1
|
Selezneva A, Gibb AJ, Willis D. The Nuclear Envelope as a Regulator of Immune Cell Function. Front Immunol 2022; 13:840069. [PMID: 35757775 PMCID: PMC9226455 DOI: 10.3389/fimmu.2022.840069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/10/2022] [Indexed: 01/07/2023] Open
Abstract
The traditional view of the nuclear envelope (NE) was that it represented a relatively inert physical barrier within the cell, whose main purpose was to separate the nucleoplasm from the cytoplasm. However, recent research suggests that this is far from the case, with new and important cellular functions being attributed to this organelle. In this review we describe research suggesting an important contribution of the NE and its constituents in regulating the functions of cells of the innate and adaptive immune system. One of the standout properties of immune cells is their ability to migrate around the body, allowing them to carry out their physiological/pathophysiology cellular role at the appropriate location. This together with the physiological role of the tissue, changes in tissue matrix composition due to disease and aging, and the activation status of the immune cell, all result in immune cells being subjected to different mechanical forces. We report research which suggests that the NE may be an important sensor/transducer of these mechanical signals and propose that the NE is an integrator of both mechanical and chemical signals, allowing the cells of the innate immune system to precisely regulate gene transcription and functionality. By presenting this overview we hope to stimulate the interests of researchers into this often-overlooked organelle and propose it should join the ranks of mitochondria and phagosome, which are important organelles contributing to immune cell function.
Collapse
Affiliation(s)
- Anna Selezneva
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, United Kingdom
| | - Alasdair J Gibb
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, United Kingdom
| | - Dean Willis
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, United Kingdom
| |
Collapse
|
2
|
Chhuon C, Zhang SY, Jung V, Lewandowski D, Lipecka J, Pawlak A, Sahali D, Ollero M, Guerrera IC. A sensitive S-Trap-based approach to the analysis of T cell lipid raft proteome. J Lipid Res 2020; 61:1512-1523. [PMID: 32769147 PMCID: PMC7604723 DOI: 10.1194/jlr.d120000672] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The analysis of T cell lipid raft proteome is challenging due to the highly dynamic nature of rafts and the hydrophobic character of raft-resident proteins. We explored an innovative strategy for bottom-up lipid raftomics based on suspension-trapping (S-Trap) sample preparation. Mouse T cells were prepared from splenocytes by negative immunoselection, and rafts were isolated by a detergent-free method and OptiPrep gradient ultracentrifugation. Microdomains enriched in flotillin-1, LAT, and cholesterol were subjected to proteomic analysis through an optimized protocol based on S-Trap and high pH fractionation, followed by nano-LC-MS/MS. Using this method, we identified 2,680 proteins in the raft-rich fraction and established a database of 894 T cell raft proteins. We then performed a differential analysis on the raft-rich fraction from nonstimulated versus anti-CD3/CD28 T cell receptor (TCR)-stimulated T cells. Our results revealed 42 proteins present in one condition and absent in the other. For the first time, we performed a proteomic analysis on rafts from ex vivo T cells obtained from individual mice, before and after TCR activation. This work demonstrates that the proposed method utilizing an S-Trap-based approach for sample preparation increases the specificity and sensitivity of lipid raftomics.
Collapse
Affiliation(s)
- Cerina Chhuon
- Proteomic Platform Necker, Structure Fédérative de Recherche SFR Necker US24, Paris, France
- Institut Mondor de Recherche Biomédicale, INSERM, U955, Créteil, France
| | - Shao-Yu Zhang
- Institut Mondor de Recherche Biomédicale, INSERM, U955, Créteil, France
| | - Vincent Jung
- Proteomic Platform Necker, Structure Fédérative de Recherche SFR Necker US24, Paris, France
| | - Daniel Lewandowski
- CEA/DRF/IBFJ/iRCM/LRTS, Fontenay-aux-Roses Cedex, France
- CEA/DRF/IBFJ/iRCM/LRTS, Fontenay-aux-Roses Cedex, France
- CEA/DRF/IBFJ/iRCM/LRTS, Fontenay-aux-Roses Cedex, France
- Université Paris-Sud, Paris, France
| | - Joanna Lipecka
- Proteomic Platform Necker, Structure Fédérative de Recherche SFR Necker US24, Paris, France
| | - André Pawlak
- Institut Mondor de Recherche Biomédicale, INSERM, U955, Créteil, France
| | - Dil Sahali
- Institut Mondor de Recherche Biomédicale, INSERM, U955, Créteil, France
- AP-HP (Assistance Publique des Hôpitaux de Paris), Department of Nephrology and Renal Transplantation, Groupe Hospitalier Henri-Mondor, Créteil, France
- Université Paris Est Créteil, Créteil, France
| | - Mario Ollero
- Institut Mondor de Recherche Biomédicale, INSERM, U955, Créteil, France
- Université Paris Est Créteil, Créteil, France
| | - Ida Chiara Guerrera
- Proteomic Platform Necker, Structure Fédérative de Recherche SFR Necker US24, Paris, France
| |
Collapse
|
3
|
Saez A, Herrero-Fernandez B, Gomez-Bris R, Somovilla-Crespo B, Rius C, Gonzalez-Granado JM. Lamin A/C and the Immune System: One Intermediate Filament, Many Faces. Int J Mol Sci 2020; 21:E6109. [PMID: 32854281 PMCID: PMC7504305 DOI: 10.3390/ijms21176109] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 12/11/2022] Open
Abstract
Nuclear envelope lamin A/C proteins are a major component of the mammalian nuclear lamina, a dense fibrous protein meshwork located in the nuclear interior. Lamin A/C proteins regulate nuclear mechanics and structure and control cellular signaling, gene transcription, epigenetic regulation, cell cycle progression, cell differentiation, and cell migration. The immune system is composed of the innate and adaptive branches. Innate immunity is mediated by myeloid cells such as neutrophils, macrophages, and dendritic cells. These cells produce a rapid and nonspecific response through phagocytosis, cytokine production, and complement activation, as well as activating adaptive immunity. Specific adaptive immunity is activated by antigen presentation by antigen presenting cells (APCs) and the cytokine microenvironment, and is mainly mediated by the cellular functions of T cells and the production of antibodies by B cells. Unlike most cell types, immune cells regulate their lamin A/C protein expression relatively rapidly to exert their functions, with expression increasing in macrophages, reducing in neutrophils, and increasing transiently in T cells. In this review, we discuss and summarize studies that have addressed the role played by lamin A/C in the functions of innate and adaptive immune cells in the context of human inflammatory and autoimmune diseases, pathogen infections, and cancer.
Collapse
Affiliation(s)
- Angela Saez
- Centro de Biotecnología y Genómica de Plantas (CBGP), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, Pozuelo de Alarcón, Pozuelo de Alarcón, 28223 Madrid, Spain;
| | - Beatriz Herrero-Fernandez
- LamImSys Lab, Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (B.H.-F.); (R.G.-B.); (B.S.-C.)
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
| | - Raquel Gomez-Bris
- LamImSys Lab, Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (B.H.-F.); (R.G.-B.); (B.S.-C.)
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
| | - Beatriz Somovilla-Crespo
- LamImSys Lab, Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (B.H.-F.); (R.G.-B.); (B.S.-C.)
| | - Cristina Rius
- Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid (UEM), Villaviciosa de Odón, 28670 Madrid, Spain;
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, 28029 Madrid, Spain
| | - Jose M. Gonzalez-Granado
- LamImSys Lab, Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (B.H.-F.); (R.G.-B.); (B.S.-C.)
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, 28029 Madrid, Spain
| |
Collapse
|
4
|
Li J, Zhang Y, Zhang Y, Lü S, Miao Y, Yang J, Huang S, Ma X, Han L, Deng J, Fan F, Liu B, Huo Y, Xu Q, Chen C, Wang X, Feng J. GSNOR modulates hyperhomocysteinemia-induced T cell activation and atherosclerosis by switching Akt S-nitrosylation to phosphorylation. Redox Biol 2018; 17:386-399. [PMID: 29860106 PMCID: PMC6007174 DOI: 10.1016/j.redox.2018.04.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 04/24/2018] [Accepted: 04/28/2018] [Indexed: 01/25/2023] Open
Abstract
The adaptive immune system plays a critical role in hyperhomocysteinemia (HHcy)-accelerated atherosclerosis. Recent studies suggest that HHcy aggravates atherosclerosis with elevated oxidative stress and reduced S-nitrosylation level of redox-sensitive protein residues in the vasculature. However, whether and how S-nitrosylation contributes to T-cell-driven atherosclerosis remain unclear. In the present study, we report that HHcy reduced the level of protein S-nitrosylation in T cells by inducing S-nitrosoglutathione reductase (GSNOR), the key denitrosylase that catalyzes S-nitrosoglutathione (GSNO), which is the main restored form of nitric oxide in vivo. Consequently, secretion of inflammatory cytokines [interferon-γ (IFN-γ) and interleukin-2] and proliferation of T cells were increased. GSNOR knockout or GSNO stimulation rectified HHcy-induced inflammatory cytokine secretion and T-cell proliferation. Site-directed mutagenesis of Akt at Cys224 revealed that S-nitrosylation at this site was pivotal for the reduced phosphorylation at Akt Ser473, which led to impaired Akt signaling. Furthermore, on HHcy challenge, as compared with GSNOR+/+ApoE-/- littermate controls, GSNOR-/-ApoE-/- double knockout mice showed reduced T-cell activation with concurrent reduction of atherosclerosis. Adoptive transfer of GSNOR-/- T cells to ApoE-/- mice fed homocysteine (Hcy) decreased atherosclerosis, with fewer infiltrated T cells and macrophages in plaques. In patients with HHcy and coronary artery disease, the level of plasma Hcy was positively correlated with Gsnor expression in peripheral blood mononuclear cells and IFN-γ+ T cells but inversely correlated with the S-nitrosylation level in T cells. These data reveal that T cells are activated, in part via GSNOR-dependent Akt denitrosylation during HHcy-induced atherosclerosis. Thus, suppression of GSNOR in T cells may reduce the risk of atherosclerosis.
Collapse
Affiliation(s)
- Jing Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, 38 Xueyuan Road, Beijing 100191, China
| | - Yan Zhang
- Department of Cardiology, Peking University First Hospital, Beijing 100034, China
| | - Yuying Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Silin Lü
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, 38 Xueyuan Road, Beijing 100191, China
| | - Yutong Miao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, 38 Xueyuan Road, Beijing 100191, China
| | - Juan Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, 38 Xueyuan Road, Beijing 100191, China
| | - Shenming Huang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, 38 Xueyuan Road, Beijing 100191, China
| | - Xiaolong Ma
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, 38 Xueyuan Road, Beijing 100191, China
| | - Lulu Han
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, 38 Xueyuan Road, Beijing 100191, China
| | - Jiacheng Deng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, 38 Xueyuan Road, Beijing 100191, China
| | - Fangfang Fan
- Department of Cardiology, Peking University First Hospital, Beijing 100034, China
| | - Bo Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, 38 Xueyuan Road, Beijing 100191, China
| | - Yong Huo
- Department of Cardiology, Peking University First Hospital, Beijing 100034, China
| | - Qingbo Xu
- Cardiovascular Division, BHF Centre for Vascular Regeneration, King's College London, London, UK
| | - Chang Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China.
| | - Xian Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, 38 Xueyuan Road, Beijing 100191, China.
| | - Juan Feng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, 38 Xueyuan Road, Beijing 100191, China.
| |
Collapse
|
5
|
Cosenza M, Civallero M, Fiorcari S, Pozzi S, Marcheselli L, Bari A, Ferri P, Sacchi S. The histone deacetylase inhibitor romidepsin synergizes with lenalidomide and enhances tumor cell death in T-cell lymphoma cell lines. Cancer Biol Ther 2016; 17:1094-1106. [PMID: 27657380 PMCID: PMC5079402 DOI: 10.1080/15384047.2016.1219820] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/12/2016] [Accepted: 07/29/2016] [Indexed: 12/22/2022] Open
Abstract
We investigated the cytotoxic interactions of romidepsin, a histone deacetylase inhibitor, and lenalidomide, an immunomodulatory agent, in a T-cell lymphoma preclinical model. Hut-78 and Karpas-299 cells were treated with romidepsin and lenalidomide alone and in combination. The interaction between romidepsin and lenalidomide was evaluated by the Chou-Talalay method, and cell viability and clonogenicity were also evaluated. Apoptosis, reactive oxygen species (ROS) levels, and cell cycle distribution were determined by flow cytometry. ER stress, caspase activation, and the AKT, MAPK/ERK, and STAT-3 pathways were analyzed by Western blot. Combination treatment with romidepsin and lenalidomide had a synergistic effect in Hut-78 cells and an additive effect in Karpas-299 cells at 24 hours and did not decrease the viability of normal peripheral blood mononuclear cells. This drug combination induced apoptosis, increased ROS production, and activated caspase-8, -9, -3 and PARP. Apoptosis was associated with increased hallmarks of ER stress and activation of UPR sensors and was mediated by dephosphorylation of the AKT, MAPK/ERK, and STAT3 pathways.The combination of romidepsin and lenalidomide shows promise as a possible treatment for T-cell lymphoma. This work provides a basis for further studies.
Collapse
Affiliation(s)
- Maria Cosenza
- Program of Innovative Therapies in Oncology and Haematology, Department of Diagnostic Clinical and Public Health Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Monica Civallero
- Program of Innovative Therapies in Oncology and Haematology, Department of Diagnostic Clinical and Public Health Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Stefania Fiorcari
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Samantha Pozzi
- Program of Innovative Therapies in Oncology and Haematology, Department of Diagnostic Clinical and Public Health Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Luigi Marcheselli
- Program of Innovative Therapies in Oncology and Haematology, Department of Diagnostic Clinical and Public Health Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessia Bari
- Program of Innovative Therapies in Oncology and Haematology, Department of Diagnostic Clinical and Public Health Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Paola Ferri
- Department of Diagnostic Clinical and Public Health Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Stefano Sacchi
- Program of Innovative Therapies in Oncology and Haematology, Department of Diagnostic Clinical and Public Health Medicine, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
6
|
Rocha-Perugini V, González-Granado JM. Nuclear envelope lamin-A as a coordinator of T cell activation. Nucleus 2015; 5:396-401. [PMID: 25482193 PMCID: PMC4164483 DOI: 10.4161/nucl.36361] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Nuclear lamins A/C control several critical cellular functions, e.g., chromatin organization, gene transcription, DNA replication, DNA damage responses, cell cycle progression, cell differentiation, and cell polarization during migration. However, few studies have addressed the role of lamins A/C in the control of the functions of immune cells. Recently, we have demonstrated that lamins A/C are induced in T cells upon antigen recognition. Lamins A/C enhance T cell responses by coupling the plasma membrane to the nucleus via the linker of nucleoskeleton and cytoskeleton (LINC) complex and the actin cytoskeleton. Here, we discuss the possible physiological relevance and functional context of lamin A/C in T cell activation and propose a model in which lamins A/C are key modulators of immune cell functions.
Collapse
Affiliation(s)
- Vera Rocha-Perugini
- a Servicio de Inmunología; Hospital Universitario de la Princesa; Instituto de Investigación Sanitaria de la Princesa; Madrid, Spain
| | | |
Collapse
|
7
|
Ranji N, Sadeghizadeh M, Karimipoor M, Shokrgozar MA, Nakhaei Sistani R, Paylakhi SH. MicroRNAs Signature in IL-2-Induced CD4+ T Cells and Their Potential Targets. Biochem Genet 2015; 53:169-83. [PMID: 26048624 DOI: 10.1007/s10528-015-9677-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 05/12/2015] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs regulated gene expression at the post-transcriptional level. Many studies have investigated role of miRNAs in the biological processes such as proliferation, apoptosis, differentiation, and development. To evaluate role of miRNAs in proliferation and death of T cell, we performed miRNA profiling in activated CD4+ T cells after IL-2 induction and depletion. Proliferation rate of IL-2-induced cells was measured by MTT assay. Then quantitative RT-PCR arrays on 739 miRNAs revealed up- and down-regulation of 170 miRNAs in IL-2-induced CD4+ T cells relative to IL-2-depleted ones. In addition, in silico analysis predicted miRNA's potential targets in pathways such as JAK/STAT and PI3K pathways. JAK1 expression, a potential target of modulated miRNAs, was decreased in IL-2-depleted cells. This study suggests that clonal expansion is regulated by miRNAs in the absence or presence of IL-2 by targeting genes implicated in JAK/STAT and PI3K pathways.
Collapse
Affiliation(s)
- Najmeh Ranji
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran,
| | | | | | | | | | | |
Collapse
|
8
|
Beauvericin ameliorates experimental colitis by inhibiting activated T cells via downregulation of the PI3K/Akt signaling pathway. PLoS One 2013; 8:e83013. [PMID: 24340073 PMCID: PMC3858350 DOI: 10.1371/journal.pone.0083013] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 11/07/2013] [Indexed: 12/15/2022] Open
Abstract
Crohn's disease is a common, chronic inflammatory bowel condition characterized by remission and relapse. Accumulating evidence indicates that activated T cells play an important role in this disease. In the present study, we aimed to examine the effect of beauvericin, a natural cyclic peptide, on 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis in mice, which mimics Crohn's disease. Beauvericin significantly reduced weight loss, diarrhea and mortality, accompanied with notable alleviation of macroscopic and microscopic signs. In addition, this compound decreased serum levels of tumor necrosis factor (TNF)-α and interferon (IFN)- γ in a concentration-dependent manner in mice with experimental colitis. These effects of beauvericin are attributed to its inhibition on activated T cells. Flow cytometry and immunoblot assay data showed that beauvericin suppressed T-cell proliferation, activation and IFN-γ-STAT1-T-bet signaling and subsequently led to apoptosis of activated T cells by suppressing Bcl-2 and phosphorylated Bad as well as increasing cleavage of caspase-3, -9, -12 and PARP. Furthermore, inhibition of PI3K/Akt signaling, which was an upstream regulator of cell activation and survival in activated T cells, contributed to the effect of beauvericin. Overall, these results supported beauvericin as a novel drug candidate for the treatment of colonic inflammation mainly by targeting PI3K/Akt in activated T cells.
Collapse
|
9
|
Gennari A, Ban M, Braun A, Casati S, Corsini E, Dastych J, Descotes J, Hartung T, Hooghe-Peters R, House R, Pallardy M, Pieters R, Reid L, Tryphonas H, Tschirhart E, Tuschl H, Vandebriel R, Gribaldo L. The Use of In Vitro Systems for Evaluating Immunotoxicity: The Report and Recommendations of an ECVAM Workshop. J Immunotoxicol 2012; 2:61-83. [PMID: 18958661 DOI: 10.1080/15476910590965832] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
This is the report of a workshop organised by the European Centre for the Validation of Alternative Methods (ECVAM). ECVAM's main goal, as defined in 1993 by its Scientific Advisory Committee, is to promote the scientific and regulatory acceptance of alternative methods that are of importance to the biosciences and which replace, reduce or refine the use of laboratory animals. One of the first priorities set by ECVAM was the implementation of procedures that would enable it to become well informed about the state-of-the-art of non-animal test development and validation, and the potential for the possible incorporation of alternative tests into regulatory procedures. It was decided that this would be best achieved by the organization of ECVAM workshops on specific topics, at which small groups of invited experts would review the current status of various types of in vitro tests and their potential uses, and make recommendations about the best ways forward (Anonymous, 1994). The workshop on "The use of in vitro systems for evaluating Immunotoxicity" was held at ECVAM (Ispra), Italy, on 24th-26th November 2003. The participants represented academia, national organizations, international regulatory bodies and industry. The aim of the workshop was to review the state-of-the-art in the field of in vitro immunotoxicology, and to develop strategies towards the replacement of in vivo testing. At the end of this report are listed the recommendations that should be considered for prevalidation and validation of relevant and reliable procedures, that could replace the use of animals in chemical and cosmetics toxicity testing.
Collapse
|
10
|
Abstract
Tetraspanins are a superfamily of integral membrane proteins involved in the organization of microdomains that consist of both cell membrane proteins and cytoplasmic signalling molecules. These microdomains are important in regulating molecular recognition at the cell surface and subsequent signal transduction processes central to the generation of an efficient immune response. Tetraspanins, both immune-cell-specific, such as CD37, and ubiquitously expressed, such as CD81, have been shown to be imp-ortant in both innate and adaptive cellular immunity. This is via their molecular interaction with important immune cell-surface molecules such as antigen-presenting MHC proteins, T-cell co-receptors CD4 and CD8, as well as cytoplasmic molecules such as Lck and PKC (protein kinase C). Moreover, the generation of tetraspanin-deficient mice has enabled the study of these proteins in immunity. A variety of tetraspanins have a role in the regulation of pattern recognition, antigen presentation and T-cell proliferation. Recent studies have also begun to elucidate roles for tetraspanins in macrophages, NK cells (natural killer cells) and granulocytes.
Collapse
|
11
|
Galbiati V, Mitjans M, Corsini E. Present and future ofin vitroimmunotoxicology in drug development. J Immunotoxicol 2010; 7:255-67. [DOI: 10.3109/1547691x.2010.509848] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
12
|
Wozniak MB, Villuendas R, Bischoff JR, Aparicio CB, Martínez Leal JF, de La Cueva P, Rodriguez ME, Herreros B, Martin-Perez D, Longo MI, Herrera M, Piris MA, Ortiz-Romero PL. Vorinostat interferes with the signaling transduction pathway of T-cell receptor and synergizes with phosphoinositide-3 kinase inhibitors in cutaneous T-cell lymphoma. Haematologica 2010; 95:613-21. [PMID: 20133897 DOI: 10.3324/haematol.2009.013870] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Vorinostat (suberoylanilide hydroxamic acid, SAHA), an inhibitor of class I and II histone deacetylases, has been approved for the treatment of cutaneous T-cell lymphoma. In spite of emerging information on the effect of vorinostat in many types of cancer, little is yet known about this drug's mechanism of action, which is essential for its proper use in combination therapy. We investigated alterations in gene expression profile over time in cutaneous T-cell lymphoma cells treated with vorinostat. Subsequently, we evaluated inhibitors of PI3K, PIM and HSP90 as potential combination agents in the treatment of cutaneous T-cell lymphoma. DESIGN AND METHODS The genes significantly up- or down-regulated by vorinostat over different time periods (2-fold change, false discovery rate corrected P value<0.05) were selected using the short-time series expression miner. Cell viability was assessed in vitro in cutaneous T-cell lymphoma cells through measuring intracellular ATP content. Drug interactions were analyzed by the combination index method with CalcuSyn software. RESULTS The functional analysis suggests that vorinostat modifies signaling of T-cell receptor, MAPK, and JAK-STAT pathways. The phosphorylation studies of ZAP70 (Tyr319, Tyr493) and its downstream target AKT (Ser473) revealed that vorinostat inhibits phosphorylation of these kinases. With regards to effects on cutaneous T-cell lymphoma cells, combining vorinostat with PI3K inhibitors resulted in synergy while cytotoxic antagonism was observed when vorinostat was combined with HSP90 inhibitor. CONCLUSIONS These results demonstrate the potential targets of vorinostat, underlining the importance of T-cell receptor signaling inhibition following vorinostat treatment. Additionally, we showed that combination therapies involving histone deacetylase inhibitors and inhibitors of PI3K are potentially efficacious for the treatment of cutaneous T-cell lymphoma.
Collapse
Affiliation(s)
- Magdalena B Wozniak
- Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid 28029, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Corsini E, Roggen EL. Immunotoxicology: Opportunities for Non-animal Test Development. Altern Lab Anim 2009; 37:387-97. [DOI: 10.1177/026119290903700409] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
At present, several animal-based assays are used to assess immunotoxic effects such as immunosuppression and sensitisation. The use of whole animals, however, presents several secondary issues, including expense, ethical concerns and relevance to human risk assessment. There is a growing belief that non-animal approaches can eliminate these issues without impairing human safety, provided that biological markers are available to identify the immunotoxic potentials of new chemicals to which humans may be exposed. Driven by the 7th Amendment to the EU Cosmetics Directive, the new EU policy on chemicals (the REACH system), proposals to update the European legislation on the protection of animals used in research, and emerging visions and strategies for predicting toxicity, such in vitro methods are likely to play a major role in the near future. The realisation that the immune system can be the target of many chemicals, resulting in a range of adverse effects on the host's health, has raised serious concerns from the public and within the regulatory agencies. Hypersensitivity and immunosuppression are considered the primary focus for developing in vitro methods in immunotoxicology. However, in vitro assays to detect immunostimulation and autoimmunity are also needed. This review of the state-of-the-art in the field of in vitro immunotoxicity, reveals a lack of cell-based immunotoxicity assays for predicting the toxicity of xenobiotics toward the immune system in a simple, fast, economical and reliable way.
Collapse
Affiliation(s)
- Emanuela Corsini
- Laboratory of Toxicology, Department of Pharmacological Sciences, Faculty of Pharmacy, University of Milan, Milan, Italy
| | - Erwin L. Roggen
- Department of Pharma Protein Development, Novozymes A/S, Bagsvaerd, Denmark
| |
Collapse
|
14
|
Gross K, Karagiannides I, Thomou T, Koon HW, Bowe C, Kim H, Giorgadze N, Tchkonia T, Pirtskhalava T, Kirkland JL, Pothoulakis C. Substance P promotes expansion of human mesenteric preadipocytes through proliferative and antiapoptotic pathways. Am J Physiol Gastrointest Liver Physiol 2009; 296:G1012-9. [PMID: 19282377 PMCID: PMC2696212 DOI: 10.1152/ajpgi.90351.2008] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
White adipose tissue is intimately involved in the regulation of immunity and inflammation. We reported that human mesenteric preadipocytes express the substance P (SP)-mediated neurokinin-1 receptor (NK-1R), which signals proinflammatory responses. Here we tested the hypothesis that SP promotes proliferation and survival of human mesenteric preadipocytes and investigated responsible mechanism(s). Preadipocytes were isolated from mesenteric fat biopsies during gastric bypass surgery. Proliferative and antiapoptotic responses were delineated in 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS), bromodeoxyuridine (BrdU), caspase-3, and TUNEL assays, as well as Western immunoanalysis. SP (10(-7) M) increased MTS and proliferation (BrdU) and time dependently (15-30 min) induced Akt, EGF receptor, IGF receptor, integrin alphaVbeta3, phosphatidylinositol 3-kinase, and PKC-theta phosphorylation. Furthermore, pharmacological antagonism of Akt and PKC-theta activation significantly attenuated SP-induced preadipocyte proliferation. Exposure of preadipocytes to the proapoptotic Fas ligand (FasL, 100 microM) resulted in nuclear DNA fragmentation (TUNEL assay), as well as increased cleaved poly (ADP-ribose) polymerase, cleaved caspase-7, and caspase-3 expression. Cotreatment with SP almost completely abolished these responses in a NK-1R-dependent fashion. SP (10(-7) M) also time dependently stimulated expression 4E binding protein 1 and phosphorylation of p70 S6 kinase, which increased protein translation efficiency. SP increases preadipocyte viability, reduces apoptosis, and stimulates proliferation, possibly via cell cycle upregulation and increased protein translation efficiency. SP-induced proliferative and antiapoptotic pathways in fat depots may contribute to development of the creeping fat and inflammation characteristic of Crohn's disease.
Collapse
Affiliation(s)
- Kara Gross
- Gastrointestinal Neuropeptide Center, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California; Columbia University Medical Center, Department of Pediatrics, New York, New York; and Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | - Iordanes Karagiannides
- Gastrointestinal Neuropeptide Center, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California; Columbia University Medical Center, Department of Pediatrics, New York, New York; and Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | - Thomas Thomou
- Gastrointestinal Neuropeptide Center, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California; Columbia University Medical Center, Department of Pediatrics, New York, New York; and Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | - Hon Wai Koon
- Gastrointestinal Neuropeptide Center, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California; Columbia University Medical Center, Department of Pediatrics, New York, New York; and Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | - Collin Bowe
- Gastrointestinal Neuropeptide Center, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California; Columbia University Medical Center, Department of Pediatrics, New York, New York; and Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | - Ho Kim
- Gastrointestinal Neuropeptide Center, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California; Columbia University Medical Center, Department of Pediatrics, New York, New York; and Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | - Nino Giorgadze
- Gastrointestinal Neuropeptide Center, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California; Columbia University Medical Center, Department of Pediatrics, New York, New York; and Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | - Tamara Tchkonia
- Gastrointestinal Neuropeptide Center, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California; Columbia University Medical Center, Department of Pediatrics, New York, New York; and Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | - Tamara Pirtskhalava
- Gastrointestinal Neuropeptide Center, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California; Columbia University Medical Center, Department of Pediatrics, New York, New York; and Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | - James L. Kirkland
- Gastrointestinal Neuropeptide Center, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California; Columbia University Medical Center, Department of Pediatrics, New York, New York; and Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | - Charalabos Pothoulakis
- Gastrointestinal Neuropeptide Center, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California; Columbia University Medical Center, Department of Pediatrics, New York, New York; and Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
15
|
Karagiannides I, Pothoulakis C. Neuropeptides, mesenteric fat, and intestinal inflammation. Ann N Y Acad Sci 2009; 1144:127-35. [PMID: 19076372 DOI: 10.1196/annals.1418.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The ability of fat tissue cells to produce proinflammatory cytokines and the concept that obesity represents a low-grade inflammatory response have been well documented during the past decade. The effects of fat-mediated inflammation on metabolic pathologies have also been drawing increasing interest. However, very little is known on the potential effects of adipose tissue in the pathophysiology of gastrointestinal diseases with an inflammatory component, such as inflammatory bowel disease (IBD). The development of large fat masses around the inflamed intestine during Crohn's disease makes this tissue a candidate for more intense investigation in studies aiming to gain insights into the pathogenesis and progress of the disease. Furthermore, neuropeptides act in many cases in a proinflammatory manner and are shown to participate in the pathogenesis of intestinal inflammation in animal models of IBD. However, the potential of these molecules to interact with fat cells in the context of IBD has not been investigated. In this review the authors' most recent data related to the effects of neuropeptides on noninflammatory fat tissue components are described. In addition, a discussion to associate neuropeptide-induced, adipose tissue-mediated responses with the generation of intestinal inflammatory conditions such as Crohn's disease is included.
Collapse
Affiliation(s)
- Iordanes Karagiannides
- Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-7019, USA
| | | |
Collapse
|
16
|
Schneider H, Valk E, Leung R, Rudd CE. CTLA-4 activation of phosphatidylinositol 3-kinase (PI 3-K) and protein kinase B (PKB/AKT) sustains T-cell anergy without cell death. PLoS One 2008; 3:e3842. [PMID: 19052636 PMCID: PMC2585791 DOI: 10.1371/journal.pone.0003842] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2008] [Accepted: 11/06/2008] [Indexed: 11/19/2022] Open
Abstract
The balance of T-cell proliferation, anergy and apoptosis is central to immune function. In this regard, co-receptor CTLA-4 is needed for the induction of anergy and tolerance. One central question concerns the mechanism by which CTLA-4 can induce T-cell non-responsiveness without a concurrent induction of antigen induced cell death (AICD). In this study, we show that CTLA-4 activation of the phosphatidylinositol 3-kinase (PI 3-K) and protein kinase B (PKB/AKT) sustains T-cell anergy without cell death. CTLA-4 ligation induced PI 3K activation as evidenced by the phosphorylation of PKB/AKT that in turn inactivated GSK-3. The level of activation was similar to that observed with CD28. CTLA-4 induced PI 3K and AKT activation also led to phosphorylation of the pro-apoptotic factor BAD as well as the up-regulation of BcL-XL. In keeping with this, CD3/CTLA-4 co-ligation prevented apoptosis under the same conditions where T-cell non-responsiveness was induced. This effect was PI 3K and PKB/AKT dependent since inhibition of these enzymes under conditions of anti-CD3/CTLA-4 co-ligation resulted in cell death. Our findings therefore define a mechanism by which CTLA-4 can induce anergy (and possibly peripheral tolerance) by preventing the induction of cell death.
Collapse
Affiliation(s)
- Helga Schneider
- Cell Signalling Section, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- Molecular Immunology Section, Division of Investigative Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Elke Valk
- Cell Signalling Section, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- Molecular Immunology Section, Division of Investigative Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Rufina Leung
- Molecular Immunology Section, Division of Investigative Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Christopher E. Rudd
- Cell Signalling Section, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- Molecular Immunology Section, Division of Investigative Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
- Cambridge Institute for Medical Research, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
17
|
Abache T, Le Naour F, Planchon S, Harper F, Boucheix C, Rubinstein E. The transferrin receptor and the tetraspanin web molecules CD9, CD81, and CD9P-1 are differentially sorted into exosomes after TPA treatment of K562 cells. J Cell Biochem 2008; 102:650-64. [PMID: 17407154 DOI: 10.1002/jcb.21318] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Here we show that treatment of K562 cells with the phorbol ester TPA induces the down-modulation of various surface antigens. Among them, the transferrin receptor (TfR), the tetraspanin CD81, and a CD81-associated protein, CD9P-1, were unique in that their expression levels were lower after 24 h incubation than after 3 h. We demonstrated that like the TfR, CD81 was internalized at early times, and was less synthesized at latter times. Despite the association of a fraction of the TfR with CD81, these two molecules were subjected to different fates. TPA increased targeting of CD81 and CD9P-1 into exosomes but strongly reduced the localization of the TfR in these vesicles. Using this model we have shown that a fraction of CD81 and CD9P-1 in exosomes comes from a surface pool and that these molecules remain associated in exosomes. However, CD9P-1 could be targeted to exosomes in the absence of CD81 and of another tetraspanin, CD9. The targeting of CD9 into exosomes did not require palmitoylation of the protein. J. Cell. Biochem. 102: 650-664, 2007. (c) 2007 Wiley-Liss, Inc.
Collapse
|
18
|
Hammond CM, White D, Tomic J, Shi Y, Spaner DE. Extracellular calcium sensing promotes human B-cell activation and function. Blood 2007; 110:3985-95. [PMID: 17724142 DOI: 10.1182/blood-2007-05-088468] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Calcium is a second messenger for many signaling pathways in B cells, but its role as a receptor ligand has not been well characterized. However, pulses of free calcium were found to cause the rapid release of internal calcium stores in normal human B cells. This response appeared to be mediated by a cell surface protein with receptor properties as it could be blocked by pretreatment with trypsin and with kinase and phospholipase Cgamma inhibitors. The calcium receptor on B cells was not the conventional calcium-sensing receptor (CaSR) since B cells did not express CaSR and calcium-induced responses could not be blocked by specific CaSR inhibitors. B-cell responses to extracellular calcium activated phosphoinositide-3 kinase/AKT, calcineurin, extracellular signal regulated kinase, p38 mitogen-activated protein kinase, protein kinase C, Ca(2+)/calmodulin kinase II, and nuclear factor-kappaB signaling pathways, and resulted in transcription of the early response gene, CD83. This extracellular calcium sensor enhanced B-cell responses to Toll-like receptor, B-cell receptor, and cytokine receptor agonists. These findings suggest a means by which B cells prepare to engage in immune responses by responding to calcium fluctuations in their environment.
Collapse
MESH Headings
- Antigens, CD/biosynthesis
- Antigens, CD/immunology
- B-Lymphocytes/enzymology
- B-Lymphocytes/immunology
- Calcineurin/immunology
- Calcineurin/metabolism
- Calcium/immunology
- Calcium/metabolism
- Calcium Signaling/immunology
- Humans
- Immunoglobulins/biosynthesis
- Immunoglobulins/immunology
- Lymphocyte Activation/immunology
- Membrane Glycoproteins/biosynthesis
- Membrane Glycoproteins/immunology
- NF-kappa B/immunology
- NF-kappa B/metabolism
- Phospholipase C gamma/immunology
- Phospholipase C gamma/metabolism
- Phosphotransferases/immunology
- Phosphotransferases/metabolism
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Calcium-Sensing/antagonists & inhibitors
- Receptors, Calcium-Sensing/immunology
- Receptors, Calcium-Sensing/metabolism
- Receptors, Cytokine/agonists
- Receptors, Cytokine/immunology
- Receptors, Cytokine/metabolism
- Toll-Like Receptors/immunology
- Toll-Like Receptors/metabolism
- Transcription, Genetic/drug effects
- Transcription, Genetic/immunology
- CD83 Antigen
Collapse
Affiliation(s)
- Caitlin M Hammond
- Division of Molecular and Cellular Biology, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | | | | | | | | |
Collapse
|
19
|
Fernando K, Hu H, Ni H, Hoxie JA, Weissman D. Vaccine-delivered HIV envelope inhibits CD4(+) T-cell activation, a mechanism for poor HIV vaccine responses. Blood 2006; 109:2538-44. [PMID: 17158230 PMCID: PMC1852208 DOI: 10.1182/blood-2006-08-038661] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human immunodeficiency virus (HIV) causes impairment of the immune system in part by targeting CD4(+) T cells for infection and dysfunction. HIV envelope (Env) present on free virions and infected cells causes dysfunction of uninfected bystander CD4(+) T cells via interaction with both CD4 and coreceptors. Env is commonly used as part of a cocktail of HIV antigens in current vaccines. In DNA and viral vector vaccine approaches, antigen-presenting cells (APCs) and non-APCs in the vicinity of the vaccine delivery site and draining lymph node express vaccine-derived antigens. The studies here demonstrate that cell-surface expression of Env on APCs and non-APCs as part of the vaccine action causes an inhibition of antigen-induced CD4(+) T-cell activation and proliferation mediated by CD4 binding and suggests a potential mechanism for reduced activity of Env-containing HIV vaccines. Similar studies using a functional Env lacking CD4 binding circumvented suppression, suggesting an alternative and potentially superior approach to HIV vaccine design.
Collapse
Affiliation(s)
- Kathy Fernando
- Division of Infectious Diseases, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
20
|
Jhun BS, Lee JY, Oh YT, Lee JH, Choe W, Baik HH, Kim SS, Yoon KS, Ha J, Kang I. Inhibition of AMP-activated protein kinase suppresses IL-2 expression through down-regulation of NF-AT and AP-1 activation in Jurkat T cells. Biochem Biophys Res Commun 2006; 351:986-92. [PMID: 17097050 DOI: 10.1016/j.bbrc.2006.10.138] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Accepted: 10/26/2006] [Indexed: 12/17/2022]
Abstract
AMP-activated protein kinase (AMPK) is a key regulator of energy homeostasis and its activation during T cell receptor stimulation has recently been reported. In this study, we examined the role of AMPK in interleukin (IL)-2 production in T cells. Inhibition of AMPK by compound C, a specific inhibitor of AMPK or small interfering RNA of AMPKalpha1 suppressed IL-2 production in Jurkat T cells and peripheral blood lymphocytes stimulated with PMA plus ionomycin (PMA/Io) or with monoclonal anti-CD3 plus anti-CD28. We then showed that AMPK inhibition reduced PMA/Io-induced IL-2 mRNA expression and IL-2 promoter activation. Moreover, inhibition of AMPK suppressed transcriptional activation of NF-AT and AP-1, but not NF-kappaB, in PMA/Io-activated Jurkat cells. Finally, we found that compound C inhibited PMA/Io-induced phosphorylation of p38, JNK, and GSK-3beta but not of ERK. These results suggest that AMPK mediates IL-2 production by regulating NF-AT and AP-1activation during T cell stimulation.
Collapse
Affiliation(s)
- Bong Sook Jhun
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Larbi A, Dupuis G, Khalil A, Douziech N, Fortin C, Fülöp T. Differential role of lipid rafts in the functions of CD4+ and CD8+ human T lymphocytes with aging. Cell Signal 2006; 18:1017-30. [PMID: 16236485 DOI: 10.1016/j.cellsig.2005.08.016] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2005] [Revised: 08/22/2005] [Accepted: 08/22/2005] [Indexed: 02/04/2023]
Abstract
Lipid rafts are critical to the assembly of the T-cell receptor (TCR) signaling machinery. It is not known whether lipid raft properties differ in CD4+ and CD8+ T cells and whether there are age-related differences that may account in part for immune senescence. Data presented here showed that time-dependent interleukin-2 (IL-2) production was different between CD4+ and CD8+ T cells. The defect in IL-2 production by CD4+ T cells was not due to lower levels of expression of the TCR or CD28. There was a direct correlation between the activation of p56(Lck) and LAT and their association/recruitment with the lipid raft fractions of CD4+ and CD8+ T cells. p56Lck, LAT and Akt/PKB were weakly phosphorylated in lipid rafts of stimulated CD4+ T cells of elderly as compared to young donors. Lipid rafts undergo changes in their lipid composition (ganglioside M1, cholesterol) in CD4+ and CD8+ T cells of elderly individuals. This study emphasizes the differential role of lipid rafts in CD4+ and CD8+ T-cell activation in aging and suggests that the differential localization of CD28 may explain disparities in response to stimulation in human aging.
Collapse
Affiliation(s)
- Anis Larbi
- Research Center on Aging, 1036 Belvedere Street South, Sherbrooke, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
22
|
Lu D, Huang J, Basu A. Protein kinase Cepsilon activates protein kinase B/Akt via DNA-PK to protect against tumor necrosis factor-alpha-induced cell death. J Biol Chem 2006; 281:22799-807. [PMID: 16785234 DOI: 10.1074/jbc.m603390200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously shown that protein kinase Cepsilon (PKCepsilon) protects breast cancer cells from tumor necrosis factor-alpha (TNF)-induced cell death. In the present study, we have investigated if the antiapoptotic function of PKCepsilon is mediated via Akt and the mechanism by which PKCepsilon regulates Akt activity. TNF caused a transient increase in Akt phosphorylation at Ser473 in MCF-7 cells. Overexpression of PKCepsilon in MCF-7 cells increased TNF-induced Akt phosphorylation at Ser473 resulting in its activation. Knockdown of PKCepsilon by small interfering RNA (siRNA) decreased TNF-induced Akt phosphorylation/activation and increased cell death. Introduction of constitutively active Akt protected breast cancer MCF-7 cells from TNF-mediated cell death and partially restored cell survival in PKCepsilon-depleted cells. Depletion of Akt in MCF-7 cells abolished the antiapoptotic effect of PKCepsilon on TNF-mediated cell death. Akt was constitutively associated with PKCepsilon and DNA-dependent protein kinase (DNA-PK), and this association was increased by TNF treatment. Overexpression of PKCepsilon enhanced the interaction between Akt and DNA-PK. Knockdown of DNA-PK by siRNA inhibited TNF-induced Akt phosphorylation and the antiapoptotic effect of Akt and PKCepsilon. These results suggest that PKCepsilon activates Akt via DNA-PK to mediate its antiapoptotic function. Furthermore, we report for the first time that DNA-PK can regulate receptor-initiated apoptosis via Akt.
Collapse
Affiliation(s)
- Dongmei Lu
- Department of Molecular Biology & Immunology, University of North Texas Health Science Center, Fort Worth, Texas 76107, USA
| | | | | |
Collapse
|
23
|
Kim JE, White FM. Quantitative analysis of phosphotyrosine signaling networks triggered by CD3 and CD28 costimulation in Jurkat cells. THE JOURNAL OF IMMUNOLOGY 2006; 176:2833-43. [PMID: 16493040 DOI: 10.4049/jimmunol.176.5.2833] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The mechanism by which stimulation of coreceptors such as CD28 contributes to full activation of TCR signaling pathways has been intensively studied, yet quantitative measurement of costimulation effects on functional TCR signaling networks has been lacking. In this study, phosphotyrosine networks triggered by CD3, CD28, or CD3 and CD28 costimulation were analyzed by site-specific quantitative phosphoproteomics, resulting in identification of 101 tyrosine and 3 threonine phosphorylation sites and quantification of 87 sites across four cell states. As expected, CD3 stimulation induced phosphorylation of CD3 chains and upstream components of TCR pathways such as Zap70, while CD28 stimulation induced phosphorylation of CD28, Vav-1, and other adaptor proteins including downstream of tyrosine kinase 1, Grb2-associated protein 2 (Grap2), and Wiskott-Aldrich syndrome protein. CD3 and CD28 costimulation induced a complex response including decreased threonine phosphorylation in the ERK1 and ERK2 activation loops and increased phosphorylation of selected tyrosine sites on ERK1/2, p38, phospholipase C-gamma, Src homology 2 domain-containing transforming protein 1, Grap2, and Vav-1, potentiating T cell activation. Hierarchical clustering and self-organizing maps were used to identify modules of coregulated phosphorylation sites within the network. Quantitative information in our study suggests quantitative and qualitative contribution by costimulation of CD28 on CD3-stimulated TCR signaling networks via enhanced phosphorylation of phospholipase C-gamma/Src homology 2 domain-containing transforming protein 1/Grap2/Vav-1 and their effects on downstream components including MAPKs.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Biological Engineering Division, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
24
|
Brando-Lima AC, Saldanha-Gama RF, Pereira CR, Villela CG, Sampaio ALF, Monteiro-Moreira ACO, Henriques MDGMO, Moreira RA, Barja-Fidalgo C. Involvement of phosphatidylinositol-3 kinase–Akt and nuclear factor kappa-B pathways in the effect of frutalin on human lymphocyte. Int Immunopharmacol 2006; 6:465-72. [PMID: 16428082 DOI: 10.1016/j.intimp.2005.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2004] [Revised: 01/09/2005] [Accepted: 09/15/2005] [Indexed: 12/22/2022]
Abstract
The mechanisms involved in the mitogenic effect of lectins are not fully understood and are thought to involve a cascade of intracellular signals related to T cell receptor activation. This study shows that frutalin, the alpha-D-galactose-binding lectin from Artocarpus incisa seeds, is a potent mitogenic activator of human lymphocytes. This effect is inhibited by D-galactose and PI3K inhibitors, and is accompanied by an increase in IL-2 receptor expression and by a PI3K-dependent IL-2 gene expression and IL-2 protein synthesis. Frutalin also induces Akt-phosphorylation and activates NF-kappaB, inducing its translocation from the cytosol to the nucleus. Both effects are blocked in the presence of D-galactose or by PI3K inhibitors. In summary, frutalin, interacting with alpha-D-galactose, activates signaling pathways related to TCR, and thereby triggers PI3K/Akt and NF-kappaB pathway, which modulates T cell proliferation, IL-2 synthesis and IL-2R expression. Frutalin might be a useful tool to study intracellular mechanisms following T cell activation that link upstream signaling pathways to downstream events.
Collapse
Affiliation(s)
- Aline C Brando-Lima
- Departamento de Farmacologia, Instituto de Biologia, Universidade do Estado do Rio de Janeiro, Av. 28 de setembro 87 fds, Vila Isabel, Rio de Janeiro, 20551-030, RJ, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Moniaux N, Nemos C, Schmied BM, Chauhan SC, Deb S, Morikane K, Choudhury A, Vanlith M, Sutherlin M, Sikela JM, Hollingsworth MA, Batra SK. The human homologue of the RNA polymerase II-associated factor 1 (hPaf1), localized on the 19q13 amplicon, is associated with tumorigenesis. Oncogene 2006; 25:3247-57. [PMID: 16491129 DOI: 10.1038/sj.onc.1209353] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The 19q13 amplicon in pancreatic cancer cells contains a novel pancreatic differentiation 2 (PD2) gene (accession number AJ401156), which was identified by differential screening analysis. PD2 is the human homologue of the RNA polymerase II-associated factor 1 (hPaf1). In yeast, Paf1 is part of the transcription machinery, acting as a docking protein in between the complexes Rad6-Bre1, COMPASS-Dot1p, and the phosphorylated carboxyl terminal domain of the RNA polymerase II. As such, Paf1 is directly involved in transcription elongation via histone H2B ubiquitination and histone H3 methylation. The PD2 sequence is highly conserved from Drosophila to humans with up to 98% identity between rodent and human, suggesting the functional importance of PD2/hPaf1 to maintain cellular homeostasis. PD2 is a modular protein composed of RNA recognition motif, DEAD-boxes, an aspartic/serine (DS)-domain, a regulator of the chromosome condensation domain and myc-type helix-loop-helix domains. Our results further showed that PD2 is a nuclear 80 kDa protein, which interacts with RNA polymerase II. In addition, we have demonstrated that the overexpression of PD2 in the NIH 3T3 cells result in enhanced growth rates in vitro and tumor formation in vivo. Altogether, this paper presents strong evidence that the overexpression of PD2/hPaf1 is involved in cancer development.
Collapse
Affiliation(s)
- N Moniaux
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, 68198-5870, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Santana MA, Esquivel-Guadarrama F. Cell biology of T cell activation and differentiation. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 250:217-74. [PMID: 16861067 DOI: 10.1016/s0074-7696(06)50006-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
T cells are major components of the adaptive immune system. They can differentiate into two different populations of effector cells-type one and type two-and may also become tolerant. T cells respond to immune challenges by interacting with antigen-presenting cells of the innate immune system. These latter cells can identify the nature of any immune challenge and initiate adaptive immune responses. Dendritic cells are the most important antigen-presenting cells in the body. The T cell recognizes both peptides associated with MHC molecules on the antigen-presenting cells and also other molecules in a complex structure known as an immunological synapse. The nature of the antigen, the cytokine environment, and other molecules on the dendritic cell surface instruct the T cells as to the response required. A better understanding of the biology of T cell responses offers the prospect of more effective therapeutic interventions.
Collapse
Affiliation(s)
- María Angélica Santana
- Faculty of Sciences, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | | |
Collapse
|
27
|
Thuille N, Heit I, Fresser F, Krumböck N, Bauer B, Leuthaeusser S, Dammeier S, Graham C, Copeland TD, Shaw S, Baier G. Critical role of novel Thr-219 autophosphorylation for the cellular function of PKCtheta in T lymphocytes. EMBO J 2005; 24:3869-80. [PMID: 16252004 PMCID: PMC1283955 DOI: 10.1038/sj.emboj.7600856] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Accepted: 10/07/2005] [Indexed: 12/11/2022] Open
Abstract
Phosphopeptide mapping identified a major autophosphorylation site, phospho (p)Thr-219, between the tandem C1 domains of the regulatory fragment in protein kinase C (PKC)theta. Confirmation of this identification was derived using (p)Thr-219 antisera that reacted with endogenous PKCtheta in primary CD3+ T cells after stimulation with phorbol ester, anti-CD3 or vanadate. The T219A mutation abrogated the capacity of PKCtheta to mediate NF-kappaB, NF-AT and interleukin-2 promoter transactivation, and reduced PKCtheta's ability in Jurkat T cells to phosphorylate endogenous cellular substrates. In particular, the T219A mutation impaired crosstalk of PKCtheta with Akt/PKBalpha in NF-kappaB activation. Yet, this novel (p)Thr-219 site did not affect catalytic activity or second-messenger lipid-binding activity in vitro. Instead, the T219A mutation prevented proper recruitment of PKCtheta in activated T cells. The PKCthetaT219A mutant defects were largely rescued by addition of a myristoylation signal to force its proper membrane localization. We conclude that autophosphorylation of PKCtheta at Thr-219 plays an important role in the correct targeting and cellular function of PKCtheta upon antigen receptor ligation.
Collapse
Affiliation(s)
- Nikolaus Thuille
- Department for Medical Genetics, Molecular and Clinical Pharmacology, Innsbruck Medical University, Innsbruck, Austria
| | | | - Friedrich Fresser
- Department for Medical Genetics, Molecular and Clinical Pharmacology, Innsbruck Medical University, Innsbruck, Austria
| | - Nina Krumböck
- Department for Medical Genetics, Molecular and Clinical Pharmacology, Innsbruck Medical University, Innsbruck, Austria
| | - Birgit Bauer
- Department for Medical Genetics, Molecular and Clinical Pharmacology, Innsbruck Medical University, Innsbruck, Austria
| | | | | | - Caroline Graham
- Experimental Immunology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Terry D Copeland
- Experimental Immunology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Steve Shaw
- Experimental Immunology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Gottfried Baier
- Department for Medical Genetics, Molecular and Clinical Pharmacology, Innsbruck Medical University, Innsbruck, Austria
- Section for Human Genetics, Innsbruck Medical University, Schoepfstraβe 41, 6020 Innsbruck, Austria. Tel.: +43 512 507 3451; Fax: +43 512 507 2861; E-mail:
| |
Collapse
|
28
|
Le Panse R, Berrih-Aknin S. Thymic myoid cells protect thymocytes from apoptosis and modulate their differentiation: implication of the ERK and Akt signaling pathways. Cell Death Differ 2005; 12:463-72. [PMID: 15775997 PMCID: PMC1852518 DOI: 10.1038/sj.cdd.4401611] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Thymic myoid cells correspond to a muscle-like cell population present in the thymic medulla. They are well conserved throughout species evolution, but their biological role is not known. We demonstrated that myoid cells protected thymocytes from apoptosis as evidenced by a strong decrease of annexin-V-FITC positive thymocytes. This effect was (1) specific of myoid cells compared to thymic epithelial cells; (2) dependent on direct cell-to-cell contacts and (3) triggered rapidly after 2 h in cocultures. This protective phenomenon was due to the activation of prosurvival mechanisms. Indeed, myoid cells activated extracellular-regulated kinases (ERK1/2) and Akt in thymocytes. Myoid cells also influenced thymocyte maturation. We observed an increase in CD4(+) and a decrease in CD8(+) single positive (SP) thymocytes when cocultured with myoid cells, independently of a CD8(+)SP increased death or a CD4(+)SP overproliferation. Consequently, thymic myoid cells protect thymocytes from apoptosis and could also modulate their differentiation process.
Collapse
Affiliation(s)
- R Le Panse
- CNRS UMR 8078, IPSC, Université Paris XI, Hôpital Marie Lannelongue, Le Plessis-Robinson, France.
| | | |
Collapse
|
29
|
Hoyer KK, Herling M, Bagrintseva K, Dawson DW, French SW, Renard M, Weinger JG, Jones D, Teitell MA. T Cell Leukemia-1 Modulates TCR Signal Strength and IFN-γ Levels through Phosphatidylinositol 3-Kinase and Protein Kinase C Pathway Activation. THE JOURNAL OF IMMUNOLOGY 2005; 175:864-73. [PMID: 16002684 DOI: 10.4049/jimmunol.175.2.864] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A signaling role for T cell leukemia-1 (TCL1) during T cell development or in premalignant T cell expansions and mature T cell tumors is unknown. In this study, TCL1 is shown to regulate the growth and survival of peripheral T cells but not precursor thymocytes. Proliferation is increased by TCL1-induced lowering of the TCR threshold for CD4(+) and CD8(+) T cell activation through both PI3K-Akt and protein kinase C-MAPK-ERK signaling pathways. This effect is submaximal as CD28 costimulation coupled to TCL1 expression additively accelerates dose-dependent T cell growth. In addition to its role in T cell proliferation, TCL1 also increases IFN-gamma levels from Th1-differentiated T cells, an effect that may provide a survival advantage during premalignant T cell expansions and in clonal T cell tumors. Combined, these data indicate a role for TCL1 control of growth and effector T cell functions, paralleling features provided by TCR-CD28 costimulation. These results also provide a more detailed mechanism for TCL1-augmented signaling and help explain the delayed occurrence of mature T cell expansions and leukemias despite tumorigenic TCL1 dysregulation that begins in early thymocytes.
Collapse
MESH Headings
- Animals
- Antigens, Surface/metabolism
- CD3 Complex/metabolism
- CD4-Positive T-Lymphocytes/cytology
- CD4-Positive T-Lymphocytes/enzymology
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/cytology
- CD8-Positive T-Lymphocytes/enzymology
- CD8-Positive T-Lymphocytes/immunology
- Cell Differentiation/immunology
- Cell Line, Tumor
- Cell Proliferation
- Cell Survival/immunology
- Cells, Cultured
- Enzyme Activation/immunology
- Humans
- Interferon-gamma/biosynthesis
- Interferon-gamma/metabolism
- Jurkat Cells
- Leukemia, T-Cell/enzymology
- Leukemia, T-Cell/immunology
- Leukemia, T-Cell/pathology
- MAP Kinase Signaling System/immunology
- Mice
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphatidylinositol 3-Kinases/physiology
- Protein Kinase C/metabolism
- Protein Kinase C/physiology
- Proto-Oncogene Proteins/biosynthesis
- Proto-Oncogene Proteins/physiology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/physiology
- Stem Cells/cytology
- Stem Cells/enzymology
- Stem Cells/immunology
- T-Lymphocytes/cytology
- T-Lymphocytes/enzymology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Th1 Cells/cytology
- Th1 Cells/enzymology
- Th1 Cells/immunology
Collapse
Affiliation(s)
- Katrina K Hoyer
- Department of Pathology and Laboratory Medicine, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California-Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Yankee TM, Yun TJ, Draves KE, Ganesh K, Bevan MJ, Murali-Krishna K, Clark EA. The Gads (GrpL) adaptor protein regulates T cell homeostasis. THE JOURNAL OF IMMUNOLOGY 2004; 173:1711-20. [PMID: 15265900 DOI: 10.4049/jimmunol.173.3.1711] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Little is known about the role of the Gads (GrpL) adaptor protein in mature T cell populations. In this study we show that the effects of Gads deficiency on murine CD4(+) and CD8(+) T cells are markedly different. Gads(-/-) CD4(+) T cells were markedly deficient in the spleen and had an activated phenotype and a rapid turnover rate. When transferred into a wild-type host, Gads(-/-) CD4(+) T cells continued to proliferate at a higher rate than wild-type CD4(+) T cells, demonstrating a defect in homeostatic proliferation. Gads(-/-) CD8(+) T cells had a memory-like phenotype, produced IFN-gamma in response to ex vivo stimulation, and underwent normal homeostatic proliferation in wild-type hosts. Gads(-/-) T cells had defective TCR-mediated calcium responses, but had normal activation of ERK. Gads(-/-) CD4(+) T cells, but not CD8(+) T cells, had a severe block of TCR-mediated proliferation and a high rate of spontaneous cell death and were highly susceptible to CD95-induced apoptosis. This suggests that the rapid turnover of Gads(-/-) CD4(+) T cells is due to a defect in cell survival. The intracellular signaling pathways that regulate homeostasis in CD4(+) and CD8(+) T cells are clearly different, and the Gads adaptor protein is critical for homeostasis of CD4(+) T cells.
Collapse
Affiliation(s)
- Thomas M Yankee
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Kane LP, Mollenauer MN, Weiss A. A proline-rich motif in the C terminus of Akt contributes to its localization in the immunological synapse. THE JOURNAL OF IMMUNOLOGY 2004; 172:5441-9. [PMID: 15100285 DOI: 10.4049/jimmunol.172.9.5441] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The serine/threonine kinases of the Akt/protein kinase B family are regulated in part by recruitment to the plasma membrane, which is accomplished by the binding of an N-terminal PH domain to the phosphatidylinositol 3-kinase products phosphoinositol 3,4,5-trisphosphate and phosphoinositol 3,4-bisphosphate. We have examined Akt localization in a murine T cell clone (D10) before and after stimulation by APC/Ag, and we found that whereas the pleckstrin homology domain is required for plasma membrane recruitment of Akt upon T cell activation, the C terminus of the kinase restricts its cellular localization to the immunologic synapse formed at the site of T cell/APC contact. A recently described proline-rich motif in this region appears to be important for proper localization of full-length Akt. Moreover, a form of Akt in which this motif was mutated acts as a potent dominant negative construct to block T cell activation. Therefore, multiple mechanisms are involved in the proper targeting of Akt during the early events of T cell activation.
Collapse
Affiliation(s)
- Lawrence P Kane
- Department of Medicine, Howard Hughes Medical Institute, University of California, San Francisco, CA 94143, USA
| | | | | |
Collapse
|
32
|
Bauer B, Jenny M, Fresser F, Uberall F, Baier G. AKT1/PKBalpha is recruited to lipid rafts and activated downstream of PKC isotypes in CD3-induced T cell signaling. FEBS Lett 2003; 541:155-62. [PMID: 12706837 DOI: 10.1016/s0014-5793(03)00287-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Protein kinase (PK) Ctheta and Akt/PKBalpha cooperate in T cell receptor/CD28-induced T cell signaling. We here demonstrate the recruitment of endogenous Akt1 and PKCtheta to lipid rafts in CD3-stimulated T cells. Further we show that Myr-PKCtheta mediates translocation of endogenous Akt1 to the plasma membrane as well as to lipid rafts, most likely explained by the observed complex formation of both protein kinases. In addition, in peripheral mouse T cells, the PKC inhibitor Gö6850 could partially block Akt1 activation in CD3-induced signaling, placing PKC isotype(s) upstream of Akt1. However, T cells derived from PKCtheta knockout mice were not impaired in CD3- or phorbol ester-induced Akt1 activity. Taken together, the results of this study give new insights into the functional link of Akt1 and PKCtheta in T cell signaling, demonstrating the co-recruitment of the two kinases and showing a novel pathway leading to Akt1 transactivation where PKC isotype(s) are involved but PKCtheta is not essential.
Collapse
Affiliation(s)
- Birgit Bauer
- Department of Medical Biology and Human Genetics, University of Innsbruck, Austria
| | | | | | | | | |
Collapse
|
33
|
Abstract
NF-kappa B plays crucial roles in the nervous system, including potential roles in long-term responses to synaptic plasticity, pro- or antiapoptotic effects during developmental cell death, and neurodegenerative disorders. We report here the characterization of signaling pathways leading to the constitutive activation of NF-kappa B in primary cultures of neonatal cerebellar granule neurons, consecutive to calcium entry into the cytosol. We found that opening of calcium channels at the plasma membrane and at intracellular stores is indispensable for the basal NF-kappa B activity. We demonstrated further that three cellular sensors of the cytosolic Ca(2+) levels, calmodulin, protein kinases C (PKCs), and the p21(ras)/phosphatidylinositol 3-kinase (PI3K)/Akt pathway are simultaneously involved in the steps linking the Ca(2+) second messenger to NF-kappa B activity. Calmodulin triggers the activity of calcineurin, a phosphatase which plays a role in the basal NF-kappa B activity, while stimulation of both the calmodulin kinase II and Akt kinase pathways results in the up-regulation of the transcriptional potential of the p65 subunit of NF-kappa B. Finally, using pharmacological and molecular approaches, we analyze interactions between these three pathways at different levels and demonstrate a connection between PKCs and PI3K. All three components converge towards NF-kappa B, at the level of both nuclear translocation and transcriptional activity. These results stand in contrast to the situation in nonneuronal cells, which either do not respond to Ca(2+) or do not simultaneously activate all three cascades. By using a global approach in studying signaling pathways in neurons, these results provide further evidence to validate the concept of networks of transducing cascades, specific to cells and to physiological situations.
Collapse
Affiliation(s)
- Alain Lilienbaum
- Unité de Biologie Moléculaire de l'Expression Génique, URA 2582 CNRS, Institut Pasteur, 75724 Paris Cedex 15, France.
| | | |
Collapse
|
34
|
Seminario MC, Wange RL. Lipid phosphatases in the regulation of T cell activation: living up to their PTEN-tial. Immunol Rev 2003; 192:80-97. [PMID: 12670397 DOI: 10.1034/j.1600-065x.2003.00013.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The initiating events associated with T activation in response to stimulation of the T cell antigen receptor (TCR) and costimulatory receptors, such as CD28, are intimately associated with the enzymatically catalyzed addition of phosphate not only to key tyrosine, threonine and serine residues in proteins but also to the D3 position of the myo-inositol ring of phosphatidylinositol (PtdIns). This latter event is catalyzed by the lipid kinase phosphoinositide 3-kinase (PI3K). The consequent production of PtdIns(3,4)P2 and PtdIns(3,4,5)P3 serves both to recruit signaling proteins to the plasma membrane and to induce activating conformational changes in proteins that contain specialized domains for the binding of these phospholipids. The TCR signaling proteins that are subject to regulation by PI3K include Akt, phospholipase Cgamma1 (PLCgamma1), protein kinase C zeta (PKC-zeta), Itk, Tec and Vav, all of which play critical roles in T cell activation. As is the case for phosphorylation of protein substrates, the phosphorylation of PtdIns is under dynamic regulation, with the D3 phosphate being subject to hydrolysis by the 3-phosphatase PTEN (phosphatase and tensin homolog deleted on chromosome 10), thereby placing PTEN in direct opposition to PI3K. In this review we consider recent data concerning how PTEN may act in regulating the process of T cell activation.
Collapse
Affiliation(s)
- Maria-Cristina Seminario
- Laboratory of Cellular and Molecular Biology, National Institutes on Aging/IRP/NIH/DHHS, Baltimore, MD 21224, USA.
| | | |
Collapse
|