1
|
Zhang H, Li Q, Liao Y, Ma D, Zeng F, Zhang Z, Yu L, Yue R, Li X, Liao Y, Li D, Jang G, Zhao H, Zhao X, Zheng H, Li H, Liu L, Zhang Y. Immune Response Elicited by Recombinant Adenovirus-Delivered Glycoprotein B and Nucleocapsid Protein UL18 and UL25 of HSV-1 in Mice. Int J Mol Sci 2024; 25:13486. [PMID: 39769249 PMCID: PMC11678876 DOI: 10.3390/ijms252413486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Due to the complex pathogenic and immune escape mechanisms of herpes simplex virus type 1 (HSV-1), especially the failure of induced immune responses to block the initial cell-to-cell transmission of the virus from skin cells to neurons, the body struggles to establish effective prevention and control methods, resulting in the failure of currently developed vaccines. Previous studies have highlighted the crucial roles of surface glycoproteins and nucleocapsid proteins in activating the body's immune defense system against HSV-1 infection. In this study, recombinant adenoviruses were used as vectors to generate adenoviruses carrying the nucleocapsid protein genes UL18 and UL25, as well as the surface glycoprotein gene gB. This approach aimed to mimic the protein expression process that occurs following viral infection of the host and to investigate the immune response characteristics induced by UL18, UL25, and gB proteins. The findings revealed that UL18, UL25, and gB proteins could all trigger the expression of genes associated with innate immune responses; however, the specific genes induced varied in type and level. Furthermore, all three proteins were capable of promoting the proliferation of CD8+ T cells in the lymph nodes. Notably, only UL18 and gB could elicit a Th1 cell immune response. Interestingly, among these proteins, only UL18 could also induce a relatively higher IL-4 level, indicating a Th2 cell immune response. In addition to cellular immunity, all three proteins stimulated the production of specific IgG antibodies. Notably, UL18 induced higher and more sustained levels of specific IgG antibodies in mice. By contrast, only glycoprotein gB induced lower levels of neutralizing antibodies in mice. Moreover, when these mice were challenged with HSV-1, the co-immunization with UL18 and gB provided better protection than gB alone. In conclusion, HSV-1 surface glycoproteins and nucleocapsid proteins exhibit differences in their ability to induce innate and adaptive immunity in the body, suggesting potential avenues for vaccine design by leveraging their complementary advantages.
Collapse
Affiliation(s)
- Haobo Zhang
- Yunnan Key Laboratory of Vaccine Research and Development for Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Kunming 650118, China; (H.Z.); (Q.L.); (Y.L.); (D.M.); (F.Z.); (Z.Z.); (L.Y.); (R.Y.); (X.L.); (Y.L.); (D.L.); (G.J.); (H.Z.); (X.Z.); (H.Z.); (H.L.)
- School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Qi Li
- Yunnan Key Laboratory of Vaccine Research and Development for Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Kunming 650118, China; (H.Z.); (Q.L.); (Y.L.); (D.M.); (F.Z.); (Z.Z.); (L.Y.); (R.Y.); (X.L.); (Y.L.); (D.L.); (G.J.); (H.Z.); (X.Z.); (H.Z.); (H.L.)
- School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Yun Liao
- Yunnan Key Laboratory of Vaccine Research and Development for Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Kunming 650118, China; (H.Z.); (Q.L.); (Y.L.); (D.M.); (F.Z.); (Z.Z.); (L.Y.); (R.Y.); (X.L.); (Y.L.); (D.L.); (G.J.); (H.Z.); (X.Z.); (H.Z.); (H.L.)
| | - Danjing Ma
- Yunnan Key Laboratory of Vaccine Research and Development for Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Kunming 650118, China; (H.Z.); (Q.L.); (Y.L.); (D.M.); (F.Z.); (Z.Z.); (L.Y.); (R.Y.); (X.L.); (Y.L.); (D.L.); (G.J.); (H.Z.); (X.Z.); (H.Z.); (H.L.)
| | - Fengyuan Zeng
- Yunnan Key Laboratory of Vaccine Research and Development for Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Kunming 650118, China; (H.Z.); (Q.L.); (Y.L.); (D.M.); (F.Z.); (Z.Z.); (L.Y.); (R.Y.); (X.L.); (Y.L.); (D.L.); (G.J.); (H.Z.); (X.Z.); (H.Z.); (H.L.)
- School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Zhenxiao Zhang
- Yunnan Key Laboratory of Vaccine Research and Development for Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Kunming 650118, China; (H.Z.); (Q.L.); (Y.L.); (D.M.); (F.Z.); (Z.Z.); (L.Y.); (R.Y.); (X.L.); (Y.L.); (D.L.); (G.J.); (H.Z.); (X.Z.); (H.Z.); (H.L.)
| | - Li Yu
- Yunnan Key Laboratory of Vaccine Research and Development for Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Kunming 650118, China; (H.Z.); (Q.L.); (Y.L.); (D.M.); (F.Z.); (Z.Z.); (L.Y.); (R.Y.); (X.L.); (Y.L.); (D.L.); (G.J.); (H.Z.); (X.Z.); (H.Z.); (H.L.)
| | - Rong Yue
- Yunnan Key Laboratory of Vaccine Research and Development for Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Kunming 650118, China; (H.Z.); (Q.L.); (Y.L.); (D.M.); (F.Z.); (Z.Z.); (L.Y.); (R.Y.); (X.L.); (Y.L.); (D.L.); (G.J.); (H.Z.); (X.Z.); (H.Z.); (H.L.)
| | - Xinghang Li
- Yunnan Key Laboratory of Vaccine Research and Development for Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Kunming 650118, China; (H.Z.); (Q.L.); (Y.L.); (D.M.); (F.Z.); (Z.Z.); (L.Y.); (R.Y.); (X.L.); (Y.L.); (D.L.); (G.J.); (H.Z.); (X.Z.); (H.Z.); (H.L.)
| | - Yuansheng Liao
- Yunnan Key Laboratory of Vaccine Research and Development for Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Kunming 650118, China; (H.Z.); (Q.L.); (Y.L.); (D.M.); (F.Z.); (Z.Z.); (L.Y.); (R.Y.); (X.L.); (Y.L.); (D.L.); (G.J.); (H.Z.); (X.Z.); (H.Z.); (H.L.)
| | - Dandan Li
- Yunnan Key Laboratory of Vaccine Research and Development for Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Kunming 650118, China; (H.Z.); (Q.L.); (Y.L.); (D.M.); (F.Z.); (Z.Z.); (L.Y.); (R.Y.); (X.L.); (Y.L.); (D.L.); (G.J.); (H.Z.); (X.Z.); (H.Z.); (H.L.)
| | - Guorun Jang
- Yunnan Key Laboratory of Vaccine Research and Development for Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Kunming 650118, China; (H.Z.); (Q.L.); (Y.L.); (D.M.); (F.Z.); (Z.Z.); (L.Y.); (R.Y.); (X.L.); (Y.L.); (D.L.); (G.J.); (H.Z.); (X.Z.); (H.Z.); (H.L.)
| | - Heng Zhao
- Yunnan Key Laboratory of Vaccine Research and Development for Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Kunming 650118, China; (H.Z.); (Q.L.); (Y.L.); (D.M.); (F.Z.); (Z.Z.); (L.Y.); (R.Y.); (X.L.); (Y.L.); (D.L.); (G.J.); (H.Z.); (X.Z.); (H.Z.); (H.L.)
| | - Xin Zhao
- Yunnan Key Laboratory of Vaccine Research and Development for Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Kunming 650118, China; (H.Z.); (Q.L.); (Y.L.); (D.M.); (F.Z.); (Z.Z.); (L.Y.); (R.Y.); (X.L.); (Y.L.); (D.L.); (G.J.); (H.Z.); (X.Z.); (H.Z.); (H.L.)
| | - Huiwen Zheng
- Yunnan Key Laboratory of Vaccine Research and Development for Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Kunming 650118, China; (H.Z.); (Q.L.); (Y.L.); (D.M.); (F.Z.); (Z.Z.); (L.Y.); (R.Y.); (X.L.); (Y.L.); (D.L.); (G.J.); (H.Z.); (X.Z.); (H.Z.); (H.L.)
| | - Heng Li
- Yunnan Key Laboratory of Vaccine Research and Development for Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Kunming 650118, China; (H.Z.); (Q.L.); (Y.L.); (D.M.); (F.Z.); (Z.Z.); (L.Y.); (R.Y.); (X.L.); (Y.L.); (D.L.); (G.J.); (H.Z.); (X.Z.); (H.Z.); (H.L.)
| | - Longding Liu
- Yunnan Key Laboratory of Vaccine Research and Development for Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Kunming 650118, China; (H.Z.); (Q.L.); (Y.L.); (D.M.); (F.Z.); (Z.Z.); (L.Y.); (R.Y.); (X.L.); (Y.L.); (D.L.); (G.J.); (H.Z.); (X.Z.); (H.Z.); (H.L.)
| | - Ying Zhang
- Yunnan Key Laboratory of Vaccine Research and Development for Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Kunming 650118, China; (H.Z.); (Q.L.); (Y.L.); (D.M.); (F.Z.); (Z.Z.); (L.Y.); (R.Y.); (X.L.); (Y.L.); (D.L.); (G.J.); (H.Z.); (X.Z.); (H.Z.); (H.L.)
| |
Collapse
|
2
|
Expressing Redundancy among Linear-Epitope Sequence Data Based on Residue-Level Physicochemical Similarity in the Context of Antigenic Cross-Reaction. Adv Bioinformatics 2016; 2016:1276594. [PMID: 27274725 PMCID: PMC4870339 DOI: 10.1155/2016/1276594] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 03/29/2016] [Accepted: 04/10/2016] [Indexed: 01/15/2023] Open
Abstract
Epitope-based design of vaccines, immunotherapeutics, and immunodiagnostics is complicated by structural changes that radically alter immunological outcomes. This is obscured by expressing redundancy among linear-epitope data as fractional sequence-alignment identity, which fails to account for potentially drastic loss of binding affinity due to single-residue substitutions even where these might be considered conservative in the context of classical sequence analysis. From the perspective of immune function based on molecular recognition of epitopes, functional redundancy of epitope data (FRED) thus may be defined in a biologically more meaningful way based on residue-level physicochemical similarity in the context of antigenic cross-reaction, with functional similarity between epitopes expressed as the Shannon information entropy for differential epitope binding. Such similarity may be estimated in terms of structural differences between an immunogen epitope and an antigen epitope with reference to an idealized binding site of high complementarity to the immunogen epitope, by analogy between protein folding and ligand-receptor binding; but this underestimates potential for cross-reactivity, suggesting that epitope-binding site complementarity is typically suboptimal as regards immunologic specificity. The apparently suboptimal complementarity may reflect a tradeoff to attain optimal immune function that favors generation of immune-system components each having potential for cross-reactivity with a variety of epitopes.
Collapse
|
3
|
Yousef S, Planas R, Chakroun K, Hoffmeister-Ullerich S, Binder TMC, Eiermann TH, Martin R, Sospedra M. TCR Bias and HLA Cross-Restriction Are Strategies of Human Brain-Infiltrating JC Virus-Specific CD4+T Cells during Viral Infection. THE JOURNAL OF IMMUNOLOGY 2012; 189:3618-30. [DOI: 10.4049/jimmunol.1201612] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
4
|
Rudd BD, Venturi V, Smithey MJ, Way SS, Davenport MP, Nikolich-Zugich J. Diversity of the CD8+ T cell repertoire elicited against an immunodominant epitope does not depend on the context of infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 184:2958-2965. [PMID: 20164421 PMCID: PMC4161216 DOI: 10.4049/jimmunol.0903493] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The diversity of the pathogen-specific T cell repertoire is believed to be important in allowing recognition of different pathogen epitopes and their variants and thereby reducing the opportunities for mutation-driven pathogen escape. However, the extent to which the TCR repertoire can be manipulated by different vaccine strategies so as to obtain broad diversity and optimal protection is incompletely understood. We have investigated the influence of the infectious/inflammatory context on the TCR diversity of the CD8(+) T cell response specific for the immunodominant epitope in C57BL/6 mice, derived from glycoprotein B of HSV-1. To that effect, we compared TCR V segment utilization, CDR3 length, and sequence diversity of the response to natural HSV-1 infection with those elicited by either Listeria monocytogenes or vaccinia virus expressing the immunodominant epitope in C57BL/6 mice. We demonstrate that although the type of infection in which the epitope was encountered can influence the magnitude of the CD8(+) T cell responses, TCR beta-chain repertoires did not significantly differ among the three infections. These results suggest that widely different live vaccine vectors may have little impact upon the diversity of the induced CTL response, which has important implications for the design of live CTL vaccine strategies against acute and chronic infections.
Collapse
Affiliation(s)
- Brian D. Rudd
- Department of Immunobiology and the Arizona Center on Aging, University of Arizona College of Medicine, Tucson, AZ 85724 and the BIO-5 Institute, University of Arizona, Tucson,AZ 85719
| | - Vanessa Venturi
- Centre for Vascular Research, University of New South Wales, Kensington, New South Wales 2052, Australia
| | - Megan J. Smithey
- Department of Immunobiology and the Arizona Center on Aging, University of Arizona College of Medicine, Tucson, AZ 85724 and the BIO-5 Institute, University of Arizona, Tucson,AZ 85719
| | - Sing Sing Way
- Department of Pediatrics, Center for Infectious Disease and Microbiology Translational Research, University of Minnesota School of Medicine, Minneapolis, MN 55455, USA
| | - Miles P. Davenport
- Centre for Vascular Research, University of New South Wales, Kensington, New South Wales 2052, Australia
| | - Janko Nikolich-Zugich
- Department of Immunobiology and the Arizona Center on Aging, University of Arizona College of Medicine, Tucson, AZ 85724 and the BIO-5 Institute, University of Arizona, Tucson,AZ 85719
| |
Collapse
|
5
|
Reevaluating the CD8 T-cell response to herpes simplex virus type 1: involvement of CD8 T cells reactive to subdominant epitopes. J Virol 2008; 83:2237-45. [PMID: 19073721 DOI: 10.1128/jvi.01699-08] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In C57BL/6 (B6) mice, most herpes simplex virus (HSV)-specific CD8 T cells recognize a strongly immunodominant epitope on glycoprotein B (gB498) and can inhibit HSV type 1 (HSV-1) reactivation from latency in trigeminal ganglia (TG). However, half of the CD8 T cells retained in latently infected TG of B6 mice are not gB498 specific and have been largely ignored. The following observations from our current study indicate that these gB498-nonspecific CD8 T cells are HSV specific and may contribute to the control of HSV-1 latency. First, following corneal infection, OVA257-specific OT-1 CD8 T cells do not infiltrate the infected TG unless mice are simultaneously immunized with OVA257 peptide, and then they are not retained. Second, 30% of CD8 T cells in acutely infected TG that produce gamma interferon in response to HSV-1 stimulation directly ex vivo are gB498 nonspecific, and these cells maintain an activation phenotype during viral latency. Finally, gB498-nonspecific CD8 T cells are expanded in ex vivo cultures of latently infected TG and inhibit HSV-1 reactivation from latency in the absence of gB498-specific CD8 T cells. We conclude that many of the CD8 T cells that infiltrate and are retained in infected TG are HSV specific and potentially contribute to maintenance of HSV-1 latency. Identification of the viral proteins recognized by these cells will contribute to a better understanding of the dynamics of HSV-1 latency.
Collapse
|
6
|
Mylin LM, Schell TD, Epler M, Kusuma C, Assis D, Matsko C, Smith A, Allebach A, Tevethia SS. Diversity of escape variant mutations in Simian virus 40 large tumor antigen (SV40 Tag) epitopes selected by cytotoxic T lymphocyte (CTL) clones. Virology 2007; 364:155-68. [PMID: 17368499 PMCID: PMC3866617 DOI: 10.1016/j.virol.2007.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 01/23/2007] [Accepted: 02/11/2007] [Indexed: 01/22/2023]
Abstract
To better understand the relationship between epitope variation and tumor escape from immune surveillance, SV40 T antigen-transformed B6/K-0 cells were subjected to selection with individual CTL clones specific for the SV40 T antigen H-2D(b)-restricted epitopes I or V. CTL-resistant populations were isolated from a majority of the selection cultures and substituted epitope sequences were identified within most of the resistant populations. Tag sequences deleted of all or portions of the selection-targeted epitope were identified, but in lower numbers compared to epitope sequences bearing single residue substitutions. Relatively few flanking residue substitutions were identified, and only in epitope I-targeted selections. The diversity (numbers and epitope residue locations) of substituted epitope residue positions varied between selections. These findings suggest that the scope of spontaneously occurring mutations that could allow for escape from individual CD8+ T cell clones is large.
Collapse
Affiliation(s)
- Lawrence M. Mylin
- Department of Microbiology and Immunology H107, The Pennsylvania State University College of Medicine, Hershey, PA 17033
- Department of Biological Sciences, Box 3030, Messiah College, Grantham, PA 17027
| | - Todd D. Schell
- Department of Microbiology and Immunology H107, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Melanie Epler
- Department of Microbiology and Immunology H107, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Carolyn Kusuma
- Department of Biological Sciences, Box 3030, Messiah College, Grantham, PA 17027
| | - David Assis
- Department of Biological Sciences, Box 3030, Messiah College, Grantham, PA 17027
| | - Chelsea Matsko
- Department of Biological Sciences, Box 3030, Messiah College, Grantham, PA 17027
| | - Alexandra Smith
- Department of Biological Sciences, Box 3030, Messiah College, Grantham, PA 17027
| | - April Allebach
- Department of Biological Sciences, Box 3030, Messiah College, Grantham, PA 17027
| | - Satvir S. Tevethia
- Department of Microbiology and Immunology H107, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| |
Collapse
|
7
|
Turner SJ, Doherty PC, McCluskey J, Rossjohn J. Structural determinants of T-cell receptor bias in immunity. Nat Rev Immunol 2006; 6:883-94. [PMID: 17110956 DOI: 10.1038/nri1977] [Citation(s) in RCA: 285] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Antigen-specific T-cell responses induced by infection, transplantation, autoimmunity or hypersensitivity are characterized by cells expressing biased profiles of T-cell receptors (TCRs) that are selected from a diverse, naive repertoire. Here, we review the evidence for these TCR biases, focusing on crystallographic analysis of the structural constraints that determine the binding of a TCR to its ligand and the persistence of certain TCRs in an immune repertoire. We discuss the ways in which diversity in a selected TCR repertoire can contribute to protective immunity and the implications of this for vaccine design and immunotherapy.
Collapse
Affiliation(s)
- Stephen J Turner
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia.
| | | | | | | |
Collapse
|
8
|
Nikolich-Zugich J, Slifka MK, Messaoudi I. The many important facets of T-cell repertoire diversity. Nat Rev Immunol 2004; 4:123-32. [PMID: 15040585 DOI: 10.1038/nri1292] [Citation(s) in RCA: 480] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the thymus, a diverse and polymorphic T-cell repertoire is generated by random recombination of discrete T-cell receptor (TCR)-alphabeta gene segments. This repertoire is then shaped by intrathymic selection events to generate a peripheral T-cell pool of self-MHC restricted, non-autoaggressive T cells. It has long been postulated that some optimal level of TCR diversity allows efficient protection against pathogens. This article focuses on several recent advances that address the required diversity for the generation of an optimal immune response.
Collapse
Affiliation(s)
- Janko Nikolich-Zugich
- Vaccine and Gene Therapy Institute, Department of Molecular Microbiology and Immunology and the Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon 97006, USA.
| | | | | |
Collapse
|
9
|
Messaoudi I, Guevara Patiño JA, Dyall R, LeMaoult J, Nikolich-Zugich J. Direct link between mhc polymorphism, T cell avidity, and diversity in immune defense. Science 2002; 298:1797-800. [PMID: 12459592 DOI: 10.1126/science.1076064] [Citation(s) in RCA: 254] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Major histocompatibility complex (mhc)-encoded molecules govern immune responses by presenting antigenic peptides to T cells. The extensive polymorphism of genes encoding these molecules is believed to enhance immune defense by broadening the array of antigenic peptides available for T cell recognition, but direct evidence supporting the importance of this mechanism in combating pathogens is limited. Here we link mhc polymorphism-driven diversification of the cytotoxic T lymphocyte (CTL) repertoire to the generation of high-avidity, protective antiviral T cells and to superior antiviral defense. Thus, much of the beneficial effect of the mhc polymorphism in immune defense may be due to its critical influence on the properties of the selected CTL repertoire.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Complementarity Determining Regions
- Cytotoxicity, Immunologic
- Female
- Genes, MHC Class I
- H-2 Antigens/genetics
- H-2 Antigens/immunology
- Herpes Simplex/immunology
- Herpesvirus 1, Human/immunology
- Immunity, Innate
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred Strains
- Polymorphism, Genetic
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- T-Lymphocytes, Cytotoxic/immunology
Collapse
Affiliation(s)
- Ilhem Messaoudi
- Vaccine and Gene Therapy Institute and the Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | | | | | | | | |
Collapse
|