1
|
Jandl B, Dighe S, Gasche C, Makristathis A, Muttenthaler M. Intestinal biofilms: pathophysiological relevance, host defense, and therapeutic opportunities. Clin Microbiol Rev 2024; 37:e0013323. [PMID: 38995034 PMCID: PMC11391705 DOI: 10.1128/cmr.00133-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Abstract
SUMMARYThe human intestinal tract harbors a profound variety of microorganisms that live in symbiosis with the host and each other. It is a complex and highly dynamic environment whose homeostasis directly relates to human health. Dysbiosis of the gut microbiota and polymicrobial biofilms have been associated with gastrointestinal diseases, including irritable bowel syndrome, inflammatory bowel diseases, and colorectal cancers. This review covers the molecular composition and organization of intestinal biofilms, mechanistic aspects of biofilm signaling networks for bacterial communication and behavior, and synergistic effects in polymicrobial biofilms. It further describes the clinical relevance and diseases associated with gut biofilms, the role of biofilms in antimicrobial resistance, and the intestinal host defense system and therapeutic strategies counteracting biofilms. Taken together, this review summarizes the latest knowledge and research on intestinal biofilms and their role in gut disorders and provides directions toward the development of biofilm-specific treatments.
Collapse
Affiliation(s)
- Bernhard Jandl
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Vienna, Austria
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Vienna, Austria
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Satish Dighe
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Christoph Gasche
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria
- Loha for Life, Center for Gastroenterology and Iron Deficiency, Vienna, Austria
| | - Athanasios Makristathis
- Department of Laboratory Medicine, Division of Clinical Microbiology, Medical University of Vienna, Vienna, Austria
| | - Markus Muttenthaler
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Vienna, Austria
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
2
|
Nong K, Liu Z, Qin X, Chen W, Zhang B, Wu Y, Wang Z, Fang X, Liu Y, Wang X, Shi H, Zhang H. Effect of the Pseudopleuronectes americanus-derived Pleurocidin on DSS-induced Ulcerative colitis in mice and its preliminary molecular mechanisms. Int Immunopharmacol 2024; 130:111757. [PMID: 38422770 DOI: 10.1016/j.intimp.2024.111757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/03/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
Pleurocidin is an antimicrobial peptide derived from the mucous membranes of the skin or intestinal secretions of Pseudopleuronectes americanus that has antimicrobial and immunomodulatory activities. Ulcerative colitis is recognized as a widespread human disease that may be influenced by environmental and genetic factors. Evidence emphasizes the critical role of the gut microbiota in UC. Synthetic Pleurocidin was analyzed by a combination of liquid chromatography and mass spectrometry. Pleurocidin pharmacological effects were evaluated by DAI score, colon histological score, cytokine levels, and tight junction protein expression in mice. The preliminary molecular mechanism was explored by the levels of key proteins in the NF-κB and MAPK inflammatory signaling pathways in colon tissues. The main analytical methods such as immunohistochemistry, immunofluorescence, enzyme-linked immunosorbent assay (ELISA), and Western blot were used. We then used 16S rRNA gene sequences to characterize the gut microbiota. Firstly, our study demonstrated that rectal injection of Pleurocidin at 5 mg/kg body weight alleviated clinical symptoms and colonic histopathological changes in UC mice caused by DSS. Secondly, Pleurocidin altered the abnormal levels of inflammatory and immune-related cytokines in serum, modulated the significant down-regulation of tight junction proteins, and inhibited the expression of NF-κB and MAPK inflammatory signaling pathway-related proteins. Finally, Pleurocidin can regulate gut microbiota, increase the relative abundance of beneficial bacteria and reduce the relative abundance of harmful bacteria. In conclusion, Pleurocidin alleviates UC symptoms in mice, and its effects on the gut microbiome may be potential pathways. It is providing a promising therapeutic option for UC.
Collapse
Affiliation(s)
- Keyi Nong
- College of Tropical Agriculture and Forestry, Hainan University, China
| | - Zhineng Liu
- College of Tropical Agriculture and Forestry, Hainan University, China
| | - Xinyun Qin
- College of Tropical Agriculture and Forestry, Hainan University, China
| | - Wanyan Chen
- College of Tropical Agriculture and Forestry, Hainan University, China
| | - Bin Zhang
- College of Tropical Agriculture and Forestry, Hainan University, China
| | - Yijia Wu
- College of Tropical Agriculture and Forestry, Hainan University, China
| | - Zihan Wang
- College of Tropical Agriculture and Forestry, Hainan University, China
| | - Xin Fang
- College of Tropical Agriculture and Forestry, Hainan University, China
| | - Youming Liu
- Yibin Academy of Agricultural Sciences, Yibin 644600, China
| | - Xuemei Wang
- College of Tropical Agriculture and Forestry, Hainan University, China
| | - Huiyu Shi
- College of Tropical Agriculture and Forestry, Hainan University, China
| | - Haiwen Zhang
- College of Tropical Agriculture and Forestry, Hainan University, China.
| |
Collapse
|
3
|
YONOICHI S, HARA Y, ISHIDA Y, SHODA A, KIMURA M, MURATA M, NUNOBIKI S, ITO M, YOSHIMOTO A, MANTANI Y, YOKOYAMA T, HIRANO T, IKENAKA Y, YOKOI Y, AYABE T, NAKAMURA K, HOSHI N. Effects of exposure to the neonicotinoid pesticide clothianidin on α-defensin secretion and gut microbiota in mice. J Vet Med Sci 2024; 86:277-284. [PMID: 38267031 PMCID: PMC10963084 DOI: 10.1292/jvms.23-0514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/15/2024] [Indexed: 01/26/2024] Open
Abstract
The mechanism by which the neonicotinoid pesticide clothianidin (CLO) disrupts the intestinal microbiota of experimental animals is unknown. We focused on α-defensins, which are regulators of the intestinal microbiota. Subchronic exposure to CLO induced dysbiosis and reduced short-chain fatty acid-producing bacteria in the intestinal microbiota of mice. Levels of cryptdin-1 (Crp1, a major α-defensin in mice) in feces and cecal contents were lower in the CLO-exposed groups than in control. In Crp1 immunostaining, Paneth cells in the jejunum and ileum of the no-observed-adverse-effect-level CLO-exposed group showed a stronger positive signal than control, likely due to the suppression of Crp1 release. Our results showed that CLO exposure suppresses α-defensin secretion from Paneth cells as part of the mechanism underlying CLO-induced dysbiosis.
Collapse
Affiliation(s)
- Sakura YONOICHI
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Yukako HARA
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Yuya ISHIDA
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Asuka SHODA
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Mako KIMURA
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Midori MURATA
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Sarika NUNOBIKI
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Makiko ITO
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Ayano YOSHIMOTO
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Youhei MANTANI
- Laboratory of Histophysiology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Toshifumi YOKOYAMA
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Tetsushi HIRANO
- Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Yoshinori IKENAKA
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
- Translational Research Unit, Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
- One Health Research Center, Hokkaido University, Hokkaido, Japan
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Yuki YOKOI
- Innate Immunity Laboratory, Department of Cell Biological Science, Faculty of Advanced Life Science, Hokkaido University Graduate School of Life Science,
Hokkaido, Japan
| | - Tokiyoshi AYABE
- Innate Immunity Laboratory, Department of Cell Biological Science, Faculty of Advanced Life Science, Hokkaido University Graduate School of Life Science,
Hokkaido, Japan
| | - Kiminori NAKAMURA
- Innate Immunity Laboratory, Department of Cell Biological Science, Faculty of Advanced Life Science, Hokkaido University Graduate School of Life Science,
Hokkaido, Japan
| | - Nobuhiko HOSHI
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| |
Collapse
|
4
|
Chen Z, Guan D, Wang Z, Li X, Dong S, Huang J, Zhou W. Microbiota in cancer: molecular mechanisms and therapeutic interventions. MedComm (Beijing) 2023; 4:e417. [PMID: 37937304 PMCID: PMC10626288 DOI: 10.1002/mco2.417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/04/2023] [Accepted: 10/12/2023] [Indexed: 11/09/2023] Open
Abstract
The diverse bacterial populations within the symbiotic microbiota play a pivotal role in both health and disease. Microbiota modulates critical aspects of tumor biology including cell proliferation, invasion, and metastasis. This regulation occurs through mechanisms like enhancing genomic damage, hindering gene repair, activating aberrant cell signaling pathways, influencing tumor cell metabolism, promoting revascularization, and remodeling the tumor immune microenvironment. These microbiota-mediated effects significantly impact overall survival and the recurrence of tumors after surgery by affecting the efficacy of chemoradiotherapy. Moreover, leveraging the microbiota for the development of biovectors, probiotics, prebiotics, and synbiotics, in addition to utilizing antibiotics, dietary adjustments, defensins, oncolytic virotherapy, and fecal microbiota transplantation, offers promising alternatives for cancer treatment. Nonetheless, due to the extensive and diverse nature of the microbiota, along with tumor heterogeneity, the molecular mechanisms underlying the role of microbiota in cancer remain a subject of intense debate. In this context, we refocus on various cancers, delving into the molecular signaling pathways associated with the microbiota and its derivatives, the reshaping of the tumor microenvironmental matrix, and the impact on tolerance to tumor treatments such as chemotherapy and radiotherapy. This exploration aims to shed light on novel perspectives and potential applications in the field.
Collapse
Affiliation(s)
- Zhou Chen
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Defeng Guan
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Zhengfeng Wang
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Xin Li
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The Department of General SurgeryLanzhou University Second HospitalLanzhouGansuChina
| | - Shi Dong
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The Department of General SurgeryLanzhou University Second HospitalLanzhouGansuChina
| | - Junjun Huang
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Wence Zhou
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The Department of General SurgeryLanzhou University Second HospitalLanzhouGansuChina
| |
Collapse
|
5
|
Balasubramanian I, Bandyopadhyay S, Flores J, Bianchi‐Smak J, Lin X, Liu H, Sun S, Golovchenko NB, Liu Y, Wang D, Patel R, Joseph I, Suntornsaratoon P, Vargas J, Green PHR, Bhagat G, Lagana SM, Ying W, Zhang Y, Wang Z, Li WV, Singh S, Zhou Z, Kollias G, Farr LA, Moonah SN, Yu S, Wei Z, Bonder EM, Zhang L, Kiela PR, Edelblum KL, Ferraris R, Liu T, Gao N. Infection and inflammation stimulate expansion of a CD74 + Paneth cell subset to regulate disease progression. EMBO J 2023; 42:e113975. [PMID: 37718683 PMCID: PMC10620768 DOI: 10.15252/embj.2023113975] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/19/2023] Open
Abstract
Paneth cells (PCs), a specialized secretory cell type in the small intestine, are increasingly recognized as having an essential role in host responses to microbiome and environmental stresses. Whether and how commensal and pathogenic microbes modify PC composition to modulate inflammation remain unclear. Using newly developed PC-reporter mice under conventional and gnotobiotic conditions, we determined PC transcriptomic heterogeneity in response to commensal and invasive microbes at single cell level. Infection expands the pool of CD74+ PCs, whose number correlates with auto or allogeneic inflammatory disease progressions in mice. Similar correlation was found in human inflammatory disease tissues. Infection-stimulated cytokines increase production of reactive oxygen species (ROS) and expression of a PC-specific mucosal pentraxin (Mptx2) in activated PCs. A PC-specific ablation of MyD88 reduced CD74+ PC population, thus ameliorating pathogen-induced systemic disease. A similar phenotype was also observed in mice lacking Mptx2. Thus, infection stimulates expansion of a PC subset that influences disease progression.
Collapse
Affiliation(s)
| | | | - Juan Flores
- Department of Biological SciencesRutgers UniversityNewarkNJUSA
| | | | - Xiang Lin
- Department of Computer ScienceNew Jersey Institute of TechnologyNewarkNJUSA
| | - Haoran Liu
- Department of Computer ScienceNew Jersey Institute of TechnologyNewarkNJUSA
| | - Shengxiang Sun
- Department of Pathology and ImmunologyWashington University School of MedicineSaint LouisMOUSA
| | | | - Yue Liu
- Department of Biological SciencesRutgers UniversityNewarkNJUSA
| | - Dahui Wang
- Department of Biological SciencesRutgers UniversityNewarkNJUSA
| | - Radha Patel
- Department of Biological SciencesRutgers UniversityNewarkNJUSA
| | - Ivor Joseph
- Department of Biological SciencesRutgers UniversityNewarkNJUSA
| | - Panan Suntornsaratoon
- Department of Pharmacology, Physiology & NeuroscienceRutgers New Jersey Medical SchoolNewarkNJUSA
| | - Justin Vargas
- Department of Medicine, Celiac Disease CenterColumbia University Irving Medical CenterNew YorkNYUSA
| | - Peter HR Green
- Department of Medicine, Celiac Disease CenterColumbia University Irving Medical CenterNew YorkNYUSA
| | - Govind Bhagat
- Department of Medicine, Celiac Disease CenterColumbia University Irving Medical CenterNew YorkNYUSA
- Department of Pathology and Cell BiologyColumbia University Irving Medical CenterNew YorkNYUSA
| | - Stephen M Lagana
- Department of Pathology and Cell BiologyColumbia University Irving Medical CenterNew YorkNYUSA
| | - Wang Ying
- Hackensack Meridian Health Center for Discovery and InnovationNutleyNJUSA
| | - Yi Zhang
- Hackensack Meridian Health Center for Discovery and InnovationNutleyNJUSA
| | - Zhihan Wang
- Department of StatisticsRutgers UniversityNew BrunswickNJUSA
| | - Wei Vivian Li
- Department of Biostatistics and EpidemiologyRutgers UniversityNew BrunswickNJUSA
| | - Sukhwinder Singh
- Department of PathologyRutgers New Jersey Medical SchoolNewarkNJUSA
| | - Zhongren Zhou
- Department of Pathology & Laboratory Medicine, Robert Wood Johnson Medical SchoolRutgers UniversityNew BrunswickNJUSA
| | - George Kollias
- Biomedical Sciences Research Centre, “Alexander Fleming”VariGreece
| | - Laura A Farr
- Division of Infectious Diseases and International HealthUniversity of VirginiaCharlottesvilleVAUSA
| | - Shannon N Moonah
- Division of Infectious Diseases and International HealthUniversity of VirginiaCharlottesvilleVAUSA
| | - Shiyan Yu
- Department of Biological SciencesRutgers UniversityNewarkNJUSA
| | - Zhi Wei
- Department of Computer ScienceNew Jersey Institute of TechnologyNewarkNJUSA
| | - Edward M Bonder
- Department of Biological SciencesRutgers UniversityNewarkNJUSA
| | - Lanjing Zhang
- Department of Biological SciencesRutgers UniversityNewarkNJUSA
- Department of PathologyPenn Medicine Princeton Medical CenterPlainsboroNJUSA
| | - Pawel R Kiela
- Departments of Pediatrics and Immunology, and Daniel Cracchiolo Institute for Pediatric Autoimmune Disease Research, Steele Children's Research CenterThe University of Arizona Health SciencesTucsonAZUSA
| | - Karen L Edelblum
- Center for Immunity and InflammationRutgers New Jersey Medical SchoolNewarkNJUSA
| | - Ronaldo Ferraris
- Department of Pharmacology, Physiology & NeuroscienceRutgers New Jersey Medical SchoolNewarkNJUSA
| | - Ta‐Chiang Liu
- Department of Pathology and ImmunologyWashington University School of MedicineSaint LouisMOUSA
| | - Nan Gao
- Department of Biological SciencesRutgers UniversityNewarkNJUSA
| |
Collapse
|
6
|
Mhlongo JT, Waddad AY, Albericio F, de la Torre BG. Antimicrobial Peptide Synergies for Fighting Infectious Diseases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300472. [PMID: 37407512 PMCID: PMC10502873 DOI: 10.1002/advs.202300472] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/28/2023] [Indexed: 07/07/2023]
Abstract
Antimicrobial peptides (AMPs) are essential elements of thehost defense system. Characterized by heterogenous structures and broad-spectrumaction, they are promising candidates for combating multidrug resistance. Thecombined use of AMPs with other antimicrobial agents provides a new arsenal ofdrugs with synergistic action, thereby overcoming the drawback of monotherapiesduring infections. AMPs kill microbes via pore formation, thus inhibitingintracellular functions. This mechanism of action by AMPs is an advantage overantibiotics as it hinders the development of drug resistance. The synergisticeffect of AMPs will allow the repurposing of conventional antimicrobials andenhance their clinical outcomes, reduce toxicity, and, most significantly,prevent the development of resistance. In this review, various synergies ofAMPs with antimicrobials and miscellaneous agents are discussed. The effect ofstructural diversity and chemical modification on AMP properties is firstaddressed and then different combinations that can lead to synergistic action,whether this combination is between AMPs and antimicrobials, or AMPs andmiscellaneous compounds, are attended. This review can serve as guidance whenredesigning and repurposing the use of AMPs in combination with other antimicrobialagents for enhanced clinical outcomes.
Collapse
Affiliation(s)
- Jessica T. Mhlongo
- KwaZulu‐Natal Research Innovation and Sequencing Platform (KRISP)School of Laboratory Medicine and Medical SciencesCollege of Health SciencesUniversity of KwaZulu‐NatalDurban4041South Africa
- Peptide Science LaboratorySchool of Chemistry and PhysicsUniversity of KwaZulu‐NatalWestvilleDurban4000South Africa
| | - Ayman Y. Waddad
- Peptide Science LaboratorySchool of Chemistry and PhysicsUniversity of KwaZulu‐NatalWestvilleDurban4000South Africa
| | - Fernando Albericio
- Peptide Science LaboratorySchool of Chemistry and PhysicsUniversity of KwaZulu‐NatalWestvilleDurban4000South Africa
- CIBER‐BBNNetworking Centre on BioengineeringBiomaterials and Nanomedicineand Department of Organic ChemistryUniversity of BarcelonaBarcelona08028Spain
| | - Beatriz G. de la Torre
- KwaZulu‐Natal Research Innovation and Sequencing Platform (KRISP)School of Laboratory Medicine and Medical SciencesCollege of Health SciencesUniversity of KwaZulu‐NatalDurban4041South Africa
| |
Collapse
|
7
|
Migliario M, Yerra P, Gino S, Sabbatini M, Renò F. Laser Biostimulation Induces Wound Healing-Promoter β2-Defensin Expression in Human Keratinocytes via Oxidative Stress. Antioxidants (Basel) 2023; 12:1550. [PMID: 37627545 PMCID: PMC10451672 DOI: 10.3390/antiox12081550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/19/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
The innate immune system is the first line of defense of the body composed of anatomical barriers, such as skin and mucosa, as well as effector cells, antimicrobial peptides, soluble mediators, and cell receptors able to detect and destroy viruses and bacteria and to sense trauma and wounds to initiate repair. The human β-defensins belong to a family of antimicrobial small cationic peptides produced by epithelial cells, and show immunomodulatory and pro-healing activities. Laser biostimulation is a therapy widely used to contrast microbial infection and to accelerate wound healing through biological mechanisms that include the creation of oxidative stress. In this paper, we explored laser biostimulation's ability to modulate the production of two β-defensins, hBD-1 and hBD-2, in human keratinocytes and whether this modulation was, at least in part, oxidative-stress-dependent. Human spontaneously immortalized keratinocytes (HaCaT) were stimulated using laser irradiation at a 980 nm wavelength, setting the power output to 1 W (649.35 mW/cm2) in the continuous mode. Cells were irradiated for 0 (negative control), 5, 10, 25 and 50 s, corresponding to an energy stimulation of 0, 5, 10, 25 and 50 J. Positive control cells were treated with lipopolysaccharide (LPS, 200 ng/mL). After 6 and 24 h of treatment, the cell conditioned medium was collected and analyzed via ELISA assay for the production of hBD-1 and hBD-2. In another set of experiments, HaCaT were pre-incubated for 45 min with antioxidant drugs-vitamin C (Vit. C, 100 µM), sodium azide (NaN3, 1 mM); ω-nitro-L-arginine methyl ester (L-NAME, 10 mM) and sodium pyruvate (NaPyr, 100 µM)-and then biostimulated for 0 or 50 s. After 6 h, the conditioned medium was collected and used for the ELISA analysis. The hBD-1 and hBD-2 production by HaCaT was significantly increased by single laser biostimulation after 6 h in an energy-dependent fashion compared to basal levels, and both reached production levels induced by LPS. After 24 h, only hBD-2 production induced by laser biostimulation was further increased, while the basal and stimulated hBD-1 levels were comparable. Pre-incubation with antioxidative drugs was able to completely abrogate the laser-induced production of both hBD-1 and hBD-2 after 6 h, with the exception of hBD-1 production in samples stimulated after NaN3 pre-incubation. A single laser biostimulation induced the oxidative-stress-dependent production of both hBD-1 and hBD-2 in human keratinocytes. In particular, the pro-healing hBD-2 level was almost three times higher than the baseline level and lasted for 24 h. These findings increase our knowledge about the positive effects of laser biostimulation on wound healing.
Collapse
Affiliation(s)
- Mario Migliario
- Traslational Medicine Department, Università del Piemonte Orientale, Via Solaroli n. 17, 28100 Novara, Italy;
| | - Preetham Yerra
- Health Sciences Department, Università del Piemonte Orientale, Via Solaroli n. 17, 28100 Novara, Italy; (P.Y.); (S.G.)
| | - Sarah Gino
- Health Sciences Department, Università del Piemonte Orientale, Via Solaroli n. 17, 28100 Novara, Italy; (P.Y.); (S.G.)
| | - Maurizio Sabbatini
- Sciences and Innovative Technology Department, Università del Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy;
| | - Filippo Renò
- Health Sciences Department, Università del Piemonte Orientale, Via Solaroli n. 17, 28100 Novara, Italy; (P.Y.); (S.G.)
| |
Collapse
|
8
|
Wu E, Zhu J, Ma Z, Tuo B, Terai S, Mizuno K, Li T, Liu X. Gastric alarmin release: A warning signal in the development of gastric mucosal diseases. Front Immunol 2022; 13:1008047. [PMID: 36275647 PMCID: PMC9583272 DOI: 10.3389/fimmu.2022.1008047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
Alarmins exist outside cells and are early warning signals to the immune system; as such, alarmin receptors are widely distributed on various immune cells. Alarmins, proinflammatory molecular patterns associated with tissue damage, are usually released into the extracellular space, where they induce immune responses and participate in the damage and repair processes of mucosal diseases.In the stomach, gastric alarmin release has been shown to be involved in gastric mucosal inflammation, antibacterial defense, adaptive immunity, and wound healing; moreover, this release causes damage and results in the development of gastric mucosal diseases, including various types of gastritis, ulcers, and gastric cancer. Therefore, it is necessary to understand the role of alarmins in gastric mucosal diseases. This review focuses on the contribution of alarmins, including IL33, HMGB1, defensins and cathelicidins, to the gastric mucosal barrier and their role in gastric mucosal diseases. Here, we offer a new perspective on the prevention and treatment of gastric mucosal diseases.
Collapse
Affiliation(s)
- Enqin Wu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jiaxing Zhu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhiyuan Ma
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Biguang Tuo
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Shuji Terai
- Division of Gastroenterology & Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Kenichi Mizuno
- Division of Gastroenterology & Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Taolang Li
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xuemei Liu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
9
|
Waniczek D, Świętochowska E, Śnietura M, Kiczmer P, Lorenc Z, Muc-Wierzgoń M. Salivary Concentrations of Chemerin, α-Defensin 1, and TNF-α as Potential Biomarkers in the Early Diagnosis of Colorectal Cancer. Metabolites 2022; 12:metabo12080704. [PMID: 36005576 PMCID: PMC9416224 DOI: 10.3390/metabo12080704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
Colorectal cancer is one of the most prevalent cancers worldwide. There is a great interest and need to find simple, inexpensive, and minimally invasive diagnostic tests. The aim of the study was to analyze the salivary concentrations of chemerin, α-defensin 1, and TNF-α in colorectal cancer (CRC) patients and in a healthy control group. The concentration of these proteins was simultaneously determined in the serum of subjects. We also aimed to assess the correlation of these results and selected clinicopathological features. This prospective study was comprised of 39 CRC patients and 40 control group patients. Salivary and serum concentrations were determined by enzyme immunoassays. The salivary and serum concentrations of chemerin, α-defensin 1, and TNF-α were significantly higher in cancer patients compared to the control group. No correlation was found between concentrations of the proteins and the clinical stage of cancer and tumor location. The ROC curve analysis showed that although salivary concentrations of all proteins showed 100% sensitivity and 100% specificity, serum concentrations of the analyzed proteins were characterized by 100% sensitivity and over 90% specificity. The assessment of chemerin, α-defensin 1, and TNF-α concentrations in saliva seem to have great potential as quick and useful biomarkers in the early diagnosis of CRC.
Collapse
Affiliation(s)
- Dariusz Waniczek
- Department of Surgical Nursing and Propaedeutics of Surgery, Faculty of Health Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Elżbieta Świętochowska
- Department of Medical and Molecular Biology, School of Medicine with the Division of Dentistry, Medical University of Silesia in Katowice, 40-055 Katowice, Poland; (E.Ś.); (P.K.)
| | - Mirosław Śnietura
- Department of Pathomorphology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Paweł Kiczmer
- Department of Medical and Molecular Biology, School of Medicine with the Division of Dentistry, Medical University of Silesia in Katowice, 40-055 Katowice, Poland; (E.Ś.); (P.K.)
| | - Zbigniew Lorenc
- Department of General, Colorectal and Multiple-Organ Surgery, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
| | - Małgorzata Muc-Wierzgoń
- Małgorzata Muc-Wierzgoń, Department of Preventive Medicine, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
- Correspondence:
| |
Collapse
|
10
|
López-Valverde N, Aragoneses J, López-Valverde A, Rodríguez C, Macedo de Sousa B, Aragoneses JM. Role of chitosan in titanium coatings. trends and new generations of coatings. Front Bioeng Biotechnol 2022; 10:907589. [PMID: 35935477 PMCID: PMC9354072 DOI: 10.3389/fbioe.2022.907589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/04/2022] [Indexed: 01/03/2023] Open
Abstract
Survival studies of dental implants currently reach high figures. However, considering that the recipients are middle-aged individuals with associated pathologies, research is focused on achieving bioactive surfaces that ensure osseointegration. Chitosan is a biocompatible, degradable polysaccharide with antimicrobial and anti-inflammatory properties, capable of inducing increased growth and fixation of osteoblasts around chitosan-coated titanium. Certain chemical modifications to its structure have been shown to enhance its antibacterial activity and osteoinductive properties and it is generally believed that chitosan-coated dental implants may have enhanced osseointegration capabilities and are likely to become a commercial option in the future. Our review provided an overview of the current concepts and theories of osseointegration and current titanium dental implant surfaces and coatings, with a special focus on the in vivo investigation of chitosan-coated implants and a current perspective on the future of titanium dental implant coatings.
Collapse
Affiliation(s)
- Nansi López-Valverde
- Department of Medicine and Medical Specialties, Faculty of Health Sciences, Universidad Alcalá de Henares, Madrid, Spain
| | - Javier Aragoneses
- Department of Medicine and Medical Specialties, Faculty of Health Sciences, Universidad Alcalá de Henares, Madrid, Spain
| | - Antonio López-Valverde
- Department of Surgery, University of Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- *Correspondence: Antonio López-Valverde,
| | - Cinthia Rodríguez
- Department of Dentistry, Universidad Federico Henríquez y Carvajal, Santo Domingo, Dominican Republic
| | - Bruno Macedo de Sousa
- Institute for Occlusion and Orofacial Pain, Faculty of Medicine, University of Coimbra, Polo I‐Edifício Central Rua Larga, Coimbra, Portugal
| | | |
Collapse
|
11
|
Srivastava M, Chandra A, R R, Nigam J, Rajan P, Parmar D, Srivastava RN, Gupta V. Expression of Antimicrobial Peptides and Cytokines in Human Omentum Following Abdominal Surgery. Cureus 2021; 13:e17477. [PMID: 34589365 PMCID: PMC8464651 DOI: 10.7759/cureus.17477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2021] [Indexed: 12/02/2022] Open
Abstract
Introduction Omentum can secrete out biological agents like different growth factors, cytokines, and antimicrobial peptides. The aim of our study was to determine the expression of antimicrobial peptides and cytokines in human omentum tissue and its response to intra-abdominal infection. Methodology Omentum tissue was obtained from 60 patients: control (n=20) and cases (n=40). mRNA expression of antimicrobial peptides (LL-37, HBD-1, HBD-2, HNP1-3) and cytokines (TNF- α, IL-8, IL-10, IL1β) was evaluated using Real-Time PCR. Protein quantification was done by Immunoblotting and ELISA. Results Significantly higher expression of antimicrobial peptides (LL-37, HBD-1, HBD-2, HNP1-3) and cytokines (TNF- α, IL-8, IL-10, IL1β) was observed in cases as compared to control at both the transcriptional and translational level (p<0.0001). Conclusion Omentum governs a population of antimicrobial peptides with potent immunologic functions. The expression of antimicrobial peptides and cytokines is inducible and increases with the severity of infection. Omentum is thus an immunologically active and adaptable organ but its complete regulatory mechanism is still elusive.
Collapse
Affiliation(s)
- Meenu Srivastava
- Surgical Gastroenterology, King George's Medical University, Lucknow, IND
| | - Abhijit Chandra
- Surgical Gastroenterology, King George's Medical University, Lucknow, IND
| | - Rahul R
- Surgical Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, IND
| | - Jaya Nigam
- Surgical Gastroenterology, King George's Medical University, Lucknow, IND
| | - Pritheesh Rajan
- Surgical Gastroenterology, King George's Medical University, Lucknow, IND
| | - Devendra Parmar
- Developmental Toxicology, Indian Institute of Toxicology Research, Lucknow, IND
| | | | - Vivek Gupta
- Surgical Gastroenterology, King George's Medical University, Lucknow, IND
| |
Collapse
|
12
|
Kawada-Matsuo M, Le MNT, Komatsuzawa H. Antibacterial Peptides Resistance in Staphylococcus aureus: Various Mechanisms and the Association with Pathogenicity. Genes (Basel) 2021; 12:genes12101527. [PMID: 34680923 PMCID: PMC8535901 DOI: 10.3390/genes12101527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 01/15/2023] Open
Abstract
Staphylococcus aureus is a bacterium that mainly colonizes the nasal cavity and skin. To colonize the host, it is necessary for S. aureus to resist many antibacterial factors derived from human and commensal bacteria. Among them are the bacteria-derived antimicrobial peptides (AMPs) called bacteriocins. It was reported that some two-component systems (TCSs), which are signal transduction systems specific to bacteria, are involved in the resistance to several bacteriocins in S. aureus. However, the TCS-mediated resistance is limited to relatively low concentrations of bacteriocins, while high concentrations of bacteriocins still exhibit antibacterial activity against S. aureus. To determine whether we could obtain highly bacteriocin-resistant mutants, we tried to isolate highly nisin A-resistant mutants by exposing the cells to sub-minimum inhibitory concentrations (MICs) of nisin A. Nisin A is one of the bacteriocins produced by Lactococcus lactis and is utilized as a food preservative worldwide. Finally, we obtained highly nisin A-resistant mutants with mutations in one TCS, BraRS, and in PmtR, which is involved in the expression of pmtABCD. Notably, some highly resistant strains also showed increased pathogenicity. Based on our findings, this review provides up-to-date information on the role of TCSs in the susceptibility to antibacterial peptides. Additionally, the mechanism for high antimicrobial peptides resistance and its association with pathogenicity in S. aureus is elucidated.
Collapse
|
13
|
Laneri S, Brancaccio M, Mennitti C, De Biasi MG, Pero ME, Pisanelli G, Scudiero O, Pero R. Antimicrobial Peptides and Physical Activity: A Great Hope against COVID 19. Microorganisms 2021; 9:1415. [PMID: 34209064 PMCID: PMC8304224 DOI: 10.3390/microorganisms9071415] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/07/2021] [Accepted: 06/21/2021] [Indexed: 12/24/2022] Open
Abstract
Antimicrobial peptides (AMPs), α- and β-defensins, possess antiviral properties. These AMPs achieve viral inhibition through different mechanisms of action. For example, they can: (i) bind directly to virions; (ii) bind to and modulate host cell-surface receptors, disrupting intracellular signaling; (iii) function as chemokines to augment and alter adaptive immune responses. Given their antiviral properties and the fact that the development of an effective coronavirus disease 2019 (COVID-19) treatment is an urgent public health priority, they and their derivatives are being explored as potential therapies against COVID-19. These explorations using various strategies, range from their direct interaction with the virus to using them as vaccine adjuvants. However, AMPs do not work in isolation, specifically in their role as potent immune modulators, where they interact with toll-like receptors (TLRs) and chemokine receptors. Both of these receptors have been shown to play roles in COVID-19 pathogenesis. In addition, it is known that a healthy lifestyle accompanied by controlled physical activity can represent a natural weapon against COVID-19. In competitive athletes, an increase in serum defensins has been shown to function as self-protection from the attack of microorganisms, consequently a controlled physical activity could act as a support to any therapies in fighting COVID-19. Therefore, including information on all these players' interactions would produce a complete picture of AMP-based therapies' response.
Collapse
Affiliation(s)
- Sonia Laneri
- Department of Pharmacy, University of Naples Federico II, Via Montesano, 80138 Naples, Italy; (S.L.); (M.G.D.B.)
| | - Mariarita Brancaccio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (M.B.); (C.M.)
| | - Cristina Mennitti
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (M.B.); (C.M.)
| | - Margherita G. De Biasi
- Department of Pharmacy, University of Naples Federico II, Via Montesano, 80138 Naples, Italy; (S.L.); (M.G.D.B.)
| | - Maria Elena Pero
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via Federico Delpino 1, 80137 Naples, Italy; (M.E.P.); (G.P.)
| | - Giuseppe Pisanelli
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via Federico Delpino 1, 80137 Naples, Italy; (M.E.P.); (G.P.)
| | - Olga Scudiero
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (M.B.); (C.M.)
- Ceinge Biotecnologie Avanzate S.C.aR.L., 80131 Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, 80100 Naples, Italy
| | - Raffaela Pero
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (M.B.); (C.M.)
- Ceinge Biotecnologie Avanzate S.C.aR.L., 80131 Naples, Italy
| |
Collapse
|
14
|
Körtvélyessy G, Tarjányi T, Baráth ZL, Minarovits J, Tóth Z. Bioactive coatings for dental implants: A review of alternative strategies to prevent peri-implantitis induced by anaerobic bacteria. Anaerobe 2021; 70:102404. [PMID: 34146701 DOI: 10.1016/j.anaerobe.2021.102404] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/11/2022]
Abstract
Members of oral bacterial communities form biofilms not only on tooth surfaces but also on the surface of dental implants that replace natural teeth. Prolonged interaction of host cells with biofilm-forming anaerobes frequently elicits peri-implantitis, a destructive inflammatory disease accompanied by alveolar bone loss leading to implant failure. Here we wish to overview how the deposition of bioactive peptides to dental implant surfaces could potentially inhibit bacterial colonization and the development of peri-implantisis. One preventive strategy is based on natural antimicrobial peptides (AMPs) immobilized on titanium surfaces. AMPs are capable to destroy both Gram positive and Gram negative bacteria directly. An alternative strategy aims at coating implant surfaces - especially the transmucosal part - with peptides facilitating the attachment of gingival epithelial cells and connective tissue cells. These cells produce AMPs and may form a soft tissue seal that prevents oral bacteria from accessing the apical part of the osseointegrated implant. Because a wide variety of titanium-bound peptides were studied in vitro, we wish to concentrate on bioactive peptides of human origin and some of their derivatives. Furthermore, special attention will be given to peptides effective under in vivo test conditions.
Collapse
Affiliation(s)
- Győző Körtvélyessy
- Department of Oral Biology and Experimental Dental Research, University of Szeged, Faculty of Dentistry, 6720, Szeged, Tisza Lajos Krt. 64, Hungary
| | - Tamás Tarjányi
- Department of Oral Biology and Experimental Dental Research, University of Szeged, Faculty of Dentistry, 6720, Szeged, Tisza Lajos Krt. 64, Hungary
| | - Zoltán L Baráth
- Department of Prosthodontics, University of Szeged, Faculty of Dentistry, 6720, Szeged, Tisza Lajos Krt. 64, Hungary
| | - Janos Minarovits
- Department of Oral Biology and Experimental Dental Research, University of Szeged, Faculty of Dentistry, 6720, Szeged, Tisza Lajos Krt. 64, Hungary
| | - Zsolt Tóth
- Department of Oral Biology and Experimental Dental Research, University of Szeged, Faculty of Dentistry, 6720, Szeged, Tisza Lajos Krt. 64, Hungary; Department of Experimental Physics, University of Szeged, Faculty of Science and Informatics, 6720, Szeged, Dóm Tér 9, Hungary.
| |
Collapse
|
15
|
Díaz Galván C, Méndez Olvera ET, Martínez Gómez D, Gloria Trujillo A, Hernández García PA, Espinosa Ayala E, Palacios Martínez M, Lara Bueno A, Mendoza Martínez GD, Velázquez Cruz LA. Influence of a Polyherbal Mixture in Dairy Calves: Growth Performance and Gene Expression. Front Vet Sci 2021; 7:623710. [PMID: 33575280 PMCID: PMC7870704 DOI: 10.3389/fvets.2020.623710] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/21/2020] [Indexed: 11/23/2022] Open
Abstract
A polyherbal feed mixture containing (Achyrantes aspera, Trachyspermum ammi, Citrullus colocynthis, Andrographis paniculata, and Azadirachta indica) was evaluated in growing calves through blood chemistry, blood biometry, and gene expression during the pre-ruminant to weaning period. Forty Holstein calves (initial BW 45.6 ± 3.2 kg; 22.8 ± 0.9 days post birth) from a dairy farm were randomly assigned to the following treatments: 0, 3, 4, and 5 g/d of a polyherbal mixture, dosed in colloid gels with gelatin. Calves were housed in individual outdoor boxes with ad libitum access to a 21.5% CP calf starter and water and fed individually with a mixture of milk and a non-medicated milk replacer (22% CP). Blood samples were collected on day 59 for blood chemistry, blood biometry, and gene expression analysis in leukocyte through microarray assays. Immunoglobulins were quantified by enzyme-linked immunosorbent assay. The animals treated with the polyherbal mixture showed a quadratic effect on final body weight, daily weight gain, final hip height, and final thoracic girth. The best performance results were obtained with a treatment dose of 4 g/d. The serum IgG increased linearly with the treatment doses. Gene set enrichment analysis of upregulated genes revealed that the three biological processes with higher fold change were tight junction, mucin type O-Glycan biosynthesis, and intestinal immune network for IgA production. Also, these upregulated genes influenced arachidonic acid metabolism, and pantothenate and CoA biosynthesis. Gene ontology enrichment analysis indicated that the pathways enriched were PELP1 estrogen receptor interacting protein pathways, nuclear receptors in lipid metabolism and toxicity, tight junction, ECM-receptor interaction, thyroid hormone signaling pathways, vascular smooth muscle contraction, ribosome function, glutamatergic synapse pathway, focal adhesion, Hippo, calcium, and MAPK signaling pathways.
Collapse
Affiliation(s)
- Cesar Díaz Galván
- Doctorado en Ciencias Agropecuarias, Universidad Autónoma Metropolitana Xochimilco, Ciudad de México, Mexico
| | - Estela Teresita Méndez Olvera
- Laboratorio de Biología Molecular, Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana Xochimilco, Ciudad de México, Mexico
| | - Daniel Martínez Gómez
- Laboratorio de Microbiología Agropecuaria, Universidad Autónoma Metropolitana Xochimilco, Ciudad de México, Mexico
| | - Adrián Gloria Trujillo
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana Xochimilco, Ciudad de México, Mexico
| | | | - Enrique Espinosa Ayala
- Centro Universitario UAEM Amecameca, Universidad Autónoma del Estado de México, Amecameca, Mexico
| | - Monika Palacios Martínez
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana Xochimilco, Ciudad de México, Mexico
| | | | - Germán David Mendoza Martínez
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana Xochimilco, Ciudad de México, Mexico
| | | |
Collapse
|
16
|
Gadishaw-Lue C, Banaag A, Birstonas S, Francis AS, Barnett Foster D. Bile Salts Differentially Enhance Resistance of Enterohemorrhagic Escherichia coli O157:H7 to Host Defense Peptides. Infect Immun 2021; 89:e00719-20. [PMID: 33229368 PMCID: PMC7822141 DOI: 10.1128/iai.00719-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 11/13/2020] [Indexed: 12/28/2022] Open
Abstract
During passage through the human gastrointestinal tract, enterohemorrhagic Escherichia coli (EHEC) is exposed to membrane-damaging bile in the small intestine. We previously reported that EHEC treatment with a physiological bile salt mixture upregulates basRS, encoding a two-component system, and arnBCADTEF, encoding the aminoarabinose lipid A modification pathway (J. V. Kus, A. Gebremedhin, V. Dang, S. L. Tran, A. Serbanescu, and D. Barnett Foster, J Bacteriol 193: 4509-4515, 2011, https://doi.org/10.1128/JB.00200-11). The present study examined the effect of bile salt mix (BSM) treatment on EHEC resistance to three human gastrointestinal defense peptides-HD-5, HNP-1, and LL-37-as well as the role of basRS and arnT in the respective responses. After BSM treatment, EHEC resistance to HD-5 and HNP-1 was significantly increased in a BSM-, defensin dose-dependent manner. The resistance phenotype was dependent on both basRS and arnT However, the BSM treatment did not alter EHEC resistance to LL-37, even when the ompT gene, encoding an LL-37 cleavage protease, was disrupted. Interestingly, enteropathogenic E. coli, a related pathogen that infects the small intestine, showed a similar BSM-induced resistance phenotype. Using a model of EHEC infection in Galleria mellonella, we found significantly lower survival rates in wax moth larvae infected with BSM-treated wild-type EHEC than in those infected with a BSM-treated basS mutant, suggesting that treatment with a physiological BSM enhances virulence through a basS-mediated pathway. The results of this investigation provide persuasive evidence that bile salts typically encountered during transit through the small intestine can serve as an environmental cue for EHEC, enhancing resistance to several key host defense peptides.
Collapse
Affiliation(s)
- Crystal Gadishaw-Lue
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| | - Alyssa Banaag
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| | - Sarah Birstonas
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| | - Aju-Sue Francis
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| | - Debora Barnett Foster
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
17
|
|
18
|
Oktayoglu P, Mete N, Caglayan M. The Role of Alpha Defensins in Patients with Ankylosing Spondylitis. AKTUEL RHEUMATOL 2020. [DOI: 10.1055/a-1242-4217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Abstract
Objectives Defensins are a family of antimicrobial peptides. Elevated levels of human neutrophil peptides (HNP 1–3) are seen in blood samples of patients with inflammatory bowel disease (IBD) and in many rheumatic diseases. It has been suggested that they may play a significant role in the progression and pathogenesis of these diseases. Therefore, we aimed to investigate the levels of HNP 1–3 in sera of patients with ankylosing spondylitis (AS) and its association with disease activity and other clinical features of AS.
Methods A total of 36 patients, who met the Modified New York Criteria for AS, and 50 healthy controls (HCs) were included in this study. The Bath AS Disease Activity Index (BASDAI) and the Ankylosing Spondylitis Disease Activity Score (ASDAS) were used to assess disease activity. The Bath AS Radiology Index (BASRI) was used to assess radiological damage. Spinal and hip measurements were determined by the Bath AS Metrology Index (BASMI). An AS Quality of Life (ASQoL) questionnaire was administered to assess the disease-related quality of life. Serum HNP 1–3 levels were determined using the ELISA kit.
Results Mean serum HNP 1–3 levels were significantly higher in patients with AS (287.01±201.307 vs. 152.09±43.75 pg/ml) compared with HCs (p=0.001). HNP 1–3 levels did not correlate with BASDAI (p=0.519), ASDAS-CRP (p=0.424), BASRI (p=0.280), BASMI (p=0.168), ASQoL (p=0.307), ESR (p=0.706) and CRP (p=0.157) values.
Conclusion Elevated serum levels of HNP 1–3 may play an important role in the pathogenetic mechanisms of AS. This result may give us an opportunity to develop new treatment strategies considering the role of these peptides in the pathogenetic mechanisms of AS.
Collapse
Affiliation(s)
- Pelin Oktayoglu
- Faculty of Medicine, Department of Physical Medicine and Rehabilitation, Division of Rheumatology, Dicle University, Diyarbakir, Turkey
| | - Nuriye Mete
- Department of Biochemistry, Dicle University, Diyarbakir, Turkey
| | - Mehmet Caglayan
- Faculty of Medicine, Department of Physical Medicine and Rehabilitation, Division of Rheumatology, Dicle University, Diyarbakir, Turkey
| |
Collapse
|
19
|
Tartaglia LJ, Badamchi-Zadeh A, Abbink P, Blass E, Aid M, Gebre MS, Li Z, Pastores KC, Trott S, Gupte S, Larocca RA, Barouch DH. Alpha-defensin 5 differentially modulates adenovirus vaccine vectors from different serotypes in vivo. PLoS Pathog 2019; 15:e1008180. [PMID: 31841560 PMCID: PMC6936886 DOI: 10.1371/journal.ppat.1008180] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 12/30/2019] [Accepted: 11/01/2019] [Indexed: 12/20/2022] Open
Abstract
Adenoviral vectors have shown significant promise as vaccine delivery vectors due to their ability to elicit both innate and adaptive immune responses. α-defensins are effector molecules of the innate immune response and have been shown to modulate natural infection with adenoviruses, but the majority of α-defensin-adenovirus interactions studied to date have only been analyzed in vitro. In this study, we evaluated the role of α-defensin 5 (HD5) in modulating adenovirus vaccine immunogenicity using various serotype adenovirus vectors in mice. We screened a panel of human adenoviruses including Ad5 (species C), Ad26 (species D), Ad35 (species B), Ad48 (species D) and a chimeric Ad5HVR48 for HD5 sensitivity. HD5 inhibited transgene expression from Ad5 and Ad35 but augmented transgene expression from Ad26, Ad48, and Ad5HVR48. HD5 similarly suppressed antigen-specific IgG and CD8+ T cell responses elicited by Ad5 vectors in mice, but augmented IgG and CD8+ T cell responses and innate cytokine responses elicited by Ad26 vectors in mice. Moreover, HD5 suppressed the protective efficacy of Ad5 vectors but enhanced the protective efficacy of Ad26 vectors expressing SIINFEKL against a surrogate Listeria-OVA challenge in mice. These data demonstrate that HD5 differentially modulates adenovirus vaccine delivery vectors in a species-specific manner in vivo.
Collapse
Affiliation(s)
- Lawrence J. Tartaglia
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston Massachusetts, United States of America
| | - Alexander Badamchi-Zadeh
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston Massachusetts, United States of America
| | - Peter Abbink
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston Massachusetts, United States of America
| | - Eryn Blass
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston Massachusetts, United States of America
| | - Malika Aid
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston Massachusetts, United States of America
| | - Makda S. Gebre
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston Massachusetts, United States of America
| | - Zhenfeng Li
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston Massachusetts, United States of America
| | - Kevin Clyde Pastores
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston Massachusetts, United States of America
| | - Sebastien Trott
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston Massachusetts, United States of America
| | - Siddhant Gupte
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston Massachusetts, United States of America
| | - Rafael A. Larocca
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston Massachusetts, United States of America
| | - Dan H. Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston Massachusetts, United States of America
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
20
|
Dall'Acqua S, Grabnar I, Verardo R, Klaric E, Marchionni L, Luidy-Imada E, Sut S, Agostinis C, Bulla R, Perissutti B, Voinovich D. Combined extracts of Echinacea angustifolia DC. and Zingiber officinale Roscoe in softgel capsules: Pharmacokinetics and immunomodulatory effects assessed by gene expression profiling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 65:153090. [PMID: 31557666 DOI: 10.1016/j.phymed.2019.153090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 09/10/2019] [Accepted: 09/15/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND OBJECTIVE Echinacea angustifolia DC. and Zingiber officinale Roscoe are two natural products with documented immunomodulatory activity, both able to modulate the expression of important immune-related genes. Thus, their use in combination seems to be particularly promising. In this context, we have considered the oral supplementation of a highly standardized lipophilic extract combining both above-mentioned phytocomplexes, formulated in attractive softgel capsules, with two objectives: on the one hand to study oral pharmacokinetic of main active extracts' components and on the other hand to examine the immunomodulation and anti-inflammatory properties by gene expression profiling. METHODS Softgel capsules containing a combination of E. angustifolia DC. and Z. officinale Roscoe (5 mg and 25 mg, respectively) were given by oral administration to 10 healthy volunteers. The plasma concentrations of dodeca-2E,4E,8Z,10E/Z-tetraenoic isobutylamide (tetraene) for E. angustifolia DC., 6-gingerol and 6-shogaol (free and glucuronide) for Z. officinale Roscoe were determined by LC-MS analysis, and the pharmacokinetic analysis was performed. To understand the functional mechanisms responsible for the documented health benefits, we also examined the overall transcriptional remodeling induced in the peripheral blood mononuclear cells and performed an integrative functional analysis on the generated gene expression. RESULTS All bioactive components were absorbed very rapidly, and their tmax were detected in plasma from 30 min to 1.40 h. The peak concentrations of tetraene, 6-gingerol, 6-shogaol and their glucuronide metabolites were 14.74, 5.66, 9.25, 29.2 and 22.24 ng/ml, respectively. Integrated analysis performed on the generated gene expression data highlighted immunomodulatory and anti-inflammatory effects similar to those exerted by hydrocortisone. CONCLUSION These data demonstrated that the bioactive ingredients are highly and rapidly absorbed from softgel capsules containing the combination of the above-mentioned lipophilic extracts, providing evidence to support their immunomodulatory and anti-inflammatory properties. These data also help in defining the mechanistic pathways underlying the health benefits of these plant-derived bioactive compounds.
Collapse
Affiliation(s)
- Stefano Dall'Acqua
- Department of Pharmaceutical Sciences, University of Padova, Via F. Marzolo 5, 35131, Padova, Italy
| | - Iztok Grabnar
- Faculty of Pharmacy, University of Ljubljana, Askerceva 7, SI-1000 Ljubljana, Slovenia
| | - Roberto Verardo
- National Laboratory of the Interuniversity Consortium for Biotechnology, Area Science Park - Padriciano 99, 34149, Trieste, Italy
| | - Enio Klaric
- National Laboratory of the Interuniversity Consortium for Biotechnology, Area Science Park - Padriciano 99, 34149, Trieste, Italy
| | - Luigi Marchionni
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Eddie Luidy-Imada
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biochemistry and Immunology, ICB, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Stefania Sut
- Department of Agronomy, Food, Natural Resources, Animals and the Environment, Viale dell'Università 16 - 35020 Legnaro, Pd, Italy
| | - Chiara Agostinis
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, via dell'Istria 65/1, 34143, Trieste, Italy
| | - Roberta Bulla
- Department of Life Sciences, University of Trieste, via Valerio, 28, 34127, Trieste, Italy
| | - Beatrice Perissutti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, P.le Europa 1, 34127 Trieste, Italy
| | - Dario Voinovich
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, P.le Europa 1, 34127 Trieste, Italy.
| |
Collapse
|
21
|
Aresti Sanz J, El Aidy S. Microbiota and gut neuropeptides: a dual action of antimicrobial activity and neuroimmune response. Psychopharmacology (Berl) 2019; 236:1597-1609. [PMID: 30997526 PMCID: PMC6598950 DOI: 10.1007/s00213-019-05224-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 03/10/2019] [Indexed: 12/22/2022]
Abstract
The gut microbiota is comprised of a vast variety of microbes that colonize the gastrointestinal tract and exert crucial roles for the host health. These microorganisms, partially via their breakdown of dietary components, are able to modulate immune response, mood, and behavior, establishing a chemical dialogue in the microbiota-gut-brain interphase. Changes in the gut microbiota composition and functionality are associated with multiple diseases, in which altered levels of gut-associated neuropeptides are also detected. Gut neuropeptides are strong neuroimmune modulators; they mediate the communication between the gut microbiota and the host (including gut-brain axis) and have also recently been found to exert antimicrobial properties. This highlights the importance of understanding the interplay between gut neuropeptides and microbiota and their implications on host health. Here, we will discuss how gut neuropeptides help to maintain a balanced microbiota and we will point at the missing gaps that need to be further investigated in order to elucidate whether these molecules are related to neuropsychiatric disorders, which are often associated with gut dysbiosis and altered gut neuropeptide levels.
Collapse
Affiliation(s)
- Julia Aresti Sanz
- Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Sahar El Aidy
- Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
22
|
Loss of Trefoil Factor 2 Sensitizes Rat Pups to Systemic Infection with the Neonatal Pathogen Escherichia coli K1. Infect Immun 2019; 87:IAI.00878-18. [PMID: 30833331 DOI: 10.1128/iai.00878-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/22/2019] [Indexed: 11/20/2022] Open
Abstract
Gastrointestinal (GI) colonization of 2-day-old (P2) rat pups with Escherichia coli K1 results in translocation of the colonizing bacteria across the small intestine, bacteremia, and invasion of the meninges, with animals frequently succumbing to lethal infection. Infection, but not colonization, is strongly age dependent; pups become progressively less susceptible to infection over the P2-to-P9 period. Colonization leads to strong downregulation of the gene encoding trefoil factor 2 (Tff2), preventing maturation of the protective mucus barrier in the small intestine. Trefoil factors promote mucosal homeostasis. We investigated the contribution of Tff2 to protection of the neonatal rat from E. coli K1 bacteremia and tissue invasion. Deletion of tff2, using clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9, sensitized P9 pups to E. coli K1 bacteremia. There were no differences between tff2-/ - homozygotes and the wild type with regard to the dynamics of GI colonization. Loss of the capacity to elaborate Tff2 did not impact GI tract integrity or the thickness of the small-intestinal mucus layer but, in contrast to P9 wild-type pups, enabled E. coli K1 bacteria to gain access to epithelial surfaces in the distal region of the small intestine and exploit an intracellular route across the epithelial monolayer to enter the blood circulation via the mesenteric lymphatic system. Although primarily associated with the mammalian gastric mucosa, we conclude that loss of Tff2 in the developing neonatal small intestine enables the opportunistic neonatal pathogen E. coli K1 to enter the compromised mucus layer in the distal small intestine prior to systemic invasion and infection.
Collapse
|
23
|
Chung LK, Raffatellu M. G.I. pros: Antimicrobial defense in the gastrointestinal tract. Semin Cell Dev Biol 2019; 88:129-137. [PMID: 29432952 PMCID: PMC6087682 DOI: 10.1016/j.semcdb.2018.02.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/06/2018] [Accepted: 02/06/2018] [Indexed: 01/11/2023]
Abstract
The gastrointestinal tract is a complex environment in which the host immune system interacts with a diverse array of microorganisms, both symbiotic and pathogenic. As such, mobilizing a rapid and appropriate antimicrobial response depending on the nature of each stimulus is crucial for maintaining the balance between homeostasis and inflammation in the gut. Here we focus on the mechanisms by which intestinal antimicrobial peptides regulate microbial communities during dysbiosis and infection. We also discuss classes of bacterial peptides that contribute to reducing enteric pathogen outgrowth. This review aims to provide a comprehensive overview on the interplay of diverse antimicrobial responses with enteric pathogens and the gut microbiota.
Collapse
Affiliation(s)
- Lawton K Chung
- Department of Pediatrics, Division of Host-Microbe Systems and Therapeutics, University of California, San Diego, La Jolla, CA, 92093-0704, United States
| | - Manuela Raffatellu
- Department of Pediatrics, Division of Host-Microbe Systems and Therapeutics, University of California, San Diego, La Jolla, CA, 92093-0704, United States; Chiba University-UC San Diego Center for Mucosal Immunology, Allergy, and Vaccines (CU-UCSD cMAV), La Jolla CA, United States.
| |
Collapse
|
24
|
Aguirre M, Vuorenmaa J, Valkonen E, Kettunen H, Callens C, Haesebrouck F, Ducatelle R, Van Immerseel F, Goossens E. In-feed resin acids reduce matrix metalloproteinase activity in the ileal mucosa of healthy broilers without inducing major effects on the gut microbiota. Vet Res 2019; 50:15. [PMID: 30795808 PMCID: PMC6387527 DOI: 10.1186/s13567-019-0633-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/11/2019] [Indexed: 12/20/2022] Open
Abstract
The chicken gut is constantly exposed to harmful molecules and microorganisms which endanger the integrity of the intestinal wall. Strengthening intestinal mucosal integrity is a key target for feed additives that aim to promote intestinal health in broilers. Recently, dietary inclusion of resin-based products has been shown to increase broiler performance. However, the mode of action is still largely unexplored. Coniferous resin acids are known for their anti-microbial, anti-inflammatory and wound-healing properties, all properties that might support broiler intestinal health. In the current study, the effect of pure resin acids on broiler intestinal health was explored. Ross 308 broilers were fed a diet supplemented with coniferous resin acids for 22 days, after which the effect on both the intestinal microbiota as well as on the intestinal tissue morphology and activity of host collagenases was assessed. Dietary inclusion of resin acids did not alter the morphology of the healthy intestine and only minor effects on the intestinal microbiota were observed. However, resin acids-supplementation reduced both duodenal inflammatory T cell infiltration and small intestinal matrix metalloproteinase (MMP) activity towards collagen type I and type IV. Reduced breakdown of collagen type I and IV might indicate a protective effect of resin acids on intestinal barrier integrity by preservation of the basal membrane and the extracellular matrix. Further studies are needed to explore the protective effects of resin acids on broiler intestinal health under sub-optimal conditions and to elaborate our knowledge on the mechanisms behind the observed effects.
Collapse
Affiliation(s)
- Marisol Aguirre
- Department of Pathology, Bacteriology and Avian Diseases, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | | | - Eija Valkonen
- Hankkija Ltd, Peltokuumolantie 4, 05800, Hyvinkää, Finland
| | | | - Chana Callens
- Department of Pathology, Bacteriology and Avian Diseases, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Freddy Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Richard Ducatelle
- Department of Pathology, Bacteriology and Avian Diseases, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Filip Van Immerseel
- Department of Pathology, Bacteriology and Avian Diseases, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| | - Evy Goossens
- Department of Pathology, Bacteriology and Avian Diseases, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| |
Collapse
|
25
|
Okcu M, Oktayoglu P, Mete N, Bozkurt M, Caglayan M, Dagli AZ, Nas K. A useful marker in the assessment of remission and activation of disease in patients with rheumatoid arthritis: Serum human neutrophil peptides 1-3. J Back Musculoskelet Rehabil 2019; 31:1145-1150. [PMID: 29991120 DOI: 10.3233/bmr-160743] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
AIM Rheumatoid arthritis (RA) is a chronic disease of unknown etiology. Various cellular and molecular immunological factors are involved in the pathophysiology of RA. Recent studies suggest that neutrophils and alpha-defensins released from the neutrophils assume significant roles in the pathogenesis of RA. The aim of this study was to investigate the potential association between serum alpha-defensin levels and disease activity, functional status, radiological damage and several laboratory parameters in patients with RA. MATERIALS AND METHODS A total of 42 patients with established RA who presented to the outpatient clinics of rheumatology of Dicle University Hospital and 38 healthy control subjects were included in this study. Disease activity was assessed by using the Disease Activity Scale 28 (DAS28). Quality of life was assessed by using the Rheumatoid Arthritis Quality of Life (RAQoL) Questionnaire and the Nottingham Health Profile (NHP). Functional status was assessed by using the Stanford Health Assessment Questionnaire (HAQ). Laboratory examinations included the following tests: CBC, ESH, CRP, and HNP 1-3. RESULTS Patients with an active disease exhibited higher HNP 1-3 levels compared to patients in remission. At a cut off value of 708 pg/ml, sensitivity and specificity of the tests for HNP 1-3 were 72% and 70.6%, respectively. CONCLUSION In the present study, patients with an active disease had significantly higher serum HNP 1-3 levels compared to patients in remission. In this respect, serum HNP 1-3 can be a useful marker in the assessment of disease activity and remission in patients with RA.
Collapse
Affiliation(s)
- Mehmet Okcu
- Clinics of Physical Medicine and Rehabilitation, Faculty of Medicine, Ahi Evran University, Kırşehir, Turkey
| | - Pelin Oktayoglu
- Department of Physical Medicine and Rehabilitation, Division of Rheumatology, Faculty of Medicine, Dicle University, Diyarbakir, Turkey
| | - Nuriye Mete
- Department of Biochemistry, Faculty of Medicine, Dicle University, Diyarbakir, Turkey
| | - Mehtap Bozkurt
- Department of Physical Medicine and Rehabilitation, Division of Rheumatology, Faculty of Medicine, Dicle University, Diyarbakir, Turkey
| | - Mehmet Caglayan
- Department of Physical Medicine and Rehabilitation, Division of Rheumatology, Faculty of Medicine, Dicle University, Diyarbakir, Turkey
| | - Abdullah Zubeyir Dagli
- Department of Physical Medicine and Rehabilitation, Bitlis State Hospital, Bitlis, Turkey
| | - Kemal Nas
- Department of Physical Medicine and Rehabilitation, Division of Rheumatology, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| |
Collapse
|
26
|
Carbohydrate-Dependent and Antimicrobial Peptide Defence Mechanisms Against Helicobacter pylori Infections. Curr Top Microbiol Immunol 2019; 421:179-207. [PMID: 31123890 DOI: 10.1007/978-3-030-15138-6_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The human stomach is a harsh and fluctuating environment for bacteria with hazards such as gastric acid and flow through of gastric contents into the intestine. H. pylori gains admission to a stable niche with nutrient access from exudates when attached to the epithelial cells under the mucus layer, whereof adherence to glycolipids and other factors provides stable and intimate attachment. To reach this niche, H. pylori must overcome mucosal defence mechanisms including the continuously secreted mucus layer, which provides several layers of defence: (1) mucins in the mucus layer can bind H. pylori and transport it away from the gastric niche with the gastric emptying, (2) mucins can inhibit H. pylori growth, both via glycans that can have antibiotic like function and via an aggregation-dependent mechanism, (3) antimicrobial peptides (AMPs) have antimicrobial activity and are retained in a strategic position in the mucus layer and (4) underneath the mucus layer, the membrane-bound mucins provide a second barrier, and can function as releasable decoys. Many of these functions are dependent on H. pylori interactions with host glycan structures, and both the host glycosylation and concentration of antimicrobial peptides change with infection and inflammation, making these interactions dynamic. Here, we review our current understanding of mucin glycan and antimicrobial peptide-dependent host defence mechanisms against H. pylori infection.
Collapse
|
27
|
Xu JH, Jiang Z, Solania A, Chatterjee S, Suzuki B, Lietz CB, Hook VYH, O’Donoghue AJ, Wolan DW. A Commensal Dipeptidyl Aminopeptidase with Specificity for N-Terminal Glycine Degrades Human-Produced Antimicrobial Peptides in Vitro. ACS Chem Biol 2018; 13:2513-2521. [PMID: 30085657 DOI: 10.1021/acschembio.8b00420] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Proteases within the C1B hydrolase family are encoded by many organisms. We subjected a putative C1B-like cysteine protease secreted by the human gut commensal Parabacteroides distasonis to mass spectrometry-based substrate profiling to find preferred peptide substrates. The P. distasonis protease, which we termed Pd_dinase, has a sequential diaminopeptidase activity with strong specificity for N-terminal glycine residues. Using the substrate sequence information, we verified the importance of the P2 glycine residue with a panel of fluorogenic substrates and calculated kcat and KM for the dipeptide glycine-arginine-AMC. A potent and irreversible dipeptide inhibitor with a C-terminal acyloxymethyl ketone warhead, glycine-arginine- AOMK, was then synthesized and demonstrated that the Pd_dinase active site requires a free N-terminal amine for potent and rapid inhibition. We next determined the homohexameric Pd_dinase structure in complex with glycine-arginine- AOMK and uncovered unexpected active site features that govern the strict substrate preferences and differentiate this protease from members of the C1B and broader papain-like C1 protease families. We finally showed that Pd_dinase hydrolyzes several human antimicrobial peptides and therefore posit that this P. distasonis enzyme may be secreted into the extracellular milieu to assist in gut colonization by inactivation of host antimicrobial peptides.
Collapse
Affiliation(s)
- Janice H. Xu
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Zhenze Jiang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Angelo Solania
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Sandip Chatterjee
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Brian Suzuki
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Christopher B. Lietz
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Vivian Y. H. Hook
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Anthony J. O’Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Dennis W. Wolan
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
28
|
Varrey A, Romero R, Panaitescu B, Miller D, Chaiworapongsa T, Patwardhan M, Faro J, Pacora P, Hassan SS, Hsu CD, Gomez-Lopez N. Human β-defensin-1: A natural antimicrobial peptide present in amniotic fluid that is increased in spontaneous preterm labor with intra-amniotic infection. Am J Reprod Immunol 2018; 80:e13031. [PMID: 30101464 DOI: 10.1111/aji.13031] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 07/16/2018] [Indexed: 12/11/2022] Open
Abstract
PROBLEM Human β-defensins (HBDs) are antimicrobial peptides that participate in the soluble innate immune mechanisms against infection. Herein, we determined whether HBD-1 was present in amniotic fluid during normal pregnancy and whether its concentrations change with intra-amniotic inflammation and/or infection. METHOD OF STUDY Amniotic fluid was collected from 219 women in the following groups: (a) midtrimester who delivered at term (n = 35); (b) term with (n = 33) or without (n = 17) labor; (c) preterm labor with intact membranes who delivered at term (n = 29) or who delivered preterm with (n = 19) and without (n = 29) intra-amniotic inflammation and infection or with intra-amniotic inflammation but without infection (n = 21); and (d) preterm prelabor rupture of membranes (pPROM) with (n = 19) and without (n = 17) intra-amniotic inflammation/infection. Amniotic fluid HBD-1 concentrations were determined using a sensitive and specific ELISA kit. RESULTS (a) HBD-1 was detectable in all amniotic fluid samples; (b) amniotic fluid concentrations of HBD-1 were changed with gestational age (midtrimester vs term no labor), being higher in midtrimester; (c) amniotic fluid concentrations of HBD-1 were similar between women with and without spontaneous labor at term; (d) among patients with spontaneous preterm labor, amniotic fluid concentrations of HBD-1 in women with intra-amniotic inflammation/infection and in those with intra-amniotic inflammation without infection were greater than in women without intra-amniotic inflammation or infection who delivered preterm or at term; and (e) the presence of intra-amniotic inflammation and infection in patients with pPROM did not change amniotic fluid concentrations of HBD-1. CONCLUSION HBD-1 is a physiological constituent of amniotic fluid that is increased in midtrimester during normal pregnancy and in the presence of culturable microorganisms in the amniotic cavity. These findings provide insight into the soluble host defense mechanisms against intra-amniotic infection.
Collapse
Affiliation(s)
- Aneesha Varrey
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan.,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan.,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan.,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan
| | - Bogdan Panaitescu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Derek Miller
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Manasi Patwardhan
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Jonathan Faro
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Percy Pacora
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Sonia S Hassan
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan.,Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Chaur-Dong Hsu
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan.,Department of Immunology, Microbiology and Biochemistry, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
29
|
β-Defensins in the Fight against Helicobacter pylori. Molecules 2017; 22:molecules22030424. [PMID: 28272373 PMCID: PMC6155297 DOI: 10.3390/molecules22030424] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/04/2017] [Indexed: 12/12/2022] Open
Abstract
Antimicrobial peptides (AMPs) play a pivotal role in the innate immune responses to Helicobacter pylori (Hp) in humans. β-Defensins, a class of cationic arginine-rich AMPs, are small peptides secreted by immune cells and epithelial cells that exert antimicrobial activity against a broad spectrum of microorganisms, including Gram-positive and Gram-negative bacteria and fungi. During Hp infections, AMP expression is able to eradicate the bacteria, thereby preventing Hp infections in gastrointestinal tract. It is likely that gastric β-defensins expression is increased during Hp infection. The aim of this review is to focus on increased knowledge of the role of β-defensins in response to Hp infection. We also briefly discuss the potential use of AMPs, either alone or in combination with conventional antibiotics, for the treatment of Hp infection.
Collapse
|
30
|
The Interplay between Defensins and Microbiota in Crohn's Disease. Mediators Inflamm 2017; 2017:8392523. [PMID: 28246439 PMCID: PMC5299173 DOI: 10.1155/2017/8392523] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 12/16/2016] [Accepted: 01/04/2017] [Indexed: 02/08/2023] Open
Abstract
Crohn's disease (CD) is a chronic inflammation of the intestinal mucosa, characterized by periods of acute recurrence and remission. Depending on the specific region affected, CD is classified as ileal CD or colonic CD. It is largely accepted that the intestinal microbiota is involved in the onset of the pathology. Indeed, a reduced immune tolerance to components of the intestinal commensal microbiota and inflammation of the intestinal barrier typifies patients with CD. Several studies have shown defective expression of intestinal antimicrobial peptides (AMPs) in patients with CD compared to controls, particularly defensins. A reduction in α-defensins is observed in ileal CD, while β-defensins are increased in colonic CD. In addition to an immunological basis, the disease is frequently associated with genetic alterations including mutations of NOD2 gene. Several therapeutic strategies to circumvent the dysfunction observed in CD are currently under investigation. These include the use of delivery systems to administer endogenous AMPs and the engineering of peptidomimetics that could ameliorate the severity of CD. In this review, the role defensins play in CD and the strategies aimed at overcoming bacterial resistance will be discussed.
Collapse
|
31
|
Kawada-Matsuo M, Komatsuzawa H. Role of Streptococcus mutans two-component systems in antimicrobial peptide resistance in the oral cavity. JAPANESE DENTAL SCIENCE REVIEW 2017; 53:86-94. [PMID: 28725299 PMCID: PMC5501732 DOI: 10.1016/j.jdsr.2016.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 10/14/2016] [Accepted: 12/08/2016] [Indexed: 01/24/2023] Open
Abstract
Approximately 100 trillion microorganisms exist in the oral cavity. For the commensal bacteria of the oral cavity, it is important to adapt to environmental stimuli, including human- or bacteria-derived antimicrobial agents. Recently, bacterial-specific signal transduction regulatory systems, called two-component systems (TCSs), which appear to be focused on sensing and adapting to the environment, were discovered. Streptococcus mutans is an oral commensal bacteria and is also known as a cariogenic bacteria. Although the virulence factors of S. mutans have been well demonstrated, the mechanism underlying the adaptation of the species to the oral cavity is poorly understood. S. mutans UA159 has 15 sets of TCSs. Among them, several have been demonstrated to be involved in acid tolerance, competence and biofilm formation. Recently, together with our findings, it was demonstrated that 5 TCSs were involved in resistance to antimicrobial agents. Furthermore, another TCS was associated with the production of bacteriocin. Six of 15 TCSs are associated with antimicrobial agents, implying that S. mutans can survive in the oral cavity by resisting various antimicrobial peptides. In this review, we highlight the role of antimicrobial peptides in the oral cavity.
Collapse
Affiliation(s)
- Miki Kawada-Matsuo
- Department of Oral Microbiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
| | - Hitoshi Komatsuzawa
- Department of Oral Microbiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
| |
Collapse
|
32
|
Antifungal activity of a synthetic human β-defensin 3 and potential applications in cereal-based products. INNOV FOOD SCI EMERG 2016. [DOI: 10.1016/j.ifset.2016.09.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
The Impact of Lactobacillus casei on the Composition of the Cecal Microbiota and Innate Immune System Is Strain Specific. PLoS One 2016; 11:e0156374. [PMID: 27244133 PMCID: PMC4887021 DOI: 10.1371/journal.pone.0156374] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 05/13/2016] [Indexed: 02/07/2023] Open
Abstract
The probiotic function to impact human health is thought to be related to their ability to alter the composition of the gut microbiota and modulate the human innate immune system. The ability to function as a probiotic is believed to be strain specific. Strains of Lactobacillus casei are commonly utilized as probiotics that when consumed alter the composition of the gut microbiota and modulate the host immune response. L. casei strains are known to differ significantly in gene content. The objective of this study was to investigate seven different L. casei strains for their ability to alter the murine gut microbiota and modulate the murine immune system. C57BL/6 mice were fed L. casei strains at a dose of 108 CFU/day/mouse for seven days and sacrificed 3.5h after the last administration. The cecal content and the ileum tissue were collected for microbiota analysis and immune profiling, respectively. While 5 of the L. casei strains altered the gut microbiota in a strain specific manner, two of the strains did not alter the overall cecal microbiota composition. The observed changes cluster into three groups containing between 1 and 2 strains. Two strains that did not affect the gut microbiota composition cluster together with the control in their impact on pattern recognition receptors (PRRs) expression, suggesting that the ability to alter the cecal microbiota correlates with the ability to alter PRR expression. They also cluster together in their impact on the expression of intestinal antimicrobial peptides (AMPs). This result suggests that a relationship exists between the capability of a L. casei strains to alter the composition of the gut microbiota, PRR regulation, and AMP regulation.
Collapse
|
34
|
Bloemendaal ALA, Buchs NC, George BD, Guy RJ. Intestinal stem cells and intestinal homeostasis in health and in inflammation: A review. Surgery 2016; 159:1237-48. [PMID: 26936524 DOI: 10.1016/j.surg.2016.01.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/06/2016] [Accepted: 01/23/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND The human intestine is a complex group of organs, highly specialized in processing food and providing nutrients to the body. It is under constant threat from microbials and toxins and has therefore developed a number of protective mechanisms. One important mechanism is the constant shedding of epithelial cells into the lumen; another is the production and maintenance of a double-layered mucous boundary in which there is continuous sampling of the luminal microbiota and a persistent presence of antimicrobial enzymes. However, the gut needs commensal bacteria to effectively break down food into absorbable nutrients, which necessitates constant communication between the luminal bacteria and the intestinal immune cells in homeostasis. Disruption of homeostasis, for whatever reason, will give rise to (chronic) inflammation. DISCUSSION Both medical and surgical management of this disruption is discussed.
Collapse
Affiliation(s)
- Alexander L A Bloemendaal
- Colorectal Surgery Department, Oxford University Hospitals, NHS Foundation Trust, Oxford, United Kingdom.
| | - Nicolas C Buchs
- Colorectal Surgery Department, Oxford University Hospitals, NHS Foundation Trust, Oxford, United Kingdom
| | - Bruce D George
- Colorectal Surgery Department, Oxford University Hospitals, NHS Foundation Trust, Oxford, United Kingdom
| | - Richard J Guy
- Colorectal Surgery Department, Oxford University Hospitals, NHS Foundation Trust, Oxford, United Kingdom
| |
Collapse
|
35
|
Aktas B, De Wolfe TJ, Tandee K, Safdar N, Darien BJ, Steele JL. The Effect of Lactobacillus casei 32G on the Mouse Cecum Microbiota and Innate Immune Response Is Dose and Time Dependent. PLoS One 2015; 10:e0145784. [PMID: 26714177 PMCID: PMC4705108 DOI: 10.1371/journal.pone.0145784] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 12/08/2015] [Indexed: 01/12/2023] Open
Abstract
Lactobacilli have been associated with a variety of immunomodulatory effects and some of these effects have been related to changes in gastrointestinal microbiota. However, the relationship between probiotic dose, time since probiotic consumption, changes in the microbiota, and immune system requires further investigation. The objective of this study was to determine if the effect of Lactobacillus casei 32G on the murine gastrointestinal microbiota and immune function are dose and time dependent. Mice were fed L. casei 32G at doses of 106, 107, or 108 CFU/day/mouse for seven days and were sacrificed 0.5h, 3.5h, 12h, or 24h after the last administration. The ileum tissue and the cecal content were collected for immune profiling by qPCR and microbiota analysis, respectively. The time required for L. casei 32G to reach the cecum was monitored by qPCR and the 32G bolus reaches the cecum 3.5h after the last administration. L. casei 32G altered the cecal microbiota with the predominance of Lachnospiraceae IS, and Oscillospira decreasing significantly (p < 0.05) in the mice receiving 108 CFU/mouse 32G relative to the control mice, while a significant (p < 0.05) increase was observed in the prevalence of lactobacilli. The lactobacilli that increased were determined to be a commensal lactobacilli. Interestingly, no significant difference in the overall microbiota composition, regardless of 32G doses, was observed at the 12h time point. A likely explanation for this observation is the level of feed derived-nutrients resulting from the 12h light/dark cycle. 32G results in consistent increases in Clec2h expression and reductions in TLR-2, alpha-defensins, and lysozyme. Changes in expression of these components of the innate immune system are one possible explanation for the observed changes in the cecal microbiota. Additionally, 32G administration was observed to alter the expression of cytokines (IL-10rb and TNF-α) in a manner consistent with an anti-inflammatory response.
Collapse
Affiliation(s)
- Busra Aktas
- Department of Food Science, University of Wisconsin, Madison, WI, United States of America
| | - Travis J. De Wolfe
- Department of Food Science, University of Wisconsin, Madison, WI, United States of America
| | - Kanokwan Tandee
- Food Science and Technology, Maejo University, Chiangmai, Thailand
| | - Nasia Safdar
- Infectious Diseases Division, Department of Medicine, University of Wisconsin, Madison, WI, United States of America
- William S. Middleton Veterans Affairs Hospital, Madison, WI, United States of America
| | - Benjamin J. Darien
- Animal Health and Biomedical Sciences, University of Wisconsin, Madison, WI, United States of America
| | - James L. Steele
- Department of Food Science, University of Wisconsin, Madison, WI, United States of America
- * E-mail:
| |
Collapse
|
36
|
Daft JG, Lorenz RG. Role of the gastrointestinal ecosystem in the development of type 1 diabetes. Pediatr Diabetes 2015; 16:407-18. [PMID: 25952017 PMCID: PMC4534320 DOI: 10.1111/pedi.12282] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 03/15/2015] [Accepted: 03/20/2015] [Indexed: 12/11/2022] Open
Abstract
A new emphasis has been put on the role of the gastrointestinal (GI) ecosystem in autoimmune diseases; however, there is limited knowledge about its role in type 1 diabetes (T1D). Distinct differences have been observed in intestinal permeability, epithelial barrier function, commensal microbiota, and mucosal innate and adaptive immunity of patients and animals with T1D, when compared with healthy controls. The non-obese diabetic (NOD) mouse and the BioBreeding diabetes prone (BBdp) rat are the most commonly used models to study T1D pathogenesis. With the increasing awareness of the importance of the GI ecosystem in systemic disease, it is critical to understand the basics, as well as the similarities and differences between rat and mouse models and human patients. This review examines the current knowledge of the role of the GI ecosystem in T1D and indicates the extensive opportunities for further investigation that could lead to biomarkers and therapeutic interventions for disease prevention and/or modulation.
Collapse
Affiliation(s)
| | - Robin G. Lorenz
- Corresponding Author: Dr. Robin G. Lorenz, Department of Pathology, University of Alabama at Birmingham, 1825 University Blvd., SHEL 602, Birmingham, AL 35294-2182. Phone: 205-934-0676. Fax. 205-996-9113.
| |
Collapse
|
37
|
Dommisch H, Jepsen S. Diverse functions of defensins and other antimicrobial peptides in periodontal tissues. Periodontol 2000 2015; 69:96-110. [DOI: 10.1111/prd.12093] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2015] [Indexed: 02/06/2023]
|
38
|
Abstract
The human skin is an organ with a surface area of 1.5-2 m(2) that provides our interface with the environment. The molecular composition of this organ is derived from host cells, microbiota, and external molecules. The chemical makeup of the skin surface is largely undefined. Here we advance the technologies needed to explore the topographical distribution of skin molecules, using 3D mapping of mass spectrometry data and microbial 16S rRNA amplicon sequences. Our 3D maps reveal that the molecular composition of skin has diverse distributions and that the composition is defined not only by skin cells and microbes but also by our daily routines, including the application of hygiene products. The technological development of these maps lays a foundation for studying the spatial relationships of human skin with hygiene, the microbiota, and environment, with potential for developing predictive models of skin phenotypes tailored to individual health.
Collapse
|
39
|
Shono Y, Docampo MD, Peled JU, Perobelli SM, Jenq RR. Intestinal microbiota-related effects on graft-versus-host disease. Int J Hematol 2015; 101:428-37. [PMID: 25812838 DOI: 10.1007/s12185-015-1781-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 03/16/2015] [Indexed: 12/18/2022]
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is an increasingly important treatment for conditions including hematopoietic malignancies and inherited hematopoietic disorders, and is considered to be the most effective form of tumor immunotherapy available to date. However, graft-versus-host disease (GVHD) remains a major source of morbidity and mortality following allo-HSCT, and understanding the mechanisms of GVHD has been highlighted as a key research priority. During development of GVHD, activation of various immune cells, especially donor T cells, leads to damage of target organs including skin, liver, hematopoietic system, and of particular clinical importance, gut. In addition to histocompatibility complex differences between the donor and recipient, pretransplant conditioning with chemotherapy and irradiation also contributes to GVHD by damaging the gut, resulting in systemic exposure to microbial products normally confined to the intestinal lumen. The intestinal microbiota is a modulator of gastrointestinal immune homeostasis. It also promotes the maintenance of epithelial cells. Recent reports provide growing evidence of the impact of intestinal microbiota on GVHD pathophysiology. This review summarizes current knowledge of changes and effects of intestinal microbiota in the setting of allo-HSCT. We will also discuss potential future strategies of intestinal microbiota manipulation that might be advantageous in decreasing allo-HSCT-related morbidity and mortality.
Collapse
Affiliation(s)
- Yusuke Shono
- Department of Immunology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA,
| | | | | | | | | |
Collapse
|
40
|
Docampo MD, Auletta JJ, Jenq RR. Emerging Influence of the Intestinal Microbiota during Allogeneic Hematopoietic Cell Transplantation: Control the Gut and the Body Will Follow. Biol Blood Marrow Transplant 2015; 21:1360-6. [PMID: 25708215 DOI: 10.1016/j.bbmt.2015.02.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 02/16/2015] [Indexed: 02/07/2023]
Abstract
The intestinal microbiota has many critical roles in maintaining gastrointestinal epithelial and gastrointestinal systemic immune homeostasis. This review provides insight into how allogeneic hematopoietic cell transplantation (HCT) and its associated complications and supportive care therapies affect the microbiota. Additionally, the review discusses how preservation and restoration of the microbiota might be advantageous in decreasing HCT-related morbidity and mortality.
Collapse
Affiliation(s)
- Melissa D Docampo
- Department of Immunology, Weill Cornell Graduate School of Medical Sciences, New York, New York.
| | - Jeffery J Auletta
- Host Defense Program, Hematology/Oncology/BMT and Infectious Diseases, Nationwide Children's Hospital and Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Robert R Jenq
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| |
Collapse
|
41
|
Boltin D, Niv Y. Pharmacological and alimentary alteration of the gastric barrier. Best Pract Res Clin Gastroenterol 2014; 28:981-94. [PMID: 25439065 DOI: 10.1016/j.bpg.2014.09.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 07/28/2014] [Accepted: 09/15/2014] [Indexed: 02/07/2023]
Abstract
The gastric barrier contains several lines of defence which protect the epithelium from harmful microbes and toxins. Pre-mucosal defence mechanisms include secreted acid (HCl 0.1 mmol/L) and pepsin, which are capable of denaturing tissue. A tightly adherent mucous layer provides the next line of defence, and physically separates any potentially hazardous substance in the lumen from the mucosal surface. Apical secretion of HCO3(-) maintains a non-acidic microenvironment at the mucosal surface. Membrane-bound phospholipids repel soluble toxins, and sulphydryls scavenge reactive oxygen species. However, when noxious agents overwhelm these mechanisms, the epithelium is damaged. Herein, we discuss the pathological and physiological basis for several disease states which are associated with a breakdown in one or more components of the gastric barrier, including: Helicobacter pylori-associated gastritis, atrophic gastritis, stress-related mucosal disease, age-related gastropathy and portal hypertensive gastropathy. The effect of non-steroidal anti-inflammatory drugs and proton pump inhibitors on the gastric mucosa, is explored. Finally, we outline the alterations in mucosal defence caused by alcohol, caffeine, minerals and vitamins.
Collapse
Affiliation(s)
- Doron Boltin
- Department of Gastroenterology, Rabin Medical Center, Israel; The Sackler Faculty of Medicine, Tel Aviv University, Israel.
| | - Yaron Niv
- Department of Gastroenterology, Rabin Medical Center, Israel; The Sackler Faculty of Medicine, Tel Aviv University, Israel
| |
Collapse
|
42
|
Intestinal barrier function and the brain-gut axis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 817:73-113. [PMID: 24997030 DOI: 10.1007/978-1-4939-0897-4_4] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The luminal-mucosal interface of the intestinal tract is the first relevant location where microorganism-derived antigens and all other potentially immunogenic particles face the scrutiny of the powerful mammalian immune system. Upon regular functioning conditions, the intestinal barrier is able to effectively prevent most environmental and external antigens to interact openly with the numerous and versatile elements that compose the mucosal-associated immune system. This evolutionary super system is capable of processing an astonishing amount of antigens and non-immunogenic particles, approximately 100 tons in one individual lifetime, only considering food-derived components. Most important, to develop oral tolerance and proper active immune responses needed to prevent disease and inflammation, this giant immunogenic load has to be managed in a way that physiological inflammatory balance is constantly preserved. Adequate functioning of the intestinal barrier involves local and distant regulatory networks integrating the so-called brain-gut axis. Along this complex axis both brain and gut structures participate in the processing and execution of response signals to external and internal changes coming from the digestive tract, using multidirectional pathways to communicate. Dysfunction of brain-gut axis facilitates malfunctioning of the intestinal barrier, and vice versa, increasing the risk of uncontrolled immunological reactions that may trigger mucosal and brain low-grade inflammation, a putative first step to the initiation of more permanent gut disorders. In this chapter, we describe the structure, function and interactions of intestinal barrier, microbiota and brain-gut axis in both healthy and pathological conditions.
Collapse
|
43
|
Two fundamentals of mammalian defense in fungal infections: endothermy and innate antifungal immunity. Pol J Vet Sci 2014; 17:555-67. [PMID: 25286672 DOI: 10.2478/pjvs-2014-0084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The environment of animals is inhabited by enormous fungal species, but only a few hundreds are pathogenic for mammals. Most of potentially pathogenic fungal species, excluding dermatophytes, seldom cause the disease in immunocompetent hosts. Data from literature indicate, that an immune system and endothermy are foundations for this mammalian relative resistance to fungal systemic infections. Stable and high temperature of the body restricts invasion and growth of potentially pathogenic fungi. Together with elevated metabolism it supports the effectiveness of mammalian immunity. The innate immunity is assigned to prevent the invasion of various microbes (including fungi) to the hosts' organism. It consists of cellular receptors and several humoral factors as the Antimicrobial Peptides. If the physical barriers fail in stopping the invader, it is recognized as "alien" by multiple Pattern Recognition Receptors (PRRs) like Toll Like Receptors (TLRs) expressed by cells of innate immunity and/or C-type lectins. At the same time innate inflammation begins and the complement cascade is activated. These mechanisms are able to stop and clear some fungal infections. During existing infection the adaptive immunity is induced. This review aims to show the role of mammalian endothermy and to point the most important elements of innate antifungal immunity.
Collapse
|
44
|
Abstract
Alterations of the stomach mucosa in response to different adverse effects result in various morphological and clinical symptoms. Gastric mucosa alterations can be classified on the bases of diverse viewpoints. It makes this overview difficult, that identical toxic effects may cause different mucosal changes and different toxic agents may produce similar mucosal appearance. The more accurate understanding of the pathological processes which develop in the stomach mucosa needs reconsideration. The authors make an attempt to define gastritis and gastropathy in order to classify and present their features. Gastritis is a histological definition indicating mucosal inflammation. Acute gastritis is caused by infections. The two most important forms of chronic gastritis are metaplastic atrophic gastritis with an autoimmune origin and Helicobacter pylori inflammation. Gastropathy is the name of different structural alterations of the mucosa. Its most important feature is the paucity of inflammatory signs. Gastropathies can be divided into 4 categories based on the nature of the underlying pathological effect, on its morphological appearance and the way of the development. Differential diagnosis is an important pathological and clinical task because different treatment methods and prognosis.
Collapse
Affiliation(s)
- Emese Mihály
- Semmelweis Egyetem, Általános Orvostudományi Kar II. Belgyógyászati Klinika Budapest Szentkirályi u. 46. 1088
| | - Tamás Micsik
- Semmelweis Egyetem, Általános Orvostudományi Kar I. Patológiai és Kísérleti Rákkutató Intézet Budapest
| | - Márk Juhász
- Semmelweis Egyetem, Általános Orvostudományi Kar II. Belgyógyászati Klinika Budapest Szentkirályi u. 46. 1088
| | - László Herszényi
- Semmelweis Egyetem, Általános Orvostudományi Kar II. Belgyógyászati Klinika Budapest Szentkirályi u. 46. 1088
| | - Zsolt Tulassay
- Semmelweis Egyetem, Általános Orvostudományi Kar II. Belgyógyászati Klinika Budapest Szentkirályi u. 46. 1088 Semmelweis Egyetem, Általános Orvostudományi Kar MTA-SE Molekuláris Medicina Kutatócsoport Budapest
| |
Collapse
|
45
|
Narciandi F, Lloyd A, Meade KG, O'Farrelly C. A novel subclass of bovine β-defensins links reproduction and immunology. Reprod Fertil Dev 2014; 26:769-77. [DOI: 10.1071/rd13153] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 06/06/2013] [Indexed: 12/14/2022] Open
Abstract
β-defensins are effector molecules of the innate immune system, found in many diverse species. Their presence in invertebrates as well as vertebrates suggests highly conserved functional roles. Most β-defensins are believed to act as antimicrobial agents at epithelial surfaces, although additional functions have also been described, including immune regulatory activity, wound repair and a role in coat-colour determination. High expression of β-defensins have been found in testis and epididymidal epithelium as well as in the seminal fluid of humans, macaque, rat, mouse and cow. Human and macaque β-defensins have recently been shown to affect sperm motility while a mutation in β-defensin 126 is associated with reduced fertility in men. Genetic variation in bovine defensin genes may explain the increased incidence of low fertility in cattle. Here, we present a summary of the known functions of β-defensins as well as their emerging role in reproduction and their potential to improve fertility in cattle.
Collapse
|
46
|
Ho S, Pothoulakis C, Koon HW. Antimicrobial peptides and colitis. Curr Pharm Des 2013; 19:40-7. [PMID: 22950497 DOI: 10.2174/13816128130108] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 07/30/2012] [Indexed: 11/22/2022]
Abstract
Antimicrobial peptides (AMPs) are important components of innate immunity. They are often expressed in response to colonic inflammation and infection. Over the last several years, the roles of several antimicrobial peptides have been explored. Gene expression of many AMPs (beta defensin HBD2-4 and cathelicidin) is induced in response to invasion of gut microbes into the mucosal barrier. Some AMPs are expressed in a constitutive manner (alpha defensin HD 5-6 and beta defensin HBD1), while others (defensin and bactericidal/ permeability increasing protein BPI) are particularly associated with Inflammatory Bowel Disease (IBD) due to altered defensin expression or development of autoantibodies against Bactericidal/permeability increasing protein (BPI). Various AMPs have different spectrum and strength of antimicrobial effects. Some may play important roles in modulating the colitis (cathelicidin) while others (lactoferrin, hepcidin) may represent biomarkers of disease activity. The use of AMPs for therapeutic purposes is still at an early stage of development. A few natural AMPs were shown to be able to modulate colitis when delivered intravenously or intracolonically (cathelicidin, elafin and SLPI) in mouse colitis models. New AMPs (synthetic or artificial non-human peptides) are being developed and may represent new therapeutic approaches against colitis. This review discusses the latest research developments in the AMP field with emphasis in innate immunity and pathophysiology of colitis.
Collapse
Affiliation(s)
- Samantha Ho
- Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, The University of California Los Angeles, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
47
|
Characterization of a regulatory network of peptide antibiotic detoxification modules in Lactobacillus casei BL23. Appl Environ Microbiol 2013; 79:3160-70. [PMID: 23455349 DOI: 10.1128/aem.00178-13] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two-component systems (TCS) are major signal transduction pathways that allow bacteria to detect and respond to environmental and intracellular changes. A group of TCS has been shown to be involved in the response against antimicrobial peptides (AMPs). These TCS are characterized by the possession of intramembrane-sensing histidine kinases, and they are usually associated with ABC transporters of the peptide-7 exporter family (Pep7E). Lactobacillus casei BL23 encodes two TCS belonging to this group (TCS09 and TCS12) that are located next to two ABC transporters (ABC09 and ABC12), as well as a third Pep7E ABC transporter not genetically associated with any TCS (orphan ABC). This study addressed the involvement of modules TCS09/ABC09 and TCS12/ABC12 in AMP resistance. Results showed that both systems contribute to L. casei resistance to AMPs, and that each TCS constitutes a functional unit with its corresponding ABC transporter. Analysis of transcriptional levels showed that module 09 is required for the induction of ABC09 expression in response to nisin. In contrast, module 12 controls a wider regulon that encompasses the orphan ABC, the dlt operon (d-alanylation of teichoid acids), and the mprF gene (l-lysinylation of phospholipids), thereby controlling properties of the cell envelope. Furthermore, the characterization of a dltA mutant showed that Dlt plays a major role in AMP resistance in L. casei. This is the first report on the regulation of the response of L. casei to AMPs, giving insight into its ability to adapt to the challenging environments that it encounters as a probiotic microorganism.
Collapse
|
48
|
Wommack AJ, Robson SA, Wanniarachchi YA, Wan A, Turner CJ, Wagner G, Nolan EM. NMR solution structure and condition-dependent oligomerization of the antimicrobial peptide human defensin 5. Biochemistry 2012; 51:9624-37. [PMID: 23163963 DOI: 10.1021/bi301255u] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Human defensin 5 (HD5) is a 32-residue host-defense peptide expressed in the gastrointestinal, reproductive, and urinary tracts that has antimicrobial activity. It exhibits six cysteine residues that are regiospecifically oxidized to form three disulfide bonds (Cys(3)-Cys(31), Cys(5)-Cys(20), and Cys(10)-Cys(30)) in the oxidized form (HD5(ox)). To probe the solution structure and oligomerization properties of HD5(ox), and select mutant peptides lacking one or more disulfide bonds, NMR solution studies and analytical ultracentrifugation experiments are reported in addition to in vitro peptide stability assays. The NMR solution structure of HD5(ox), solved at pH 4.0 in 90:10 H(2)O/D(2)O, is presented (PDB: 2LXZ ). Relaxation T(1)/T(2) measurements and the rotational correlation time (τ(c)) estimated from a (15)N-TRACT experiment demonstrate that HD5(ox) is dimeric under these experimental conditions. Exchange broadening of the Hα signals in the NMR spectra suggests that residues 19-21 (Val(19)-Cys(20)-Glu(21)) contribute to the dimer interface in solution. Exchange broadening is also observed for residues 7-14 comprising the loop. Sedimentation velocity and equilibrium studies conducted in buffered aqueous solution reveal that the oligomerization state of HD5(ox) is pH-dependent. Sedimentation coefficients of ca. 1.8 S and a molecular weight of 14 363 Da were determined for HD5(ox) at pH 7.0, supporting a tetrameric form ([HD5(ox)] ≥ 30 μM). At pH 2.0, a sedimentation coefficient of ca. 1.0 S and a molecular weight of 7079 Da, corresponding to a HD5(ox) dimer, were obtained. Millimolar concentrations of NaCl, CaCl(2), and MgCl(2) have a negligible effect on the HD5(ox) sedimentation coefficients in buffered aqueous solution at neutral pH. Removal of a single disulfide bond results in a loss of peptide fold and quaternary structure. These biophysical investigations highlight the dynamic and environmentally sensitive behavior of HD5(ox) in solution, and provide important insights into HD5(ox) structure/activity relationships and the requirements for antimicrobial action.
Collapse
Affiliation(s)
- Andrew J Wommack
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Schmidt NW, Tai KP, Kamdar K, Mishra A, Lai GH, Zhao K, Ouellette AJ, Wong GCL. Arginine in α-defensins: differential effects on bactericidal activity correspond to geometry of membrane curvature generation and peptide-lipid phase behavior. J Biol Chem 2012; 287:21866-72. [PMID: 22566697 DOI: 10.1074/jbc.m112.358721] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The conserved tridisulfide array of the α-defensin family imposes a common triple-stranded β-sheet topology on peptides that may have highly diverse primary structures, resulting in differential outcomes after targeted mutagenesis. In mouse cryptdin-4 (Crp4) and rhesus myeloid α-defensin-4 (RMAD4), complete substitutions of Arg with Lys affect bactericidal peptide activity very differently. Lys-for-Arg mutagenesis attenuates Crp4, but RMAD4 activity remains mostly unchanged. Here, we show that the differential biological effect of Lys-for-Arg replacements can be understood by the distinct phase behavior of the experimental peptide-lipid system. In Crp4, small-angle x-ray scattering analyses showed that Arg-to-Lys replacements shifted the induced nanoporous phases to a different range of lipid compositions compared with the Arg-rich native peptide, consistent with the attenuation of bactericidal activity by Lys-for-Arg mutations. In contrast, such phases generated by RMAD4 were largely unchanged. The concordance between small-angle x-ray scattering measurements and biological activity provides evidence that specific types of α-defensin-induced membrane curvature-generating tendencies correspond directly to bactericidal activity via membrane destabilization.
Collapse
Affiliation(s)
- Nathan W Schmidt
- Department of Bioengineering, UCLA, Los Angeles, California 90095-1600, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Expression and Structure/Function Relationships of Human Defensin 5. Appl Biochem Biotechnol 2012; 166:1703-10. [DOI: 10.1007/s12010-012-9571-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Accepted: 01/18/2012] [Indexed: 12/22/2022]
|