1
|
Yoshida M, Oda M. Affinity Maturation for Antibody Engineering: The Critical Role of Residues on CDR Loops of Antibodies in Antigen Binding. Molecules 2025; 30:532. [PMID: 39942636 PMCID: PMC11819675 DOI: 10.3390/molecules30030532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/18/2025] [Accepted: 01/18/2025] [Indexed: 02/16/2025] Open
Abstract
During the course of affinity maturation, antibodies exhibit enhanced antigen-binding affinities by altering the amino acids in their variable regions. Understanding the structural basis of these antibodies can be beneficial for antibody engineering. We determined the crystal structures of single-chain Fv (scFv) antibodies against (4-hydroxy-3-nitrophenyl)acetyl, C6 and E11, which had undergone affinity maturation. Compared with germline-type antibodies, the affinity-matured antibodies with somatic hypermutation from Lys58 to Arg58 of the heavy chain located in the complementarity-determining region 2 (CDR2) seemed to be critical for increasing the antigen-binding affinity. E11 possessed a disulfide bond at the base of CDR3 in the heavy chain, which contributed to a further increase in its antigen-binding affinity compared with that of C6. In this study, we generated several mutant scFvs of C6 and E11 and analyzed their antigen-binding thermodynamics using isothermal titration calorimetry. The results indicated that the CDR conformations could adjust antigen-binding not only at the mutated sites but also at the surrounding residues. The analysis of folding thermodynamics showed that the stability of the affinity-matured antibodies was lower than that of the germline-type antibodies and remarkably increased upon strong antigen binding. The results also indicated that the structural dynamics of the affinity-matured antibodies were greater than those of the germline-type antibodies and decreased upon antigen binding.
Collapse
Affiliation(s)
| | - Masayuki Oda
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| |
Collapse
|
2
|
Yoshida M, Hanazono Y, Numoto N, Nagao S, Yabuno S, Kitagawa Y, Sekiguchi H, Ito N, Azuma T, Oda M. Affinity-matured antibody with a disulfide bond in H-CDR3 loop. Arch Biochem Biophys 2024; 758:110068. [PMID: 38909835 DOI: 10.1016/j.abb.2024.110068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Affinity maturation increases antigen-binding affinity and specificity of antibodies by somatic hypermutation. Various monoclonal antibodies against (4-hydroxy-3-nitrophenyl)acetyl (NP) were obtained during affinity maturation. Among them, highly matured anti-NP antibodies, such as E11 and E3, possess Cys96H and Cys100H in the complementarity-determining region 3 of the heavy chain, which would form a disulfide bond. In this study, we evaluated the effects of disulfide bonds on antigen binding by generating single-chain Fv (scFv) antibodies of E11 and its mutants, E11_C96KH/C100EH and E11_C96KH/C100QH, and determined their antigen-binding thermodynamics and kinetics. The binding affinities of the Cys mutants were lower than that of E11 scFv, indicating that the disulfide bond contributed to antigen binding, especially for stable complex formation. This was also supported by the decreased affinity of E11 scFv in the presence of a reducing agent. The crystal structures of NP-free and NP-bound E11 scFvs were determined at high resolution, showing the existence of a disulfide bond between Cys96H and Cys100H, and the antigen recognition mechanism, which could be compared with those of other anti-NP antibodies, such as germline-type N1G9 and matured-type C6, as reported previously. These structures could explain the molecular basis of changes in antigen-binding affinity and thermal stability in the absence or presence of antigens. Small-angle X-ray scattering further showed a local conformational change in E11 scFv upon antigen binding in solution.
Collapse
Affiliation(s)
- Mutsumi Yoshida
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto, Kyoto, 606-8522, Japan
| | - Yuya Hanazono
- Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Nobutaka Numoto
- Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Satoshi Nagao
- Center for Synchrotron Radiation Research, Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo, 679-5198, Japan
| | - Saaya Yabuno
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto, Kyoto, 606-8522, Japan
| | - Yumi Kitagawa
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto, Kyoto, 606-8522, Japan
| | - Hiroshi Sekiguchi
- Center for Synchrotron Radiation Research, Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo, 679-5198, Japan
| | - Nobutoshi Ito
- Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Takachika Azuma
- Antibody Technology Research Center, Inc., 2361-1Yamazaki, Noda, Chiba, 278-0022, Japan
| | - Masayuki Oda
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto, Kyoto, 606-8522, Japan.
| |
Collapse
|
3
|
Li K, Dodds M, Spreng RL, Abraha M, Huntwork RHC, Dahora LC, Nyanhete T, Dutta S, Wille-Reece U, Jongert E, Ewer KJ, Hill AVS, Jin C, Hill J, Pollard AJ, Munir Alam S, Tomaras GD, Dennison SM. A tool for evaluating heterogeneity in avidity of polyclonal antibodies. Front Immunol 2023; 14:1049673. [PMID: 36875126 PMCID: PMC9978818 DOI: 10.3389/fimmu.2023.1049673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/18/2023] [Indexed: 02/18/2023] Open
Abstract
Diversity in specificity of polyclonal antibody (pAb) responses is extensively investigated in vaccine efficacy or immunological evaluations, but the heterogeneity in antibody avidity is rarely probed as convenient tools are lacking. Here we have developed a polyclonal antibodies avidity resolution tool (PAART) for use with label-free techniques, such as surface plasmon resonance and biolayer interferometry, that can monitor pAb-antigen interactions in real time to measure dissociation rate constant (kd ) for defining avidity. PAART utilizes a sum of exponentials model to fit the dissociation time-courses of pAb-antigens interactions and resolve multiple kd contributing to the overall dissociation. Each kd value of pAb dissociation resolved by PAART corresponds to a group of antibodies with similar avidity. PAART is designed to identify the minimum number of exponentials required to explain the dissociation course and guards against overfitting of data by parsimony selection of best model using Akaike information criterion. Validation of PAART was performed using binary mixtures of monoclonal antibodies of same specificity but differing in kd of the interaction with their epitope. We applied PAART to examine the heterogeneity in avidities of pAb from malaria and typhoid vaccinees, and individuals living with HIV-1 that naturally control the viral load. In many cases, two to three kd were dissected indicating the heterogeneity of pAb avidities. We showcase examples of affinity maturation of vaccine induced pAb responses at component level and enhanced resolution of heterogeneity in avidity when antigen-binding fragments (Fab) are used instead of polyclonal IgG antibodies. The utility of PAART can be manifold in examining circulating pAb characteristics and could inform vaccine strategies aimed to guide the host humoral immune response.
Collapse
Affiliation(s)
- Kan Li
- Center for Human Systems Immunology, Duke University, Durham, NC, United States
- Department of Surgery, Duke University, Durham, NC, United States
| | - Michael Dodds
- Integrated Drug Development, Certara, Seattle, WA, United States
| | - Rachel L. Spreng
- Duke Human Vaccine Institute, Duke University, Durham, NC, United States
| | - Milite Abraha
- Center for Human Systems Immunology, Duke University, Durham, NC, United States
- Department of Surgery, Duke University, Durham, NC, United States
| | - Richard H. C. Huntwork
- Center for Human Systems Immunology, Duke University, Durham, NC, United States
- Department of Surgery, Duke University, Durham, NC, United States
| | - Lindsay C. Dahora
- Center for Human Systems Immunology, Duke University, Durham, NC, United States
- Department of Immunology, Duke University, Durham, NC, United States
| | - Tinashe Nyanhete
- Center for Human Systems Immunology, Duke University, Durham, NC, United States
- Department of Immunology, Duke University, Durham, NC, United States
| | - Sheetij Dutta
- Structural Vaccinology Lab, Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Ulrike Wille-Reece
- PATH's Center for Vaccine Innovation and Access, Washington, DC, United States
| | | | - Katie J. Ewer
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Adrian V. S. Hill
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
- National Institute for Health and Care Research (NIHR) Oxford Biomedical Research Center, Oxford, United Kingdom
| | - Celina Jin
- Oxford Vaccine Group and Department of Pediatrics, University of Oxford, Oxford, United Kingdom
| | - Jennifer Hill
- Oxford Vaccine Group and Department of Pediatrics, University of Oxford, Oxford, United Kingdom
| | - Andrew J. Pollard
- National Institute for Health and Care Research (NIHR) Oxford Biomedical Research Center, Oxford, United Kingdom
- Oxford Vaccine Group and Department of Pediatrics, University of Oxford, Oxford, United Kingdom
| | - S. Munir Alam
- Duke Human Vaccine Institute, Duke University, Durham, NC, United States
- Department of Pathology, Duke University, Durham, NC, United States
| | - Georgia D. Tomaras
- Center for Human Systems Immunology, Duke University, Durham, NC, United States
- Department of Surgery, Duke University, Durham, NC, United States
- Duke Human Vaccine Institute, Duke University, Durham, NC, United States
- Department of Immunology, Duke University, Durham, NC, United States
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, United States
| | - S. Moses Dennison
- Center for Human Systems Immunology, Duke University, Durham, NC, United States
- Department of Surgery, Duke University, Durham, NC, United States
| |
Collapse
|
4
|
Oda M. Structural, functional, and physiological properties of anti-(4-hydroxy-3-nitrophenyl)acetyl antibodies during the course of affinity maturation. Biophys Rev 2022; 14:1521-1526. [PMID: 36659986 PMCID: PMC9842813 DOI: 10.1007/s12551-022-01008-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/05/2022] [Indexed: 01/22/2023] Open
Abstract
Structural and functional analyses of antibodies in the affinity maturation pathway can help us understand the molecular mechanisms of protein recognition. Using one of the haptens, (4-hydroxy-3-nitrophenyl)acetyl (NP), various monoclonal antibodies have been obtained, either at the early or late stage of immunization. The variable regions of monoclonal antibodies and their site-directed mutants can also be obtained as single-chain Fv (scFv) antibodies. The change in antigen-binding affinity and avidity of matured-type antibodies from germline-type antibodies could be evaluated based on binding kinetics and thermodynamics, proposing the antigen recognition mode. Crystal structures of a germline-type antibody, N1G9, and a matured-type antibody, C6, in complex with NP were determined, revealing different antigen-binding mode at atomic resolution. Notably, the Tyr to Gly mutation at the 95th residue of the heavy chain is critical for changing the configuration of complementarity determining region 3, which is involved in antigen binding. Furthermore, thermal stability analyses of scFv antibodies have revealed trade-off between antigen-binding affinity and thermal stability in the antigen-unbound state. To increase affinity, the stability of the variable region may be decreased, possibly due to protein architecture. The high stability of germline-type antibodies and the low stability of matured-type antibodies, which increase upon antigen binding, can be explained by the stability of antibodies required at the respective stages of immunization.
Collapse
Affiliation(s)
- Masayuki Oda
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto, Kyoto, 606-8522 Japan
| |
Collapse
|
5
|
Sette A, Saphire EO. Inducing broad-based immunity against viruses with pandemic potential. Immunity 2022; 55:738-748. [PMID: 35545026 PMCID: PMC10286218 DOI: 10.1016/j.immuni.2022.04.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/06/2022] [Accepted: 04/13/2022] [Indexed: 02/08/2023]
Abstract
The brutal toll of another viral pandemic can be blunted by investing now in research that uncovers mechanisms of broad-based immunity so we may have vaccines and therapeutics at the ready. We do not know exactly what pathogen may trigger the next wave or next pandemic. We do know, however, that the human immune system must respond and must be bolstered with effective vaccines and other therapeutics to preserve lives and livelihoods. These countermeasures must focus on features conserved among families of pathogens in order to be responsive against something yet to emerge. Here, we focus on immunological approaches to mitigate the impact of the next emerging virus pandemic by developing vaccines that elicit both broadly protective antibodies and T cells. Identifying human immune mechanisms of broad protection against virus families with pandemic potential will be our best defense for humanity in the future.
Collapse
Affiliation(s)
- Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA.
| | - Erica Ollmann Saphire
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA.
| |
Collapse
|
6
|
A Trade-off Between Thermostability and Binding Affinity of Anti-(4-hydroxy-3-nitrophenyl)Acetyl Antibodies During the Course of Affinity Maturation. Protein J 2022; 41:293-303. [DOI: 10.1007/s10930-022-10053-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2022] [Indexed: 10/18/2022]
|
7
|
Chatterjee D, Lewis FJ, Sutton HJ, Kaczmarski JA, Gao X, Cai Y, McNamara HA, Jackson CJ, Cockburn IA. Avid binding by B cells to the Plasmodium circumsporozoite protein repeat suppresses responses to protective subdominant epitopes. Cell Rep 2021; 35:108996. [PMID: 33852850 PMCID: PMC8052187 DOI: 10.1016/j.celrep.2021.108996] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 12/07/2020] [Accepted: 03/24/2021] [Indexed: 11/18/2022] Open
Abstract
Antibodies targeting the NANP/NVDP repeat domain of the Plasmodium falciparum circumsporozoite protein (CSPRepeat) can protect against malaria. However, it has also been suggested that the CSPRepeat is a decoy that prevents the immune system from mounting responses against other domains of CSP. Here, we show that, following parasite immunization, B cell responses to the CSPRepeat are immunodominant over responses to other CSP domains despite the presence of similar numbers of naive B cells able to bind these regions. We find that this immunodominance is driven by avid binding of the CSPRepeat to cognate B cells that are able to expand at the expense of B cells with other specificities. We further show that mice immunized with repeat-truncated CSP molecules develop responses to subdominant epitopes and are protected against malaria. These data demonstrate that the CSPRepeat functions as a decoy, but truncated CSP molecules may be an approach for malaria vaccination.
Collapse
Affiliation(s)
- Deepyan Chatterjee
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Fiona J Lewis
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Henry J Sutton
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Joe A Kaczmarski
- Research School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia
| | - Xin Gao
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Yeping Cai
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Hayley A McNamara
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Colin J Jackson
- Research School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia
| | - Ian A Cockburn
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
8
|
Yamaoka T, Kamatari YO, Maruno T, Kobayashi Y, Oda M. Structural and functional evaluation of single-chain Fv antibody HyC1 recognizing the residual native structure of hen egg lysozyme. Biosci Biotechnol Biochem 2020; 84:358-364. [DOI: 10.1080/09168451.2019.1683441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
ABSTRACT
Evaluation of the molecular mechanisms by which an antibody recognizes a specific antigen could help in better understanding of the protein recognition mechanisms. We previously showed that anti-hen egg lysozyme (HEL) monoclonal antibody, HyC1, recognized the structural and hydrodynamic change in HEL. Here, we generated HyC1 single-chain Fv (scFv), and characterized it using different structural and biophysical methods. Similar to HyC1 monoclonal antibody, HyC1 scFv could recognize native HEL from carboxymethylated Cys6 and Cys127 HEL (CM6,127-HEL). Comparison of the binding thermodynamics of HyC1 scFv between HEL and CM6,127-HEL showed that the binding enthalpy change was different, while the binding entropy was remained unchanged. The results indicated that the fluctuation of the residual native structure in both HEL and CM6,127-HEL was similar. The NMR experiments for 15N-labeled HyC1 scFv indicated that the flexibility of HyC1 scFv decreased upon the binding to HEL.
Collapse
Affiliation(s)
- Takanori Yamaoka
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | | | - Takahiro Maruno
- Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Yuji Kobayashi
- Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Masayuki Oda
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| |
Collapse
|
9
|
Nishiguchi A, Numoto N, Ito N, Azuma T, Oda M. Three-dimensional structure of a high affinity anti-(4-hydroxy-3-nitrophenyl)acetyl antibody possessing a glycine residue at position 95 of the heavy chain. Mol Immunol 2019; 114:545-552. [DOI: 10.1016/j.molimm.2019.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/23/2019] [Accepted: 09/02/2019] [Indexed: 10/26/2022]
|
10
|
Hosoe Y, Numoto N, Inaba S, Ogawa S, Morii H, Abe R, Ito N, Oda M. Structural and functional properties of Grb2 SH2 dimer in CD28 binding. Biophys Physicobiol 2019; 16:80-88. [PMID: 30923665 PMCID: PMC6435016 DOI: 10.2142/biophysico.16.0_80] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/30/2019] [Indexed: 01/06/2023] Open
Abstract
Growth factor receptor-bound protein 2 (Grb2) is an adaptor protein that plays a critical role in cellular signal transduction. It contains a central Src homology 2 (SH2) domain flanked by two Src homology 3 (SH3) domains. Binding of Grb2 SH2 to the cytoplasmic region of CD28, phosphorylated Tyr (pY) containing the peptide motif pY-X-N-X, is required for costimulatory signaling in T cells. In this study, we purified the dimer and monomer forms of Grb2 SH2, respectively, and analyzed their structural and functional properties. Size exclusion chromatography analysis showed that both dimer and monomer exist as stable states. Thermal stability analysis using circular dichroism showed that the dimer mostly dissociates into the monomer around 50°C. CD28 binding experiments showed that the affinity of the dimer to the phosphopeptide was about three fold higher than that of the monomer, possibly due to the avidity effect. The present crystal structure analysis of Grb2 SH2 showed two forms; one is monomer at 1.15 Å resolution, which is currently the highest resolution analysis, and another is dimer at 2.00 Å resolution. In the dimer structure, the C-terminal region, comprising residues 123–152, was extended towards the adjacent molecule, in which Trp121 was the hinge residue. The stable dimer purified using size exclusion chromatography would be due to the C-terminal helix “swapping”. In cases where a mutation caused Trp121 to be replaced by Ser in Grb2 SH2, this protein still formed dimers, but lost the ability to bind CD28.
Collapse
Affiliation(s)
- Yuhi Hosoe
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | - Nobutaka Numoto
- Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Satomi Inaba
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan.,Research & Utilization Division, Japan Synchrotron Radiation Research Institute, Sayo, Hyogo 679-5198, Japan
| | - Shuhei Ogawa
- Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba 278-0022, Japan
| | - Hisayuki Morii
- College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa, Chiba 272-0827, Japan
| | - Ryo Abe
- Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba 278-0022, Japan.,Present address: Strategic Innovation and Research Center, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan
| | - Nobutoshi Ito
- Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Masayuki Oda
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| |
Collapse
|
11
|
Mahmud MN, Oda M, Usui D, Inoshima Y, Ishiguro N, Kamatari YO. A multispecific monoclonal antibody G2 recognizes at least three completely different epitope sequences with high affinity. Protein Sci 2017; 26:2162-2169. [PMID: 28791742 DOI: 10.1002/pro.3263] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/18/2017] [Accepted: 07/29/2017] [Indexed: 11/09/2022]
Abstract
A monoclonal antibody (mAb) G2 possesses an unusual characteristic of reacting with at least three proteins (ATP6V1C1, SEPT3, and C6H10orf76) other than its original antigen, chicken prion protein (ChPrP). The epitopes on ChPrP and ATP6V1C1 have been identified previously. In this study, we identified the epitope in the third protein, SEPT3. Interestingly, there was no amino acid sequence similarity among the epitopes on the three proteins. These epitopes had high binding affinities to G2 (KD = ∼10-7 M for monovalent binding and KD = ∼10-9 M for divalent binding), as determined using a SPR biosensor. This is the first report on a three-in-one mAb recognizing completely different epitope sequences with high affinity. Additionally, competitive ELISA indicated that the binding sites on G2, specific for the three different epitopes, overlapped, suggesting that the antigen-binding site may be flexible in the free form and capable of adapting to at least three different conformations to enable interactions with three different antigens.
Collapse
Affiliation(s)
- Md Nuruddin Mahmud
- The United Graduate School of Veterinary Sciences, Gifu University, Gifu, 501-1193, Japan
| | - Masayuki Oda
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Sakyo-ku, Kyoto, 606-8522, Japan
| | - Daiki Usui
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Sakyo-ku, Kyoto, 606-8522, Japan
| | - Yasuo Inoshima
- The United Graduate School of Veterinary Sciences, Gifu University, Gifu, 501-1193, Japan.,Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu, 501-1193, Japan
| | - Naotaka Ishiguro
- The United Graduate School of Veterinary Sciences, Gifu University, Gifu, 501-1193, Japan.,Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu, 501-1193, Japan
| | - Yuji O Kamatari
- Life Science Research Center, Gifu University, Gifu, 501-1193, Japan
| |
Collapse
|
12
|
Sato Y, Inaba S, Fukada H, Azuma T, Oda M. Pronounced effect of hapten binding on thermal stability of an anti-(4-hydroxy-3-nitrophenyl)acetyl antibody possessing a glycine residue at position 95 of the heavy chain. Mol Immunol 2017; 85:130-136. [DOI: 10.1016/j.molimm.2017.02.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/13/2017] [Accepted: 02/18/2017] [Indexed: 10/20/2022]
|
13
|
Miki A, Inaba S, Maruno T, Kobayashi Y, Oda M. Tryptophan introduction can change β-glucan binding ability of the carbohydrate-binding module of endo-1,3-β-glucanase. Biosci Biotechnol Biochem 2017; 81:951-957. [PMID: 28388361 DOI: 10.1080/09168451.2017.1285687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/13/2017] [Indexed: 10/20/2022]
Abstract
Endo-1,3-β-glucanase from Cellulosimicrobium cellulans DK-1 has a carbohydrate-binding module (CBM-DK) at the C-terminal side of a catalytic domain. Out of the imperfect tandem α-, β-, and γ-repeats in CBM-DK, the α-repeat primarily contributes to β-glucan binding. This unique feature is derived from Trp273 in α-repeat, whose corresponding residues in β- and γ-repeats are Asp314 and Gly358, respectively. In this study, we generated Trp-switched mutants, W273A/D314W, D270A/W273A/D314W, W273A/G358W, and D270A/W273A/G358W, and analyzed their binding abilities toward laminarioligosaccharides and laminarin. While the binding affinities of D270A/W273A and W273A mutants were either lost or much lower than that of the wild-type, those of Trp-switched mutants recovered, indicating that a Trp introduction in β- or γ-repeat can substitute the α-repeat by primarily contributing to β-glucan binding. Thus, we have successfully engineered a CBM-DK that binds to laminarin by a mechanism different from that of the wild-type, but with similar affinity.
Collapse
Affiliation(s)
- Ayako Miki
- a Graduate School of Life and Environmental Sciences, Kyoto Prefectural University , Kyoto , Japan
| | - Satomi Inaba
- a Graduate School of Life and Environmental Sciences, Kyoto Prefectural University , Kyoto , Japan
| | - Takahiro Maruno
- b Graduate School of Engineering, Osaka University , Suita , Japan
| | - Yuji Kobayashi
- b Graduate School of Engineering, Osaka University , Suita , Japan
| | - Masayuki Oda
- a Graduate School of Life and Environmental Sciences, Kyoto Prefectural University , Kyoto , Japan
| |
Collapse
|
14
|
Inaba S, Numoto N, Ogawa S, Morii H, Ikura T, Abe R, Ito N, Oda M. Crystal Structures and Thermodynamic Analysis Reveal Distinct Mechanisms of CD28 Phosphopeptide Binding to the Src Homology 2 (SH2) Domains of Three Adaptor Proteins. J Biol Chem 2016; 292:1052-1060. [PMID: 27927989 DOI: 10.1074/jbc.m116.755173] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 12/02/2016] [Indexed: 11/06/2022] Open
Abstract
Full activation of T cells and differentiation into effector T cells are essential for many immune responses and require co-stimulatory signaling via the CD28 receptor. Extracellular ligand binding to CD28 recruits protein-tyrosine kinases to its cytoplasmic tail, which contains a YMNM motif. Following phosphorylation of the tyrosine, the proteins growth factor receptor-bound protein 2 (Grb2), Grb2-related adaptor downstream of Shc (Gads), and p85 subunit of phosphoinositide 3-kinase may bind to pYMNM (where pY is phosphotyrosine) via their Src homology 2 (SH2) domains, leading to downstream signaling to distinct immune pathways. These three adaptor proteins bind to the same site on CD28 with variable affinity, and all are important for CD28-mediated co-stimulatory function. However, the mechanism of how these proteins recognize and compete for CD28 is unclear. To visualize their interactions with CD28, we have determined the crystal structures of Gads SH2 and two p85 SH2 domains in complex with a CD28-derived phosphopeptide. The high resolution structures obtained revealed that, whereas the CD28 phosphopeptide bound to Gads SH2 is in a bent conformation similar to that when bound to Grb2 SH2, it adopts a more extended conformation when bound to the N- and C-terminal SH2 domains of p85. These differences observed in the peptide-protein interactions correlated well with the affinity and other thermodynamic parameters for each interaction determined by isothermal titration calorimetry. The detailed insight into these interactions reported here may inform the development of compounds that specifically inhibit the association of CD28 with these adaptor proteins to suppress excessive T cell responses, such as in allergies and autoimmune diseases.
Collapse
Affiliation(s)
- Satomi Inaba
- From the Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | - Nobutaka Numoto
- the Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Shuhei Ogawa
- the Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba 278-0022, Japan, and
| | - Hisayuki Morii
- the Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki 305-0074, Japan
| | - Teikichi Ikura
- the Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Ryo Abe
- the Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba 278-0022, Japan, and
| | - Nobutoshi Ito
- the Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan,
| | - Masayuki Oda
- From the Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan,
| |
Collapse
|
15
|
Wang J, Yang L, Liu L, Wu H, Wang J, Jiang P, Jiang X, Qiu L. Investigation of multivalent interactions between conjugate of quantum dots with c-Myc peptide tag and the anti-c-Myc antibody by capillary electrophoresis with fluorescence detection. J Sep Sci 2016; 39:4653-4659. [DOI: 10.1002/jssc.201600931] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 09/18/2016] [Accepted: 09/24/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Jianhao Wang
- School of Pharmaceutical Engineering and Life Science; Changzhou University; Changzhou Jiangsu People's Republic of China
| | - Li Yang
- School of Pharmaceutical Engineering and Life Science; Changzhou University; Changzhou Jiangsu People's Republic of China
| | - Li Liu
- School of Pharmaceutical Engineering and Life Science; Changzhou University; Changzhou Jiangsu People's Republic of China
| | - Hao Wu
- School of Pharmaceutical Engineering and Life Science; Changzhou University; Changzhou Jiangsu People's Republic of China
| | - Jianpeng Wang
- School of Pharmaceutical Engineering and Life Science; Changzhou University; Changzhou Jiangsu People's Republic of China
| | - Pengju Jiang
- School of Pharmaceutical Engineering and Life Science; Changzhou University; Changzhou Jiangsu People's Republic of China
- Key Laboratory of Synthetic Biology, Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; Shanghai People's Republic of China
| | - Xiyuan Jiang
- Kunshan affiliated Hospital of Nanjing University of Chinese Medicine; Kunshan Jiangsu People's Republic of China
| | - Lin Qiu
- School of Pharmaceutical Engineering and Life Science; Changzhou University; Changzhou Jiangsu People's Republic of China
- State Key Laboratory of Coordination Chemistry; Nanjing University; Nanjing Jiangsu People's Republic of China
| |
Collapse
|
16
|
Akatsu C, Shinagawa K, Numoto N, Liu Z, Ucar AK, Aslam M, Phoon S, Adachi T, Furukawa K, Ito N, Tsubata T. CD72 negatively regulates B lymphocyte responses to the lupus-related endogenous toll-like receptor 7 ligand Sm/RNP. J Exp Med 2016; 213:2691-2706. [PMID: 27810925 PMCID: PMC5110020 DOI: 10.1084/jem.20160560] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 08/05/2016] [Accepted: 09/26/2016] [Indexed: 01/03/2023] Open
Abstract
Akatsu and colleagues show that CD72 specifically recognizes Sm/RNP, a lupus-related self-antigen and an endogenous TLR7 ligand, and inhibits B cell responses to Sm/RNP. In mice, CD72 prevents production of anti-Sm/RNP antibodies crucial for lupus development. Toll-like receptor 7 (TLR7) plays an essential role in development of systemic lupus erythematosus by co-stimulating B cells reactive to the endogenous TLR7 ligand Sm/ribonucleoprotein (RNP), a crucial lupus self-antigen. However, how the TLR7-mediated autoimmune response is regulated is not yet known. In this study, we demonstrate that CD72, an inhibitory B cell co-receptor known to prevent development of lupus, recognizes Sm/RNP at the extracellular C-type lectin-like domain (CTLD) and specifically inhibits B cell response to Sm/RNP. Moreover, the CTLD of CD72c, a lupus-susceptible allele, binds to Sm/RNP less strongly than that of lupus-resistant CD72a. Reduced binding of CD72c is supported by x-ray crystallographic analysis that reveals a considerable alteration in charge at the putative ligand-binding site. Thus, CD72 appears to specifically inhibit B cell response to the endogenous TLR7 ligand Sm/RNP through CTLD-mediated recognition of Sm/RNP, thereby preventing production of anti-Sm/RNP antibody crucial for development of lupus.
Collapse
Affiliation(s)
- Chizuru Akatsu
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo, Tokyo 113-8510, Japan
| | - Kenro Shinagawa
- Department of Structural Biology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo, Tokyo 113-8510, Japan
| | - Nobutaka Numoto
- Department of Structural Biology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo, Tokyo 113-8510, Japan
| | - Zhihong Liu
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo, Tokyo 113-8510, Japan.,Emergency Department, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province 110001, China
| | - Ayse Konuskan Ucar
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo, Tokyo 113-8510, Japan
| | - Mohammad Aslam
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo, Tokyo 113-8510, Japan
| | - Shirly Phoon
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo, Tokyo 113-8510, Japan
| | - Takahiro Adachi
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo, Tokyo 113-8510, Japan
| | - Koji Furukawa
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8566, Japan
| | - Nobutoshi Ito
- Department of Structural Biology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo, Tokyo 113-8510, Japan
| | - Takeshi Tsubata
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo, Tokyo 113-8510, Japan
| |
Collapse
|
17
|
Sato Y, Tanaka Y, Inaba S, Sekiguchi H, Maruno T, Sasaki YC, Fukada H, Kobayashi Y, Azuma T, Oda M. Structural dynamics of a single-chain Fv antibody against (4-hydroxy-3-nitrophenyl)acetyl. Int J Biol Macromol 2016; 91:151-7. [DOI: 10.1016/j.ijbiomac.2016.05.074] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 05/18/2016] [Accepted: 05/20/2016] [Indexed: 10/21/2022]
|
18
|
Oda M, Tsumuraya T, Fujii I. Effects of substrate conformational strain on binding kinetics of catalytic antibodies. Biophys Physicobiol 2016; 13:135-138. [PMID: 27924267 PMCID: PMC5042168 DOI: 10.2142/biophysico.13.0_135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 01/18/2016] [Indexed: 01/12/2023] Open
Abstract
We analyzed the correlation between the conformational strain and the binding kinetics in antigen-antibody interactions. The catalytic antibodies 6D9, 9C10, and 7C8 catalyze the hydrolysis of a nonbioactive chloramphenicol monoester derivative to generate a bioactive chloramphenicol. The crystal structure of 6D9 complexed with a transition-state analog (TSA) suggests that 6D9 binds the substrate to change the conformation of the ester moiety to a thermodynamically unstable twisted conformation, enabling the substrate to reach the transition state during catalysis. The present binding kinetic analysis showed that the association rate for 6D9 binding to the substrate was much lower than that to TSA, whereas those for 9C10 and 7C8 binding were similar to those to TSA. Considering that 7C8 binds to the substrate with little conformational change in the substrate, the slow association rate observed in 6D9 could be attributed to the conformational strain in the substrate.
Collapse
Affiliation(s)
- Masayuki Oda
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | - Takeshi Tsumuraya
- Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8570, Japan
| | - Ikuo Fujii
- Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8570, Japan
| |
Collapse
|
19
|
Oda M, Azuma T. Affinity maturation of anti-(4-hydroxy-3-nitrophenyl)acetyl antibodies accompanies a modulation of antigen specificity. Mol Immunol 2015; 70:8-12. [PMID: 26688069 DOI: 10.1016/j.molimm.2015.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/20/2015] [Accepted: 12/01/2015] [Indexed: 10/22/2022]
Abstract
Anti-(4-hydroxy-3-nitrophenyl)acetyl (NP) antibodies bearing λ1 chains are known to possess fine specificity, referred to as heterocliticity, which causes these antibodies to bind to hapten analogues such as (4-hydroxy-3-iodo-5-nitrophenyl)acetyl (NIP) and (4-hydroxy-3,5-dinitrophenyl)acetyl (NNP) with higher affinity than to the autologous hapten, NP. They also show preferential binding to the phenolate form of hapten than to the phenolic form. We address here the question of whether affinity maturation accompanies in the fine specificity of these antibodies by analyzing the interaction between NP1-, NIP1-, or NNP1-hen egg lysozyme and anti-NP antibodies that possess different association constants to NP using a surface plasmon resonance biosensor. We measured interactions at various pH values and found that heterocliticity as well as preferential binding to the phenolate form of hapten were most prominent in a germline antibody having immature affinity and that fine specificity becomes less evident, i.e., anti-NP antibodies become more specific to the immunizing antigen, NP during the process of affinity maturation.
Collapse
Affiliation(s)
- Masayuki Oda
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto, Kyoto 606-8522, Japan.
| | - Takachika Azuma
- Research Institute for Biological Sciences (RIBS), Tokyo University of Science, 2669 Yamazaki, Noda, Chiba 278-0022, Japan
| |
Collapse
|
20
|
Onodera T, Toko K. Towards an electronic dog nose: surface plasmon resonance immunosensor for security and safety. SENSORS 2014; 14:16586-616. [PMID: 25198004 PMCID: PMC4208188 DOI: 10.3390/s140916586] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 07/31/2014] [Accepted: 08/29/2014] [Indexed: 01/06/2023]
Abstract
This review describes an “electronic dog nose” based on a surface plasmon resonance (SPR) sensor and an antigen–antibody interaction for security and safety. We have concentrated on developing appropriate sensor surfaces for the SPR sensor for practical use. The review covers different surface fabrications, which all include variations of a self-assembled monolayer containing oligo(ethylene glycol), dendrimer, and hydrophilic polymer. We have carried out detection of explosives using the sensor surfaces. For the SPR sensor to detect explosives, the vapor or particles of the target substances have to be dissolved in a liquid. Therefore, we also review the development of sampling processes for explosives, and a protocol for the measurement of explosives on the SPR sensor in the field. Additionally, sensing elements, which have the potential to be applied for the electronic dog nose, are described.
Collapse
Affiliation(s)
- Takeshi Onodera
- Research and Development Center for Taste and Odor Sensing, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Kiyoshi Toko
- Research and Development Center for Taste and Odor Sensing, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
21
|
Kamatari YO, Ohta S, Inoshima Y, Oda M, Maruno T, Kobayashi Y, Ishiguro N. Identification and characterization of a multispecific monoclonal antibody G2 against chicken prion protein. Protein Sci 2014; 23:1050-9. [PMID: 24863561 DOI: 10.1002/pro.2491] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/18/2014] [Accepted: 05/20/2014] [Indexed: 11/11/2022]
Abstract
We previously generated a monoclonal antibody (mAb), G2, by immunizing mice with Residues 174-247 of the chicken prion protein (ChPrP(C) ). In this study, we found that G2 possessed an extremely unusual characteristic for a mAb; in particular, it could react with at least three proteins other than ChPrP(C) , the original antigenic protein. We immunoscreened a complementary DNA library from chicken brain DNA and found three proteins (SEPT3, ATP6V1C1, and C6H10orf76) that reacts with G2. There were no regions of amino acid sequence similarity between ChPrP(C) and SEPT3, ATP6V1C1, or C6H10orf76. We selected ATP6V1C1 as a representative of the three proteins and identified the epitope within ATP6V1C1 that reacts with G2. The amino acid sequence of the G2 epitope within ATP6V1C1 (Pep8) was not related to the G2 epitope within ChPrP(C) (Pep18mer). However, enzyme-linked immunosorbent assay, surface plasmon resonance (SPR), and isothermal titration calorimetry (ITC) experiments indicated that these two peptides have similar binding affinity for G2. The apparent KD values of Pep18mer and Pep8 obtained from SPR experiments were 2.9 × 10(-8) and 1.6 × 10(-8) M, respectively. Antibody inhibition test using each peptide indicated that the binding sites of the two different peptides overlapped each other. We observed that these two peptides substantially differed in several binding characteristics. Based on the SPR experiments, the association and dissociation rate constants of Pep18mer were higher than those of Pep8. A clear difference was also observed in ITC experiments. These differences may be explained by G2 adopting different binding conformations and undergoing different binding pathways.
Collapse
Affiliation(s)
- Yuji O Kamatari
- Life Science Research Center, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | | | | | | | | | | | | |
Collapse
|
22
|
Aggregation property of glycyrrhizic acid and its interaction with cyclodextrins analyzed by dynamic light scattering, isothermal titration calorimetry, and NMR. Carbohydr Res 2014; 392:25-30. [DOI: 10.1016/j.carres.2014.04.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 04/21/2014] [Accepted: 04/22/2014] [Indexed: 11/18/2022]
|
23
|
Murakami A, Moriyama H, Osako-Kabasawa M, Endo K, Nishimura M, Udaka K, Muramatsu M, Honjo T, Azuma T, Shimizu T. Low-affinity IgM antibodies lacking somatic hypermutations are produced in the secondary response of C57BL/6 mice to (4-hydroxy-3-nitrophenyl)acetyl hapten. Int Immunol 2013; 26:195-208. [PMID: 24285827 DOI: 10.1093/intimm/dxt057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Class-switched memory B cells, which are generated through the processes of somatic hypermutation (SHM) and affinity-based selection in germinal centers, contribute to the production of affinity-matured IgG antibodies in the secondary immune response. However, changes in the affinity of IgM antibodies during the immune response have not yet been studied, although IgM(+) memory B cells have been shown to be generated. In order to understand the relationship between IgM affinity and the recall immune response, we prepared hybridomas producing anti-(4-hydroxy-3-nitrophenyl)acetyl (NP) IgM antibodies from C57BL/6 mice and from activation-induced cytidine deaminase (AID)-deficient mice. Binding analysis by ELISA showed that mAbs obtained from the secondary immune response contained IgM mAbs with affinity lower than the affinity of mAbs obtained from the primary response. By analyzing sequences of the IgM genes of hybridomas and plasma cells, we found many unmutated VH genes. VH genes that had neither tyrosine nor glycine at position 95 were frequent. The repertoire change may correlate with the lower affinity of IgM antibodies in the secondary response. The sequence and affinity changes in IgM antibodies were shown to be independent of SHM by analyzing hybridomas from AID-deficient mice. A functional assay revealed a reciprocal relationship between affinity and complement-dependent hemolytic activity toward NP-conjugated sheep RBCs; IgM antibodies with lower affinities had higher hemolytic activity. These findings indicate that lower affinity IgM antibodies with enhanced complement activation function are produced in the secondary immune response.
Collapse
Affiliation(s)
- Akikazu Murakami
- Laboratory of Structural Immunology, Division of Bioinformatics, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Chiba 278-0022, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Wang J, Jiang P, Qiu L, Wang C, Xia J. Resolving antibody–peptide complexes with different ligand stoichiometries reveals a marked affinity enhancement through multivalency. Talanta 2013; 115:394-400. [DOI: 10.1016/j.talanta.2013.05.070] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 05/25/2013] [Accepted: 05/30/2013] [Indexed: 10/26/2022]
|
25
|
Hiraoka D, Yoshida W, Abe K, Wakeda H, Hata K, Ikebukuro K. Development of a method to measure DNA methylation levels by using methyl CpG-binding protein and luciferase-fused zinc finger protein. Anal Chem 2012; 84:8259-64. [PMID: 22924825 DOI: 10.1021/ac3015774] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
DNA methylation, which is an important epigenetic event for transcriptional regulation, is regarded as a biomarker for cancer. A rapid and sensitive method for measuring DNA methylation levels in target genomic regions may enable early diagnosis of cancer. To detect DNA methylation levels conveniently, we developed a detection system for DNA methylation, designated as methylated DNA precipitation combined luciferase-fused zinc finger assay (MELZA), which uses methyl CpG-binding domain (MBD) and luciferase-fused zinc finger protein. This system comprises the following 3 steps: (1) MBD-based methylated DNA precipitation, (2) PCR amplification of the target genomic region, and (3) detection of the PCR product quantity by using luciferase-fused zinc finger protein. Using this system, we have accurately measured methylation levels of the androgen receptor gene promoter region in LNCaP, PC3, Du145, and whole blood cells. This system does not require bisulfite treatment, and all the steps can be automated. Therefore, it might be useful for measuring DNA methylation levels in clinical cancer diagnoses.
Collapse
Affiliation(s)
- Daisuke Hiraoka
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Critical roles of Asp270 and Trp273 in the α-repeat of the carbohydrate-binding module of endo-1,3-β-glucanase for laminarin-binding avidity. Glycoconj J 2011; 29:77-85. [PMID: 22198269 DOI: 10.1007/s10719-011-9366-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 12/09/2011] [Accepted: 12/15/2011] [Indexed: 10/14/2022]
Abstract
A carbohydrate-binding module from family 13 (CBM13), appended to the catalytic domain of endo-1,3-β-glucanase from Cellulosimicrobium cellulans, was overexpressed in E. coli, and its interactions with β-glucans, laminarin and laminarioligosaccharides, were analyzed using surface plasmon resonance biosensor and isothermal titration calorimetry. The association constants for laminarin and laminarioligosaccharides were determined to be approximately 10(6) M(-1) and 10(4) M(-1), respectively, indicating that 2 or 3 binding sites in the α-, β-, and γ-repeats of CBM13 are involved in laminarin binding in a cooperative manner. The binding avidity is approximately 2-orders higher than the monovalent binding affinity. Mutational analysis of the conserved Asp residues in the respective repeats showed that the α-repeat primarily contributes to β-glucan binding. A Trp residue is predicted to be exposed to the solvent only in the α-repeat and would contribute to β-glucan binding. The α-repeat bound β-glucan with an affinity of approximately 10(4) M(-1), and the other repeats additionally bound laminarin, resulting in the increased binding avidity. This binding is unique compared to the recognition mode of another CBM13 from Streptomyces lividans xylanase.
Collapse
|
27
|
Stadler LKJ, Hoffmann T, Tomlinson DC, Song Q, Lee T, Busby M, Nyathi Y, Gendra E, Tiede C, Flanagan K, Cockell SJ, Wipat A, Harwood C, Wagner SD, Knowles MA, Davis JJ, Keegan N, Ferrigno PK. Structure-function studies of an engineered scaffold protein derived from Stefin A. II: Development and applications of the SQT variant. Protein Eng Des Sel 2011; 24:751-63. [PMID: 21616931 DOI: 10.1093/protein/gzr019] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Constrained binding peptides (peptide aptamers) may serve as tools to explore protein conformations and disrupt protein-protein interactions. The quality of the protein scaffold, by which the binding peptide is constrained and presented, is of crucial importance. SQT (Stefin A Quadruple Mutant-Tracy) is our most recent development in the Stefin A-derived scaffold series. Stefin A naturally uses three surfaces to interact with its targets. SQT tolerates peptide insertions at all three positions. Peptide aptamers in the SQT scaffold can be expressed in bacterial, yeast and human cells, and displayed as a fusion to truncated pIII on phage. Peptides that bind to CDK2 can show improved binding in protein microarrays when presented by the SQT scaffold. Yeast two-hybrid libraries have been screened for binders to the POZ domain of BCL-6 and to a peptide derived from PBP2', specific to methicillin-resistant Staphylococcus aureus. Presentation of the Noxa BH3 helix by SQT allows specific interaction with Mcl-1 in human cells. Together, our results show that Stefin A-derived scaffolds, including SQT, can be used for a variety of applications in cellular and molecular biology. We will henceforth refer to Stefin A-derived engineered proteins as Scannins.
Collapse
Affiliation(s)
- Lukas Kurt Josef Stadler
- Section of Experimental Therapeutics, Leeds Institute of Molecular Medicine, St James's University Hospital, Leeds, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Nishimura M, Murakami A, Hara Y, Azuma T. Characterization of memory B cells responsible for affinity maturation of anti- (4-hydroxy-3-nitrophenyl)acetyl (NP) antibodies. Int Immunol 2011; 23:271-85. [PMID: 21421736 DOI: 10.1093/intimm/dxr002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We searched for memory B cells responsible for high-affinity anti-(4-hydroxy-3-nitrophenyl)acetyl (NP) antibody production by C57BL/6 mice immunized with NP-chicken γ-globulin (CGG), using flow cytometry. We first prepared transfectants expressing B-cell antigen receptor (BCR) of known affinity as a memory B-cell model as well as NP-allophycocyanin (APC) of different NP valences, NP(lo), NP(med) and NP(hi). We then used the latter as probes capable of distinguishing BCR affinities: NP(lo)-APC bound to BCRs with an affinity higher than 3.4 × 10(6) M(-1), while NP(med)-APC bound to those with a higher than germline affinity. B cells capable of binding to NP(lo)-APC appeared in spleens on day 14 post-immunization, and harbored Tyr95 (Tyr95 type) as well as a mutation from Trp33 to Leu. B cells with BCRs harboring Gly95 (Gly95 type) appeared only in the NP(med)-APC-binding fraction on day 56 and in the NP(lo)-APC-binding fraction on day 77, indicating that this long duration was necessary for Gly95 type B cells to acquire high affinity and to become a member of the group of memory B cells with high affinity. Administration of NP-CGG on day 77 caused little change in the proportion of the Gly95 type in NP(lo)-APC-binding B cells in the following 2 weeks but brought about an increase in the number of high-affinity antibody-secreting cells (ASC), suggesting that the memory B-cell compartment established was maintained at a later stage and supplied high-affinity ASCs. The relationship between these Gly95 type memory B cells and ASCs is discussed.
Collapse
Affiliation(s)
- Miyuki Nishimura
- Research Institute for Biological Sciences, Tokyo University of Science, 2669 Yamazaki, Noda, Chiba 278-0022, Japan
| | | | | | | |
Collapse
|
29
|
Optimisation of a multivalent Strep tag for protein detection. Biophys Chem 2010; 152:170-7. [PMID: 20970240 DOI: 10.1016/j.bpc.2010.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 09/20/2010] [Accepted: 09/20/2010] [Indexed: 02/05/2023]
Abstract
The Strep tag is a peptide sequence that is able to mimic biotin's ability to bind to streptavidin. Sequences of Strep tags from 0 to 5 have been appended to the N-terminus of a model protein, the Stefin A Quadruple Mutant (SQM) peptide aptamer scaffold, and the recombinant fusion proteins expressed. The affinities of the proteins for streptavidin have been assessed as a function of the number of tags inserted using a variety of labelled and label-free bioanalytical and surface based methods (Western blots, microarray assays and surface plasmon resonance spectroscopy). The binding affinity increases with the number of tags across all assays, reaching nanomolar levels with 5 inserts, an observation assigned to a progressive increase in the probability of a binding interaction occurring. In addition a novel interfacial FRET based assay has been developed for generic Strep tag interactions, which utilises a conventional microarray scanner and bypasses the requirement for expensive lifetime imaging equipment. By labelling both the tagged StrepX-SQM(2) and streptavidin targets, the conjugate is primed for label-free FRET based displacement assays.
Collapse
|
30
|
Oda M, Kitai A, Murakami A, Nishimura M, Ohkuri T, Abe Y, Ueda T, Nakamura H, Azuma T. Evaluation of the conformational equilibrium of reduced hen egg lysozyme by antibodies to the native form. Arch Biochem Biophys 2010; 494:145-50. [DOI: 10.1016/j.abb.2009.11.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 11/18/2009] [Accepted: 11/19/2009] [Indexed: 11/26/2022]
|
31
|
Effects of antibody affinity and antigen valence on molecular forms of immune complexes. Mol Immunol 2009; 47:357-64. [PMID: 19800690 DOI: 10.1016/j.molimm.2009.09.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 09/03/2009] [Indexed: 11/20/2022]
Abstract
The effect of antibody affinity on molecular forms of immune complexes was investigated by measuring antigen-antibody interactions using surface plasmon resonance (SPR), electrospray ionization time-of-flight mass spectrometry under non-denaturing conditions (MS), analytical ultracentrifugation (AUC), and transmission electron microscopy (TEM). (4-Hydroxy-3-nitrophenyl)acetic acid (NP) of different valences was conjugated to bovine serum albumin (BSA) and these conjugates were used as antigens. In the interaction between N1G9, a low affinity antibody, and NP(7)-BSA, a 1:1 immune complex was detected as the major product and higher molecular weight complexes were not obtained by any of the methods employed. These results suggested that N1G9 predominantly formed an intramolecular divalent complex with NP(7)-BSA using the two Fab arms of an antibody. Although complexes of various sizes were detected by MS, AUC, and TEM in the interaction between C6, a high affinity antibody, and NP(7)-BSA, only 1:1 immune complexes were observed by SPR. These results showed that two NP(7)-BSA molecules cannot simultaneously bind to an antibody, irrespective of antibody affinity strength, when the Fc region is immobilized to a flexible dextran matrix on sensor chip but are able to do so with high affinity antibodies free in solution. The results also showed that the stoichiometry of the antigen-antibody interaction is altered by restricting the movement of the Fc region. Since immunoglobulins exist as antibodies in solution or as B cell receptors on the cell surface, it is suggested that interactions of B cell receptors with polyvalent antigens such as NP-BSA might be different from those of antibodies free in solution.
Collapse
|
32
|
|
33
|
Chen Y, Wang Z, Wang Z, Tang S, Zhu Y, Xiao X. Rapid enzyme-linked immunosorbent assay and colloidal gold immunoassay for kanamycin and tobramycin in Swine tissues. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:2944-2952. [PMID: 18393429 DOI: 10.1021/jf703602b] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A monoclonal antibody (Mab) was produced by using the kanamycin-glutaraldehyde-bovine serum albumin (Kan-GDA-BSA) conjugate as the immunogen. The anti-Kan Mab exhibited high cross-reactivity with tobramycin (Tob) and slight or negligible cross-reactivity with other aminoglycosides. The specificity and cross-reactivity of this Mab are discussed regarding the three-dimensional, computer-generated molecular models of the aminoglycosides. Using this Mab, a rapid enzyme-linked immunosorbent assay (ELISA) and a colloidal gold-based strip test for Kan and Tob were developed. The rapid ELISA showed a 50% inhibition value (IC 50) of 0.83 ng/mL for Kan and 0.89 ng/mL for Tob with the analysis time less than 40 min, and the recoveries from spiked swine tissues at levels of 25-200 microg/kg ranged from 52% to 96% for Kan and 61% to 86% for Tob. In contrast, the strip test for Kan or Tob had a visual detection limit of 5 ng/mL in PBS, 50 microg/kg in meat or liver, and 100 microg/kg in kidney, and the results can be judged within 5-10 min. Observed positive samples judged by the strip test can be further quantitated by ELISA, hence the two assays can complement each other for rapid detection of residual Kan and Tob in swine tissues. Moreover, physical-chemical factors that affected the ELISA and strip test performance were also investigated. The effect of pH and antibody amount for gold-antibody conjugation on the strip test sensitivity was determined followed by a theoretical explanation of the effects.
Collapse
Affiliation(s)
- Yiqiang Chen
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| | | | | | | | | | | |
Collapse
|
34
|
Abe M, Murata K, Ataka T, Matsumoto K. Calibration method for a carbon nanotube field-effect transistor biosensor. NANOTECHNOLOGY 2008; 19:045505. [PMID: 21817506 DOI: 10.1088/0957-4484/19/04/045505] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
An easy calibration method based on the Langmuir adsorption theory is proposed for a carbon nanotube field-effect transistor (NTFET) biosensor. This method was applied to three NTFET biosensors that had approximately the same structure but exhibited different characteristics. After calibration, their experimentally determined characteristics exhibited a good agreement with the calibration curve. The reason why the observed characteristics of these NTFET biosensors differed among the devices was that the carbon nanotube (CNT) that formed the channel was not uniform. Although the controlled growth of a CNT is difficult, it is shown that an NTFET biosensor can be easy calibrated using the proposed calibration method, regardless of the CNT channel structures.
Collapse
Affiliation(s)
- Masuhiro Abe
- Future Creation Laboratory, Olympus Corporation, Shinjuku Monolith, 3-1 Nishi-Shinjuku 2-chome, Shinjuku, Tokyo 163-0914, Japan. NEDO c/o Olympus Corporation, Shinjuku Monolith, 3-1 Nishi-Shinjuku 2-chome, Shinjuku, Tokyo 163-0914, Japan
| | | | | | | |
Collapse
|
35
|
Shimizu T, Osaka Y, Banri-Koike C, Yoshida M, Endo K, Furukawa K, Oda M, Murakami A, Ogawa S, Abe R, Azuma T. T cells specific to hapten carrier but not to carrier alone assist in the production of anti-hapten and anti-carrier antibodies. Int Immunol 2007; 19:1157-64. [PMID: 17881502 DOI: 10.1093/intimm/dxm080] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We examined the immune response of Balb/c mice to antigens prepared by conjugating 2-phenyloxazolone (phOx) to a foreign protein, ovalbumin (OVA), or a self-protein, mouse serum albumin (MSA), in order to study how these chemical modifications would affect immune recognition. We found that anti-OVA antibodies and CD4(+) T cells produced by OVA immunization reacted with OVA as well as with phOx-OVA. Anti-phOx antibodies were produced by phOx-OVA immunization and, interestingly, T cells from these mice reacted only with phOx-OVA but not with the intact OVA. These results suggested that the classical model of hapten-carrier immunization, in which B cells specific to hapten are activated with assistance from T cells specific to a carrier protein, might not be a major route for production of anti-hapten antibodies in hapten-carrier immunization. Furthermore, phOx-MSA immunization induced production of anti-phOx antibodies, which could not be accounted for in terms of the assistance of carrier-specific T cells because of the absence of MSA-specific T cells. Therefore, we proposed a new model in which anti-hapten B cells are assisted by T cells specific to the haptenated carrier.
Collapse
Affiliation(s)
- Takeyuki Shimizu
- Division of Structural Immunology, Research Institute for Biological Sciences, Tokyo University of Science, Yamazaki 2669, Noda, Chiba 278-0022, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
|
37
|
Sagawa T, Azuma T, Sasaki YC. Dynamical regulations of protein-ligand bindings at single molecular level. Biochem Biophys Res Commun 2007; 355:770-5. [PMID: 17320819 DOI: 10.1016/j.bbrc.2007.02.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2007] [Accepted: 02/05/2007] [Indexed: 11/28/2022]
Abstract
We present new quantitative regulations of the binding-affinity using dynamical single-molecule detection system with X-rays. In the study of antigen-antibody interactions, we found that structural fluctuations of single-molecules were negatively regulated by antigen-binding. Although strategies to produce ligand-induced stability have been well studied from the macro aspect both theoretically and experimentally, our dynamical single-molecular experimental results are first observations with angstrom accuracy in the real-time and space. It is considered that those negative regulations of protein structural fluctuations with binding event are related to biological functions. In addition, we clarified that ratio between antigen-binding condition and no-binding one in observed structural fluctuations are extremely relative to the binding-affinity. These results indicate that the phenomena of protein-ligand interactions considered as stable states can be defined as results of dynamical processes at the single-molecule level. Such new quantifications from angstrom-level structural fluctuations can be applied to various biological science and biotechnologies.
Collapse
Affiliation(s)
- Takuma Sagawa
- Sasaki-team, Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 2-20-5, Akebono-cho, Tachikawa, Tokyo 190-0012, Japan
| | | | | |
Collapse
|
38
|
Huang GS, Chen YS, Yeh HW. Measuring the flexibility of immunoglobulin by gold nanoparticles. NANO LETTERS 2006; 6:2467-71. [PMID: 17090075 DOI: 10.1021/nl061598x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
We measured the flexibility of Fab and Fc arms of immunoglobulin using gold nanoparticles (GNPs). Enzyme-linked immunosorbent assay was performed to measure the affinity of anti-5 nm GNP antiserum against various sizes of GNPs. The flexibility of Fc was also measured by electron microscopy. The restricted binding affinity indicated that only a very limited amount of freedom was allowed for the Fab-Fab hinge, while Fab-Fc showed a much larger degree of freedom.
Collapse
Affiliation(s)
- G Steven Huang
- Institute of Nanotechnology and Center for Nano Science & Technology, National Chiao Tung University, Hsinchu, Taiwan, Republic of China.
| | | | | |
Collapse
|
39
|
Paus D, Phan TG, Chan TD, Gardam S, Basten A, Brink R. Antigen recognition strength regulates the choice between extrafollicular plasma cell and germinal center B cell differentiation. ACTA ACUST UNITED AC 2006; 203:1081-91. [PMID: 16606676 PMCID: PMC2118299 DOI: 10.1084/jem.20060087] [Citation(s) in RCA: 392] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
B cells responding to T-dependent antigen either differentiate rapidly into extrafollicular plasma cells or enter germinal centers and undergo somatic hypermutation and affinity maturation. However, the physiological cues that direct B cell differentiation down one pathway versus the other are unknown. Here we show that the strength of the initial interaction between B cell receptor (BCR) and antigen is a primary determinant of this decision. B cells expressing a defined BCR specificity for hen egg lysozyme (HEL) were challenged with sheep red blood cell conjugates of a series of recombinant mutant HEL proteins engineered to bind this BCR over a 10,000-fold affinity range. Decreasing either initial BCR affinity or antigen density was found to selectively remove the extrafollicular plasma cell response but leave the germinal center response intact. Moreover, analysis of competing B cells revealed that high affinity specificities are more prevalent in the extrafollicular plasma cell versus the germinal center B cell response. Thus, the effectiveness of early T-dependent antibody responses is optimized by preferentially steering B cells reactive against either high affinity or abundant epitopes toward extrafollicular plasma cell differentiation. Conversely, responding clones with weaker antigen reactivity are primarily directed to germinal centers where they undergo affinity maturation.
Collapse
Affiliation(s)
- Didrik Paus
- Centenary Institute of Cancer Medicine and Cell Biology, Newtown NSW 2042, Australia
| | | | | | | | | | | |
Collapse
|
40
|
Oda M, Uchiyama S, Robinson CV, Fukui K, Kobayashi Y, Azuma T. Regional and segmental flexibility of antibodies in interaction with antigens of different size. FEBS J 2006; 273:1476-87. [PMID: 16689933 DOI: 10.1111/j.1742-4658.2006.05168.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The interaction of antibodies (Abs) with protein antigens (Ags) of different size, such as hen egg white lysozyme, ovalbumin, and bovine serum albumin, was examined using analytical ultracentrifugation, electrospray ionization time-of-flight mass spectrometry, and surface plasmon resonance in order to estimate regional and segmental Ab flexibility. When both Abs and Ags were free in solution, sedimentation equilibrium and surface plasmon resonance analyses showed the formation of an Ag(2)Ab(1) complexes regardless of Ag size, suggesting that the Fab arms were able to move to avoid interference between Ags bound to Ab combining sites. The Ag(2)Ab(1) complex, as well as the Ag(1)Ab(1) complex, was observed by MS. However, when Abs were immobilized on the surface of a sensor chip through the Fc region, the stoichiometry of the Ag-Ab complex was dependent on the Ag size; Ag(2)Ab(1) forming with hen egg white lysozyme and Ag(1)Ab(1) with ovalbumin and bovine serum albumin. These results indicated that immobilization of the Fc region reduces the dynamic range of the Fab arms and results in interference from the first Ag bound to either combining site, which in turn prevents the binding of the second Ag to the other combining site. Our results allow us to propose that the Fab arms of B-cell receptors whose Fc regions are immobilized on cell surface have a reduced dynamic range.
Collapse
Affiliation(s)
- Masayuki Oda
- Graduate School of Agriculture, Kyoto Prefectural University, Japan
| | | | | | | | | | | |
Collapse
|
41
|
Izutani Y, Kanaori K, Imoto T, Oda M. Interaction of gymnemic acid with cyclodextrins analyzed by isothermal titration calorimetry, NMR and dynamic light scattering. FEBS J 2006; 272:6154-60. [PMID: 16302978 DOI: 10.1111/j.1742-4658.2005.05014.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The physiological phenomenon that the antisweet taste effect of gymnemic acid (GA) is diminished by application of gamma-cyclodextrin (gamma-CD) to the mouth was evaluated at the molecular level using isothermal titration calorimetry, NMR and dynamic light scattering. These analyses showed that GA specifically binds to gamma-CD. Thermodynamic analysis using isothermal titration calorimetry revealed that the association constant of GA and gamma-CD is 10(5)-10(6) m(-1) with favorable enthalpy and entropy changes. The heat capacity change was negative and large, despite the change in accessible surface area upon binding being small. These thermodynamics indicate that the binding is dominated by hydrophobic interactions, which is in agreement with inclusion complex formation of gamma-CD. In addition, NMR measurements showed that in solution the spectra of GA are broad and sharpened by the addition of gamma-CD, indicating that unbound GA is in a water-soluble aggregate that is dispersed when it forms a complex with gamma-CD. Dynamic light scattering showed that the average diameter of unbound GA is > 30 nm and that of GA and gamma-CD complex is 2.2 nm, similar to unbound gamma-CD, supporting the aggregate property of GA and the inclusion complexation of GA by gamma-CD.
Collapse
Affiliation(s)
- Yusuke Izutani
- Graduate School of Agriculture, Kyoto Prefectural University, Japan
| | | | | | | |
Collapse
|
42
|
Vaz de Andrade E, Freitas SM, Ventura MM, Maranhão AQ, Brigido MM. Thermodynamic basis for antibody binding to Z-DNA: comparison of a monoclonal antibody and its recombinant derivatives. Biochim Biophys Acta Gen Subj 2005; 1726:293-301. [PMID: 16214293 DOI: 10.1016/j.bbagen.2005.08.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Revised: 08/24/2005] [Accepted: 08/31/2005] [Indexed: 10/25/2022]
Abstract
Antibody engineering represents a promising area in biotechnology. Recombinant antibodies can be easily manipulated generating new ligand and effector activities that can be used as prototype magic bullets. On the other hand, an extensive knowledge of recombinant antibody binding and stability features are essential for an efficient substitution. In this study, we compared the stability and protein binding properties of two recombinant antibody fragments with their parental monoclonal antibody. The recombinant fragments were a monomeric scFv and a dimeric one, harboring human IgG1 CH2-CH3 domains. We have used fluorescence titration quenching to determine the thermodynamics of the interaction between an anti-Z-DNA monoclonal antibody and its recombinant antibody fragments with Z-DNA. All the antibody fragments seemed to bind DNA similarly, in peculiar two-affinity states. Enthalpy-entropy compensation was observed for both affinity states, but a marked entropy difference was observed for the monomeric scFv antibody fragment, mainly for the high affinity binding. In addition, we compared the stability of the dimeric antibody fragment and found differences favoring the monoclonal antibody. These differences seem to derive from the heterologous expression system used.
Collapse
|
43
|
Sagawa T, Oda M, Morii H, Takizawa H, Kozono H, Azuma T. Conformational changes in the antibody constant domains upon hapten-binding. Mol Immunol 2005; 42:9-18. [PMID: 15488939 DOI: 10.1016/j.molimm.2004.07.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2004] [Accepted: 07/14/2004] [Indexed: 11/16/2022]
Abstract
Bacterial proteins A and G (SpA and SpG) are immunoglobulin receptors that can be used as probes for monitoring change in the conformation of heavy chain constant (C(H)) domains. Interaction of anti-(4-hydroxy-3-nitrophenyl)acetyl (NP) antibody (Ab) with SpA and SpG were measured by isothermal titration calorimetry and surface plasmon resonance in order to address the question of whether hapten-binding induces a conformational change in the C(H) domain. The interactions of IgG2a or its enzymatic fragments with SpA were measured in the presence or absence of the hapten. Although binding of Fab and F(ab')2 fragments were not observed to free SpA, they did bind to immobilized SpA. In addition, the association constant (K(a)) for interaction of IgG2a with immobilized SpA was approximately 20-fold higher than that with free SpA. This was explained in terms of high avidity resulting from multivalent interaction between IgG2a and immobilized SpA on the chip. Interestingly, the hapten-binding weakened the interaction between the F(ab')2 fragment and SpA. Furthermore, approximately half of the IgG2a was incapable of binding to immobilized SpA in the presence of hapten. These results were explained using a model which assumed the formation of two kinds of SpA/IgG complexes; one through sites on F(ab')2 arms and the other through sites on the Fc region. The former type dissociated as a result of hapten-binding, as did the F(ab')2 fragment and suggested that a conformational change had occurred around the Fab arms, while the latter type did not dissociate because of the higher avidity of the Fc region. However, using a mutant SpA with a lower K(a) value for the interaction with IgG2a, it was shown that hapten-binding induced long range conformational changes in the Fc region of IgG2a. Similar evidence of conformational change upon hapten-binding was also obtained using SpG as a probe.
Collapse
Affiliation(s)
- Takuma Sagawa
- Research Institute for Biological Sciences (RIBS), Tokyo University of Science, 2669 Yamazaki, Noda, Chiba 278-0022, Japan
| | | | | | | | | | | |
Collapse
|
44
|
Oda M, Sato-Nakamura N, Azuma T. Molecular characterization of monovalent and multivalent hapten–protein conjugates for analysis of the antigen–antibody interaction. Anal Biochem 2004; 333:365-71. [PMID: 15450814 DOI: 10.1016/j.ab.2004.06.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2004] [Indexed: 10/26/2022]
Abstract
We prepared a hapten-protein conjugate using (4-hydroxy-3-nitrophenyl)acetyl (NP) hapten and hen egg lysozyme (HEL) or bovine serum albumin (BSA) and defined hapten modification sites on the former protein based on results of reverse-phase high-performance liquid chromatography (HPLC) and mass spectrometric analyses performed after enzymatic digestion. The most reactive residue for aminoacetylation in HEL was found to be Lys33, and the second was Lys96 or Lys97. The homogeneous NP-HEL conjugates were purified by HPLC and used for examining the effect of hapten valence on the antigen-antibody interaction. We also examined the molecular nature of NP conjugates of BSA. Analysis using mass spectroscopy showed that the mass distribution of NP-BSA conjugates was limited, although it became broader with an increase in NP valence. Surface plasmon resonance biosensor measurements were employed in measuring antigen-antibody interactions. The results showed that the apparent binding avidity depends on hapten valence, hapten density, size of carrier proteins, and intrinsic binding affinity of the antibody.
Collapse
Affiliation(s)
- Masayuki Oda
- Research Institute for Biological Sciences, Tokyo University of Science, 2669 Yamazaki, Noda, Chiba 278-0022, Japan
| | | | | |
Collapse
|
45
|
Tobita T, Oda M, Azuma T. Segmental flexibility and avidity of IgM in the interaction of polyvalent antigens. Mol Immunol 2004; 40:803-11. [PMID: 14687937 DOI: 10.1016/j.molimm.2003.09.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We prepared IgG and IgM with identical combining sites to a hapten, (4-hydroxy-3-nitrophenyl)acetic acid (NP), and used surface plasmon resonance to evaluate the association constants (Ka) in interactions of these antibodies (Abs) with antigens (Ags) which differed in the size of carriers and NP valence as well as in the stoichiometry of Ag to Ab in the immune complexes. It was found that IgM was unable to form an Ag1Ab1 complex with the highly haptenated Ag, NP(18.6)-bovine serum albumin (BSA), such that one NP(18.6)-BSA molecule was held by multiple contacts with Fab arms from five subunits, although IgM was capable of forming an Ag4Ab1 complex in which each subunit was bound to one NP(18.6)-BSA molecule. IgM was superior to IgG in interactions with large Ags of low hapten density. The Ka values of IgM to these Ags were estimated to be approximately 1x10(9) M(-1), about 20-fold higher than those of IgG. Reduction of inter-subunit and inter-chain disulfide bonds resulted in a decrease in Ka values to large Ags but no change in those to small Ags.
Collapse
Affiliation(s)
- Toranosuke Tobita
- Research Institute for Biological Sciences, Tokyo University of Science, 2669 Yamazaki, Noda, Chiba 278-0022, Japan
| | | | | |
Collapse
|
46
|
Shimizu T, Oda M, Azuma T. Estimation of the relative affinity of B cell receptor by flow cytometry. J Immunol Methods 2003; 276:33-44. [PMID: 12738357 DOI: 10.1016/s0022-1759(03)00068-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have developed a simple method using flow cytometry to estimate the relative affinity of B cell receptor (BCR) possessing the hapten-binding activity. Bovine serum albumin (BSA) was conjugated with a hapten, (4-hydroxy-3-nitrophenyl)acetyl (NP) and biotin (NP-BSA-bio). The interaction between NP-BSA-bio and anti-NP monoclonal antibodies (mAb) was studied as a model of the BCR reaction by surface plasmon resonance (SPR) using a biosensor chip immobilized with mAbs through anti-Fc antibody (Ab). The relative affinity of these mAbs was estimated on the basis of resonance units for the binding of NP(0.5)-BSA-bio(21) relative to that of NP(7.4)-BSA-bio(21) expressed as a ratio (NP(0.5)-BSA-bio(21)/NP(7.4)-BSA-bio(21)). In combination with streptavidin (SA)-R-phycoerythrin (PE), we measured the binding of NP-BSA-bio to BCR by flow cytometry and found that a high number of biotin molecules was necessary to improve the sensitivity of detection of the bound NP-BSA-bio without steric hindrance in the NP-BCR interaction. We demonstrated that the ratio of the mean fluorescence intensity (MFI) of NP(0.5)-BSA-bio(21)/NP(7.4)-BSA-bio(21) at a concentration of 10(-8) M could be used as a practical measure of the affinity. This method is expected to be useful for the study of affinity maturation on the cellular level.
Collapse
Affiliation(s)
- Takeyuki Shimizu
- Research Institute for Biological Science (RIBS), Tokyo University of Science, 2669 Yamazaki, Noda, Chiba 278-0022, Japan
| | | | | |
Collapse
|
47
|
Sagawa T, Oda M, Ishimura M, Furukawa K, Azuma T. Thermodynamic and kinetic aspects of antibody evolution during the immune response to hapten. Mol Immunol 2003; 39:801-8. [PMID: 12617995 DOI: 10.1016/s0161-5890(02)00282-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We determined thermodynamic and kinetic parameters for the antigen-antibody interaction using a group of anti-(4-hydroxy-3-nitrophenyl)acetyl monoclonal antibodies whose differences in amino acid sequences had arisen only from somatic hypermutation. These monoclonal antibodies were considered to have originated from a common ancestor clone and to represent progression along the affinity maturation pathway. The kinetic measurements showed that both association and dissociation rate constants of the antigen-antibody interaction decreased during maturation. Thermodynamic measurements revealed that an increase in affinity was obtained by an increase in entropy without any significant change in enthalpy. These results suggested that the mechanism for the antigen-antibody interaction shifted from a "zipper" type to a "lock-and-key" type during antibody evolution.
Collapse
Affiliation(s)
- Takuma Sagawa
- Research Institute for Biological Sciences, Tokyo University of Science, 2669 Yamazaki, Noda, Chiba 278-0022, Japan
| | | | | | | | | |
Collapse
|