diego State University, San Diego, CA, USA
| | - Claire Murphy
- Department of Psychology, San Diego State University, San Diego, CA, USA; San Diego Joint Doctoral Program in Clinical Psychology, San Diego State University/University of California, San Diego, San Diego, CA, USA; Department of Psychiatry, University of California, San Diego, San Diego, CA, USA.
| |
Collapse
|
44
|
Transport of Glucose by the Plasma Membrane Affects the Removal and Concentration of Ca 2+ at Rest in Neurons - Implications of a Condition Prior to Alzheimer's Disease? Neuroscience 2020; 431:52-63. [PMID: 32058068 DOI: 10.1016/j.neuroscience.2020.01.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is classically characterized by two major markers: extracellular development of senile plaques and intracellular formation of neurofibrillary tangles. Nonetheless, neuronal glucose hypometabolism and Ca2+ deregulation have been separately implied in the genesis and progress of the neurodegenerative process. In this sense, the goal of this study was to investigate if modifications in the glucose transport would influence the cellular viability and would be involved with the activity of Ca2+ removal from the neuron. The total levels of plasma membrane Ca2+-ATPase (PMCA) and glucose transporters (GLUT1 and 3), as well as glucose entry and intracellular Ca2+ dynamics were quantified in neurons maintained at different glucose concentrations or submitted to GLUT3 mRNA interference. The results showed that reduced extracellular glucose impaired neuronal viability from day 8, but didn't change the total protein levels of GLUT1, GLUT3 and PMCA before the onset of the cell death. Conversely, the rate of glucose transport and Ca2+ concentration was already altered since the 4th day of external glucose reduction. Interestingly, reduction of GLUT3 on plasma membrane led to lower glucose transport and intracellular Ca2+ accumulation. It was observed that the reduction of glucose transport directed the neuron to decrease the removal and increase of intracellular Ca2+ at rest. Therefore, we concluded that reduced glucose transport impairs neuronal viability and compromise the activity of Ca2+ removal from the neuron. Thus, it is expected that changes in glucose transport may lead to a more susceptible condition or trigger a neurodegenerative condition resulting in accumulation of intracellular Ca2+.
Collapse
|
45
|
Huang AC, Lin CS, Lien JC, Lai HC, Lin WH, Lin CW. Ethyl 2-anilino-4-oxo-4,5-dihydrofuran-3-carboxylate exhibits anti-proliferative activity and induces apoptosis in promyelocytic leukemia HL-60 cells. Oncol Lett 2020; 19:2397-2403. [PMID: 32194739 PMCID: PMC7039143 DOI: 10.3892/ol.2020.11342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 12/05/2019] [Indexed: 11/05/2022] Open
Abstract
Furoquinolone and its derivatives exhibit antimicrobial, anti-allergic, anti-inflammatory and anticancer properties. The present study investigated the anti-tumor activity of synthesized intermediates of furoquinolone in human promyelocytic leukemia HL-60 cells. The biological effects of the active compound ethyl 2-anilino-4-oxo-4,5-dihydrofuran-3-carboxylate (compound 131) were examined in HL-60 cells. The following properties were analyzed: Cell survival, cell cycle profile, caspase-3 activity, Bax and Bcl-2 expression, the amount of intracellular Ca2+, the number of reactive oxygen species (ROS) and the mitochondrial membrane potential. Compound 131 (50% cytotoxic concentration, 23.5 µM) significantly reduced the proliferation of HL-60 cells and was revealed to induce apoptosis in HL-60 cells in a concentration-dependent manner. Moreover, this was associated with the activation of caspase-3, upregulation of Bax, an increase in intracellular Ca2+ and ROS production, and a decrease in mitochondrial membrane potential and Bcl-2 expression levels. Compound 131, a novel 4,5-dihydrofuran-3-carboxylate, induced apoptosis in HL-60 cells via the increase of intracellular Ca2+ and ROS to alter the mitochondrial membrane potential and the protein level of Bax and Bcl-2, as well as activating caspase-3. The results of the current study indicate that compound 131 may represent a promising compound for the development of anti-leukemia therapeutics.
Collapse
Affiliation(s)
- An-Cheng Huang
- Department of Nursing, St. Mary's Junior College of Medicine, Nursing and Management, Yilan 26647, Taiwan, R.O.C
| | - Chen-Sheng Lin
- Division of Gastroenterology, Kuang Tien General Hospital, Taichung 43303, Taiwan, R.O.C
| | - Jin-Cherng Lien
- School of Pharmacy, China Medical University, Taichung 40402, Taiwan, R.O.C
| | - Hsueh-Chou Lai
- Division of Hepato-Gastroenterology, Department of Internal Medicine, China Medical University Hospital, Taichung 40447, Taiwan, R.O.C
| | - Wei-Hua Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 40402, Taiwan, R.O.C
| | - Cheng-Wen Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 40402, Taiwan, R.O.C.,Department of Biotechnology, Asia University, Wufeng, Taichung 41354, Taiwan, R.O.C.,Chinese Medicine Research Center, China Medical University, Taichung 40402, Taiwan, R.O.C
| |
Collapse
|
46
|
Conway ME. Alzheimer's disease: targeting the glutamatergic system. Biogerontology 2020; 21:257-274. [PMID: 32048098 PMCID: PMC7196085 DOI: 10.1007/s10522-020-09860-4] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/29/2020] [Indexed: 12/21/2022]
Abstract
Alzheimer’s disease (AD) is a debilitating neurodegenerative disease that causes a progressive decline in memory, language and problem solving. For decades mechanism-based therapies have primarily focused on amyloid β (Aβ) processing and pathways that govern neurofibrillary tangle generation. With the potential exception to Aducanumab, a monotherapy to target Aβ, clinical trials in these areas have been challenging and have failed to demonstrate efficacy. Currently, the prescribed therapies for AD are those that target the cholinesterase and glutamatergic systems that can moderately reduce cognitive decline, dependent on the individual. In the brain, over 40% of neuronal synapses are glutamatergic, where the glutamate level is tightly regulated through metabolite exchange in neuronal, astrocytic and endothelial cells. In AD brain, Aβ can interrupt effective glutamate uptake by astrocytes, which evokes a cascade of events that leads to neuronal swelling, destruction of membrane integrity and ultimately cell death. Much work has focussed on the post-synaptic response with little insight into how glutamate is regulated more broadly in the brain and the influence of anaplerotic pathways that finely tune these mechanisms. The role of blood branched chain amino acids (BCAA) in regulating neurotransmitter profiles under disease conditions also warrant discussion. Here, we review the importance of the branched chain aminotransferase proteins in regulating brain glutamate and the potential consequence of dysregulated metabolism in the context of BCAA or glutamate accumulation. We explore how the reported benefits of BCAA supplementation or restriction in improving cognitive function in other neurological diseases may have potential application in AD. Given that memantine, the glutamate receptor agonist, shows clinical relevance it is now timely to research related pathways, an understanding of which could identify novel approaches to treatment of AD.
Collapse
Affiliation(s)
- Myra E Conway
- Faculty of Health and Applied Sciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK. .,Faculty of Health and Life Sciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK.
| |
Collapse
|
47
|
Astaxanthin Protects PC12 Cells against Homocysteine- and Glutamate-Induced Neurotoxicity. Molecules 2020; 25:molecules25010214. [PMID: 31948056 PMCID: PMC6982875 DOI: 10.3390/molecules25010214] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/05/2019] [Accepted: 12/11/2019] [Indexed: 12/15/2022] Open
Abstract
Memory impairment has been shown to be associated with glutamate (Glu) excitotoxicity, homocysteine (Hcy) accumulation, and oxidative stress. We hypothesize that Glu and Hcy could damage neuronal cells, while astaxanthin (ATX) could be beneficial to alleviate the adverse effects. Using PC12 cell model, we showed that Glu and Hcy provoked a huge amount of reactive oxygen species (ROS) production, causing mitochondrial damage at EC50 20 and 10 mm, respectively. The mechanisms of action include: (1) increasing calcium influx; (2) producing ROS; (3) initiating lipid peroxidation; (4) causing imbalance of the Bcl-2/Bax homeostasis; and (5) activating cascade of caspases involving caspases 12 and 3. Conclusively, the damages caused by Glu and Hcy to PC12 cells can be alleviated by the potent antioxidant ATX.
Collapse
|
48
|
Cassidy L, Fernandez F, Johnson JB, Naiker M, Owoola AG, Broszczak DA. Oxidative stress in alzheimer's disease: A review on emergent natural polyphenolic therapeutics. Complement Ther Med 2019; 49:102294. [PMID: 32147039 DOI: 10.1016/j.ctim.2019.102294] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/26/2019] [Accepted: 12/30/2019] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES The aim of this research was to review the literature on Alzheimer's disease (AD) with a focus on polyphenolics as antioxidant therapeutics. DESIGN This review included a search of the literature up to and including September 2019 in PubMed and MEDLINE databases using search terms that included: Alzheimer's Disease, Aβ peptide, tau, oxidative stress, redox, oxidation, therapeutic, antioxidant, natural therapy, polyphenol. Any review articles, case studies, research reports and articles in English were identified and subsequently interrogated. Citations within relevant articles were also examined for consideration in this review. RESULTS Alzheimer's disease is a neurodegenerative disorder that is clinically characterised by the progressive deterioration of cognitive functions and drastic changes in behaviour and personality. Due to the significant presence of oxidative damage associated with abnormal Aβ accumulation and neurofibrillary tangle deposition in AD patients' brains, antioxidant drug therapy has been investigated as potential AD treatment. In particular, naturally occurring compounds, such as plant polyphenols, have been suggested to have potential neuroprotective effects against AD due to their diverse array of physiological actions, which includes potent antioxidant effects. CONCLUSIONS The impact of oxidative stress and various mechanisms of pathogenesis in AD pathophysiology was demonstrated along with the therapeutic potential of emergent antioxidant drugs to address such mechanism of oxidation.
Collapse
Affiliation(s)
- Luke Cassidy
- School of Behavioural & Health Sciences, Faculty of Heath Sciences, Australian Catholic University, 1100 Nudgee Rd, Banyo, QLD, 4014, Australia
| | - Francesca Fernandez
- School of Behavioural & Health Sciences, Faculty of Heath Sciences, Australian Catholic University, 1100 Nudgee Rd, Banyo, QLD, 4014, Australia.
| | - Joel B Johnson
- School of Health, Medical and Applied Sciences, Central Queensland University, 630 Ibis Ave, North Rockhampton, QLD, 4701, Australia.
| | - Mani Naiker
- School of Health, Medical and Applied Sciences, Central Queensland University, 630 Ibis Ave, North Rockhampton, QLD, 4701, Australia.
| | - Akeem G Owoola
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, 2 George St, Brisbane, 4000, QLD, Australia; Tissue Repair & Translational Physiology Program, Institute of Health & Biomedical Innovation, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, Queensland, 4059, Australia.
| | - Daniel A Broszczak
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, 2 George St, Brisbane, 4000, QLD, Australia; Tissue Repair & Translational Physiology Program, Institute of Health & Biomedical Innovation, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, Queensland, 4059, Australia.
| |
Collapse
|
49
|
Tapias V. Editorial: Mitochondrial Dysfunction and Neurodegeneration. Front Neurosci 2019; 13:1372. [PMID: 31920522 PMCID: PMC6930234 DOI: 10.3389/fnins.2019.01372] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 12/04/2019] [Indexed: 01/17/2023] Open
Affiliation(s)
- Victor Tapias
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
50
|
Ahn KC, Learman CR, Baker GB, Weaver CL, Chung PS, Kim HG, Song MS. Regulation of Diabetes: a Therapeutic Strategy for Alzheimer's Disease? J Korean Med Sci 2019; 34:e297. [PMID: 31779058 PMCID: PMC6882941 DOI: 10.3346/jkms.2019.34.e297] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/01/2019] [Indexed: 12/20/2022] Open
Abstract
Accumulated evidence suggests that sporadic cases of Alzheimer's disease (AD) make up more than 95% of total AD patients, and diabetes has been implicated as a strong risk factor for the development of AD. Diabetes shares pathological features of AD, such as impaired insulin signaling, increased oxidative stress, increased amyloid-beta (Aβ) production, tauopathy and cerebrovascular complication. Due to shared pathologies between the two diseases, anti-diabetic drugs may be a suitable therapeutic option for AD treatment. In this article, we will discuss the well-known pathologies of AD, including Aβ plaques and tau tangles, as well as other mechanisms shared in AD and diabetes including reactive glia and the breakdown of blood brain barrier in order to evaluate the presence of any potential, indirect or direct links of pre-diabetic conditions to AD pathology. In addition, clinical evidence of high incidence of diabetic patients to the development of AD are described together with application of anti-diabetic medications to AD patients.
Collapse
Affiliation(s)
- Kee Chan Ahn
- NeuroVIS, Cheonan, Korea
- EnviroBrain, Edmonton, AB, Canada
| | - Cameron R Learman
- Chapman University Physician Assistant Studies Program, Orange, CA, USA
| | - Glen B Baker
- Department of Psychiatry, Neurochemical Research Unit, University of Alberta, Edmonton, AB, Canada
| | - Charles L Weaver
- Department of Health Sciences, Saginaw Valley State University, Saginaw, MI, USA
| | - Phil Sang Chung
- Beckman Laser Institute Korea, Faculty of Medical School, Dankook University, Cheonan, Korea
- Laser Translational Clinical Trial Center, Dankook University Hospital, Cheonan, Korea
| | - Hyung Gun Kim
- NeuroVIS, Cheonan, Korea
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan, Korea
| | - Mee Sook Song
- Beckman Laser Institute Korea, Faculty of Medical School, Dankook University, Cheonan, Korea
- Laser Translational Clinical Trial Center, Dankook University Hospital, Cheonan, Korea.
| |
Collapse
|