1
|
Sankaran DG, Zhu H, Maymi VI, Forlastro IM, Jiang Y, Laniewski N, Scheible KM, Rudd BD, Grimson AW. Gene Regulatory Programs that Specify Age-Related Differences during Thymocyte Development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.14.599011. [PMID: 38948840 PMCID: PMC11212896 DOI: 10.1101/2024.06.14.599011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
T cell development is fundamental to immune system establishment, yet how this development changes with age remains poorly understood. Here, we construct a transcriptional and epigenetic atlas of T cell developmental programs in neonatal and adult mice, revealing the ontogeny of divergent gene regulatory programs and their link to age-related differences in phenotype and function. Specifically, we identify a gene module that diverges with age from the earliest stages of genesis and includes programs that govern effector response and cell cycle regulation. Moreover, we reveal that neonates possess more accessible chromatin during early thymocyte development, likely establishing poised gene expression programs that manifest later in thymocyte development. Finally, we leverage this atlas, employing a CRISPR-based perturbation approach coupled with single-cell RNA sequencing as a readout to uncover a conserved transcriptional regulator, Zbtb20, that contributes to age-dependent differences in T cell development. Altogether, our study defines transcriptional and epigenetic programs that regulate age-specific differences in T cell development.
Collapse
|
2
|
Parriott G, Hegermiller E, Morman RE, Frank C, Saygin C, Stock W, Bartom ET, Kee BL. Loss of thymocyte competition underlies the tumor suppressive functions of the E2a transcription factor in T-ALL. Leukemia 2024; 38:491-501. [PMID: 38155245 DOI: 10.1038/s41375-023-02123-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/30/2023]
Abstract
T lymphocyte acute lymphoblastic leukemia (T-ALL) is frequently associated with increased expression of the E protein transcription factor inhibitors TAL1 and LYL1. In mouse models, ectopic expression of TAL1 or LYL1 in T cell progenitors, or inactivation of E2A, is sufficient to predispose mice to develop T-ALL. How E2A suppresses thymocyte transformation is currently unknown. Here, we show that early deletion of E2a, prior to the DN3 stage, was required for robust leukemogenesis and was associated with alterations in thymus cellularity, T cell differentiation, and gene expression in immature CD4+CD8+ thymocytes. Introduction of wild-type thymocytes into mice with early deletion of E2a prevented leukemogenesis, or delayed disease onset, and impacted the expression of multiple genes associated with transformation and genome instability. Our data indicate that E2A suppresses leukemogenesis by promoting T cell development and enforcing inter-thymocyte competition, a mechanism that is emerging as a safeguard against thymocyte transformation. These studies have implications for understanding how multiple essential regulators of T cell development suppress T-ALL and support the hypothesis that thymocyte competition suppresses leukemogenesis.
Collapse
Affiliation(s)
- Geoffrey Parriott
- Committee on Immunology, University of Chicago, Chicago, IL, 60637, USA
| | - Emma Hegermiller
- Department of Pathology, University of Chicago, Chicago, IL, 60637, USA
| | - Rosemary E Morman
- Committee on Immunology, University of Chicago, Chicago, IL, 60637, USA
- Department of Pathology, University of Chicago, Chicago, IL, 60637, USA
| | - Cameron Frank
- Department of Pathology, University of Chicago, Chicago, IL, 60637, USA
| | - Caner Saygin
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, 60657, USA
| | - Wendy Stock
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, 60657, USA
| | - Elizabeth T Bartom
- Department of Biochemistry and Molecular Genetics, Northwestern Feinberg School of Medicine, Chicago, IL, USA
| | - Barbara L Kee
- Committee on Immunology, University of Chicago, Chicago, IL, 60637, USA.
- Department of Pathology, University of Chicago, Chicago, IL, 60637, USA.
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, 60657, USA.
- Department of Biochemistry and Molecular Genetics, Northwestern Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
3
|
Lee WH, Hong KJ, Li H, Lee GR. Transcription Factor Id1 Plays an Essential Role in Th9 Cell Differentiation by Inhibiting Tcf3 and Tcf4. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2305527. [PMID: 37867222 PMCID: PMC10724384 DOI: 10.1002/advs.202305527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/08/2023] [Indexed: 10/24/2023]
Abstract
T helper type 9 (Th9) cells play important roles in immune responses by producing interleukin-9 (IL-9). Several transcription factors are responsible for Th9 cell differentiation; however, transcriptional regulation of Th9 cells is not fully understood. Here, it is shown that Id1 is an essential transcriptional regulator of Th9 cell differentiation. Id1 is induced by IL-4 and TGF-β. Id1-deficient naïve CD4 T cells fail to differentiate into Th9 cells, and overexpression of Id1 induce expression of IL-9. Mass spectrometry analysis reveals that Id1 interacts with Tcf3 and Tcf4 in Th9 cells. In addition, RNA-sequencing, chromatin immunoprecipitation, and transient reporter assay reveal that Tcf3 and Tcf4 bind to the promoter region of the Il9 gene to suppress its expression, and that Id1 inhibits their function, leading to Th9 differentiation. Finally, Id1-deficient Th9 cells ameliorate airway inflammation in an animal model of asthma. Thus, Id1 is a transcription factor that plays an essential role in Th9 cell differentiation by inhibiting Tcf3 and Tcf4.
Collapse
Affiliation(s)
- Woo Ho Lee
- Department of Life ScienceSogang University35 Baekbeom‐roMapo‐guSeoul04107South Korea
| | - Kyung Jin Hong
- Department of Life ScienceSogang University35 Baekbeom‐roMapo‐guSeoul04107South Korea
| | - Hua‐Bing Li
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related GenesShanghai Jiao Tong University School of Medicine280 Chongqing South Rd, Building #5‐602Shanghai200025China
| | - Gap Ryol Lee
- Department of Life ScienceSogang University35 Baekbeom‐roMapo‐guSeoul04107South Korea
| |
Collapse
|
4
|
MacNabb BW, Rothenberg EV. Speed and navigation control of thymocyte development by the fetal T-cell gene regulatory network. Immunol Rev 2023; 315:171-196. [PMID: 36722494 PMCID: PMC10771342 DOI: 10.1111/imr.13190] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
T-cell differentiation is a tightly regulated developmental program governed by interactions between transcription factors (TFs) and chromatin landscapes and affected by signals received from the thymic stroma. This process is marked by a series of checkpoints: T-lineage commitment, T-cell receptor (TCR)β selection, and positive and negative selection. Dynamically changing combinations of TFs drive differentiation along the T-lineage trajectory, through mechanisms that have been most extensively dissected in adult mouse T-lineage cells. However, fetal T-cell development differs from adult in ways that suggest that these TF mechanisms are not fully deterministic. The first wave of fetal T-cell differentiation occurs during a unique developmental window during thymic morphogenesis, shows more rapid kinetics of differentiation with fewer rounds of cell division, and gives rise to unique populations of innate lymphoid cells (ILCs) and invariant γδT cells that are not generated in the adult thymus. As the characteristic kinetics and progeny biases are cell-intrinsic properties of thymic progenitors, the differences could be based on distinct TF network circuitry within the progenitors themselves. Here, we review recent single-cell transcriptome data that illuminate the TF networks involved in T-cell differentiation in the fetal and adult mouse thymus.
Collapse
Affiliation(s)
- Brendan W MacNabb
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Ellen V Rothenberg
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
5
|
Parriott G, Hegermiller E, Morman RE, Frank C, Saygin C, Stock W, Bartom ET, Kee BL. Loss of thymocyte competition underlies the tumor suppressive functions of the E2a transcription factor in T lymphocyte acute lymphoblastic leukemia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.23.537993. [PMID: 37163059 PMCID: PMC10168235 DOI: 10.1101/2023.04.23.537993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
T lymphocyte acute lymphoblastic leukemia (T-ALL) is frequently associated with increased expression of the E protein transcription factor inhibitors TAL1 and LYL1. In mouse models, ectopic expression of Tal1 or Lyl1 in T cell progenitors or inactivation of E2a, is sufficient to predispose mice to develop T-ALL. How E2a suppresses thymocyte transformation is currently unknown. Here, we show that early deletion of E2a , prior to the DN3 stage, was required for robust leukemogenesis and was associated with alterations in thymus cellularity, T cell differentiation, and gene expression in immature CD4+CD8+ thymocytes. Introduction of wild-type thymocytes into mice with early deletion of E2a prevented leukemogenesis, or delayed disease onset, and impacted the expression of multiple genes associated with transformation and genome instability. Our data indicate that E2a suppresses leukemogenesis by promoting T cell development and enforcing inter-thymocyte competition, a mechanism that is emerging as a safeguard against thymocyte transformation. These studies have implications for understanding how multiple essential regulators of T cell development suppress T-ALL and support the hypothesis that thymus cellularity is a determinant of leukemogenesis.
Collapse
|
6
|
Li S, Wang CS, Montel-Hagen A, Chen HC, Lopez S, Zhou O, Dai K, Tsai S, Satyadi W, Botero C, Wong C, Casero D, Crooks GM, Seet CS. Strength of CAR signaling determines T cell versus ILC differentiation from pluripotent stem cells. Cell Rep 2023; 42:112241. [PMID: 36906850 PMCID: PMC10315155 DOI: 10.1016/j.celrep.2023.112241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 01/04/2023] [Accepted: 02/23/2023] [Indexed: 03/13/2023] Open
Abstract
Generation of chimeric antigen receptor (CAR) T cells from pluripotent stem cells (PSCs) will enable advances in cancer immunotherapy. Understanding how CARs affect T cell differentiation from PSCs is important for this effort. The recently described artificial thymic organoid (ATO) system supports in vitro differentiation of PSCs to T cells. Unexpectedly, PSCs transduced with a CD19-targeted CAR resulted in diversion of T cell differentiation to the innate lymphoid cell 2 (ILC2) lineage in ATOs. T cells and ILC2s are closely related lymphoid lineages with shared developmental and transcriptional programs. Mechanistically, we show that antigen-independent CAR signaling during lymphoid development enriched for ILC2-primed precursors at the expense of T cell precursors. We applied this understanding to modulate CAR signaling strength through expression level, structure, and presentation of cognate antigen to demonstrate that the T cell-versus-ILC lineage decision can be rationally controlled in either direction, providing a framework for achieving CAR-T cell development from PSCs.
Collapse
Affiliation(s)
- Suwen Li
- Department of Medicine, Division of Hematology-Oncology, David Geffen School of Medicine (DGSOM), University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Chloe S Wang
- Department of Medicine, Division of Hematology-Oncology, David Geffen School of Medicine (DGSOM), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Amélie Montel-Hagen
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ho-Chung Chen
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Shawn Lopez
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Olivia Zhou
- Department of Medicine, Division of Hematology-Oncology, David Geffen School of Medicine (DGSOM), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kristy Dai
- Department of Medicine, Division of Hematology-Oncology, David Geffen School of Medicine (DGSOM), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Steven Tsai
- Department of Medicine, Division of Hematology-Oncology, David Geffen School of Medicine (DGSOM), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - William Satyadi
- Department of Medicine, Division of Hematology-Oncology, David Geffen School of Medicine (DGSOM), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Carlos Botero
- Department of Medicine, Division of Hematology-Oncology, David Geffen School of Medicine (DGSOM), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Claudia Wong
- Department of Medicine, Division of Hematology-Oncology, David Geffen School of Medicine (DGSOM), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - David Casero
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Gay M Crooks
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Broad Stem Cell Research Center (BSCRC), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center (JCCC), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Christopher S Seet
- Department of Medicine, Division of Hematology-Oncology, David Geffen School of Medicine (DGSOM), University of California, Los Angeles, Los Angeles, CA 90095, USA; Broad Stem Cell Research Center (BSCRC), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center (JCCC), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
7
|
Abstract
Innate lymphoid cells (ILCs) are transcriptionally and functionally similar to T cells but lack adaptive antigen receptors. They play critical roles in early defense against pathogens. In this review, we summarize recent discoveries of ILC progenitors and discuss possible mechanisms that separate ILCs from T cells. We consider mechanisms of lineage specification in early ILC development and also examine whether differences exist between adult and fetal ILC development.
Collapse
Affiliation(s)
- Yi Ding
- T Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD, USA.
| | | | - Arundhoti Das
- T Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD, USA
| | - Avinash Bhandoola
- T Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD, USA.
| |
Collapse
|
8
|
Singh S, Sarkar T, Jakubison B, Gadomski S, Spradlin A, Gudmundsson KO, Keller JR. Inhibitor of DNA binding proteins revealed as orchestrators of steady state, stress and malignant hematopoiesis. Front Immunol 2022; 13:934624. [PMID: 35990659 PMCID: PMC9389078 DOI: 10.3389/fimmu.2022.934624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/12/2022] [Indexed: 11/24/2022] Open
Abstract
Adult mammalian hematopoiesis is a dynamic cellular process that provides a continuous supply of myeloid, lymphoid, erythroid/megakaryocyte cells for host survival. This process is sustained by regulating hematopoietic stem cells (HSCs) quiescence, proliferation and activation under homeostasis and stress, and regulating the proliferation and differentiation of downstream multipotent progenitor (MPP) and more committed progenitor cells. Inhibitor of DNA binding (ID) proteins are small helix-loop-helix (HLH) proteins that lack a basic (b) DNA binding domain present in other family members, and function as dominant-negative regulators of other bHLH proteins (E proteins) by inhibiting their transcriptional activity. ID proteins are required for normal T cell, B cell, NK and innate lymphoid cells, dendritic cell, and myeloid cell differentiation and development. However, recent evidence suggests that ID proteins are important regulators of normal and leukemic hematopoietic stem and progenitor cells (HSPCs). This chapter will review our current understanding of the function of ID proteins in HSPC development and highlight future areas of scientific investigation.
Collapse
Affiliation(s)
- Shweta Singh
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute (NCI)- Frederick, Frederick, MD, United States
| | - Tanmoy Sarkar
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute (NCI)- Frederick, Frederick, MD, United States
| | - Brad Jakubison
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute (NCI)- Frederick, Frederick, MD, United States
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Stephen Gadomski
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute (NCI)- Frederick, Frederick, MD, United States
| | - Andrew Spradlin
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute (NCI)- Frederick, Frederick, MD, United States
| | - Kristbjorn O. Gudmundsson
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute (NCI)- Frederick, Frederick, MD, United States
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Jonathan R. Keller
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute (NCI)- Frederick, Frederick, MD, United States
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
- *Correspondence: Jonathan R. Keller,
| |
Collapse
|
9
|
Parriott G, Kee BL. E Protein Transcription Factors as Suppressors of T Lymphocyte Acute Lymphoblastic Leukemia. Front Immunol 2022; 13:885144. [PMID: 35514954 PMCID: PMC9065262 DOI: 10.3389/fimmu.2022.885144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
T Lymphocyte Acute Lymphoblastic Leukemia (ALL) is an aggressive disease arising from transformation of T lymphocytes during their development. The mutation spectrum of T-ALL has revealed critical regulators of the growth and differentiation of normal and leukemic T lymphocytes. Approximately, 60% of T-ALLs show aberrant expression of the hematopoietic stem cell-associated helix-loop-helix transcription factors TAL1 and LYL1. TAL1 and LYL1 function in multiprotein complexes that regulate gene expression in T-ALL but they also antagonize the function of the E protein homodimers that are critical regulators of T cell development. Mice lacking E2A, or ectopically expressing TAL1, LYL1, or other inhibitors of E protein function in T cell progenitors, also succumb to an aggressive T-ALL-like disease highlighting that E proteins promote T cell development and suppress leukemogenesis. In this review, we discuss the role of E2A in T cell development and how alterations in E protein function underlie leukemogenesis. We focus on the role of TAL1 and LYL1 and the genes that are dysregulated in E2a-/- T cell progenitors that contribute to human T-ALL. These studies reveal novel mechanisms of transformation and provide insights into potential therapeutic targets for intervention in this disease.
Collapse
Affiliation(s)
- Geoffrey Parriott
- Committee on Immunology, University of Chicago, Chicago, IL, United States
| | - Barbara L Kee
- Committee on Immunology, University of Chicago, Chicago, IL, United States.,Committee on Cancer Biology, University of Chicago, Chicago, IL, United States.,Department of Pathology, University of Chicago, Chicago, IL, United States
| |
Collapse
|
10
|
Antoszewski M, Fournier N, Ruiz Buendía GA, Lourenco J, Liu Y, Sugrue T, Dubey C, Nkosi M, Pritchard CE, Huijbers IJ, Segat GC, Alonso-Moreno S, Serracanta E, Belver L, Ferrando AA, Ciriello G, Weng AP, Koch U, Radtke F. Tcf1 is essential for initiation of oncogenic Notch1-driven chromatin topology in T-ALL. Blood 2022; 139:2483-2498. [PMID: 35020836 PMCID: PMC9710489 DOI: 10.1182/blood.2021012077] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 12/22/2021] [Indexed: 01/16/2023] Open
Abstract
NOTCH1 is a well-established lineage specifier for T cells and among the most frequently mutated genes throughout all subclasses of T cell acute lymphoblastic leukemia (T-ALL). How oncogenic NOTCH1 signaling launches a leukemia-prone chromatin landscape during T-ALL initiation is unknown. Here we demonstrate an essential role for the high-mobility-group transcription factor Tcf1 in orchestrating chromatin accessibility and topology, allowing aberrant Notch1 signaling to convey its oncogenic function. Although essential, Tcf1 is not sufficient to initiate leukemia. The formation of a leukemia-prone epigenetic landscape at the distal Notch1-regulated Myc enhancer, which is fundamental to this disease, is Tcf1-dependent and occurs within the earliest progenitor stage even before cells adopt a T lymphocyte or leukemic fate. Moreover, we discovered a unique evolutionarily conserved Tcf1-regulated enhancer element in the distal Myc-enhancer, which is important for the transition of preleukemic cells to full-blown disease.
Collapse
Affiliation(s)
- Mateusz Antoszewski
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
| | - Nadine Fournier
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
- Bioinformatics Core Facility, Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Gustavo A. Ruiz Buendía
- Bioinformatics Core Facility, Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Joao Lourenco
- Bioinformatics Core Facility, Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Yuanlong Liu
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne (UNIL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Tara Sugrue
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
- Botnar Research Centre for Child Health, University of Basel & ETH Zürich, Basel, Switzerland
| | - Christelle Dubey
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
- INSELSPITAL, Universitätsspital Bern, Universitätsklinik für Thoraxchirurgie, Forschungsabteilung Thoraxchirurgie, Bern, Switzerland
| | - Marianne Nkosi
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
| | - Colin E.J. Pritchard
- Mouse Clinic for Cancer & Aging (MCCA)/Transgenic Core Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ivo J. Huijbers
- Mouse Clinic for Cancer & Aging (MCCA)/Transgenic Core Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | - Laura Belver
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain
- Catalan Institute of Oncology-Immuno Procure, Barcelona, Spain
| | - Adolfo A. Ferrando
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY
| | - Giovanni Ciriello
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne (UNIL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Andrew P. Weng
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, Canada
| | - Ute Koch
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
| | - Freddy Radtke
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
| |
Collapse
|
11
|
Carr T, McGregor S, Dias S, Verykokakis M, Le Beau MM, Xue HH, Sigvardsson M, Bartom ET, Kee BL. Oncogenic and Tumor Suppressor Functions for Lymphoid Enhancer Factor 1 in E2a-/- T Acute Lymphoblastic Leukemia. Front Immunol 2022; 13:845488. [PMID: 35371057 PMCID: PMC8971981 DOI: 10.3389/fimmu.2022.845488] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/23/2022] [Indexed: 11/15/2022] Open
Abstract
T lymphocyte acute lymphoblastic leukemia (T-ALL) is a heterogeneous disease affecting T cells at multiple stages of their development and is characterized by frequent genomic alterations. The transcription factor LEF1 is inactivated through mutation in a subset of T-ALL cases but elevated LEF1 expression and activating mutations have also been identified in this disease. Here we show, in a murine model of T-ALL arising due to E2a inactivation, that the developmental timing of Lef1 mutation impacts its ability to function as a cooperative tumor suppressor or oncogene. T cell transformation in the presence of LEF1 allows leukemic cells to become addicted to its presence. In contrast, deletion prior to transformation both accelerates leukemogenesis and results in leukemic cells with altered expression of genes controlling receptor-signaling pathways. Our data demonstrate that the developmental timing of Lef1 mutations impact its apparent oncogenic or tumor suppressive characteristics and demonstrate the utility of mouse models for understanding the cooperation and consequence of mutational order in leukemogenesis.
Collapse
Affiliation(s)
- Tiffany Carr
- Committee on Immunology, The University of Chicago, Chicago, IL, United States
| | - Stephanie McGregor
- Committee on Cancer Biology, The University of Chicago, Chicago, IL, United States
| | - Sheila Dias
- Department of Pathology, The University of Chicago, Chicago, Chicago, IL, United States
| | - Mihalis Verykokakis
- Department of Pathology, The University of Chicago, Chicago, Chicago, IL, United States
| | - Michelle M. Le Beau
- Department of Medicine, Section of Hematology/Oncology, The University of Chicago, Chicago, IL, United States
| | - Hai-Hui Xue
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ, United States
| | | | - Elizabeth T. Bartom
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, United States
| | - Barbara L. Kee
- Committee on Immunology, The University of Chicago, Chicago, IL, United States
- Committee on Cancer Biology, The University of Chicago, Chicago, IL, United States
- Department of Pathology, The University of Chicago, Chicago, Chicago, IL, United States
- *Correspondence: Barbara L. Kee,
| |
Collapse
|
12
|
Jegatheeswaran S, Mathews JA, Crome SQ. Searching for the Elusive Regulatory Innate Lymphoid Cell. THE JOURNAL OF IMMUNOLOGY 2021; 207:1949-1957. [PMID: 34607908 DOI: 10.4049/jimmunol.2100661] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/06/2021] [Indexed: 12/26/2022]
Abstract
The complex nature of the innate lymphoid cell (ILC) family and wide range of ILC effector functions has been the focus of intense research. In addition to important roles in host defense, ILCs have central roles in maintaining tissue homeostasis and can promote immune tolerance. Alterations within the microenvironment can impart new functions on ILCs, and can even induce conversion to a distinct ILC family member. Complicating current definitions of ILCs are recent findings of distinct regulatory ILC populations that limit inflammatory responses or recruit other immunosuppressive cells such as regulatory T cells. Whether these populations are distinct ILC family members or rather canonical ILCs that exhibit immunoregulatory functions due to microenvironment signals has been the subject of much debate. In this review, we highlight studies identifying regulatory populations of ILCs that span regulatory NK-like cells, regulatory ILCs, and IL-10-producing ILC2s.
Collapse
Affiliation(s)
- Sinthuja Jegatheeswaran
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; and.,Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Jessica A Mathews
- Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Sarah Q Crome
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; and .,Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Michieletto MF, Henao-Mejia J. Ontogeny and heterogeneity of innate lymphoid cells and the noncoding genome. Immunol Rev 2021; 300:152-166. [PMID: 33559175 DOI: 10.1111/imr.12950] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 12/13/2022]
Abstract
Since their discovery a decade ago, it has become evident that innate lymphoid cells (ILCs) play critical roles in protective immune responses against intracellular and extracellular pathogens but are also central regulators of epithelial barrier integrity and tissue homeostasis. ILCs populate almost every tissue in mammalian organisms; therefore, not surprisingly, dysregulation of their functions contributes to the development and progression of multiple inflammatory and metabolic diseases. Our knowledge of the transcriptional programs governing the development, differentiation, and functions of the different groups of ILCs has increased dramatically in the last ten years. However, with the advent of new technologies, an unprecedented level of heterogeneity, plasticity, and developmental complexity has started to be revealed. In this review, we highlight recent advances in our understanding of ILC development and their biological functions. In particular, we aim to emphasize how our increasing knowledge of the chromatin landscape and the noncoding genome of these innate lymphocytes is allowing us to better understand their development and functions in different contexts during homeostasis and inflammation. Moreover, we propose that the design of more refined genetic tools to study tissue-specific ILCs and their functions can be accomplished by leveraging our understanding of how specific noncoding elements of the genome regulate gene expression in ILCs.
Collapse
Affiliation(s)
- Michaël F Michieletto
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jorge Henao-Mejia
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Division of Protective Immunity, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
14
|
Allosteric deactivation of PIFs and EIN3 by microproteins in light control of plant development. Proc Natl Acad Sci U S A 2020; 117:18858-18868. [PMID: 32694206 DOI: 10.1073/pnas.2002313117] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Buried seedlings undergo dramatic developmental transitions when they emerge from soil into sunlight. As central transcription factors suppressing light responses, PHYTOCHROME-INTERACTING FACTORs (PIFs) and ETHYLENE-INSENSITIVE 3 (EIN3) actively function in darkness and must be promptly repressed upon light to initiate deetiolation. Microproteins are evolutionarily conserved small single-domain proteins that act as posttranslational regulators in eukaryotes. Although hundreds to thousands of microproteins are predicted to exist in plants, their target molecules, biological roles, and mechanisms of action remain largely unknown. Here, we show that two microproteins, miP1a and miP1b (miP1a/b), are robustly stimulated in the dark-to-light transition. miP1a/b are primarily expressed in cotyledons and hypocotyl, exhibiting tissue-specific patterns similar to those of PIFs and EIN3 We demonstrate that PIFs and EIN3 assemble functional oligomers by self-interaction, while miP1a/b directly interact with and disrupt the oligomerization of PIFs and EIN3 by forming nonfunctional protein complexes. As a result, the DNA binding capacity and transcriptional activity of PIFs and EIN3 are predominantly suppressed. These biochemical findings are further supported by genetic evidence. miP1a/b positively regulate photomorphogenic development, and constitutively expressing miP1a/b rescues the delayed apical hook unfolding and cotyledon development of plants overexpressing PIFs and EIN3 Our study reveals that microproteins provide a temporal and negative control of the master transcription factors' oligomerization to achieve timely developmental transitions upon environmental changes.
Collapse
|
15
|
Inhibitor of DNA-Binding Protein 4 Suppresses Cancer Metastasis through the Regulation of Epithelial Mesenchymal Transition in Lung Adenocarcinoma. Cancers (Basel) 2019; 11:cancers11122021. [PMID: 31847356 PMCID: PMC6966672 DOI: 10.3390/cancers11122021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 02/06/2023] Open
Abstract
Metastasis is a predominant cause of cancer death and the major challenge in treating lung adenocarcinoma (LADC). Therefore, exploring new metastasis-related genes and their action mechanisms may provide new insights for developing a new combative approach to treat lung cancer. Previously, our research team discovered that the expression of the inhibitor of DNA binding 4 (Id4) was inversely related to cell invasiveness in LADC cells by cDNA microarray screening. However, the functional role of Id4 and its mechanism of action in lung cancer metastasis remain unclear. In this study, we report that the expression of Id4 could attenuate cell migration and invasion in vitro and cancer metastasis in vivo. Detailed analyses indicated that Id4 could promote E-cadherin expression through the binding of Slug, cause the occurrence of mesenchymal-epithelial transition (MET), and inhibit cancer metastasis. Moreover, the examination of the gene expression database (GSE31210) also revealed that high-level expression of Id4/E-cadherin and low-level expression of Slug were associated with a better clinical outcome in LADC patients. In summary, Id4 may act as a metastatic suppressor, which could not only be used as an independent predictor but also serve as a potential therapeutic for LADC treatment.
Collapse
|
16
|
Paradoxical role of Id proteins in regulating tumorigenic potential of lymphoid cells. Front Med 2018; 12:374-386. [PMID: 30043222 DOI: 10.1007/s11684-018-0652-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 06/26/2018] [Indexed: 12/11/2022]
Abstract
A family of transcription factors known as Id proteins, or inhibitor of DNA binding and differentiation, is capable of regulating cell proliferation, survival and differentiation, and is often upregulated in multiple types of tumors. Due to their ability to promote self-renewal, Id proteins have been considered as oncogenes, and potential therapeutic targets in cancer models. On the contrary, certain Id proteins are reported to act as tumor suppressors in the development of Burkitt's lymphoma in humans, and hepatosplenic and innate-like T cell lymphomas in mice. The contexts and mechanisms by which Id proteins can serve in such contradictory roles to determine tumor outcomes are still not well understood. In this review, we explore the roles of Id proteins in lymphocyte development and tumorigenesis, particularly with respect to inhibition of their canonical DNA binding partners known as E proteins. Transcriptional regulation by E proteins, and their antagonism by Id proteins, act as gatekeepers to ensure appropriate lymphocyte development at key checkpoints. We re-examine the derailment of these regulatory mechanisms in lymphocytes that facilitate tumor development. These mechanistic insights can allow better appreciation of the context-dependent roles of Id proteins in cancers and improve considerations for therapy.
Collapse
|
17
|
Repression of TCF3/E2A contributes to Hodgkin lymphomagenesis. Oncotarget 2018; 7:36854-36864. [PMID: 27166193 PMCID: PMC5095044 DOI: 10.18632/oncotarget.9210] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 04/25/2016] [Indexed: 01/12/2023] Open
Abstract
Although Hodgkin and Reed-Sternberg (HRS) cells of classical Hodgkin lymphoma (cHL) derived from germinal or post germinal B cells, they have lost the B cell phenotype in the process of lymphomagenesis. The phenomenon can be at least partially explained by repression of B-cell-specific transcription factors including TCF3, early B-cell factor 1 (EBF1), SPI1/PU.1, and FOXO1, which are down-regulated by genetic and epigenetic mechanisms. The unique phenotype has been suspected to be advantageous for survival of HRS cells. Ectopic expression of some of these transcription factors (EBF1, PU.1, FOXO1) indeed impaired survival of cHL cells. Here we show that forced expression of TCF3 causes cell death and cell cycle arrest in cHL cell lines. Mechanistically, TCF3 overexpression modulated expression of multiple pro-apoptotic genes including BIK, APAF1, FASLG, BOK, and TNFRSF10A/DR4. We conclude that TCF3 inactivation contributes not only to extinguishing of B cell phenotype but also to cHL oncogenesis.
Collapse
|
18
|
Xing C, Zhu G, Xiao H, Fang Y, Liu X, Han G, Chen G, Hou C, Shen B, Li Y, Ma N, Wang R. B cells regulate thymic CD8 +T cell differentiation in lupus-prone mice. Oncotarget 2017; 8:89486-89499. [PMID: 29163765 PMCID: PMC5685686 DOI: 10.18632/oncotarget.19002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 06/18/2017] [Indexed: 01/12/2023] Open
Abstract
Previous studies have shown that under normal physiological conditions thymic B cells play a critical function in T cell negative selection. We tested the effect of thymic B cells on thymic T-cell differentiation in autoimmune diseases including systemic lupus erythematosus (SLE). We found that thymic B cells and CD8- CD4+ and CD4-CD8+T cells increased, whereas CD4+CD8+T cells decreased in lupus-prone mice. Once B cells were reduced, the change was reversed. Furthermore, we found that B cells blocked thymic immature single positive (ISP) CD4-CD8+CD3lo/-RORγt- T cells progression into CD4+CD8+T cells. Interestingly, we found a novel population of thymic immature T cells (CD4-CD8+CD3loRORγt+) that were induced into mature CD4-CD8+CD3+RORγt+T cells by B cells in lupus-prone mice. Importantly, we found that IgG, produced by thymic B cells, played a critical role in the differentiation of thymic CD8+ISP and mature RORγt+CD8+ T cells in lupus-prone mice. In conclusion, B cells blocked the differentiation from thymic CD8+ISP and induced the differentiation of a novel immature CD4-CD8+CD3loRORγt+T cells into mature RORγt+CD8+ T cells by secreting IgG antibody in lupus-prone mice.
Collapse
Affiliation(s)
- Chen Xing
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China.,Department of Stress Medicine, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Gaizhi Zhu
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China.,Laboratory of Cellular and Molecular Immunology, Henan University, Kaifeng, Henan, China
| | - He Xiao
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Ying Fang
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China.,Department of Rheumatology, First hospital of Jilin University, Changchun, China
| | - Xiaoling Liu
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China.,Department of Nephrology, The 307th Hospital of Chinese People's Liberation Army, Beijing, China
| | - Gencheng Han
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Guojiang Chen
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Chunmei Hou
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Beifen Shen
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Yan Li
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Ning Ma
- Department of Rheumatology, First hospital of Jilin University, Changchun, China
| | - Renxi Wang
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China
| |
Collapse
|
19
|
Kamata YU, Sumida T, Kobayashi Y, Ishikawa A, Kumamaru W, Mori Y. Introduction of ID2 Enhances Invasiveness in ID2-null Oral Squamous Cell Carcinoma Cells via the SNAIL Axis. Cancer Genomics Proteomics 2017; 13:493-497. [PMID: 27807072 DOI: 10.21873/cgp.20012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 07/21/2016] [Indexed: 11/10/2022] Open
Abstract
AIM Inhibitor of DNA-binding (ID) proteins are negative regulators of basic helix-loop-helix transcription factors that generally stimulate cell proliferation and inhibit differentiation. However, the role of ID2 in cancer progression remains ambiguous. Here, we investigated the function of ID2 in ID2-null oral squamous cell carcinoma (OSCC) cells. MATERIALS AND METHODS We introduced an ID2 cDNA construct into ID2-null OSCC cells and compared them with empty-vector-transfected cells in terms of cell proliferation, invasion, and activity and expression of matrix metalloproteinase (MMP). RESULTS ID2 introduction resulted in enhanced malignant phenotypes. The ID2-expressing cells showed increased N-cadherin, vimentin, and E-cadherin expression and epithelial-mesenchymal transition. In addition, cell invasion drastically increased with increased expression and activity of MMP2. Immunoprecipitation revealed a direct interaction between ID2 and zinc finger transcription factor, snail family transcriptional repressor 1 (SNAIL1). CONCLUSION ID2 expression triggered a malignant phenotype, especially of invasive properties, through the ID2-SNAIL axis. Thus, ID2 represents a potential therapeutic target for OSCC.
Collapse
Affiliation(s)
- Y U Kamata
- Section of Oral & Maxillofacial Surgery, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Tomoki Sumida
- Section of Oral & Maxillofacial Surgery, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yosuke Kobayashi
- Section of Oral & Maxillofacial Surgery, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Akiko Ishikawa
- Department of Oral and Maxillofacial Surgery, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Wataru Kumamaru
- Section of Oral & Maxillofacial Surgery, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yoshihide Mori
- Section of Oral & Maxillofacial Surgery, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
20
|
Cutucache CE, Herek TA. Burrowing through the Heterogeneity: Review of Mouse Models of PTCL-NOS. Front Oncol 2016; 6:206. [PMID: 27725924 PMCID: PMC5035739 DOI: 10.3389/fonc.2016.00206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 09/12/2016] [Indexed: 12/19/2022] Open
Abstract
Currently, there are 19 different peripheral T-cell lymphoma (PTCL) entities recognized by the World Health Organization; however, ~70% of PTCL diagnoses fall within one of three subtypes [i.e., peripheral T-cell lymphoma not otherwise specified (PTCL-NOS), anaplastic large-cell lymphoma, and angioimmunoblastic T-cell lymphoma]. PTCL-NOS is a grouping of extra-thymic neoplasms that represent a challenging and heterogeneous subset of non-Hodgkin’s lymphomas. Research into peripheral T-cell lymphomas has been cumbersome as the lack of defining cytogenetic, histological, and molecular features has stymied diagnosis and treatment of these diseases. Similarly, the lacks of genetically manipulated murine models that faithfully recapitulate disease characteristics were absent prior to the turn of the century. Herein, we review the literature concerning existing mouse models for PTLC-NOS, while paying particular attention to the etiology of this heterogeneous disease.
Collapse
|
21
|
Sumida T, Ishikawa A, Nakano H, Yamada T, Mori Y, Desprez PY. Targeting ID2 expression triggers a more differentiated phenotype and reduces aggressiveness in human salivary gland cancer cells. Genes Cells 2016; 21:915-20. [PMID: 27364596 DOI: 10.1111/gtc.12389] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 05/21/2016] [Indexed: 11/28/2022]
Abstract
Inhibitors of DNA-binding (ID) proteins are negative regulators of basic helix-loop-helix transcription factors and generally stimulate cell proliferation and inhibit differentiation. We previously determined that ID1 was highly expressed in aggressive salivary gland cancer (SGC) cells in culture. Here, we show that ID2 is also expressed in aggressive SGC cells. ID2 knockdown triggers important changes in cell behavior, that is, it significantly reduces the expression of N-cadherin, vimentin and Snail, induces E-cadherin expression and leads to a more differentiated phenotype exemplified by changes in cell shape. Moreover, ID2 knockdown almost completely suppresses invasion and the expression of matrix metalloproteinase 9. In conclusion, ID2 expression maintains an aggressive phenotype in SGC cells, and ID2 repression triggers a reduction in cell aggressiveness. ID2 therefore represents a potential therapeutic target during SGC progression. ID proteins are negative regulators of basic helix-loop-helix transcription factors and generally stimulate cell proliferation and inhibit differentiation. ID2 knockdown triggers important changes in cell behavior, that is, it significantly reduces the expression of N-cadherin, vimentin and Snail, induces E-cadherin expression and leads to a more differentiated phenotype exemplified by changes in cell shape. ID2 therefore represents a potential therapeutic target during SGC progression.
Collapse
Affiliation(s)
- Tomoki Sumida
- Section of Oral & Maxillofacial Surgery, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 8128582, Japan
| | - Akiko Ishikawa
- Department of Oral & Maxillofacial Surgery, Ehime University Graduate School of Medicine, 454, Shitsukawa, Toon, 7910295, Japan
| | - Hiroyuki Nakano
- Section of Oral & Maxillofacial Surgery, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 8128582, Japan
| | - Tomohiro Yamada
- Section of Oral & Maxillofacial Surgery, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 8128582, Japan
| | - Yoshihide Mori
- Section of Oral & Maxillofacial Surgery, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 8128582, Japan
| | - Pierre-Yves Desprez
- California Pacific Medical Center, Cancer Research Institute, 475 Brannan Street, Suite 220, San Francisco, California, 94107, USA
| |
Collapse
|
22
|
Yang Q, Bhandoola A. The development of adult innate lymphoid cells. Curr Opin Immunol 2016; 39:114-20. [PMID: 26871595 DOI: 10.1016/j.coi.2016.01.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 01/13/2016] [Accepted: 01/14/2016] [Indexed: 01/21/2023]
Abstract
Innate lymphoid cells (ILC) are a specialized family of effector lymphocytes that transcriptionally and functionally mirror effector subsets of T cells, but differ from T cells in that they lack clonally distributed adaptive antigen receptors. Our understanding of this family of lymphocytes is still in its infancy. In this review, we summarize current understanding and discuss recent insights into the cellular and molecular events that occur during early ILC development in adult mice. We discuss how these events overlap and diverge with the early development of adaptive T cells, and how they may influence the molecular and functional properties of mature ILC.
Collapse
Affiliation(s)
- Qi Yang
- T-Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Avinash Bhandoola
- T-Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States.
| |
Collapse
|
23
|
van de Pavert SA, Vivier E. Differentiation and function of group 3 innate lymphoid cells, from embryo to adult. Int Immunol 2015; 28:35-42. [PMID: 26374472 DOI: 10.1093/intimm/dxv052] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/07/2015] [Indexed: 12/14/2022] Open
Abstract
Group 3 innate lymphoid cells (ILC3) represent a heterogeneous population of cells that share the nuclear hormone receptor RORγt (retinoic acid receptor-related orphan receptor γt) as a master regulator for differentiation and function. ILC3 can be divided into two major subsets based on the cell surface expression of the natural cytotoxicity receptor (NCR), NKp46. A subset of NCR(-) ILC3 includes the previously known lymphoid-tissue inducer cells that are essential for the embryonic formation of peripheral lymph nodes and Peyer's patches. After birth, the NCR(-) and NCR(+) ILC3 contribute to the maintenance of health but also to inflammation in mucosal tissues. This review will describe the differentiation pathways of ILC3, their involvement in the development of the adaptive immune system and their role in the establishment and maintenance of gut immunity.
Collapse
Affiliation(s)
- Serge A van de Pavert
- Centre d'Immunologie de Marseille-Luminy, Université d'Aix-Marseille UM2, Inserm U1104, CNRS UMR7280, 13288 Marseille, France
| | - Eric Vivier
- Centre d'Immunologie de Marseille-Luminy, Université d'Aix-Marseille UM2, Inserm U1104, CNRS UMR7280, 13288 Marseille, France Immunologie, Hôpital de la Conception, Assistance Publique - Hôpitaux de Marseille, 13385 Marseille, France
| |
Collapse
|
24
|
Abstract
The lymphocyte family has expanded significantly in recent years to include not only the adaptive lymphocytes (T cells, B cells) and NK cells, but also several additional innate lymphoid cell (ILC) types. ILCs lack clonally distributed antigen receptors characteristic of adaptive lymphocytes and instead respond exclusively to signaling via germline-encoded receptors. ILCs resemble T cells more closely than any other leukocyte lineage at the transcriptome level and express many elements of the core T cell transcriptional program, including Notch, Gata3, Tcf7, and Bcl11b. We present our current understanding of the shared and distinct transcriptional regulatory mechanisms involved in the development of adaptive T lymphocytes and closely related ILCs. We discuss the possibility that a core set of transcriptional regulators common to ILCs and T cells establish enhancers that enable implementation of closely aligned effector pathways. Studies of the transcriptional regulation of lymphopoiesis will support the development of novel therapeutic approaches to correct early lymphoid developmental defects and aberrant lymphocyte function.
Collapse
Affiliation(s)
- Maria Elena De Obaldia
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | | |
Collapse
|
25
|
Graeff M, Wenkel S. Regulation of protein function by interfering protein species. Biomol Concepts 2014; 3:71-8. [PMID: 25436525 DOI: 10.1515/bmc.2011.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 11/02/2011] [Indexed: 11/15/2022] Open
Abstract
Abstract Most proteins do not function alone but act in protein complexes. For several transcriptional regulators, it is known that they have to homo- or heterodimerize prior to DNA binding. These protein interactions occur through defined protein-protein-interaction (PPI) domains. More than two decades ago, inhibitor of DNA binding (ID), a small protein containing a single helix-loop-helix (HLH) motif was identified. ID is able to interact with the larger DNA-binding basic helix-loop-helix (bHLH) transcription factors, but due to the lack of the basic domain required for DNA binding, ID traps bHLH proteins in non-functional complexes. Work in plants has, in the recent years, identified more small proteins acting in analogy to ID. A hallmark of these small negative acting proteins is the presence of a protein-interaction domain and the absence of other functional domains required for transcriptional activation or DNA binding. Because these proteins are often very small and function in analogy to microRNAs (meaning in a dominant-negative manner), we propose to refer to these protein species as 'microProteins' (miPs). miPs can be encoded in the genome as individual transcription units but can also be produced by alternative splicing. Other negatively acting proteins, consisting of more than one domain, have also been identified, and we propose to call these proteins 'interfering proteins' (iPs). The aim of this review is to state more precisely how to discriminate miPs from iPs. Therefore, we will highlight recent findings on both protein species and describe their mode of action. Furthermore, miPs have the ability to regulate proteins of diverse functions, emphasizing their value as biotechnological tools.
Collapse
|
26
|
Lasorella A, Benezra R, Iavarone A. The ID proteins: master regulators of cancer stem cells and tumour aggressiveness. Nat Rev Cancer 2014; 14:77-91. [PMID: 24442143 DOI: 10.1038/nrc3638] [Citation(s) in RCA: 286] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Inhibitor of DNA binding (ID) proteins are transcriptional regulators that control the timing of cell fate determination and differentiation in stem and progenitor cells during normal development and adult life. ID genes are frequently deregulated in many types of human neoplasms, and they endow cancer cells with biological features that are hijacked from normal stem cells. The ability of ID proteins to function as central 'hubs' for the coordination of multiple cancer hallmarks has established these transcriptional regulators as therapeutic targets and biomarkers in specific types of human tumours.
Collapse
Affiliation(s)
- Anna Lasorella
- Institute for Cancer Genetics, Department of Pathology and Pediatrics, Columbia University Medical Center, 1130 St. Nicholas Avenue, New York, 10032 New York, USA
| | - Robert Benezra
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, Box 241, New York, 10065 New York, USA
| | - Antonio Iavarone
- Institute for Cancer Genetics, Department of Pathology and Neurology, Columbia University Medical Center, 1130 St. Nicholas Avenue, New York, 10032 New York, USA
| |
Collapse
|
27
|
Abstract
The family of inhibitor of differentiation (Id) proteins is a group of evolutionarily conserved molecules, which play important regulatory roles in organisms ranging from Drosophila to humans. Id proteins are small polypeptides harboring a helix-loop-helix (HLH) motif, which are best known to mediate dimerization with other basic HLH proteins, primarily E proteins. Because Id proteins do not possess the basic amino acids adjacent to the HLH motif necessary for DNA binding, Id proteins inhibit the function of E protein homodimers, as well as heterodimers between E proteins and tissue-specific bHLH proteins. However, Id proteins have also been shown to have E protein-independent functions. The Id genes are broadly but differentially expressed in a variety of cell types. Transcription of the Id genes is controlled by transcription factors such as C/EBPβ and Egr as well as by signaling pathways triggered by different stimuli, which include bone morphogenic proteins, cytokines, and ligands of T cell receptors. In general, Id proteins are capable of inhibiting the differentiation of progenitors of different cell types, promoting cell-cycle progression, delaying cellular senescence, and facilitating cell migration. These properties of Id proteins enable them to play significant roles in stem cell maintenance, vasculogenesis, tumorigenesis and metastasis, the development of the immune system, and energy metabolism. In this review, we intend to highlight the current understanding of the function of Id proteins and discuss gaps in our knowledge about the mechanisms whereby Id proteins exert their diverse effects in multiple cellular processes.
Collapse
Affiliation(s)
- Flora Ling
- Immunobiology Cancer Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Bin Kang
- Immunobiology Cancer Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Xiao-Hong Sun
- Immunobiology Cancer Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA.
| |
Collapse
|
28
|
Ichim CV, Dervović DD, Zúñiga-Pflücker JC, Wells RA. The orphan nuclear receptor Ear-2 (Nr2f6) is a novel negative regulator of T cell development. Exp Hematol 2013; 42:46-58. [PMID: 24096122 DOI: 10.1016/j.exphem.2013.09.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 09/05/2013] [Accepted: 09/23/2013] [Indexed: 01/08/2023]
Abstract
We describe a novel role for the orphan nuclear receptor Ear-2 in regulating T cell development. Retrovirus-mediated overexpression of Ear-2 (EAR-2++) in a bone marrow (BM) transplantation assay resulted in limited T cell development and a greater than tenfold decrease in thymus size and cellularity relative to controls. Ear-2-transduced murine BM hematopoietic stem cells (HSCs) in OP9-DL1 cultures showed a proliferation deficit during days 1-5 after induction of differentiation, which corresponded to increased expression of the cell cycle regulators p21 (cdkn1a) and p27 (cdkn1b), as well as increased expression of Hes1, Notch3, Egr1, and Scl (Tal1) and decreased expression of Gli1, Gfi-1, HoxA9, PU.1, Nrarp, and Tcf1. In addition, there was a block in differentiation at the DN4 to double-positive (DP) transition accompanied by an increase in apoptosis, similar to the deficit seen in the RORγt null mouse. Gene expression profiling revealed that, like the RORγt-deficient mouse, EAR-2++ DP cells had decreased expression of BclXL and increased expression of the proapoptosis gene Bad. In addition, EAR-2++ DP cells had decreased expression of Bcl11b, PU.1, and HoxA9, and increased expression of Id2. Based on these findings, we conclude that EAR-2++ cells were able to migrate to, but not fully repopulate, the thymus because of a cell-intrinsic defect in the proliferation of DN1 cells followed by a block in differentiation from the DN4 to DP stage of T cell development. We conclude that Ear-2 is a novel negative regulator of T-cell development and that downregulation of Ear-2 is indispensable for the proliferation of DN1 cells and the survival of DN4-DP cells.
Collapse
Affiliation(s)
- Christine V Ichim
- Department of Medical Biophysics, University of Toronto, Toronto, Canada; Biological Sciences, Sunnybrook Research Institute, Toronto, Canada; Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Džana D Dervović
- Biological Sciences, Sunnybrook Research Institute, Toronto, Canada; Department of Immunology, University of Toronto, Toronto, Canada
| | - Juan Carlos Zúñiga-Pflücker
- Biological Sciences, Sunnybrook Research Institute, Toronto, Canada; Department of Immunology, University of Toronto, Toronto, Canada
| | - Richard A Wells
- Department of Medical Biophysics, University of Toronto, Toronto, Canada; Biological Sciences, Sunnybrook Research Institute, Toronto, Canada; Department of Medicine, University of Toronto, Toronto, Canada; Department of Medical Oncology, Myelodysplastic Syndromes Program, Toronto Sunnybrook Regional Cancer Centre, Toronto, Canada.
| |
Collapse
|
29
|
Yang Q, Monticelli LA, Saenz SA, Chi AWS, Sonnenberg GF, Tang J, De Obaldia ME, Bailis W, Bryson JL, Toscano K, Huang J, Haczku A, Pear WS, Artis D, Bhandoola A. T cell factor 1 is required for group 2 innate lymphoid cell generation. Immunity 2013; 38:694-704. [PMID: 23601684 DOI: 10.1016/j.immuni.2012.12.003] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Accepted: 12/13/2012] [Indexed: 12/19/2022]
Abstract
Group 2 innate lymphoid cells (ILC2) are innate lymphocytes that confer protective type 2 immunity during helminth infection and are also involved in allergic airway inflammation. Here we report that ILC2 development required T cell factor 1 (TCF-1, the product of the Tcf7 gene), a transcription factor also implicated in T cell lineage specification. Tcf7(-/-) mice lack ILC2, and were unable to mount ILC2-mediated innate type 2 immune responses. Forced expression of TCF-1 in bone marrow progenitors partially bypassed the requirement for Notch signaling in the generation of ILC2 in vivo. TCF-1 acted through both GATA-3-dependent and GATA-3-independent pathways to promote the generation of ILC2. These results are reminiscent of the critical roles of TCF-1 in early T cell development. Hence, transcription factors that underlie early steps of T cell development are also implicated in the development of innate lymphoid cells.
Collapse
Affiliation(s)
- Qi Yang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
The TCF-1 and LEF-1 transcription factors have cooperative and opposing roles in T cell development and malignancy. Immunity 2012; 37:813-26. [PMID: 23103132 DOI: 10.1016/j.immuni.2012.08.009] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 07/06/2012] [Accepted: 08/16/2012] [Indexed: 11/20/2022]
Abstract
The TCF-1 and LEF-1 transcription factors are known to play critical roles in normal thymocyte development. Unexpectedly, we found that TCF-1-deficient (Tcf7(-/-)) mice developed aggressive T cell malignancy, resembling human T cell acute lymphoblastic leukemia (T-ALL). LEF-1 was aberrantly upregulated in premalignant Tcf7(-/-) early thymocytes and lymphoma cells. We further demonstrated that TCF-1 directly repressed LEF-1 expression in early thymocytes and that conditional inactivation of Lef1 greatly delayed or prevented T cell malignancy in Tcf7(-/-) mice. In human T-ALLs, an early thymic progenitor (ETP) subtype was associated with diminished TCF7 expression, and two of the ETP-ALL cases harbored TCF7 gene deletions. We also showed that TCF-1 and LEF-1 were dispensable for T cell lineage commitment but instead were required for early thymocytes to mature beyond the CD4(-)CD8(-) stage. TCF-1 thus has dual roles, i.e., acting cooperatively with LEF-1 to promote thymocyte maturation while restraining LEF-1 expression to prevent malignant transformation of developing thymocytes.
Collapse
|
31
|
Wang HC, Peng V, Zhao Y, Sun XH. Enhanced Notch activation is advantageous but not essential for T cell lymphomagenesis in Id1 transgenic mice. PLoS One 2012; 7:e32944. [PMID: 22393458 PMCID: PMC3290631 DOI: 10.1371/journal.pone.0032944] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 02/02/2012] [Indexed: 01/06/2023] Open
Abstract
T cell lymphoblastic leukemia (T-ALL) is known to be associated with chromosomal abnormalities that lead to aberrant expression of a number of transcription factors such as TAL1, which dimerizes with basic helix-loop-helix (bHLH) E proteins and inhibits their function. Activated Notch receptors also efficiently induce T cell leukemogenesis in mouse models. Interestingly, gain-of-function mutations or cryptic transcription initiation of the Notch1 gene have been frequently found in both human and mouse T-ALL. However, the correlations between these alterations and overall Notch activities or leukemogenesis have not been thoroughly evaluated. Therefore, we made use of our collection of T cell lymphomas developed in transgenic mice expressing Id1, which like TAL1, inhibits E protein function. By comparing expression levels of Notch target genes in Id1-expressing tumors to those in tumors induced by a constitutively active form of Notch1, N1C, we were able to assess the overall activities of Notch pathways and conclude that the majority of Id1-expressing tumors had elevated Notch function to a varying degree. However, 26% of the Id1-expressing tumors had no evidence of enhanced Notch activation, but that did not delay the onset of tumorigenesis. Furthermore, we examined the genetic or epigenetic alterations thought to contribute to ligand-independent activation or protein stabilization of Notch1 and found that some of the Id1-expressing tumors acquired these changes, but they are not uniformly associated with elevated Notch activities in Id1 tumor samples. In contrast, N1C-expressing tumors do not harbor any PEST domain mutations nor exhibit intragenic transcription initiation. Taken together, it appears that Notch activation provides Id1-expressing tumor cells with selective advantages in growth and survival. However, this may not be absolutely essential for lymphomagenesis in Id1 transgenic mice and additional factors could also cooperate with Id1 to induce T cell lymphoma. Therefore, a broad approach is necessary in designing T-ALL therapy.
Collapse
Affiliation(s)
- Hong-Cheng Wang
- Immunobiology and Cancer Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Vincent Peng
- Oklahoma School of Science and Mathematics, Oklahoma City, Oklahoma, United States of America
| | - Ying Zhao
- Immunobiology and Cancer Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Xiao-Hong Sun
- Immunobiology and Cancer Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
32
|
Aliahmad P, Seksenyan A, Kaye J. The many roles of TOX in the immune system. Curr Opin Immunol 2011; 24:173-7. [PMID: 22209117 DOI: 10.1016/j.coi.2011.12.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2011] [Accepted: 12/05/2011] [Indexed: 10/14/2022]
Abstract
TOX is a member of an evolutionarily conserved DNA-binding protein family and is expressed in several immune-relevant cell subsets. Here, we review the key role of TOX in regulating development of CD4 T cells, natural killer cells and lymphoid tissue inducer cells, the latter responsible for the generation of lymph nodes. Although the exact molecular mechanism of action of TOX remains to be elucidated, the role of TOX in establishment of gene programs in the thymus and the potential of TOX as a regulator of E protein activity are discussed.
Collapse
Affiliation(s)
- Parinaz Aliahmad
- Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | | |
Collapse
|
33
|
Dong J, Huang S, Caikovski M, Ji S, McGrath A, Custorio MG, Creighton CJ, Maliakkal P, Bogoslovskaia E, Du Z, Zhang X, Lewis MT, Sablitzky F, Brisken C, Li Y. ID4 regulates mammary gland development by suppressing p38MAPK activity. Development 2011; 138:5247-56. [PMID: 22069192 PMCID: PMC3210500 DOI: 10.1242/dev.069203] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2011] [Indexed: 12/15/2022]
Abstract
The ID family of helix-loop-helix proteins regulates cell proliferation and differentiation in many different developmental pathways, but the functions of ID4 in mammary development are unknown. We report that mouse Id4 is expressed in cap cells, basal cells and in a subset of luminal epithelial cells, and that its targeted deletion impairs ductal expansion and branching morphogenesis as well as cell proliferation induced by estrogen and/or progesterone. We discover that p38MAPK is activated in Id4-null mammary cells. p38MAPK is also activated following siRNA-mediated Id4 knockdown in transformed mammary cells. This p38MAPK activation is required for the reduced proliferation and increased apoptosis in Id4-ablated mammary glands. Therefore, ID4 promotes mammary gland development by suppressing p38MAPK activity.
Collapse
Affiliation(s)
- Jie Dong
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shixia Huang
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Marian Caikovski
- NCCR Molecular Oncology, Ecole polytechnique fédérale de Lausanne (EPFL), ISREC-Swiss Institute for Experimental Cancer Research, CH-1066 Epalinges, Switzerland
| | | | - Amanda McGrath
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Myra G. Custorio
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chad J. Creighton
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Paul Maliakkal
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Zhijun Du
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xiaomei Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael T. Lewis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Fred Sablitzky
- Institute of Genetics, The University of Nottingham, Nottingham NG7 2UH, UK
| | - Cathrin Brisken
- NCCR Molecular Oncology, Ecole polytechnique fédérale de Lausanne (EPFL), ISREC-Swiss Institute for Experimental Cancer Research, CH-1066 Epalinges, Switzerland
| | - Yi Li
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
34
|
Steininger A, Möbs M, Ullmann R, Köchert K, Kreher S, Lamprecht B, Anagnostopoulos I, Hummel M, Richter J, Beyer M, Janz M, Klemke CD, Stein H, Dörken B, Sterry W, Schrock E, Mathas S, Assaf C. Genomic loss of the putative tumor suppressor gene E2A in human lymphoma. ACTA ACUST UNITED AC 2011; 208:1585-93. [PMID: 21788410 PMCID: PMC3149217 DOI: 10.1084/jem.20101785] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The transcription factor E2A is essential for lymphocyte development. In this study, we describe a recurrent E2A gene deletion in at least 70% of patients with Sézary syndrome (SS), a subtype of T cell lymphoma. Loss of E2A results in enhanced proliferation and cell cycle progression via derepression of the protooncogene MYC and the cell cycle regulator CDK6. Furthermore, by examining the gene expression profile of SS cells after restoration of E2A expression, we identify several E2A-regulated genes that interfere with oncogenic signaling pathways, including the Ras pathway. Several of these genes are down-regulated or lost in primary SS tumor cells. These data demonstrate a tumor suppressor function of E2A in human lymphoid cells and could help to develop new treatment strategies for human lymphomas with altered E2A activity.
Collapse
Affiliation(s)
- Anne Steininger
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Lee SH, Hao E, Kiselyuk A, Shapiro J, Shields DJ, Lowy A, Levine F, Itkin-Ansari P. The Id3/E47 axis mediates cell-cycle control in human pancreatic ducts and adenocarcinoma. Mol Cancer Res 2011; 9:782-90. [PMID: 21498546 DOI: 10.1158/1541-7786.mcr-10-0535] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDA) has a 5-year survival rate of less than 5%, and therapeutic advances have been hampered by gaps in our understanding of cell-cycle control in the adult pancreas. Previously, we reported that basic Helix-Loop-Helix (bHLH) transcription factors regulate cell fate specification in the pancreas. In the present study, we found that a repressor of bHLH activity, Id3, was profoundly upregulated in ductal cells in murine models of pancreatitis and pancreatic intraepithelial neoplasia (PanIN). Id3 was also pervasively expressed in neoplastic lesions in human PDA in situ. We hypothesized that an imbalance in bHLH versus Id activity controlled cell growth in PDA. Consistent with this model, cell-cycle progression in PDA cells was impeded by siRNA-mediated depletion of Id3 or overexpression of the bHLH protein E47. The precursors of human PDA are normally quiescent duct cells which do not proliferate in response to high serum or growth factors. The finding that Id3 was expressed in pancreatitis, as well as PDA, suggested that Id3 might induce cell-cycle entry in ducts. To test this hypothesis, primary human pancreatic duct cells were transduced with an adenovirus-expressing Id3. Remarkably, Id3 expression alone was sufficient to trigger efficient cell-cycle entry, as manifested by expression of the proliferation markers Ki67, phospho-cyclin E, and phospho-histone H3. Collectively, the data establish dysregulation of the Id/bHLH axis as an early and sustained feature of ductal pathogenesis and mark this axis as a potential therapeutic target for intervention in pancreatitis and PDA.
Collapse
Affiliation(s)
- Seung-Hee Lee
- Department of Pediatrics, Universityof California San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Diverse roles of inhibitor of differentiation 2 in adaptive immunity. Clin Dev Immunol 2011; 2011:281569. [PMID: 21437223 PMCID: PMC3061294 DOI: 10.1155/2011/281569] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2010] [Accepted: 01/15/2011] [Indexed: 11/17/2022]
Abstract
The helix-loop-helix (HLH) transcription factor inhibitor of DNA binding 2 (Id2) has been implicated as a regulator of hematopoiesis and embryonic development. While its role in early lymphopoiesis has been well characterized, new roles in adaptive immune responses have recently been uncovered opening exciting new directions for investigation. In the innate immune system, Id2 is required for the development of mature natural killer (NK) cells, lymphoid tissue-inducer (LTi) cells, and the recently identified interleukin (IL)-22 secreting nonconventional innate lymphocytes found in the gut. In addition, Id2 has been implicated in the development of specific dendritic cell (DC) subsets, decisions determining the formation of αβ and γδ T-cell development, NK T-cell behaviour, and in the maintenance of effector and memory CD8(+) T cells in peripheral tissues. Here, we review the current understanding of the role of Id2 in lymphopoiesis and in the development of the adaptive immune response required for maintaining immune homeostasis and immune protection.
Collapse
|
37
|
Pflumio F, Kusy S, Gerby B, Roméo PH. [How a suppressor of tumor gets hooked of the leukaemic proliferation in man]. Med Sci (Paris) 2011; 27:142-3. [PMID: 21382322 DOI: 10.1051/medsci/2011272142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
38
|
Staudt AC, Wenkel S. Regulation of protein function by 'microProteins'. EMBO Rep 2010; 12:35-42. [PMID: 21151039 DOI: 10.1038/embor.2010.196] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 11/17/2010] [Indexed: 11/10/2022] Open
Abstract
Many proteins achieve their function by acting as part of multi-protein complexes. The formation of these complexes is highly regulated and mediated through domains of protein-protein interaction. Disruption of a complex or of the ability of the proteins to form homodimers, heterodimers or multimers can have severe consequences for cellular function. In this context, the formation of dimers and multimers can be perturbed by proteins referred to here as 'microProteins'. These disruptive protein species contain the protein-interaction domains of bona fide interaction partners, but lack the functional domains required for the activation of, for example, transcription or DNA binding. MicroProteins thus behave as post-translational regulators by forming homotypic dimers with their targets, and act through the dominant-negative suppression of protein complex function. Although the first microProtein was identified more than two decades ago, the recent discovery and characterization of three further small protein species in plants emphasizes their importance. The studies discussed in this review demonstrate that the action of microProteins is general and that it has evolved in both the animal and the plant kingdoms.
Collapse
Affiliation(s)
- Annica-Carolin Staudt
- Centre for Plant Molecular Biology, University of Tübingen, Auf der Morgenstelle 28, D-72076 Tübingen, Germany
| | | |
Collapse
|
39
|
Animal models of typical heterotopic ossification. J Biomed Biotechnol 2010; 2011:309287. [PMID: 20981294 PMCID: PMC2963134 DOI: 10.1155/2011/309287] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 09/28/2010] [Indexed: 01/07/2023] Open
Abstract
Heterotopic ossification (HO) is the formation of
marrow-containing bone outside of the normal skeleton. Acquired HO
following traumatic events is a common and costly clinical
complication. In contrast, hereditary HO is rarer, progressive,
and life-threatening. Substantial effort has been directed towards
understanding the mechanisms underlying HO and finding efficient
treatments. However, one crucial limiting factor has been the lack
of relevant animal models. This article reviews the major
currently available animal models, summarizes some of the insights
gained from these studies, and discusses the potential future
challenges and directions in HO research.
Collapse
|
40
|
Kusy S, Gerby B, Goardon N, Gault N, Ferri F, Gérard D, Armstrong F, Ballerini P, Cayuela JM, Baruchel A, Pflumio F, Roméo PH. NKX3.1 is a direct TAL1 target gene that mediates proliferation of TAL1-expressing human T cell acute lymphoblastic leukemia. ACTA ACUST UNITED AC 2010; 207:2141-56. [PMID: 20855495 PMCID: PMC2947082 DOI: 10.1084/jem.20100745] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
TAL1 (also known as SCL) is expressed in >40% of human T cell acute lymphoblastic leukemias (T-ALLs). TAL1 encodes a basic helix-loop-helix transcription factor that can interfere with the transcriptional activity of E2A and HEB during T cell leukemogenesis; however, the oncogenic pathways directly activated by TAL1 are not characterized. In this study, we show that, in human TAL1–expressing T-ALL cell lines, TAL1 directly activates NKX3.1, a tumor suppressor gene required for prostate stem cell maintenance. In human T-ALL cell lines, NKX3.1 gene activation is mediated by a TAL1–LMO–Ldb1 complex that is recruited by GATA-3 bound to an NKX3.1 gene promoter regulatory sequence. TAL1-induced NKX3.1 activation is associated with suppression of HP1-α (heterochromatin protein 1 α) binding and opening of chromatin on the NKX3.1 gene promoter. NKX3.1 is necessary for T-ALL proliferation, can partially restore proliferation in TAL1 knockdown cells, and directly regulates miR-17-92. In primary human TAL1-expressing leukemic cells, the NKX3.1 gene is expressed independently of the Notch pathway, and its inactivation impairs proliferation. Finally, TAL1 or NKX3.1 knockdown abrogates the ability of human T-ALL cells to efficiently induce leukemia development in mice. These results suggest that tumor suppressor or oncogenic activity of NKX3.1 depends on tissue expression.
Collapse
Affiliation(s)
- Sophie Kusy
- Laboratoire de recherche sur la Réparation et la Transcription dans les cellules Souches, Direction des Sciences du Vivant, Commissariat à l'Energie Atomique et aux Energies Alternatives, 92265 Fontenay-aux-Roses, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Li H, Ji M, Klarmann KD, Keller JR. Repression of Id2 expression by Gfi-1 is required for B-cell and myeloid development. Blood 2010; 116:1060-9. [PMID: 20453161 PMCID: PMC2938128 DOI: 10.1182/blood-2009-11-255075] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 05/01/2010] [Indexed: 02/06/2023] Open
Abstract
The development of mature blood cells from hematopoietic stem cells requires coordinated activities of transcriptional networks. Transcriptional repressor growth factor independence 1 (Gfi-1) is required for the development of B cells, T cells, neutrophils, and for the maintenance of hematopoietic stem cell function. However, the mechanisms by which Gfi-1 regulates hematopoiesis and how Gfi-1 integrates into transcriptional networks remain unclear. Here, we provide evidence that Id2 is a transcriptional target of Gfi-1, and repression of Id2 by Gfi-1 is required for B-cell and myeloid development. Gfi-1 binds to 3 conserved regions in the Id2 promoter and represses Id2 promoter activity in transient reporter assays. Increased Id2 expression was observed in multipotent progenitors, myeloid progenitors, T-cell progenitors, and B-cell progenitors in Gfi-1(-/-) mice. Knockdown of Id2 expression or heterozygosity at the Id2 locus partially rescues the B-cell and myeloid development but not the T-cell development in Gfi-1(-/-) mice. These studies demonstrate a role of Id2 in mediating Gfi-1 functions in B-cell and myeloid development and provide a direct link between Gfi-1 and the B-cell transcriptional network by its ability to repress Id2 expression.
Collapse
Affiliation(s)
- Huajie Li
- Basic Research Program, SAIC-Frederick Inc, Center for Cancer Research, National Cancer Institute at Frederick, MD 21702, USA
| | | | | | | |
Collapse
|
42
|
Nagel S, Venturini L, Marquez VE, Meyer C, Kaufmann M, Scherr M, MacLeod RA, Drexler HG. Polycomb repressor complex 2 regulates HOXA9 and HOXA10, activating ID2 in NK/T-cell lines. Mol Cancer 2010; 9:151. [PMID: 20565746 PMCID: PMC2894765 DOI: 10.1186/1476-4598-9-151] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Accepted: 06/17/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND NK- and T-cells are closely related lymphocytes, originating from the same early progenitor cells during hematopoiesis. In these differentiation processes deregulation of developmental genes may contribute to leukemogenesis. Here, we compared expression profiles of NK- and T-cell lines for identification of aberrantly expressed genes in T-cell acute lymphoblastic leukemia (T-ALL) which physiologically regulate the differentiation program of the NK-cell lineage. RESULTS This analysis showed high expression levels of HOXA9, HOXA10 and ID2 in NK-cell lines in addition to T-cell line LOUCY, suggesting leukemic deregulation therein. Overexpression experiments, chromatin immuno-precipitation and promoter analysis demonstrated that HOXA9 and HOXA10 directly activated expression of ID2. Concomitantly elevated expression levels of HOXA9 and HOXA10 together with ID2 in cell lines containing MLL translocations confirmed this form of regulation in both ALL and acute myeloid leukemia. Overexpression of HOXA9, HOXA10 or ID2 resulted in repressed expression of apoptosis factor BIM. Furthermore, profiling data of genes coding for chromatin regulators of homeobox genes, including components of polycomb repressor complex 2 (PRC2), indicated lacking expression of EZH2 in LOUCY and exclusive expression of HOP in NK-cell lines. Subsequent treatment of T-cell lines JURKAT and LOUCY with DZNep, an inhibitor of EZH2/PRC2, resulted in elevated and unchanged HOXA9/10 expression levels, respectively. Moreover, siRNA-mediated knockdown of EZH2 in JURKAT enhanced HOXA10 expression, confirming HOXA10-repression by EZH2. Additionally, profiling data and overexpression analysis indicated that reduced expression of E2F cofactor TFDP1 contributed to the lack of EZH2 in LOUCY. Forced expression of HOP in JURKAT cells resulted in reduced HOXA10 and ID2 expression levels, suggesting enhancement of PRC2 repression. CONCLUSIONS Our results show that major differentiation factors of the NK-cell lineage, including HOXA9, HOXA10 and ID2, were (de)regulated via PRC2 which therefore contributes to T-cell leukemogenesis.
Collapse
Affiliation(s)
- Stefan Nagel
- Dept. of Human and Animal Cell Lines, DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstr. 7B, 38124 Braunschweig, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Schotte R, Dontje W, Nagasawa M, Yasuda Y, Bakker AQ, Spits H, Blom B. Synergy between IL-15 and Id2 Promotes the Expansion of Human NK Progenitor Cells, Which Can Be Counteracted by the E Protein HEB Required To Drive T Cell Development. THE JOURNAL OF IMMUNOLOGY 2010; 184:6670-9. [DOI: 10.4049/jimmunol.0901508] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
44
|
Tremblay CS, Hoang T, Hoang T. Early T cell differentiation lessons from T-cell acute lymphoblastic leukemia. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 92:121-56. [PMID: 20800819 DOI: 10.1016/s1877-1173(10)92006-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
T cells develop from bone marrow-derived self-renewing hematopoietic stem cells (HSC). Upon entering the thymus, these cells undergo progressive commitment and differentiation driven by the thymic stroma and the pre-T cell receptor (pre-TCR). These processes are disrupted in T-cell acute lymphoblastic leukemia (T-ALL). More than 70% of recurring chromosomal rearrangements in T-ALL activate the expression of oncogenic transcription factors, belonging mostly to three families, basic helix-loop-helix (bHLH), homeobox (HOX), and c-MYB. This prevalence is indicative of their importance in the T lineage, and their dominant mechanisms of transformation. For example, bHLH oncoproteins inhibit E2A and HEB, revealing their tumor suppressor function in the thymus. The induction of T-ALL, nonetheless, requires collaboration with constitutive NOTCH1 signaling and the pre-TCR, as well as loss-of-function mutations for CDKN2A and PTEN. Significantly, NOTCH1, the pre-TCR pathway, and E2A/HEB proteins control critical checkpoints and branchpoints in early thymocyte development whereas several oncogenic transcription factors, HOXA9, c-MYB, SCL, and LYL-1 control HSC self-renewal. Together, these genetic lesions alter key regulatory processes in the cell, favoring self-renewal and subvert the normal control of thymocyte homeostasis.
Collapse
Affiliation(s)
- Cédric S Tremblay
- Institute of Research in Immunology and Cancer, University of Montreal, Montréal, Québec, Canada
| | | | | |
Collapse
|
45
|
Hes1 potentiates T cell lymphomagenesis by up-regulating a subset of notch target genes. PLoS One 2009; 4:e6678. [PMID: 19688092 PMCID: PMC2722736 DOI: 10.1371/journal.pone.0006678] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2009] [Accepted: 07/21/2009] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Hairy/Enhancer of Split (Hes) proteins are targets of the Notch signaling pathway and make up a class of basic helix-loop-helix (bHLH) proteins that function to repress transcription. Data from Hes1 deficient mice suggested that Hes1, like Notch1, is necessary for the progression of early T cell progenitors. Constitutive activation of Notch is known to cause T cell leukemia or lymphoma but whether Hes1 has any oncogenic activity is not known. METHODOLOGY/PRINCIPAL FINDINGS We generated mice carrying a Hes1 transgene under control of the proximal promote of the lck gene. Hes1 expression led to a reduction in numbers of total thymocytes, concomitant with the increased percentage and number of immature CD8+ (ISP) T cells and sustained CD25 expression in CD4+CD8+ double positive (DP) thymocytes. Hes1 transgenic mice develop thymic lymphomas at about 20 weeks of age with a low penetrance. However, expression of Hes1 significantly shortens the latency of T cell lymphoma developed in Id1 transgenic mice, where the function of bHLH E proteins is inhibited. Interestingly, Hes1 increased expression of a subset of Notch target genes in pre-malignant ISP and DP thymocytes, which include Notch1, Notch3 and c-myc, thus suggesting a possible mechanism for lymphomagenesis. CONCLUSIONS/SIGNIFICANCE We have demonstrated for the first time that Hes1 potentiates T cell lymphomagenesis, by up-regulating a subset of Notch target genes and by causing an accumulation of ISP thymocytes particularly vulnerable to oncogenic transformation.
Collapse
|
46
|
D'Cruz LM, Rubinstein MP, Goldrath AW. Surviving the crash: transitioning from effector to memory CD8+ T cell. Semin Immunol 2009; 21:92-8. [PMID: 19269192 PMCID: PMC2671236 DOI: 10.1016/j.smim.2009.02.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Accepted: 02/04/2009] [Indexed: 02/07/2023]
Abstract
One outcome of infection is the formation of long-lived immunological memory, which provides durable protection from symptomatic re-infection. In response to infection or vaccination, T cells undergo dramatic proliferation and differentiate into effector T cells that mediate removal of the pathogen. Following pathogen clearance, the majority of effector cells die, restoring lymphocyte homeostasis. However, a small number of antigen-specific cells survive and seed the memory T cell population. Here, we focus on recent advances in identifying the key proteins and transcription factors that allow a portion of effector CD8(+) T cells to persist after contraction of the immune response, forming a memory cell population programmed for long-term self-renewal and survival. We also examine new findings addressing the role of environmental cues such as cytokines and co-stimulatory molecules in CD8(+) memory T cell formation and how the cell-extrinsic cues influence the molecular players of intracellular pathways important for memory formation.
Collapse
Affiliation(s)
- Louise M D'Cruz
- University of California San Diego, Division of Biological Sciences, 9500 Gilman Drive, La Jolla, CA 92093-0377, United States
| | | | | |
Collapse
|
47
|
Regulation of Id2 expression in EL4 T lymphoma cells overexpressing growth hormone. Cell Immunol 2009; 255:46-54. [DOI: 10.1016/j.cellimm.2008.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 09/22/2008] [Accepted: 10/09/2008] [Indexed: 11/23/2022]
|
48
|
Ko J, Patel N, Ikawa T, Kawamoto H, Frank O, Rivera RR, Van Etten RA, Murre C. Suppression of E-protein activity interferes with the development of BCR-ABL-mediated myeloproliferative disease. Proc Natl Acad Sci U S A 2008; 105:12967-72. [PMID: 18725623 PMCID: PMC2529058 DOI: 10.1073/pnas.0805073105] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Indexed: 12/21/2022] Open
Abstract
E-proteins are a class of helix-loop-helix (HLH) proteins, which play multiple roles throughout lymphoid development. The DNA binding activities of the E-proteins are regulated by a distinct class of antagonistic HLH proteins, named Id1-4. Here we demonstrate that Id2 deficient mice in a C57BL/6 genetic background exhibit increased cellularity in the granulocyte/myeloid progenitor compartment and show significantly higher numbers of maturing neutrophils. Within 6 months of age, Id2 deficient mice succumbed from overwhelming granulocytosis. The disease closely mimicked the distinctive features of human chronic myeloid leukemia: leukocytosis with maturing neutrophils, splenomegaly, hepatomegaly, and myeloid infiltration into peripheral tissues, including spleen, liver, and lungs. Strikingly, forced Id2 expression in murine bone marrow cells substantially delayed the onset of myeloproliferative disease (MPD). Collectively, these studies show that suppression of E-protein activity interferes with the development of BCR-ABL-mediated MPD.
Collapse
Affiliation(s)
- Jinkyung Ko
- *Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093
| | - Nihal Patel
- Tufts Medical Center, 800 Washington Street, Boston, MA 02111
| | - Tomokatsu Ikawa
- Laboratory for Lymphocyte Development, RIKEN Research Center for Allergy and Immunology, Yokohama 230-0045, Japan; and
| | - Hiroshi Kawamoto
- Laboratory for Lymphocyte Development, RIKEN Research Center for Allergy and Immunology, Yokohama 230-0045, Japan; and
| | - Oliver Frank
- III Medizinische Klinik, Medizinische Fakultät Mannheim der Universität Heidelberg, Wiesbadener Strasse 7-11, 68305 Mannheim, Germany
| | - Richard R. Rivera
- *Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093
| | | | - Cornelis Murre
- *Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093
| |
Collapse
|
49
|
Stevens JD, Roalson EH, Skinner MK. Phylogenetic and expression analysis of the basic helix-loop-helix transcription factor gene family: genomic approach to cellular differentiation. Differentiation 2008; 76:1006-22. [PMID: 18557763 DOI: 10.1111/j.1432-0436.2008.00285.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A phylogenetic analysis of seven different species (human, mouse, rat, worm, fly, yeast, and plant) utilizing all (541) basic helix-loop-helix (bHLH) genes identified, including expressed sequence tags (EST), was performed. A super-tree involving six clades and a structural categorization involving the entire coding sequence was established. A nomenclature was developed based on clade distribution to discuss the functional and ancestral relationships of all the genes. The position/location of specific genes on the phylogenetic tree in relation to known bHLH factors allows for predictions of the potential functions of uncharacterized bHLH factors, including EST's. A genomic analysis using microarrays for four different mouse cell types (i.e. Sertoli, Schwann, thymic, and muscle) was performed and considered all known bHLH family members on the microarray for comparison. Cell-specific groups of bHLH genes helped clarify those bHLH genes potentially involved in cell specific differentiation. This phylogenetic and genomic analysis of the bHLH gene family has revealed unique aspects of the evolution and functional relationships of the different genes in the bHLH gene family.
Collapse
Affiliation(s)
- Jeffrey D Stevens
- Center for Reproductive Biology, School of Molecular Biosciences, Pullman, WA 99164-4231, USA
| | | | | |
Collapse
|
50
|
Id2 intrinsically regulates lymphoid and erythroid development via interaction with different target proteins. Blood 2008; 112:1068-77. [PMID: 18523151 DOI: 10.1182/blood-2008-01-133504] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Inhibitors of DNA binding (Id) family members are key regulators of cellular differentiation and proliferation. These activities are related to the ability of Id proteins to antagonize E proteins and other transcription factors. As negative regulators of E proteins, Id proteins have been implicated in lymphocyte development. Overexpression of Id1, Id2, or Id3 has similar effects on lymphocyte development. However, which Id protein plays a physiologic role during lymphocyte development is not clear. By analyzing Id2 knock-out mice and retroviral transduced hematopoietic progenitors, we demonstrated that Id2 is an intrinsic negative regulator of B-cell development. Hematopoietic progenitor cells overexpressing Id2 did not reconstitute B-cell development in vivo, which resembled the phenotype of E2A null mice. The B-cell population in bone marrow was significantly expanded in Id2 knock-out mice compared with their wild-type littermates. Knock-down of Id2 by shRNA in hematopoietic progenitor cells promoted B-cell differentiation and induced the expression of B-cell lineage-specific genes. These data identified Id2 as a physiologically relevant regulator of E2A during B lymphopoiesis. Furthermore, we identified a novel Id2 function in erythroid development. Overexpression of Id2 enhanced erythroid development, and decreased level of Id2 impaired normal erythroid development. Id2 regulation of erythroid development is mediated via interacting with transcription factor PU.1 and modulating PU.1 and GATA-1 activities. We conclude that Id2 regulates lymphoid and erythroid development via interaction with different target proteins.
Collapse
|