1
|
Shi K, Li X, Chen R, Wang Z, Shi B, Wang K, Zhu Y. Bousigonine D from Bousigonia mekongensis inhibits bladder cancer growth and overcomes cisplatin resistance. Sci Rep 2025; 15:16254. [PMID: 40346358 PMCID: PMC12064788 DOI: 10.1038/s41598-025-96892-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 04/01/2025] [Indexed: 05/11/2025] Open
Abstract
The rising global incidence of bladder cancer and chemotherapy resistance necessitate novel therapies. Plant-derived compounds, owing to their diverse biological activities and favorable safety profiles, are considered promising candidates for cancer treatment. In this study, we investigated Bousigonine D, a monoterpene indole alkaloid isolated from the roots of Bousigonia mekongensis, for its potential as a therapeutic agent for bladder cancer. Our results show that Bousigonine D effectively inhibits cell proliferation and clonogenic formation, and induces cell cycle arrest at the G0/G1 phase in murine and human bladder cancer cells. Furthermore, Bousigonine D significantly promotes apoptosis in these cells, surpassing the apoptosis-inducing efficacy of cisplatin. Mechanistically, Bousigonine D enhances the generation of reactive oxygen species, disrupts calcium homeostasis, and impairs mitochondrial function, leading to cytoskeletal collapse and caspase-dependent apoptotic cell death. In vivo, Bousigonine D effectively suppresses tumor growth in an orthotopic MB49 mouse model, and importantly, it retains strong anti-tumor efficacy in cisplatin-resistant bladder cancer. Notably, Bousigonine D exhibits low toxicity in major organs, similar to cisplatin, underscoring its potential as a safe and effective treatment for bladder cancer. This study highlights the promising role of plant-derived compounds in cancer therapy and supports further development of Bousigonine D as a novel therapeutic option for bladder cancer.
Collapse
Affiliation(s)
- Kai Shi
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Cultural West Road, Jinan, 250012, Shandong Province, China
| | - Xinyuan Li
- Department of Immunology, Shandong Provincial Key Laboratory of Infection and Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong Province, China
| | - Rui Chen
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Cultural West Road, Jinan, 250012, Shandong Province, China
| | - Zhiwei Wang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery System, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, 250117, Shandong, China
| | - Benkang Shi
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Cultural West Road, Jinan, 250012, Shandong Province, China
| | - Ke Wang
- Department of Urology, The Affiliated Hospital of Qingdao University, 1677 Wutaishan Road, Qingdao, 266001, Shandong Province, China.
| | - Yaofeng Zhu
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Cultural West Road, Jinan, 250012, Shandong Province, China.
| |
Collapse
|
2
|
Ganbold M, Louphrasitthiphol P, Miyamoto T, Miyazaki Y, Oda T, Tominaga K, Isoda H. Isorhamnetin exerts anti-proliferative effect on cancer-associated fibroblasts by inducing cell cycle arrest. Biomed Pharmacother 2025; 185:117954. [PMID: 40031374 DOI: 10.1016/j.biopha.2025.117954] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/16/2025] [Accepted: 02/27/2025] [Indexed: 03/05/2025] Open
Abstract
Isorhamnetin (ISO), a dietary flavonoid, has been shown to possess antioxidant, anti-cancer, and anti-inflammatory properties. Cancer-associated fibroblasts (CAFs), found in the tumor microenvironment of several types of cancer including pancreatic ductal adenocarcinoma (PDAC) impact the tumor growth and development of chemoresistance. Thus, modulating CAFs is an attractive mean to increase the efficacy of therapies targeting cancer cells. In this study, the anti-proliferative effect of ISO and the underlying transcriptomic profile of ISO-treated PDAC-derived CAFs were investigated. ISO treatment showed a time- and concentration-dependent decrease in cell viability with a slight increase in apoptotic cells. Microarray and cell cycle analyses revealed ISO induced downregulation of pathways in cell cycle and DNA replication; and G2/M checkpoint. Cell cycle analysis showed cells in the G2/M phase were increased. In response to the treatment, hallmark for p53 pathway genes, known to regulate cell cycle checkpoints, were highly upregulated. Moreover, ISO-treated cells had an increased area of the mitochondrial network, but lower mitochondrial membrane potential accompanied by a decrease of ATP production, measured by oxygen consumption rate. Inflammatory gene expression of IL1A1, IL6, CXCL1, and LIF were significantly inhibited in ISO-treated CAFs. Taken together, our results demonstrated that the cytostatic effect of ISO on human CAFs was mediated by inducing cell cycle arrest at G2/M phase associated with activation of p21, impaired mitochondrial homeostasis, and inhibition of inflammatory mediators gene expression, warranting further investigation for its use in combinatorial therapy that target both the cancer and the tumor microenvironment as a whole.
Collapse
Affiliation(s)
- Munkhzul Ganbold
- Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), National Institute of Advanced Science and Technology (AIST), Tsukuba, Japan
| | - Pakavarin Louphrasitthiphol
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan; Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, UK
| | - Takafumi Miyamoto
- Department of Internal Medicine (Endocrinology and Metabolism), Institute of Medicine, University of Tsukuba, Tsukuba, Japan; Transborder Medical Research Center, University of Tsukuba, Tsukuba, Japan
| | - Yoshihiro Miyazaki
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Tatsuya Oda
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kenichi Tominaga
- Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), National Institute of Advanced Science and Technology (AIST), Tsukuba, Japan
| | - Hiroko Isoda
- Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), National Institute of Advanced Science and Technology (AIST), Tsukuba, Japan; Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan; Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.
| |
Collapse
|
3
|
Utpal BK, Bouenni H, Zehravi M, Sweilam SH, Mortuza MR, Arjun UVNV, Shanmugarajan TS, Mahesh PG, Roja P, Dodda RK, Thilagam E, Almahjari MS, Rab SO, Koula D, Emran TB. Exploring natural products as apoptosis modulators in cancers: insights into natural product-based therapeutic strategies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03876-8. [PMID: 40014131 DOI: 10.1007/s00210-025-03876-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/02/2025] [Indexed: 02/28/2025]
Abstract
Cancer remains a leading cause of mortality globally, necessitating ongoing research and development of innovative therapeutic strategies. Natural products from plants, herbs, and marine species have shown great promise as anti-cancer therapies due to their bioactive components that alter cellular pathways, particularly apoptosis. This review explores the mechanism by which natural chemicals trigger the apoptosis of cancerous cells, which is crucial for eliminating them and halting tumor growth. These can affect the mitochondrial process by controlling the Bcl-2 protein family, increasing cytochrome c release, and activating caspases. They also activate death receptors like Fas and TRAIL to enhance the extrinsic apoptotic pathway. We focus on the main signaling channels involved, such as the endoplasmic reticulum (ER) stress-mediated apoptosis, extrinsic death receptor, and intrinsic mitochondrial pathways. The review explores the role of natural substances such as polyphenols, terpenoids, alkaloids, and flavonoids in promoting apoptotic cell death and increasing cancer cell susceptibility, potentially aiding in cancer treatments and the potential of combining natural products with traditional chemotherapeutic medicines to combat medication resistance and enhance therapeutic efficacy. Understanding cancer development involves inhibiting cell proliferation, regulating it, targeting apoptosis pathways, and using plant and marine extracts as apoptotic inducers.
Collapse
Affiliation(s)
- Biswajit Kumar Utpal
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, 1216, Bangladesh.
| | - Hasna Bouenni
- Laboratory of Agrobiotechnology and Nutrition in Semi-Arid Zones, Faculty of Nature and Life Sciences, University of Ibn Khaldoun, Tiaret, Algeria
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & Pharmacy, Buraydah Private Colleges, 51418, Buraydah, Saudi Arabia.
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, 11829, Cairo, Egypt
| | | | - Uppuluri Varuna Naga Venkata Arjun
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai, 600117, Tamil Nadu, India
| | - Thukani Sathanantham Shanmugarajan
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai, 600117, Tamil Nadu, India
| | - Ponnammal Ganesan Mahesh
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai, 600117, Tamil Nadu, India
| | - Pathakota Roja
- Department of Pharmacology, Sree Dattha Institute of Pharmacy, Sheriguda, Ibrahimpatnam, Hyderabad, Telangana, 501510, India
| | - Ravi Kalyan Dodda
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai, 600117, Tamil Nadu, India
| | - E Thilagam
- Department of Pharmacognosy, JKKMMRF'S-ANNAI JKK Sampooorani Ammal College of Pharmacy, Ethirmedu, Komarapalayam (Affiliated to The Tamil Nadu Dr. M.G.R. Medical University, Chennai), India
| | - Mohammed Saeed Almahjari
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Doukani Koula
- Laboratory of Agrobiotechnology and Nutrition in Semi-Arid Zones, Faculty of Nature and Life Sciences, University of Ibn Khaldoun, Tiaret, Algeria
- Laboratory of Animal Production Sciences and Techniques, University of Abdelhamid Ibn Badis, Mostaganem, Algeria
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, 1216, Bangladesh
| |
Collapse
|
4
|
Hussain A, Azam S, Maqsood R, Anwar R, Akash MSH, Hussain H, Wang D, Imran M, Kotwica-Mojzych K, Khan S, Hussain S, Ayub MA. Chemistry, biosynthesis, and theranostics of antioxidant flavonoids and polyphenolics of genus Rhododendron: an overview. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1171-1214. [PMID: 39276249 DOI: 10.1007/s00210-024-03428-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 08/30/2024] [Indexed: 09/16/2024]
Abstract
The genus Rhododendron is an ancient and most widely distributed genus of the family Ericaceae consisting of evergreen plant species that have been utilized as traditional medicine since a very long time for the treatment of various ailments including pain, asthma, inflammation, cold, and acute bronchitis. The chemistry of polyphenolics isolated from a number of species of the genus Rhododendron has been investigated. During the currently designed study, an in-depth study on the phytochemistry, natural distribution, biosynthesis, and pharmacological properties including their potential capability as free radical scavengers has been conducted. This work provides structural characteristics of phenolic compounds isolated from the species of Rhododendron with remarkable antioxidant potential. In addition, biosynthesis and theranostic study have also been encompassed with the aims to furnish a wide platform of valuable information for designing of new drug entities. The detailed information including names, structural features, origins, classification, biosynthetic pathways, theranostics, and pharmacological effects of about 171 phenolics and flavonoids isolated from the 36 plant species of the genus Rhododendron with the antioxidant potential has been covered in this manuscript. This study demonstrated that species of Rhododendron genus have excellent antioxidant activities and great potential as a source for natural health products. This comprehensive review might serve as a foundation for more investigation into the Rhododendron genus.
Collapse
Affiliation(s)
- Amjad Hussain
- Institute of Chemistry, University of Okara, Okara, 56300, Pakistan.
| | - Sajjad Azam
- Institute of Chemistry, University of Okara, Okara, 56300, Pakistan
| | - Rabia Maqsood
- Institute of Chemistry, University of Okara, Okara, 56300, Pakistan
| | - Riaz Anwar
- Institute of Chemistry, University of Okara, Okara, 56300, Pakistan
| | | | - Hidayat Hussain
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, D-06120, Halle (Saale), Germany
| | - Daijie Wang
- School of Pharmaceutical Sciences and Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Muhammad Imran
- Department of Chemistry, Faculty of Science, Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Katarzyna Kotwica-Mojzych
- Chair of Fundamental Sciences, Department of Histology, Embryology and Cytophysiology, Medical University of Lublin, Radziwillowska 11, 20-080, Lublin, Poland
| | - Shoaib Khan
- Department of Chemistry, Abbottabad University of Science and Technology (AUST), Havelian, Abbottabad, Pakistan
| | - Shabbir Hussain
- Department of Chemistry, Karakoram International University (KIU), Gilgit, Gilgit-Baltistan, 15100, Pakistan
| | | |
Collapse
|
5
|
Liu Y, Xia C, Chen BJ, Li X, Wu X, Ismail A, Dong X, Khoo HE. Identification of Selected Flavonoids Extracted from Cap and Stem of Wild and Cultivated Ganoderma Species (Agaricomycetes) and Bioactivities. Int J Med Mushrooms 2025; 27:61-79. [PMID: 40100232 DOI: 10.1615/intjmedmushrooms.2025058111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
The objective of this study was to assess the bioactivities of flavonoids extracted from two distinct sections of the fruiting bodies of Ganoderma species. The flavonoids were extracted from the cap and stem of four Ganoderma species using a methanolic extraction method. The extraction rate, total flavonoid content, antioxidant activities, in vitro hypoglycemic effects, and antimicrobial activity of flavonoids derived from the wild and cultivated Ganoderma extracts were determined and analyzed. The findings indicated that the extract derived from cultivated black Ganoderma stem exhibited the most favorable outcomes among the four sample extracts. The lowest EC50 value of the DPPH radical scavenging assay was 36.9 μg/mL, and the extract demonstrated the highest inhibitory activity of α-glucosidase (35.88 μg/mL). However, the cap extract of the cultivated black Ganoderma demonstrated the highest inhibitory activity of α-amylase, with the IC50 value of 34.69 μg/mL. The cap extracts of the cultivated red Ganoderma exhibited the most pronounced antimicrobial activity. These findings indicate notable differences in the bioactivities of flavonoids extracted from the caps and stems of the four Ganoderma species. Consequently, the Ganoderma flavonoids have the potential to serve as potent bioactive ingredients with disease-prevention properties.
Collapse
Affiliation(s)
- Yang Liu
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 541006 Guilin, P.R. China
| | - Cong Xia
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 541006 Guilin, P.R. China
| | - Bo Jie Chen
- College of Biomass Science and Engineering, Sichuan University, 610064 Chengdu, P.R. China
| | - Xia Li
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 541006 Guilin, P.R. China
| | - Xiaojian Wu
- Microbiology Research Institute, Guangxi Academy of Agricultural Sciences, 530007 Nanning, P.R. China
| | - Amin Ismail
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Xinhong Dong
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 541006 Guilin, P.R. China
| | | |
Collapse
|
6
|
Zhong L, Tan X, Yang W, Li P, Ye L, Luo Q, Hou H. Bioactive matters based on natural product for cardiovascular diseases. SMART MATERIALS IN MEDICINE 2024; 5:542-565. [DOI: 10.1016/j.smaim.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
7
|
Jeyabalan JB, Pathak S, Mariappan E, Mohanakumar KP, Dhanasekaran M. Validating the nutraceutical and neuroprotective pharmacodynamics of flavones. Neurochem Int 2024; 180:105829. [PMID: 39147202 DOI: 10.1016/j.neuint.2024.105829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 08/17/2024]
Abstract
Neurodegenerative disorders are generally characterized by progressive neuronal loss and cognitive decline, with underlying mechanisms involving oxidative stress, protein aggregation, neuroinflammation, and synaptic dysfunction. Currently, the available treatment options only improve the symptoms of the disease but do not stop disease progression; neurodegeneration. This underscores the urgent need for novel therapeutic strategies targeting multiple neurodegenerative pathways alongside the conventional therapeutic strategies available. Emerging evidence demonstrates that flavones a subgroup of flavonoids found abundantly in various dietary sources, have surfaced as promising candidates for neuroprotection due to their multifaceted pharmacological properties. Flavones possess the potency to modulate these pathophysiological processes through their antioxidant, anti-inflammatory, and neurotrophic activities. Additionally, flavones have been shown to interact with various cellular targets, including receptors and enzymes, to confer neuroprotection. Though there are ample evidence available, the nutraceutical and neuroprotective pharmacodynamics of flavones have not been very well established. Hence, the current review aims to explores the therapeutic potential of flavones as nutraceuticals with neuroprotective effects, focusing on their ability to modulate key pathways implicated in neurodegenerative diseases. The current article also aims to actuate supplementary research into flavones as potential agents for alleviating neurodegeneration and improving patient outcomes in neurodegenerative disorders globally.
Collapse
Affiliation(s)
- Jeyaram Bharathi Jeyabalan
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Nilgiris, Ooty, Tamil Nadu, 643001, India
| | - Suhrud Pathak
- Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL, USA
| | - Esakkimuthukumar Mariappan
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Nilgiris, Ooty, Tamil Nadu, 643001, India
| | - K P Mohanakumar
- Inter University Centre for Biomedical Research & Super Speciality Hospital, Mahatma Gandhi University Campus at Thalappady, Kottayam, Kerala, India
| | | |
Collapse
|
8
|
Zhao M. Food systems for long-term spaceflight: Understanding the role of non-nutrient polyphenols in astronauts' health. Heliyon 2024; 10:e37452. [PMID: 39391512 PMCID: PMC11466544 DOI: 10.1016/j.heliyon.2024.e37452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/12/2024] [Accepted: 09/04/2024] [Indexed: 10/12/2024] Open
Abstract
Background Manned space exploration missions have developed at a rapid pace, with missions to Mars likely to be in excess of 1000 days being planned for the next 20 years. As such, it is important to understand and address the challenges that astronauts face, such as higher radiation exposure, altered gravity, and isolation. Meanwhile, until now the formulation of space food systems has not focused on non-nutrients, and has not considered issues arising from their absence during space missions or the possibility of them to solve the challenges caused by space hazards. Aims This study investigates, by systematic review, current space food systems and the potential for non-nutrients, such as flavonoids and polyphenols, to counteract radiation- and low gravity-induced degeneration of bone, vision, muscle strength, immune function and cognition. Results and discussion A systematic approach found 39 related animal model studies, and that polyphenol dietary interventions have been shown to mitigate radiation-related physiological problems and cognitive decline, as well as reduce the implications of radiotherapy. From the results of these studies, it appears that berry extracts have a significant effect on preventing cognitive problems through attenuating the expression of NADPH-oxidoreductase-2 (NOX2) and cycloocygenase-2 (COX2) in both frontal cortex and hippocampus and immune system problems caused by radiation similar to that experienced in space. For physiological problems like alteration of blood-testicular barrier permeability and oxidative stress in kidney and liver caused by gamma rays and X-rays, various polyphenol compounds including resveratrol and tea polyphenols have a certain degree of protective effect like enhancing metabolism of heart and decreasing DNA damage respectively. Due to the lack of quantitative studies and the limited number of relevant studies, it is impossible to compare which polyphenol compounds are more effective. Only one study showed no difference in the performances of a blueberry extract-fed group and a control group exposed to Fe irradiation after 12 months. Conclusion In conclusion, current animal studies have shown that polyphenols can mitigate radiation damage to some extent, but more research is needed to enable the application of a polyphenol diet to actual space flights.
Collapse
Affiliation(s)
- Menglan Zhao
- School of Health, Tianhua College, Shanghai Normal University, 201800, Shanghai, China
| |
Collapse
|
9
|
Ahmad F, Ranga PK, Fatma S, Vijaya Anand R. Domino Approach to Heterocycles-Based Unsymmetrical Triarylmethanes through Heteroannulation of 2-(2-Enynyl)-pyridines with Enaminones. J Org Chem 2024; 89:12104-12117. [PMID: 39137191 DOI: 10.1021/acs.joc.4c01006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Herein, we report a copper-catalyzed protocol to access unsymmetrical triarylmethanes containing both indolizine and the chromone scaffolds in the same molecule via a 5-endo-dig cyclization of 2-(2-enynyl)-pyridines followed by reaction with 2-hydroxyaryl enaminones. A variety of 2-hydroxyaryl enaminones and 2-(2-enynyl)-pyridines were subjected to reaction under the optimal reaction conditions, and the respective triarylmethanes were obtained in good to excellent yields.
Collapse
Affiliation(s)
- Feroz Ahmad
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Sector 81, S.A.S. Nagar, Manauli (PO), Mohali 140306, Punjab, India
| | - Pavit K Ranga
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Sector 81, S.A.S. Nagar, Manauli (PO), Mohali 140306, Punjab, India
| | - Shaheen Fatma
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Sector 81, S.A.S. Nagar, Manauli (PO), Mohali 140306, Punjab, India
| | - Ramasamy Vijaya Anand
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Sector 81, S.A.S. Nagar, Manauli (PO), Mohali 140306, Punjab, India
| |
Collapse
|
10
|
Wang R, Li X, Xu Y, Li Y, Zhang W, Guo R, Song J. Progress, pharmacokinetics and future perspectives of luteolin modulating signaling pathways to exert anticancer effects: A review. Medicine (Baltimore) 2024; 103:e39398. [PMID: 39183411 PMCID: PMC11346905 DOI: 10.1097/md.0000000000039398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/27/2024] Open
Abstract
Luteolin (3, 4, 5, 7-tetrahydroxyflavone) are natural flavonoids widely found in vegetables, fruits and herbs, with anti-tumor, anti-inflammatory and antioxidant effects, and also play an anti-cancer effect in various cancers such as lung, breast, prostate, and liver cancer, etc. Specifically, the anti-cancer mechanism includes regulation of various signaling pathways to induce apoptosis of tumor cells, inhibition of tumor cell proliferation and metastasis, anti-angiogenesis, regulation of immune function, synergistic anti-cancer drugs and regulation of reactive oxygen species levels of tumor cells. Specific anti-cancer mechanisms include regulation of various signaling pathways to induce apoptosis, inhibition of tumor cell proliferation and metastasis, anti-angiogenesis, reversal of epithelial-mesenchymal transition, regulation of immune function, synergism with anti-cancer drugs and regulation of reactive oxygen species levels in tumor cells. This paper integrates the latest cutting-edge research on luteolin and combines it with the prospect of future clinical applications, aiming to explore the mechanism of luteolin exerting different anticancer effects through the regulation of different signaling pathways, so as to provide a practical theoretical basis for the use of luteolin in clinical treatment and hopefully provide some reference for the future research direction of luteolin.
Collapse
Affiliation(s)
- Rui Wang
- Department of Thoracic Surgery, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People’s Hospital, Yancheng, PR China
- Medical School of Nantong University, Nantong, PR China
| | - Xia Li
- Department of General Medicine, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People’s Hospital, Yancheng, PR China
| | - Yanhan Xu
- Department of Thoracic Surgery, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People’s Hospital, Yancheng, PR China
| | - Yangyang Li
- Department of Thoracic Surgery, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People’s Hospital, Yancheng, PR China
| | - Weisong Zhang
- Department of Thoracic Surgery, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People’s Hospital, Yancheng, PR China
| | - Rongqi Guo
- Department of Thoracic Surgery, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People’s Hospital, Yancheng, PR China
| | - Jianxiang Song
- Department of Thoracic Surgery, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People’s Hospital, Yancheng, PR China
| |
Collapse
|
11
|
Zuo YF, Liu XQ, Meng XS, Wang MH, Tang J, Hu TT, Wang WJ, Zhang W, Wu DL. Effects of different postharvest drying processes on flavonoid content and enzymatic activity of Styphnolobium japonicum (L.) Schott flowers for industrial and medicinal use. Heliyon 2024; 10:e35095. [PMID: 39157318 PMCID: PMC11327557 DOI: 10.1016/j.heliyon.2024.e35095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/20/2024] Open
Abstract
Traditionally, fresh S. japonicum flowers (SJF) and S. japonicum flowers buds (SJFB) are dried prior to further processing and use. Here, we investigated the ways in which drying techniques, including sun drying (SD), steam drying (STD), microwave drying (MD), hot air drying (HAD, 40 °C, 60 °C, 80 °C, 100 °C), and freeze drying (FD), alter the flavonoid composition of freshly-harvested SJF and SJFB. The flavonoid content of dried samples was determined by Ultra High Performance Liquid Chromatography-Diode Array Detector (UPLC-DAD). Overall, different drying techniques had significantly different effects on the RU content, ranging from 10.63 % (HAD-80 °C) to 34.13 % (HAD-100 °C) in SJF and from 18.91 % (HAD-100 °C) to 29.16 % (HAD-40 °C) and 30.53 % (SD) in SJFB. To clarify the mechanism by which drying affects the RU content of S. japonicum flowers, we studied the activity of a rutin-hydrolyzing enzyme (RHE) isolated from SJF and SJFB using multiple separation and assay methods. According to the Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE) results, the apparent molecular weight of the purified RHE was approximately 38 kDa. According to UPLC-DAD, RHE catalyzes the production of quercetin (QU) from rutin (RU), but not from other flavonoid glycosides. Drying fresh SJF and SJFB at low and high temperatures can inhibit RHE activity and prevent RU hydrolysis. Therefore, subjecting freshly-harvest SJF to HAD-100 °C, and freshly-harvest SJFB to SD or HAD-40 °C, can greatly increase the RU content. In particular, HAD is viable for large-scale application due to its simplicity and industrial feasibility.
Collapse
Affiliation(s)
- Ya-Feng Zuo
- School of Chinese Medicine, Bozhou University, Bozhou 236800, China
- Key Laboratory of Chinese Medicine Materials Research of Anhui Higher Education Institutes, Bozhou University, Bozhou 236800, China
| | - Xin-Qiu Liu
- Department of Pharmacy, Bozhou Hospital of Traditional Chinese Medicine, Bozhou 236800, China
| | - Xiang-Song Meng
- School of Chinese Medicine, Bozhou University, Bozhou 236800, China
- Key Laboratory of Chinese Medicine Materials Research of Anhui Higher Education Institutes, Bozhou University, Bozhou 236800, China
| | - Meng-Hu Wang
- School of Chinese Medicine, Bozhou University, Bozhou 236800, China
- Key Laboratory of Chinese Medicine Materials Research of Anhui Higher Education Institutes, Bozhou University, Bozhou 236800, China
| | - Jian Tang
- School of Chinese Medicine, Bozhou University, Bozhou 236800, China
- Key Laboratory of Chinese Medicine Materials Research of Anhui Higher Education Institutes, Bozhou University, Bozhou 236800, China
| | - Ting-Ting Hu
- School of Chinese Medicine, Bozhou University, Bozhou 236800, China
- Key Laboratory of Chinese Medicine Materials Research of Anhui Higher Education Institutes, Bozhou University, Bozhou 236800, China
| | - Wen-Jian Wang
- School of Chinese Medicine, Bozhou University, Bozhou 236800, China
- Key Laboratory of Chinese Medicine Materials Research of Anhui Higher Education Institutes, Bozhou University, Bozhou 236800, China
| | - Wei Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - De-Ling Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| |
Collapse
|
12
|
Hassanin SO, Hegab AMM, Mekky RH, Said MA, Khalil MG, Hamza AA, Amin A. Combining In Vitro, In Vivo, and Network Pharmacology Assays to Identify Targets and Molecular Mechanisms of Spirulina-Derived Biomolecules against Breast Cancer. Mar Drugs 2024; 22:328. [PMID: 39057437 PMCID: PMC11278317 DOI: 10.3390/md22070328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/15/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024] Open
Abstract
The current research employed an animal model of 7,12-dimethylbenz(a)anthracene (DMBA)-induced mammary gland carcinogenesis. The estrogen receptor-positive human breast adenocarcinoma cell line (MCF-7) was used for in vitro analysis. This was combined with a network pharmacology-based approach to assess the anticancer properties of Spirulina (SP) extract and understand its molecular mechanisms. The results showed that the administration of 1 g/kg of SP increased the antioxidant activity by raising levels of catalase (CAT) and superoxide dismutase (SOD), while decreasing the levels of malonaldehyde (MDA) and protein carbonyl. A histological examination revealed reduced tumor occurrence, decreased estrogen receptor expression, suppressed cell proliferation, and promoted apoptosis in SP protected animals. In addition, SP disrupted the G2/M phase of the MCF-7 cell cycle, inducing apoptosis and reactive oxygen species (ROS) accumulation. It also enhanced intrinsic apoptosis in MCF-7 cells by upregulating cytochrome c, Bax, caspase-8, caspase-9, and caspase-7 proteins, while downregulating Bcl-2 production. The main compounds identified in the LC-MS/MS study of SP were 7-hydroxycoumarin derivatives of cinnamic acid, hinokinin, valeric acid, and α-linolenic acid. These substances specifically targeted three important proteins: ERK1/2 MAPK, PI3K-protein kinase B (AKT), and the epidermal growth factor receptor (EGFR). Network analysis and molecular docking indicated a significant binding affinity between SP and these proteins. This was verified by Western blot analysis that revealed decreased protein levels of p-EGFR, p-ERK1/2, and p-AKT following SP administration. SP was finally reported to suppress MCF-7 cell growth and induce apoptosis by modulating the PI3K/AKT/EGFR and MAPK signaling pathways suggesting EGFR as a potential target of SP in breast cancer (BC) treatment.
Collapse
Affiliation(s)
- Soha Osama Hassanin
- Biochemistry Department, Faculty of Pharmacy, Modern University for Technology and Information, Cairo 11585, Egypt;
| | - Amany Mohammed Mohmmed Hegab
- Egyptian Drug Authority (EDA), Formerly National Organization of Drug Control and Research, Developmental Pharmacology and Acute Toxicity Department, Giza 12611, Egypt;
| | - Reham Hassan Mekky
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo-Suez Road, Cairo 11829, Egypt;
| | - Mohamed Adel Said
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo 11829, Egypt
| | - Mona G. Khalil
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Modern University for Technology and Information, Cairo 11829, Egypt
| | - Alaaeldin Ahmed Hamza
- Biology Department, Egyptian Drug Authority (EDA), Formerly National Organization of Drug Control and Research (NODCAR), Giza 12611, Egypt
- Medical Research Council, Academy of Scientific Research and Technology, Cairo 11334, Egypt
| | - Amr Amin
- Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
13
|
Wu X, Li W, Luo Z, Chen Y. Exploring the efficacy and molecular mechanism of Danhong injection comprehensively in the treatment of idiopathic pulmonary fibrosis by combining meta-analysis, network pharmacology, and molecular docking methods. Medicine (Baltimore) 2024; 103:e38133. [PMID: 38728523 PMCID: PMC11081554 DOI: 10.1097/md.0000000000038133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 04/12/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Danhong injection, a compound injection of Chinese herbal medicine, has been widely used in idiopathic pulmonary fibrosis (IPF) at present as an adjuvant treatment. However, the clinical efficacy and molecular mechanism of IPF are still unclear. This study will evaluate and explore the clinical efficacy and molecular mechanism of Danhong injection in the treatment of IPF. METHODS In meta-analysis, the computer was used to search 8 databases (PubMed, EMbase, CENTRAL, MEDLINE, CBM, CNKI, WanFang, and VIP) to collect the RCTs, and RevMan 5.3 and Stata 14.0 were used for statistical analysis. It has been registered on PROSPERO: CRD42020221096. In network pharmacology, the main chemical components and targets of the chemical components of Danhong injection were obtained in TCMSP and Swiss Target Prediction databases. The main targets of IPF were obtained through Gencards, Disgenet, OMIM, TTD, and DRUGBANK databases. The String platform was used to construct PPI networks. Cytoscape 3.8.2 was used to construct the "Danhong components - IPF targets-pathways" network. The molecular docking verification was conducted by Auto Dock. RESULTS Twelve RCTs were finally included with a total of 896 patients. The meta-analysis showed that Danhong injection could improve the clinical efficiency ([OR] = 0.25, 95% CI [0.15, 0.41]), lung function, arterial blood gas analysis, inflammatory cytokines, and serum cytokines associated with pulmonary fibrosis of IPF patients, respectively (P < .05). The core active components of Danhong injection on IPF were Luteolin, Quercetin, and Kaempferol, and the core targets were PTGS2, AR, ESR1, PPARG, and RELA. Danhong injection mainly improved IPF through PD-L1 expression and PD-1 checkpoint path in cancer, pathways in cancer, PI3K-Akt signaling pathway, etc. CONCLUSION These results provided scientific basis for the clinical use of Danhong injection for the treatment of IPF, and provided a new direction to explore the potential mechanism of action of Danhong injection.
Collapse
Affiliation(s)
- Xiaozheng Wu
- Department of Preclinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Wen Li
- Department of Preclinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Zhenliang Luo
- Department of Preclinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yunzhi Chen
- Department of Preclinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
14
|
Bashir H, Sadia S, Saddiqe Z, Munir M, Bai X, Jia M, Ahmad KS. Application of microscopy and spectroscopy in investigating anti-cancer potential of Achyranthes aspera L. leaves. Microsc Res Tech 2024; 87:1031-1043. [PMID: 38205658 DOI: 10.1002/jemt.24495] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 12/21/2023] [Accepted: 12/31/2023] [Indexed: 01/12/2024]
Abstract
The genus Achyranthes belong to the family Amaranthaceae which constitutes an important group of herbs and shrubs with immense medicinal value. The present research work was conducted to investigate the anticancer potential of Achyranthes aspera L. leaves by focusing on the antioxidant, aniproliferative and antimitotic activities of leaf extracts. Plant extraction was carried out by soxhelt method with different solvents. Phytochemical characterization of the plants extracts using chemical methods identified the presence of cardiac glycosides, saponins, coumarins, proteins, tannins, flavonoids and triterpenes. Alkaloid was present in methanolic and ethanolic extract. High performance liquid chromatography showed presence of different concentration of myricetin, quercetin and kaempferol in different extracts with the highest concentration of myricetin (84.53 μg/mL) in n-butanolic extract. The extracts were then tested for antioxidant activity using 2,2-diphenylpicrylhydrazyl (DPPH) radical scavenging assay by spectrophotometric method. In DPPH radical scavenging assay, antioxidant activity of A. aspera ranged between 79.78 ± 0.034% and 58.63 ± 0.069%. Highest antioxidant activity was observed for methanolic extract and lowest for acetone. Antimitotic activity was determined by using Allium cepa assay in which microscopic investigation was carried out to observe normal and abnormal phases of mitosis. In this assay, n-butanolic extract had highest antimitotic activity with minimum mitotic index at 2 mg/mL (57 ± 0.0351%). The plant extracts also caused chromosomal and mitotic aberrations which were clearly observed under 40× and 100× magnification of compound microscope. Antiproliferative activity was determined by using yeast cell model in which light microscope with hemocytometer was used for cell counting. In case of Antiproliferative activity, the ethyl acetate extract of A. aspera had highest antiproliferative activity with lowest cell viability (22.14 ± 0.076%) at highest extract concentration (2 mg/mL) while methanol extract of A. aspera had highest antiproliferative activity with lower cell viability (24.24 ± 0.057%) at lowest extract concentration (0.25 mg/mL). The results of the study indicated that the leaves extract of A. aspera have strong potential to be used as a source of anti-cancer agent. RESEARCH HIGHLIGHTS: Achyranthes aspera L. leaves have various phytochemicals which contribute to its medicinal properties Various extracts of the leaves of A. aspera L. possess antioxidant, antimitotic and antiproliferative potential The results of the study indicated that the leaves extract of A. aspera have strong potential to be used as a source of anti-cancer agent.
Collapse
Affiliation(s)
- Huma Bashir
- Department of Biological Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Sehrish Sadia
- Department of Biological Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Zeb Saddiqe
- Department of Botany, Govt. Queen Mary Graduate College, Lahore, Pakistan
| | - Mubashrah Munir
- Department of Biological Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Xiaohang Bai
- School of Architecture, Southeast University, Nanjing, China
| | - Meiyu Jia
- East China University of Technology, Nanchang, China
| | | |
Collapse
|
15
|
Arnab MKH, Islam MR, Rahman MS. A comprehensive review on phytochemicals in the treatment and prevention of pancreatic cancer: Focusing on their mechanism of action. Health Sci Rep 2024; 7:e2085. [PMID: 38690008 PMCID: PMC11056788 DOI: 10.1002/hsr2.2085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/02/2024] [Accepted: 04/18/2024] [Indexed: 05/02/2024] Open
Abstract
Background and Aims Pancreatic cancer develops in the normal tissues of the pancreas from malignant cells. The chance of recovery is not good, and the chance of survival 5 years following diagnosis is quite low. Pancreatic cancer treatment strategies such as radiotherapy and chemotherapy had relatively low success rates. Therefore, the present study aims to explore new therapies for treating pancreatic cancer. Methods The present study searched for information about pancreatic cancer pathophysiology, available treatment options; and their comparative benefits and challenges. Aiming to identify potential alternative therapeutics, this comprehensive review analyzed information from renowned databases such as Scopus, PubMed, and Google Scholar. Results In recent years, there has been a rise in interest in the possibility that natural compounds could be used as treatments for cancer. Cannabinoids, curcumin, quercetin, resveratrol, and triptolide are some of the anticancer phytochemicals now used to manage pancreatic cancer. The above compounds are utilized by inhibiting or stimulating biological pathways such as apoptosis, autophagy, cell growth inhibition or reduction, oxidative stress, epithelial-mesenchymal transformation, and increased resistance to chemotherapeutic drugs in the management of pancreatic cancer. Conclusion Right now, surgery is the only therapeutic option for patients with pancreatic cancer. However, most people who get sick have been diagnosed too late to benefit from potentially effective surgery. Alternative medications, like natural compounds and herbal medicines, are promising complementary therapies for pancreatic cancer. Therefore, we recommend large-scale standardized clinical research for the investigation of natural compounds to ensure their consistency and comparability in pancreatic cancer treatment.
Collapse
|
16
|
Nanjundaswamy S, Chimatahalli Shanthakumar K, Shadakshari S, Rajabathar JR, Arokiyaraj S, Al-lohedan HA, Sakthipandi K, Mallu P. Redefining Chalcone Synthesis: Aldol Adduct Elimination for the Rapid Access to Thienyl Chalcones. ACS OMEGA 2024; 9:13603-13611. [PMID: 38559939 PMCID: PMC10976368 DOI: 10.1021/acsomega.3c05897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 02/16/2024] [Accepted: 02/27/2024] [Indexed: 04/04/2024]
Abstract
This paper introduces a unique and novel method for synthesizing thienyl chalcones using iron oxide nanoparticles (FeONPs) as a heterogeneous catalyst. It stands out as a rare example in the literature for the synthesis of these chalcones from 1,3-diketones and various aromatic aldehydes. The magnetic FeONPs employed as the catalyst bring several advantages, including their efficiency, affordability, and ecofriendly nature, making them an attractive choice for producing thiophene chalcones. One noteworthy aspect of this methodology is the utilization of mild reaction conditions, which greatly simplify the operational aspects of the reaction. Synthesized chalcones were confirmed through the application of various techniques, proton-NMR, 13C NMR, mass spectrometry, and single-crystal X-ray diffraction analysis. These analyses provide valuable insights into the chemical compositions and structural characteristics of the synthesized compounds. Significantly, this methodology is reported for the first time in the literature, indicating its novelty and contribution to the field of chalcone synthesis.
Collapse
Affiliation(s)
| | | | - Sandeep Shadakshari
- Department
of Chemistry, SJCE, JSS Science and Technology
University, Mysuru 570 006, India
| | - Jothi Ramalingam Rajabathar
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Selvaraj Arokiyaraj
- Department
of Food Science and Biotechnology, Sejong
University, Seoul 05006, South Korea
| | - Hamad A. Al-lohedan
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Kathiresan Sakthipandi
- Department
of Physics, SRM TRP Engineering College, Tiruchirappalli 621 105, Tamil Nadu, India
| | - Puttaswamappa Mallu
- Department
of Chemistry, SJCE, JSS Science and Technology
University, Mysuru 570 006, India
| |
Collapse
|
17
|
Gudyka J, Ceja-Vega J, Ivanchenko K, Perla W, Poust C, Gamez Hernandez A, Clarke C, Silverberg S, Perez E, Lee S. Differential Effects of Soy Isoflavones on the Biophysical Properties of Model Membranes. J Phys Chem B 2024; 128:2412-2424. [PMID: 38417149 PMCID: PMC10945484 DOI: 10.1021/acs.jpcb.3c08390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/12/2024] [Accepted: 02/16/2024] [Indexed: 03/01/2024]
Abstract
The effects that the main soy isoflavones, genistein and daidzein, have upon the biophysical properties of a model lipid bilayer composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) or DOPC with cholesterol (4 to 1 mol ratio) have been investigated by transbilayer water permeability, differential scanning calorimetry, and confocal Raman microspectroscopy. Genistein is found to increase water permeability, decrease phase transition temperature, reduce enthalpy of transition, and induce packing disorder in the DOPC membrane with an increasing concentration. On the contrary, daidzein decreases water permeability and shows negligible impact on thermodynamic parameters and packing disorder at comparable concentrations. For a cholesterol-containing DOPC bilayer, both genistein and daidzein exhibit an overall less pronounced effect on transbilayer water permeability. Their respective differential abilities to modify the physical and structural properties of biomembranes with varying lipid compositions signify a complex and sensitive nature to isoflavone interactions, which depends on the initial state of bilayer packing and the differences in the molecular structures of these soy isoflavones, and provide insights in understanding the interactions of these molecules with cellular membranes.
Collapse
Affiliation(s)
- Jamie Gudyka
- Department of Chemistry and
Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Jasmin Ceja-Vega
- Department of Chemistry and
Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Katherine Ivanchenko
- Department of Chemistry and
Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Wilber Perla
- Department of Chemistry and
Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Christopher Poust
- Department of Chemistry and
Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Alondra Gamez Hernandez
- Department of Chemistry and
Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Colleen Clarke
- Department of Chemistry and
Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Shakinah Silverberg
- Department of Chemistry and
Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Escarlin Perez
- Department of Chemistry and
Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Sunghee Lee
- Department of Chemistry and
Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| |
Collapse
|
18
|
Aguirre ME, Orallo DE, Suárez PA, Ramirez CL. Galenic formulations of Cannabis sativa: comparison of the chemical properties of extracts obtained by simple protocols using lipidic vehicles. Nat Prod Res 2024; 38:661-666. [PMID: 36855240 DOI: 10.1080/14786419.2023.2184357] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 02/19/2023] [Indexed: 03/02/2023]
Abstract
The growing use of Cannabis sativa as a complementary therapy to allopathic medicine has brought about the modification of laws for its use worldwide. This entails the need to harmonize the methods of galenic preparations in pharmacies and cannabis-specialized non-governmental organizations as well as for self-provision as contemplated in some current legislation, such as that of Argentina. Thus, this work aimed to study simple and efficient methods to produce medicinal cannabis oils that require low-cost equipment and few handling steps. The final formulas allowed the obtaining of preparations of known concentrations of neutral cannabinoids, total polyphenol content, total flavonoid content, and antioxidant capacity. These methods allow for the selection of convenient vehicles and access to safe medicinal products of standardized quality. Our results show that cannabis extraction can be efficiently performed by directly using long-chain lipidic vehicles as extractants, resulting in a formulation with maximized oxidizing capacity and potentially extending its durability.
Collapse
Affiliation(s)
- Matías E Aguirre
- Departamento de Química y Bioquímica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata-CONICET, Funes 3350, 7600, Mar del Plata, Buenos Aires, Argentina
- Instituto de Investigaciones Físicas de Mar del Plata, IFIMAR (CONICET-UNMDP), Funes 3350, (7600) Mar del Plata, Argentina
| | - Dalila E Orallo
- Departamento de Química y Bioquímica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata-CONICET, Funes 3350, 7600, Mar del Plata, Buenos Aires, Argentina
| | - Patricia A Suárez
- Instituto de Investigaciones Marinas y Costeras (IIMyC) FCEyN/UNMdP-CONICET Juan B. Justo 2550, Mar del Plata, Argentina
| | - Cristina L Ramirez
- Departamento de Química y Bioquímica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata-CONICET, Funes 3350, 7600, Mar del Plata, Buenos Aires, Argentina
| |
Collapse
|
19
|
Hermenean A, Dossi E, Hamilton A, Trotta MC, Russo M, Lepre CC, Sajtos C, Rusznyák Á, Váradi J, Bácskay I, Budai I, D’Amico M, Fenyvesi F. Chrysin Directing an Enhanced Solubility through the Formation of a Supramolecular Cyclodextrin-Calixarene Drug Delivery System: A Potential Strategy in Antifibrotic Diabetes Therapeutics. Pharmaceuticals (Basel) 2024; 17:107. [PMID: 38256940 PMCID: PMC10819853 DOI: 10.3390/ph17010107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/31/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Calixarene 0118 (OTX008) and chrysin (CHR) are promising molecules for the treatment of fibrosis and diabetes complications but require an effective delivery system to overcome their low solubility and bioavailability. Sulfobutylated β-cyclodextrin (SBECD) was evaluated for its ability to increase the solubility of CHR by forming a ternary complex with OTX008. The resulting increase in solubility and the mechanisms of complex formation were identified through phase-solubility studies, while dynamic light-scattering assessed the molecular associations within the CHR-OTX008-SBECD system. Nuclear magnetic resonance, differential scanning calorimetry, and computational studies elucidated the interactions at the molecular level, and cellular assays confirmed the system's biocompatibility. Combining SBECD with OTX008 enhances CHR solubility more than using SBECD alone by forming water-soluble molecular associates in a ternary complex. This aids in the solubilization and delivery of CHR and OTX008. Structural investigations revealed non-covalent interactions essential to complex formation, which showed no cytotoxicity in hyperglycemic in vitro conditions. A new ternary complex has been formulated to deliver promising antifibrotic agents for diabetic complications, featuring OTX008 as a key structural and pharmacological component.
Collapse
Affiliation(s)
- Anca Hermenean
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Revolutiei, 310414 Arad, Romania;
| | - Eleftheria Dossi
- Centre for Defence Chemistry, Cranfield University, Defence Academy of United Kingdom, Shrivenham, Swindon SN6 8LA, UK;
| | - Alex Hamilton
- Biomolecular Sciences Research Centre (BMRC), Department of Biosciences and Chemistry, College of Health, Wellbeing and Life Sciences, Sheffield Hallam University, Howard Street, Sheffield S1 1WB, UK;
| | - Maria Consiglia Trotta
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.C.T.); (C.C.L.); (M.D.)
| | - Marina Russo
- Doctoral School of National Interest in Public Administration and Innovation for Disability and Social Inclusion, Department of Mental, Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
- School of Pharmacology and Clinical Toxicology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Caterina Claudia Lepre
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.C.T.); (C.C.L.); (M.D.)
- Doctoral School of Translational Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Csilla Sajtos
- Department of Molecular and Nanopharmaceutics, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (C.S.); (Á.R.)
| | - Ágnes Rusznyák
- Department of Molecular and Nanopharmaceutics, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (C.S.); (Á.R.)
- Institute of Healthcare Industry, University of Debrecen, Egyetem Square 1, H-4032 Debrecen, Hungary;
| | - Judit Váradi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary;
| | - Ildikó Bácskay
- Institute of Healthcare Industry, University of Debrecen, Egyetem Square 1, H-4032 Debrecen, Hungary;
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary;
| | - István Budai
- Faculty of Engineering, University of Debrecen, Ótemető Street 2-4, H-4028 Debrecen, Hungary;
| | - Michele D’Amico
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.C.T.); (C.C.L.); (M.D.)
| | - Ferenc Fenyvesi
- Department of Molecular and Nanopharmaceutics, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (C.S.); (Á.R.)
| |
Collapse
|
20
|
Sharma V, Arora A, Bansal S, Semwal A, Sharma M, Aggarwal A. Role of bio-flavonols and their derivatives in improving mitochondrial dysfunctions associated with pancreatic tumorigenesis. Cell Biochem Funct 2024; 42:e3920. [PMID: 38269510 DOI: 10.1002/cbf.3920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/30/2023] [Accepted: 12/27/2023] [Indexed: 01/26/2024]
Abstract
Mitochondria, a cellular metabolic center, efficiently fulfill cellular energy needs and regulate crucial metabolic processes, including cellular proliferation, differentiation, apoptosis, and generation of reactive oxygen species. Alteration in the mitochondrial functions leads to metabolic imbalances and altered extracellular matrix dynamics in the host, utilized by solid tumors like pancreatic cancer (PC) to get energy benefits for fast-growing cancer cells. PC is highly heterogeneous and remains unidentified for a longer time because of its complex pathophysiology, retroperitoneal position, and lack of efficient diagnostic approaches, which is the foremost reason for accounting for the seventh leading cause of cancer-related deaths worldwide. PC cells often respond poorly to current therapeutics because of dense stromal barriers in the pancreatic tumor microenvironment, which limit the drug delivery and distribution of antitumor immune cell populations. As an alternative approach, various natural compounds like flavonoids are reported to possess potent antioxidant and anticancerous properties and are less toxic than current chemotherapeutic drugs. Therefore, we aim to summarize the current state of knowledge regarding the pharmacological properties of flavonols in PC in this review from the perspective of mitigating mitochondrial dysfunctions associated with cancer cells. Our literature survey indicates that flavonols efficiently regulate cellular metabolism by scavenging reactive oxygen species, mitigating inflammation, and arresting the cell cycle to promote apoptosis in tumor cells via intrinsic mitochondrial pathways. In particular, flavonols proficiently inhibit the cancer-associated proliferation and inflammatory pathways such as EGFR/MAPK, PI3K/Akt, and nuclear factor κB in PC. Overall, this review provides in-depth evidence about the therapeutic potential of flavonols for future anticancer strategies against PC; still, more multidisciplinary human interventional studies are required to dissect their pharmacological effect accurately.
Collapse
Affiliation(s)
- Vinit Sharma
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Ankita Arora
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Sakshi Bansal
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Ankita Semwal
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Mayank Sharma
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Anjali Aggarwal
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
21
|
Song S, Cheun JH, Moon HG, Noh DY, Jung SY, Lee ES, Kim Z, Youn HJ, Cho J, Yoo YB, Jun S, Joung H, Lee JE. Dietary Isoflavone Intake and Breast Cancer Prognosis: A Prospective Analysis and Meta-Analysis. Nutr Cancer 2023; 76:42-54. [PMID: 37943034 DOI: 10.1080/01635581.2023.2279220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023]
Abstract
We aimed to examine the association between dietary isoflavone intake and the risk of breast cancer recurrence and summarize evidence on the role of dietary isoflavone intake in breast cancer prognosis. This prospective study included 592 breast cancer survivors who completed a dietary assessment. Hazard ratios (HRs) and 95% confidence intervals (CIs) were estimated using Cox proportional hazards models. Of the studies published until May 31, 2023, that were searched in PUBMED and EMBASE databases, 14 studies were selected. Adjusted HRs were combined using fixed- or random-effects models. During the median follow-up of 4.3 years, 47 recurrences were identified. The HR (95% CI) for recurrence comparing the highest versus the lowest tertile of isoflavones intake was 1.29 (0.60-2.78). In a meta-analysis of previously published data and ours, dietary isoflavone intake was associated with a better breast cancer prognosis. The combined HRs (95% CIs) comparing the extreme categories were 0.81 (0.67-0.98) for recurrence and 0.85 (0.76-0.96) for all-cause mortality. A nonlinear inverse association was observed between isoflavone intake and the risk of recurrence and all-cause mortality. Our study suggests that dietary isoflavone intake is associated with a favorable prognosis in breast cancer survivors and warrants further investigation.
Collapse
Affiliation(s)
- Sihan Song
- Department of Food and Nutrition, Seoul National University, Seoul, Republic of Korea
- Division of Population Health Research, Department of Precision Medicine, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Jong-Ho Cheun
- Department of Surgery, Seoul Metropolitan Government Seoul National University, Boramae Medical Center, Seoul, Republic of Korea
| | - Hyeong-Gon Moon
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dong-Young Noh
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - So-Youn Jung
- Research Institute and Hospital, National Cancer Center, Goyang, Republic of Korea
| | - Eun Sook Lee
- Research Institute and Hospital, National Cancer Center, Goyang, Republic of Korea
| | - Zisun Kim
- Department of Surgery, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Republic of Korea
| | - Hyun Jo Youn
- Department of Surgery, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Jihyoung Cho
- Department of Surgery, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Young Bum Yoo
- Department of Surgery, Konkuk University Medical Center, Seoul, Republic of Korea
| | - Shinyoung Jun
- Department of Food Science and Nutrition, Soonchunhyang University, Asan, Republic of Korea
| | - Hyojee Joung
- Department of Public Health, Graduate School of Public Health, Seoul National University, Seoul, Republic of Republic of Korea
| | - Jung Eun Lee
- Department of Food and Nutrition, Seoul National University, Seoul, Republic of Korea
- Research Institute of Human Ecology, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
22
|
Velusamy P, Muthusami S, Arumugam R. In vitro evaluation of p-coumaric acid and naringin combination in human epidermoid carcinoma cell line (A431). Med Oncol 2023; 41:4. [PMID: 38019336 DOI: 10.1007/s12032-023-02230-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/21/2023] [Indexed: 11/30/2023]
Abstract
Cancer is considered most detrimental due to high mortality worldwide. Among them, skin cancers play a major part by affecting one in three cancer patients globally. About 2-3 million cancer cases were reported to be non-melanoma and melanoma skin cancers, respectively. Although chemotherapeutic drugs act on cancer cells but results in long-lasting morbidities which affects one's quality of life and also works only in the initial stage of the cancer. Hence, an idea of traditional medicine to cure the disease efficiently with less side effects was pursued by the researchers. We have assessed the combination effect of p-coumaric acid and naringin in exerting anticancer activity using A431 (epidermoid carcinoma) cells. The MTT analysis of the combination on A431 cells showed the least IC50 concentration of 41 µg/ml which is effective than the standard drug imiquimod with IC50 concentration of 52 µg/ml. Further, flow cytometric analysis was carried out to identify the molecular mechanism behind the anticancer effects of the combination. The results revealed that the combination arrested the A431 cell cycle at S phase, induced apoptosis as indicated by more early and late apoptotic cells when compared with the control, and further altered reactive oxygen species (ROS) and mitochondrial membrane potential in A431 cells. Hence, the results suggest the potential anticancer effects of p-coumaric acid and naringin combination against the skin cancer (A431) cell line. The observed effects may be additive or synergistic effects in inducing ROS generation and apoptosis, and reducing the viability of A431 cells.
Collapse
Affiliation(s)
- Pradeep Velusamy
- Department of Biochemistry, Karpagam Academy of Higher Education, Deemed to be University, Coimbatore, Tamil Nadu, 32, India
| | - Sridhar Muthusami
- Department of Biochemistry, Karpagam Academy of Higher Education, Deemed to be University, Coimbatore, Tamil Nadu, 32, India
| | - Ramakrishnan Arumugam
- Department of Biochemistry, Karpagam Academy of Higher Education, Deemed to be University, Coimbatore, Tamil Nadu, 32, India.
| |
Collapse
|
23
|
Arampatzis AS, Pampori A, Droutsa E, Laskari M, Karakostas P, Tsalikis L, Barmpalexis P, Dordas C, Assimopoulou AN. Occurrence of Luteolin in the Greek Flora, Isolation of Luteolin and Its Action for the Treatment of Periodontal Diseases. Molecules 2023; 28:7720. [PMID: 38067450 PMCID: PMC10707704 DOI: 10.3390/molecules28237720] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/17/2023] [Accepted: 11/19/2023] [Indexed: 12/18/2023] Open
Abstract
Higher plants possess the ability to synthesize a great number of compounds with many different functions, known as secondary metabolites. Polyphenols, a class of flavonoids, are secondary metabolites that play a crucial role in plant adaptation to both biotic and abiotic environments, including UV radiation, high light intensity, low/high temperatures, and attacks from pathogens, among others. One of the compounds that has received great attention over the last few years is luteolin. The objective of the current paper is to review the extraction and detection methods of luteolin in plants of the Greek flora, as well as their luteolin content. Furthermore, plant species, crop management and environmental factors can affect luteolin content and/or its derivatives. Luteolin exhibits various biological activities, such as cytotoxic, anti-inflammatory, antioxidant and antibacterial ones. As a result, luteolin has been employed as a bioactive molecule in numerous applications within the food industry and the biomedical field. Among the different available options for managing periodontitis, dental care products containing herbal compounds have been in the spotlight owing to the beneficial pharmacological properties of the bioactive ingredients. In this context, luteolin's anti-inflammatory activity has been harnessed to combat periodontal disease and promote the restoration of damaged bone tissue.
Collapse
Affiliation(s)
- Athanasios S. Arampatzis
- School of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.S.A.); (A.P.); (E.D.)
- Natural Products Research Center of Excellence (NatPro-AUTH), Center for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki, 57001 Thessaloniki, Greece;
| | - Aspasia Pampori
- School of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.S.A.); (A.P.); (E.D.)
- Natural Products Research Center of Excellence (NatPro-AUTH), Center for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki, 57001 Thessaloniki, Greece;
| | - Eleftheria Droutsa
- School of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.S.A.); (A.P.); (E.D.)
- Natural Products Research Center of Excellence (NatPro-AUTH), Center for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki, 57001 Thessaloniki, Greece;
| | - Maria Laskari
- School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.L.); (C.D.)
| | - Panagiotis Karakostas
- School of Dentistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (P.K.); (L.T.)
| | - Lazaros Tsalikis
- School of Dentistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (P.K.); (L.T.)
| | - Panagiotis Barmpalexis
- Natural Products Research Center of Excellence (NatPro-AUTH), Center for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki, 57001 Thessaloniki, Greece;
- Laboratory of Pharmaceutical Technology, Division of Pharmaceutical Technology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Christos Dordas
- School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.L.); (C.D.)
| | - Andreana N. Assimopoulou
- School of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.S.A.); (A.P.); (E.D.)
- Natural Products Research Center of Excellence (NatPro-AUTH), Center for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki, 57001 Thessaloniki, Greece;
| |
Collapse
|
24
|
Zhao H, Wang S, Williamson PTF, Ewing RM, Tang X, Wang J, Wang Y. Integrated network pharmacology and cellular assay reveal the biological mechanisms of Limonium sinense (Girard) Kuntze against Breast cancer. BMC Complement Med Ther 2023; 23:408. [PMID: 37957642 PMCID: PMC10644419 DOI: 10.1186/s12906-023-04233-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/22/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Limonium Sinense (Girard) Kuntze (L. sinense) has been widely used for the treatment of anaemia, bleeding, cancer, and other disorders in Chinese folk medicine. The aim of this study is to predict the therapeutic effects of L. sinense and investigate the potential mechanisms using integrated network pharmacology methods and in vitro cellular experiments. METHODS The active ingredients of L. sinense were collected from published literature, and the potential targets related to L. sinense were obtained from public databases. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and DisGeNET enrichment analyses were performed to explore the underlying mechanisms. Molecular docking, cellular experiments, RNA-sequencing (RNA-seq) and Gene Expression Omnibus (GEO) datasets were employed to further evaluate the findings. RESULTS A total of 15 active ingredients of L. sinense and their corresponding 389 targets were obtained. KEGG enrichment analysis revealed that the biological effects of L. sinense were primarily associated with "Pathways in cancer". DisGeNET enrichment analysis highlighted the potential role of L. sinense in the treatment of breast cancer. Apigenin within L. sinense showed promising potential against cancer. Cellular experiments demonstrated that the L. sinense ethanol extract (LSE) exhibited a significant growth inhibitory effect on multiple breast cancer cell lines in both 2D and 3D cultures. RNA-seq analysis revealed a potential impact of LSE on breast cancer. Additionally, analysis of GEO datasets verified the significant enrichment of breast cancer and several cancer-related pathways upon treatment with Apigenin in human breast cancer cells. CONCLUSION This study predicts the biological activities of L. sinense and demonstrates the inhibitory effect of LSE on breast cancer cells, highlighting the potential application of L. sinense in cancer treatment.
Collapse
Affiliation(s)
- Hualong Zhao
- School of Marine and Biological Engineering, Yancheng Teachers' University, Xiwang Road, Yancheng, 224002, PR China
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Siyuan Wang
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Philip T F Williamson
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Rob M Ewing
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Xinhui Tang
- School of Marine and Biological Engineering, Yancheng Teachers' University, Xiwang Road, Yancheng, 224002, PR China
| | - Jialian Wang
- School of Marine and Biological Engineering, Yancheng Teachers' University, Xiwang Road, Yancheng, 224002, PR China.
| | - Yihua Wang
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| |
Collapse
|
25
|
Paolillo I, Costanzo G, Delicato A, Villano F, Arena C, Calabrò V. Light Quality Potentiates the Antioxidant Properties of Brassica rapa Microgreen Extracts against Oxidative Stress and DNA Damage in Human Cells. Antioxidants (Basel) 2023; 12:1895. [PMID: 37891974 PMCID: PMC10604222 DOI: 10.3390/antiox12101895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Plants are an inexhaustible source of bioactive compounds beneficial for contrasting oxidative stress, leading to many degenerative pathologies. Brassica rapa L. subsp. rapa is well known for its nutraceutical properties among edible vegetable species. In our work, we aimed to explore an eco-friendly way to enhance the beneficial dietary phytochemicals in this vast world of crop-growing plants at selected light quality conditions. White broad-spectrum (W) and red-blue (RB) light regimes were used for growing brassica microgreens. The organic extracts were tested on keratinocytes upon oxidative stress to explore their capability to act as natural antioxidant cell protectors. Our results show that both W and RB extracts caused a notable reduction in reactive oxygen species (ROS) levels induced by H2O2. Interestingly, according to its higher contents of polyphenols and flavonoids, the RB was more efficient in reducing ROS amount and DNA damage than the W extract, particularly at the lowest concentration tested. However, at higher concentrations (up to 100 μg/mL), the antioxidant effect reached a plateau, and there was little added benefit. These findings confirm that RB light effectively increases the antioxidant compounds in Brassica rapa L. microgreens, thus contributing to their enhanced activity against oxidative-induced genotoxicity compared to microgreens grown under W light.
Collapse
Affiliation(s)
- Ida Paolillo
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Napoli, Italy; (I.P.); (G.C.); (A.D.); (F.V.); (V.C.)
| | - Giulia Costanzo
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Napoli, Italy; (I.P.); (G.C.); (A.D.); (F.V.); (V.C.)
| | - Antonella Delicato
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Napoli, Italy; (I.P.); (G.C.); (A.D.); (F.V.); (V.C.)
| | - Filippo Villano
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Napoli, Italy; (I.P.); (G.C.); (A.D.); (F.V.); (V.C.)
| | - Carmen Arena
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Napoli, Italy; (I.P.); (G.C.); (A.D.); (F.V.); (V.C.)
- NBFC—National Biodiversity Future Center, 90133 Palermo, Italy
| | - Viola Calabrò
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Napoli, Italy; (I.P.); (G.C.); (A.D.); (F.V.); (V.C.)
| |
Collapse
|
26
|
Mao J, Mohedano MT, Fu J, Li X, Liu Q, Nielsen J, Siewers V, Chen Y. Fine-tuning of p-coumaric acid synthesis to increase (2S)-naringenin production in yeast. Metab Eng 2023; 79:192-202. [PMID: 37611820 DOI: 10.1016/j.ymben.2023.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/03/2023] [Accepted: 08/20/2023] [Indexed: 08/25/2023]
Abstract
(2S)-Naringenin is a key precursor for biosynthesis of various high-value flavonoids and possesses a variety of nutritional and pharmaceutical properties on human health. Systematic optimization approaches have been employed to improve (2S)-naringenin production in different microbial hosts. However, very few studies have focused on the spatiotemporal distribution of (2S)-naringenin and the related pathway intermediate p-coumaric acid, which is an important factor for efficient production. Here, we first optimized the (2S)-naringenin biosynthetic pathway by alleviating the bottleneck downstream of p-coumaric acid and increasing malonyl-CoA supply, which improved (2S)-naringenin production but significant accumulation of p-coumaric acid still existed extracellularly. We thus established a dual dynamic control system through combining a malonyl-CoA biosensor regulator and an RNAi strategy, to autonomously control the synthesis of p-coumaric acid with the supply of malonyl-CoA. Furthermore, screening potential transporters led to identification of Pdr12 for improved (2S)-naringenin production and reduced accumulation of p-coumaric acid. Finally, a titer of 2.05 g/L (2S)-naringenin with negligible accumulation of p-coumaric acid was achieved in a fed batch fermentation. Our work highlights the importance of systematic control of pathway intermediates for efficient microbial production of plant natural products.
Collapse
Affiliation(s)
- Jiwei Mao
- Department of Life Sciences, Chalmers University of Technology, SE412 96 Gothenburg, Sweden
| | - Marta Tous Mohedano
- Department of Life Sciences, Chalmers University of Technology, SE412 96 Gothenburg, Sweden
| | - Jing Fu
- Department of Life Sciences, Chalmers University of Technology, SE412 96 Gothenburg, Sweden
| | - Xiaowei Li
- Department of Life Sciences, Chalmers University of Technology, SE412 96 Gothenburg, Sweden
| | - Quanli Liu
- Department of Life Sciences, Chalmers University of Technology, SE412 96 Gothenburg, Sweden
| | - Jens Nielsen
- Department of Life Sciences, Chalmers University of Technology, SE412 96 Gothenburg, Sweden; BioInnovation Institute, DK2200, Copenhagen N, Denmark
| | - Verena Siewers
- Department of Life Sciences, Chalmers University of Technology, SE412 96 Gothenburg, Sweden
| | - Yun Chen
- Department of Life Sciences, Chalmers University of Technology, SE412 96 Gothenburg, Sweden.
| |
Collapse
|
27
|
Mondal A, Sharma R, Abiha U, Ahmad F, Karan A, Jayaraj RL, Sundar V. A Spectrum of Solutions: Unveiling Non-Pharmacological Approaches to Manage Autism Spectrum Disorder. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1584. [PMID: 37763703 PMCID: PMC10536417 DOI: 10.3390/medicina59091584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023]
Abstract
Autism spectrum disorder (ASD) is a developmental disorder that causes difficulty while socializing and communicating and the performance of stereotyped behavior. ASD is thought to have a variety of causes when accompanied by genetic disorders and environmental variables together, resulting in abnormalities in the brain. A steep rise in ASD has been seen regardless of the numerous behavioral and pharmaceutical therapeutic techniques. Therefore, using complementary and alternative therapies to treat autism could be very significant. Thus, this review is completely focused on non-pharmacological therapeutic interventions which include different diets, supplements, antioxidants, hormones, vitamins and minerals to manage ASD. Additionally, we also focus on complementary and alternative medicine (CAM) therapies, herbal remedies, camel milk and cannabiodiol. Additionally, we concentrate on how palatable phytonutrients provide a fresh glimmer of hope in this situation. Moreover, in addition to phytochemicals/nutraceuticals, it also focuses on various microbiomes, i.e., gut, oral, and vaginal. Therefore, the current comprehensive review opens a new avenue for managing autistic patients through non-pharmacological intervention.
Collapse
Affiliation(s)
- Arunima Mondal
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Ghudda 151401, India
| | - Rashi Sharma
- Department of Biotechnology, Delhi Technological University, Bawana, Delhi 110042, India
| | - Umme Abiha
- IDRP, Indian Institute of Technology, Jodhpur 342030, India
- All India Institute of Medical Sciences, Jodhpur 342005, India
| | - Faizan Ahmad
- Department of Medical Elementology and Toxicology, Jamia Hamdard University, Delhi 110062, India
| | | | - Richard L. Jayaraj
- Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Vaishnavi Sundar
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
28
|
Baldassari S, Balboni A, Drava G, Donghia D, Canepa P, Ailuno G, Caviglioli G. Phytochemicals and Cancer Treatment: Cell-Derived and Biomimetic Vesicles as Promising Carriers. Pharmaceutics 2023; 15:1445. [PMID: 37242687 PMCID: PMC10221807 DOI: 10.3390/pharmaceutics15051445] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
The majority of anticancer agents currently used derive from natural sources: plants, frequently the ones employed in traditional medicines, are an abundant source of mono- and diterpenes, polyphenols, and alkaloids that exert antitumor activity through diverse mechanisms. Unfortunately, many of these molecules are affected by poor pharmacokinetics and limited specificity, shortcomings that may be overcome by incorporating them into nanovehicles. Cell-derived nanovesicles have recently risen to prominence, due to their biocompatibility, low immunogenicity and, above all, targeting properties. However, due to difficult scalability, the industrial production of biologically-derived vesicles and consequent application in clinics is difficult. As an efficient alternative, bioinspired vesicles deriving from the hybridization of cell-derived and artificial membranes have been conceived, revealing high flexibility and appropriate drug delivery ability. In this review, the most recent advances in the application of these vesicles to the targeted delivery of anticancer actives obtained from plants are presented, with specific focus on vehicle manufacture and characterization, and effectiveness evaluation performed through in vitro and in vivo assays. The emerging overall outlook appears promising in terms of efficient drug loading and selective targeting of tumor cells, suggesting further engrossing developments in the future.
Collapse
Affiliation(s)
- Sara Baldassari
- Department of Pharmacy, University of Genova, 16148 Genova, Italy; (S.B.); (A.B.); (G.D.); (D.D.)
| | - Alice Balboni
- Department of Pharmacy, University of Genova, 16148 Genova, Italy; (S.B.); (A.B.); (G.D.); (D.D.)
| | - Giuliana Drava
- Department of Pharmacy, University of Genova, 16148 Genova, Italy; (S.B.); (A.B.); (G.D.); (D.D.)
| | - Daniela Donghia
- Department of Pharmacy, University of Genova, 16148 Genova, Italy; (S.B.); (A.B.); (G.D.); (D.D.)
| | - Paolo Canepa
- Department of Physics, University of Genova, 16146 Genova, Italy;
| | - Giorgia Ailuno
- Department of Pharmacy, University of Genova, 16148 Genova, Italy; (S.B.); (A.B.); (G.D.); (D.D.)
| | - Gabriele Caviglioli
- Department of Pharmacy, University of Genova, 16148 Genova, Italy; (S.B.); (A.B.); (G.D.); (D.D.)
| |
Collapse
|
29
|
Goel H, Kumar R, Tanwar P, Upadhyay TK, Khan F, Pandey P, Kang S, Moon M, Choi J, Choi M, Park MN, Kim B, Saeed M. Unraveling the therapeutic potential of natural products in the prevention and treatment of leukemia. Biomed Pharmacother 2023; 160:114351. [PMID: 36736284 DOI: 10.1016/j.biopha.2023.114351] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/04/2023] Open
Abstract
Leukemia is a heterogeneous group of hematological malignancies distinguished by differentiation blockage and uncontrolled proliferation of myeloid or lymphoid progenitor cells in the bone marrow (BM) and peripheral blood (PB). There are various types of leukemia in which intensive chemotherapy regimens or hematopoietic stem cell transplantation (HSCT) are now the most common treatments associated with severe side effects and multi-drug resistance in leukemia cells. Therefore, it is crucial to develop novel therapeutic approaches with adequate therapeutic efficacy and selectively eliminate leukemic cells to improve the consequences of leukemia. Medicinal plants have been utilized for ages to treat multiple disorders due to their diverse bioactive compounds. Plant-derived products have been used as therapeutic medication to prevent and treat many types of cancer. Over the last two decades, 50 % of all anticancer drugs approved worldwide are from natural products and their derivatives. Therefore this study aims to review natural products such as polyphenols, alkaloids, terpenoids, nitrogen-containing, and organosulfur compounds as antileukemic agents. Current investigations have identified natural products efficiently destroy leukemia cells through diverse mechanisms of action by inhibiting proliferation, reactive oxygen species production, inducing cell cycle arrest, and apoptosis in both in vitro, in vivo, and clinical studies. Current investigations have identified natural products as suitable promising chemotherapeutic and chemopreventive agents. It played an essential role in drug development and emerged as a possible source of biologically active metabolites for therapeutic interventions, especially in leukemia. DATA AVAILABILITY: Data will be made available on request.
Collapse
Affiliation(s)
- Harsh Goel
- Department of Laboratory Oncology, All India Institute of Medical Sciences, New Delhi 11023, India.
| | - Rahul Kumar
- Department of Laboratory Oncology, All India Institute of Medical Sciences, New Delhi 11023, India.
| | - Pranay Tanwar
- Department of Laboratory Oncology, All India Institute of Medical Sciences, New Delhi 11023, India.
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Centre of Research for Development, Parul University, Vadodara 391760, India,.
| | - Fahad Khan
- Department of Biotechnology, Noida Institute of Engineering & Technology, Greater Noida 201306, India.
| | - Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering & Technology, Greater Noida 201306, India.
| | - Sojin Kang
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 05253, Republic of Korea.
| | - Myunghan Moon
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 05253, Republic of Korea.
| | - Jinwon Choi
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 05253, Republic of Korea.
| | - Min Choi
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 05253, Republic of Korea.
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 05253, Republic of Korea.
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 05253, Republic of Korea.
| | - Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, P.O. Box 2440, Hail 81411 Saudi Arabia.
| |
Collapse
|
30
|
Ali SM, Nabi F, Hisamuddin M, Rizvi I, Ahmad A, Hassan MN, Paul P, Chaari A, Khan RH. Evaluating the inhibitory potential of natural compound luteolin on human lysozyme fibrillation. Int J Biol Macromol 2023; 233:123623. [PMID: 36773857 DOI: 10.1016/j.ijbiomac.2023.123623] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Numerous pathophysiological conditions known as amyloidosis, have been connected to protein misfolding leading to aggregation of proteins. Inhibition of cytotoxic aggregates or disaggregation of the preformed fibrils is thus one of the important strategies in the prevention of such diseases. Growing interest and exploration of identification of small molecules mainly natural compounds can prevent or delay amyloid fibril formation. We examined the mechanism of interaction and inhibition of human lysozyme (HL) aggregates with luteolin (LT). Biophysical and computational approaches have been employed to study the effect of LT on HL amyloid aggregation. Transmission Electronic Microscopy, Thioflavin T fluorescence, UV-vis spectroscopy, and RLS demonstrates that LT inhibit HL fibril formation. ANS fluorescence and hemolytic assay was also employed to examine the effect of the LT on toxicity of HL aggregation. Docking and molecular dynamics results showed that LT interacted with HL via hydrophobic and hydrogen interactions, thus reducing fibrillation levels. These findings highlight the benefit of polyphenols as safe therapy for preventing amyloid related diseases.
Collapse
Affiliation(s)
- Syed Moasfar Ali
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University Aligarh, UP, India
| | - Faisal Nabi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University Aligarh, UP, India
| | - Malik Hisamuddin
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University Aligarh, UP, India
| | - Irum Rizvi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University Aligarh, UP, India
| | - Azeem Ahmad
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University Aligarh, UP, India
| | - Md Nadir Hassan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University Aligarh, UP, India
| | - Pradipta Paul
- Weill Cornell Medicine Qatar, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar
| | - Ali Chaari
- Weill Cornell Medicine Qatar, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar
| | - Rizwan H Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University Aligarh, UP, India.
| |
Collapse
|
31
|
Ali SM, Nabi F, Furkan M, Hisamuddin M, Malik S, Zakariya SM, Rizvi I, Uversky VN, Khan RH. Tuning the aggregation behavior of human insulin in the presence of luteolin: An in vitro and in silico approach. Int J Biol Macromol 2023; 237:124219. [PMID: 36990415 DOI: 10.1016/j.ijbiomac.2023.124219] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/19/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
Protein misfolding and related formation of amyloid fibrils are associated with several conformational diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), prion diseases, and Diabetes mellitus, Type 2 (DM-II). Several molecules including antibiotics, polyphenols, flavonoids, anthraquinones, and other small molecules are implicated to modulate amyloid assembly. The stabilization of the native forms of the polypeptides and prevention of their misfolding and aggregation are of clinical and biotechnological importance. Among the natural flavonoids, luteolin is of great importance because of its therapeutic role against neuroinflammation. Herein, we have explored the inhibitory effect of luteolin (LUT) on aggregation of a model protein, human insulin (HI). To understand the molecular mechanism of the inhibition of aggregation of HI by LUT, we employed molecular simulation, UV-Vis, fluorescence, and circular dichroism (CD) spectroscopies along with the dynamic light scattering (DLS). The analysis of the tuning of the HI aggregation process by luteolin revealed that interaction of HI with LUT resulted in the decrease in binding of the various fluorescent dyes, such as thioflavin T (ThT) and 8-anilinonaphthalene-1-sulfonic acid (ANS) to this protein. Retention of the native-like CD spectra and resistance to the aggregation in the presence of LUT has confirmed the aggregation inhibitory potential of LUT. The maximum inhibitory effect was found at the protein-to-drug ratio of 1:12, and no significant change was observed beyond this concentration.
Collapse
|
32
|
Chen YH, Wu JX, Yang SF, Hsiao YH. Synergistic Combination of Luteolin and Asiatic Acid on Cervical Cancer In Vitro and In Vivo. Cancers (Basel) 2023; 15:cancers15020548. [PMID: 36672499 PMCID: PMC9857275 DOI: 10.3390/cancers15020548] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Cervical cancer is an important issue globally because it is the second most common gynecological malignant tumor and conventional treatment effects have been shown to be limited. Lut and AsA are plant-derived natural flavonoid and triterpenoid products that have exhibited anticancer activities and can modulate various signaling pathways. Thus, the aim of the present study was to evaluate whether Lut combined with AsA could enhance the anticancer effect to inhibit cervical cancer cell proliferation and examine the underlying molecular mechanisms in vitro and in vivo. The results of a CCK-8 assay showed that Lut combined with AsA more effectively inhibited the proliferation of CaSki and HeLa cells than Lut or AsA treatment alone. Lut combined with AsA caused apoptosis induction and sub-G1-phase arrest in CaSki and HeLa cells, as confirmed by flow cytometry, mitoROS analysis, antioxidant activity measurement and western blot assay. In addition, Lut combined with AsA significantly inhibited the cell migration ability of CaSki and HeLa cells in a wound-healing assay. Furthermore, Lut combined with AsA induced apoptosis and inhibited migration through downregulated PI3K/AKT (PI3K, AKT and p70S6K), JNK/p38 MAPK and FAK (integrin β1, paxillin and FAK) signaling and upregulated ERK signaling. In an in vivo study, Lut combined with AsA markedly inhibited cervical cancer cell-derived xenograft tumor growth. Collectively, the present study showed that Lut combined with AsA may be used as an anticancer agent to improve the prognosis of cervical cancer. Indeed, with additional research to develop standardized dosages, Lut and AsA combination therapy could also be applied in clinical medicine.
Collapse
Affiliation(s)
- Ya-Hui Chen
- Women’s Health Research Laboratory, Changhua Christian Hospital, Changhua 50006, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Jyun-Xue Wu
- Women’s Health Research Laboratory, Changhua Christian Hospital, Changhua 50006, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Yi-Hsuan Hsiao
- Women’s Health Research Laboratory, Changhua Christian Hospital, Changhua 50006, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua 50006, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- College of Medicine, National Chung Hsing University, Taichung 40227, Taiwan
- Correspondence:
| |
Collapse
|
33
|
Fux JE, Lefort ÉC, Rao PPN, Blay J. Apigenin directly interacts with and inhibits topoisomerase 1 to upregulate CD26/DPP4 on colorectal carcinoma cells. Front Pharmacol 2022; 13:1086894. [PMID: 36618939 PMCID: PMC9815539 DOI: 10.3389/fphar.2022.1086894] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction: CD26/dipeptidyl peptidase IV (DPP4) is a cell-surface glycoprotein present on most epithelial cells that modulates the local response to external signals. We have previously shown that the dietary flavone apigenin (4',5,7-trihydroxyflavone) upregulates cell-surface CD26/DPP4 on human colorectal carcinoma (CRC) cells and regulates its activities. We observed a unique synergistic interaction with the CRC chemotherapeutic agent irinotecan, which through its metabolite SN38 elevates CD26 at doses that are sub-cytotoxic. As SN38 interacts with topoisomerase 1 (Topo1) we evaluated whether apigenin influences Topo1 activity. Methods: We used a radioimmunoassay to selectively measure CD26 at the cell surface of HT-29 cells following various treatments. Topoisomerase 1 mRNA expression was measured by q-RT-PCR and protein abundance by western blot analysis. Direct inhibition of topoisomerase activity was measured using an assay of DNA supercoil relaxation with recombinant human Topo1. The role of Topo1 in the effect of apigenin was shown both pharmacologically and by siRNA silencing of Topo1. Molecular docking analysis was done with SBD computational software using the CDOCKER algorithm. Results: The interplay between apigenin and irinotecan was not observed when apigenin was combined with other chemotherapeutic drugs including the topoisomerase 2 inhibitors doxorubicin or etoposide. There was no enhancement of irinotecan action if apigenin was replaced with its hydroxylated metabolite luteolin (3',4',5,7-tetrahydroxyflavone) or emodin (6-methyl-1,3,8-trihydroxyanthraquinone), which is an inhibitor of the principal kinase target of apigenin, casein kinase 2 (CK2). Apigenin did not alter Topo1 mRNA expression, but siRNA knockdown of functional Topo1 eliminated the effect of apigenin and itself increased CD26 levels. Apigenin inhibited Topo1 activity in intact HT-29 cells and showed comparable inhibition of purified recombinant human Topo1 enzyme activity to that of SN-38, the active metabolite of irinotecan. Apigenin fits into the complex of Topo1 with DNA to directly inhibit Topo1 enzyme activity. Discussion: We conclude that apigenin has a unique fit into the Topo1-DNA functional complex that leads to direct inhibition of Topo1 activity, and suggest that this is the basis for the exceptional interaction with the CRC drug irinotecan. A combined action of these two agents may therefore exert a role to limit local signals that facilitate tumour progression.
Collapse
Affiliation(s)
- Julia E. Fux
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada
| | - Émilie C. Lefort
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | | | - Jonathan Blay
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada,Department of Pathology, Dalhousie University, Halifax, NS, Canada,*Correspondence: Jonathan Blay,
| |
Collapse
|
34
|
Borghi SM, Zaninelli TH, Carra JB, Heintz OK, Baracat MM, Georgetti SR, Vicentini FTMC, Verri WA, Casagrande R. Therapeutic Potential of Controlled Delivery Systems in Asthma: Preclinical Development of Flavonoid-Based Treatments. Pharmaceutics 2022; 15:pharmaceutics15010001. [PMID: 36678631 PMCID: PMC9865502 DOI: 10.3390/pharmaceutics15010001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/06/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Asthma is a chronic disease with increasing prevalence and incidence, manifested by allergic inflammatory reactions, and is life-threatening for patients with severe disease. Repetitive challenges with the allergens and limitation of treatment efficacy greatly dampens successful management of asthma. The adverse events related to several drugs currently used, such as corticosteroids and β-agonists, and the low rigorous adherence to preconized protocols likely compromises a more assertive therapy. Flavonoids represent a class of natural compounds with extraordinary antioxidant and anti-inflammatory properties, with their potential benefits already demonstrated for several diseases, including asthma. Advanced technology has been used in the pharmaceutical field to improve the efficacy and safety of drugs. Notably, there is also an increasing interest for the application of these techniques using natural products as active molecules. Flavones, flavonols, flavanones, and chalcones are examples of flavonoid compounds that were tested in controlled delivery systems for asthma treatment, and which achieved better treatment results in comparison to their free forms. This review aims to provide a comprehensive understanding of the development of novel controlled delivery systems to enhance the therapeutic potential of flavonoids as active molecules for asthma treatment.
Collapse
Affiliation(s)
- Sergio M. Borghi
- Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
- Center for Research in Health Sciences, University of Northern Paraná, Londrina 86041-120, PR, Brazil
| | - Tiago H. Zaninelli
- Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Jéssica B. Carra
- Department of Chemistry, State University of Londrina, Londrina 86057-970, PR, Brazil
| | - Olivia K. Heintz
- Vascular Biology Program, Boston Children’s Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Marcela M. Baracat
- Department of Chemistry, State University of Londrina, Londrina 86057-970, PR, Brazil
- Department of Pharmaceutical Sciences, Center of Health Science, Londrina State University, Londrina 86038-440, PR, Brazil
| | - Sandra R. Georgetti
- Department of Pharmaceutical Sciences, Center of Health Science, Londrina State University, Londrina 86038-440, PR, Brazil
| | - Fabiana T. M. C. Vicentini
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, Ribeirão Preto 14040-900, SP, Brazil
| | - Waldiceu A. Verri
- Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
- Correspondence: or (W.A.V.); or (R.C.); Tel.: +55-43-3371-4979 (W.A.V.); +55-43-3371-2476 (R.C.); Fax: +55-43-3371-4387 (W.A.V.)
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Center of Health Science, Londrina State University, Londrina 86038-440, PR, Brazil
- Correspondence: or (W.A.V.); or (R.C.); Tel.: +55-43-3371-4979 (W.A.V.); +55-43-3371-2476 (R.C.); Fax: +55-43-3371-4387 (W.A.V.)
| |
Collapse
|
35
|
Extraction and Purification of Flavonoids from Buddleja officinalis Maxim and Their Attenuation of H 2O 2-Induced Cell Injury by Modulating Oxidative Stress and Autophagy. Molecules 2022; 27:molecules27248985. [PMID: 36558121 PMCID: PMC9784229 DOI: 10.3390/molecules27248985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Cataracts are an ailment representing the leading cause of blindness in the world. The pathogenesis of cataracts is not clear, and there is no effective treatment. An increasing amount of evidence shows that oxidative stress and autophagy in lens epithelial cells play a key role in the occurrence and development of cataracts. Buddleja officinalis Maxim flavonoids (BMF) are natural antioxidants and regulators that present anti-inflammatory and anti-tumor effects, among others. In this study, we optimized the extraction method of BMFs and detected three of their main active monomers (luteolin, apigenin, and acacetin). In addition, a model of oxidative damage model using rabbit lens epithelial cells induced by hydrogen peroxide (H2O2). By detecting the levels of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), malondialdehyde (MDA), and OH (OH), the expression of autophagosomes and autolysosomes were observed after MRFP-GFP-LC3 adenovirus was introduced into the cells. Western blotting was used to detect the expression of Beclin-1 and P62. Our research results showed that the optimal extraction parameters to obtain the highest yield of total flavonoids were a liquid−solid ratio of 1:31 g/mL, an ethanol volume fraction of 67%, an extraction time of 2.6 h, and an extraction temperature of 58 °C. Moreover, the content of luteolin was 690.85 ppb, that of apigenin was 114.91 ppb, and the content of acacetin was 5.617 ppb. After oxidative damage was induced by H2O2, the cell survival rate decreased significantly. BMFs could increase the levels of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) and decrease the levels of malondialdehyde (MDA) and OH (OH). After the MRFP-GFP-LC3 virus was introduced into rabbit lens epithelial cells and detecting the expression of P62 and Beclin-1, we found that the intervention of BMF could promote the binding of autophagosomes to lysosomes. Compared with the model group, the level of P62 in the low-, middle-, and high-dose groups of BMF was significantly down-regulated, the level of Beclin-1 was significantly increased, and the difference was statistically significant (p < 0.05). In other words, the optimized extraction method was better than others, and the purified BMF contained three main active monomers (luteolin, apigenin, and acacetin). In addition, BMFs could ameliorate the H2O2-induced oxidative damage to rabbit lens cells by promoting autophagy and regulating the level of antioxidation.
Collapse
|
36
|
Mroczek J, Pikula S, Suski S, Weremiejczyk L, Biesaga M, Strzelecka-Kiliszek A. Apigenin Modulates AnxA6- and TNAP-Mediated Osteoblast Mineralization. Int J Mol Sci 2022; 23:13179. [PMID: 36361965 PMCID: PMC9658728 DOI: 10.3390/ijms232113179] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 09/21/2023] Open
Abstract
Mineralization-competent cells like osteoblasts and chondrocytes release matrix vesicles (MVs) which accumulate Ca2+ and Pi, creating an optimal environment for apatite formation. The mineralization process requires the involvement of proteins, such as annexins (Anx) and tissue-nonspecific alkaline phosphatase (TNAP), as well as low molecular-weight compounds. Apigenin, a flavonoid compound, has been reported to affect bone metabolism, but there are doubts about its mechanism of action under physiological and pathological conditions. In this report, apigenin potency to modulate annexin A6 (AnxA6)- and TNAP-mediated osteoblast mineralization was explored using three cell lines: human fetal osteoblastic hFOB 1.19, human osteosarcoma Saos-2, and human coronary artery smooth muscle cells HCASMC. We compared the mineralization competence, the morphology and composition of minerals, and the protein distribution in control and apigenin-treated cells and vesicles. The mineralization ability was monitored by AR-S/CPC analysis, and TNAP activity was determined by ELISA assay. Apigenin affected the mineral structure and modulated TNAP activity depending on the concentration. We also observed increased mineralization in Saos-2 cells. Based on TEM-EDX, we found that apigenin influenced the mineral composition. This flavonoid also disturbed the intracellular distribution of AnxA6 and TNAP, especially blocking AnxA6 aggregation and TNAP attachment to the membrane, as examined by FM analysis of cells and TEM-gold analysis of vesicles. In summary, apigenin modulates the mineralization process by regulating AnxA6 and TNAP, as well as through various effects on normal and cancer bone tissues or atherosclerotic soft tissue.
Collapse
Affiliation(s)
- Joanna Mroczek
- Faculty of Chemistry, University of Warsaw, 1 Pasteur Str., 02-093 Warsaw, Poland
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Str., 02-093 Warsaw, Poland
| | - Slawomir Pikula
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Str., 02-093 Warsaw, Poland
| | - Szymon Suski
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Str., 02-093 Warsaw, Poland
| | - Lilianna Weremiejczyk
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Str., 02-093 Warsaw, Poland
| | - Magdalena Biesaga
- Faculty of Chemistry, University of Warsaw, 1 Pasteur Str., 02-093 Warsaw, Poland
| | | |
Collapse
|
37
|
Duan Y, Qi Q, Liu Z, Zhang M, Liu H. Soy consumption and serum uric acid levels: A systematic review and meta-analysis. Front Nutr 2022; 9:975718. [PMID: 36118757 PMCID: PMC9479323 DOI: 10.3389/fnut.2022.975718] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/09/2022] [Indexed: 12/09/2022] Open
Abstract
Background Soy consumption has health benefits, but the relationship between soy and uric acid remains uncertain. This meta-analysis and systematic review evaluated the effects of soy intake on plasma uric acid. Methods PubMed, Embase, CNKI, and the Cochrane Library were searched for studies evaluating the effects of soy, soy products, soy protein, and soy isoflavones on uric acid levels. The primary outcome was serum or plasma uric acid concentration. Study quality was evaluated by the Cochrane Collaboration and SYRCLE risk-of-bias tools. Results A total of 17 studies were included. Qualitative analysis of three human clinical studies of acute effects revealed that soy consumption increased serum uric acid concentration; however, soy-derived products, including tofu, bean curd cake, and dried bean curd sticks, had no significant effect on serum uric acid. A meta-analysis of five long-term human studies (10 data sets) revealed that soy protein and soy isoflavones had no significant effects on uric acid levels [weighted mean difference (WMD) = -2.11; 95% confidence interval (CI): -8.78, 4.55; p = 0.53]. However, most epidemiological data revealed that soy intake is inversely associated with uric acid levels. Meta-analysis of nine animal trials (29 data sets) revealed that soy protein and soy isoflavones significantly reduced serum uric acid concentrations (vs. controls; MD = -38.02; 95% CI: -50.60, -25.44; p < 0.001). Conclusion Soy and its products have different effects on serum uric acid. Soy products like tofu, bean curd cake, and dried bean curd sticks could be high-quality protein sources for individuals with hyperuricemia or gout. It can be beneficial to nutritionists and healthcare decision-makers reconsider their conceptions about the relationship between soy and uric acid levels according to the latest and further scientific study results. Systematic review registration [www.crd.york.ac.uk/PROSPERO], identifier [CRD42022331855].
Collapse
Affiliation(s)
- Ying Duan
- School of Public Health, Bengbu Medical College, Bengbu, Anhui, China
| | - Qi Qi
- School of Public Health, Bengbu Medical College, Bengbu, Anhui, China
| | - Zihao Liu
- School of Public Health, Bengbu Medical College, Bengbu, Anhui, China
| | - Min Zhang
- School of Health Management, Bengbu Medical College, Bengbu, Anhui, China
| | - Huaqing Liu
- School of Public Health, Bengbu Medical College, Bengbu, Anhui, China
| |
Collapse
|
38
|
Jain A, Mehra R, Garhwal R, Rafiq S, Sharma S, Singh B, Kumar S, Kumar K, Kumar N, Kumar H. Manufacturing and characterization of whey and stevia-based popsicles enriched with concentrated beetroot juice. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:3591-3599. [PMID: 35875238 PMCID: PMC9304454 DOI: 10.1007/s13197-022-05364-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/18/2021] [Accepted: 01/10/2022] [Indexed: 06/15/2023]
Abstract
The beet-root (Beta vulgaris) and whey powder together, can potentially use as a multifunctional ingredient in the manufacturing of the "Popsicles", due to their biochemical composition that can enhance the concentration of bioactive compounds. In the present study, beet-root juice concentrates were prepared at different time/temperature treatments viz 45 °C, 55 °C, and 65 °C for 120, 80 and 45 min. The effect of different time/temperature treatments on physicochemical composition, colour, antioxidant activity (%), bioactive compounds, spectral data and sensory acceptance were evaluated. The physicochemical parameters of popsicles (PTI, PT2, PT3) including protein, total phenols, betalain, radical scavenging activity %, colour and melting values were significantly affected (p ≤ 0.05) by the different time/temperature treatments. The concentration of betalain and protein in all the popsicles ranged from 1134 to 1299 mg/L and 1.92 to 1.54 g/100 g respectively. The reduction of bioactive components viz betacyanins, betaxanthins, betanin, oxalic and syringic acid was also observed in popsicle (PTI) as compared to control. Furthermore, popsicle (PT1) was prepared with beet-root juice concentrated at 45 °C showed maximum sensory acceptance. The physicochemical and organoleptic attributes of processed popsicles encourage the commercial usage of whey powder and concentrated beetroot juice.
Collapse
Affiliation(s)
- Aayushi Jain
- Amity Institute of Biotechnology, Amity University, Jaipur, Rajasthan India
| | - Rahul Mehra
- Amity Institute of Biotechnology, Amity University, Jaipur, Rajasthan India
| | - Renu Garhwal
- Amity Institute of Biotechnology, Amity University, Jaipur, Rajasthan India
| | - Shafiya Rafiq
- Amity Institute of Biotechnology, Amity University, Jaipur, Rajasthan India
| | - Seema Sharma
- Department of Food Technology, Jaipur National University, Jaipur, India
| | - Barinderjit Singh
- Department of Applied Agriculture, Central University of Punjab, Bathinda, India
| | - Shiv Kumar
- Department of Food Science and Technology, Institute of Hotel Management, Maharishi Markandeshwar University, Mullana, Ambala, Haryana India
| | - Krishan Kumar
- Department of Food Technology, Eternal University, Baru Sahib, Himachal Pradesh India
| | - Naveen Kumar
- Amity Institute of Biotechnology, Amity University, Jaipur, Rajasthan India
| | - Harish Kumar
- Amity Institute of Biotechnology, Amity University, Jaipur, Rajasthan India
| |
Collapse
|
39
|
Modulatory Effects of Arctostaphylos uva-urs Extract In Ovo Injected into Broiler Embryos Contaminated by Aflatoxin B1. Animals (Basel) 2022; 12:ani12162042. [PMID: 36009632 PMCID: PMC9404454 DOI: 10.3390/ani12162042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
In ovo injection of nutrients can modulate the embryo’s physiological responses against aflatoxin B1 (AFB1) embryotoxicity. This hypothesis was tested using in ovo injection of Arctostaphylos uva-ursi (Ar. uu.) methanolic extract. The total polyphenols, total flavonoids, total antioxidant capacity, and GC-MS analysis were all assessed in the Ar. uu. methanolic extract. A total of 180 ten-day-old embryonated eggs were distributed into six groups of 30 replicates each. The first group was used as a control (non-injected), and the second, third, fourth, fifth, and sixth groups were injected with 10 µ double-distilled water (DDW), 500 µL methanol, 0.01 g Ar. uu./500 µL methanol, 50 ng AFB1/10 µL DDW, and 50 ng AFB1 in 10 µ DDW + 0.01 g Ar. uu./500 µL methanol, respectively. The relative embryo weight, residual yolk sac weight, tibia length and weight, and survival were recorded. Total and differential leukocytes, oxidative stress, and humoral immune responses were observed. The residual yolk sac was lower (p < 0.05) in the Ar. uu. group than other groups. The embryonic growth (tibia weight and length) was enhanced in AFB1 + Ar. uu.-injected embryos compared with those injected with AFB1 alone. In conclusion, in ovo injection of Arctostaphylos uva-ursi could modulate AFB1-induced toxicity in chicken embryos.
Collapse
|
40
|
Sun F, Li B, Guo Y, Wang Y, Cheng T, Yang Q, Liu J, Fan Z, Guo Z, Wang Z. Effects of ultrasonic pretreatment of soybean protein isolate on the binding efficiency, structural changes, and bioavailability of a protein-luteolin nanodelivery system. ULTRASONICS SONOCHEMISTRY 2022; 88:106075. [PMID: 35753139 PMCID: PMC9240864 DOI: 10.1016/j.ultsonch.2022.106075] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/08/2022] [Accepted: 06/17/2022] [Indexed: 05/09/2023]
Abstract
The combination of protein and flavonoids can ameliorate the problems of poor solubility and stability of flavonoids in utilization. In this study, soybean protein isolate pretreated by ultrasonication was selected as the embedding wall material, which was combined with luteolin to form a soybean protein isolate-luteolin nanodelivery system. The complexation effect and structural changes of soybean protein isolate (SPI) and ultrasonic pretreatment (100 W, 200 W, 300 W, 400 W and 500 W) of soybean protein isolate with luteolin (LUT) were compared, as well as the changes in digestion characteristics and antioxidant activity in vitro. The results showed that proper ultrasonic pretreatment increased the encapsulation efficacy, loading amount and solubility to 89.72%, 2.51 μg/mg and 90.56%. Appropriate ultrasonic pretreatment could make the particle size and the absolute value of ζ-potential of SPI-LUT nanodelivery system decrease and increase respectively. The FTIR and fluorescence results show that appropriate ultrasonic pretreatment could reduce α-helix, β-sheet and random coil, increase β-turn, and enhance fluorescence quenching. The thermodynamic evaluation results indicate that the ΔG < 0, ΔH > 0 and ΔS > 0, so the interaction of LUT with the protein was spontaneous and mostly governed by hydrophobic interactions. The XRD results show that the LUT was amorphous and completely wrapped by SPI. The DSC results showed that ultrasonic pretreatment could improve the thermal stability of SPI-LUT nanodelivery system to 112.66 ± 1.69 °C. Digestion and antioxidant analysis showed that appropriate ultrasonic pretreatment increased the LUT release rate and DPPH clearance rate of SPI-LUT nanodelivery system to 89.40 % and 55.63 % respectively. This study is a preliminary source for the construction of an SPI nanodelivery system with ultrasound pretreatment and the deep processing and utilization of fat-soluble active substances.
Collapse
Affiliation(s)
- Fuwei Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Bailiang Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yanan Guo
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yichang Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Tianfu Cheng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qingyu Yang
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China
| | - Jun Liu
- Kedong Yuwang Soybean Protein Food Co., Ltd, Qiqihaer, Heilongjiang 161000, China; Shandong Yuwang Industrial Co., Ltd, Dezhou, Shandong 251299, China
| | - Zhijun Fan
- Heilongjiang Beidahuang Green and Healthy Food Co., Ltd, Jiamusi, Heilongjiang 154007, China
| | - Zengwang Guo
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Zhongjiang Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
41
|
Privatti RT, Capellini MC, Thomazini M, Favaro-Trindade CS, Rodrigues CEC. Profile and content of isoflavones on flaked and extruded soybeans and okara submitted to different drying methods. Food Chem 2022; 380:132168. [PMID: 35121442 DOI: 10.1016/j.foodchem.2022.132168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 11/17/2021] [Accepted: 01/13/2022] [Indexed: 11/28/2022]
Abstract
Isoflavones (IFs) are biocompounds found in considerable amounts in soybean grains. However, to originate soybean-based materials, the grains must be subjected to numerous thermal and mechanical treatments, which can impair the IFs content. The influence of these treatments was investigated and a protocol for IFs extraction and quantification is proposed. Sequential extractions were performed on industrially pretreated soybean samples (broken, flakes, and collets), on okara submitted to different drying methods (freeze-drying, forced convection, and under vacuum), and on soybean oils extracted with hexane and ethanol. β-glucosides levels were decreased by the thermal processes of lamination, expansion, and drying, while the aglycone forms were not affected. Lyophilization was identified as the most viable drying method for the quantification of IFs in okara. Soybean oils extracted with ethanol presented significant amounts of aglycone. Furthermore, two stages of extraction were sufficient for the recovery of the IFs from different matrices.
Collapse
Affiliation(s)
- Rafaela T Privatti
- Laboratório de Engenharia de Separações (LES), Departamento de Engenharia de Alimentos (ZEA), Faculdade de Zootecnia e Engenharia de Alimentos (FZEA), Universidade de São Paulo (USP), 13635-900 Pirassununga, São Paulo, Brazil
| | - Maria C Capellini
- Laboratório de Engenharia de Separações (LES), Departamento de Engenharia de Alimentos (ZEA), Faculdade de Zootecnia e Engenharia de Alimentos (FZEA), Universidade de São Paulo (USP), 13635-900 Pirassununga, São Paulo, Brazil
| | - Marcelo Thomazini
- Laboratório de Encapsulação e Alimentos Funcionais (LENALIS), Departamento de Engenharia de Alimentos (ZEA), Faculdade de Zootecnia e Engenharia de Alimentos (FZEA), Universidade de São Paulo (USP), 13635-900 Pirassununga, São Paulo, Brazil
| | - Carmen S Favaro-Trindade
- Laboratório de Encapsulação e Alimentos Funcionais (LENALIS), Departamento de Engenharia de Alimentos (ZEA), Faculdade de Zootecnia e Engenharia de Alimentos (FZEA), Universidade de São Paulo (USP), 13635-900 Pirassununga, São Paulo, Brazil
| | - Christianne E C Rodrigues
- Laboratório de Engenharia de Separações (LES), Departamento de Engenharia de Alimentos (ZEA), Faculdade de Zootecnia e Engenharia de Alimentos (FZEA), Universidade de São Paulo (USP), 13635-900 Pirassununga, São Paulo, Brazil.
| |
Collapse
|
42
|
Ma F, Sun M, Song Y, Wang A, Jiang S, Qian F, Mu G, Tuo Y. Lactiplantibacillus plantarum-12 Alleviates Inflammation and Colon Cancer Symptoms in AOM/DSS-Treated Mice through Modulating the Intestinal Microbiome and Metabolome. Nutrients 2022; 14:nu14091916. [PMID: 35565884 PMCID: PMC9100115 DOI: 10.3390/nu14091916] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/15/2022] [Accepted: 04/18/2022] [Indexed: 12/13/2022] Open
Abstract
In our previous research, Lactiplantibacillus plantarum-12 alleviated inflammation in dextran sodium sulfate (DSS)-induced mice by regulating intestinal microbiota and preventing colon shortening (p < 0.05). The purpose of the present study was to evaluate whether L. plantarum-12 could ameliorate the colon cancer symptoms of azoxymethane (AOM)/DSS-treated C57BL/6 mice. The results showed that L. plantarum-12 alleviated colonic shortening (from 7.43 ± 0.15 to 8.23 ± 0.25) and weight loss (from 25.92 ± 0.21 to 27.75 ± 0.88) in AOM/DSS-treated mice. L. plantarum-12 oral administration down-regulated pro-inflammatory factors TNF-α (from 350.41 ± 15.80 to 247.72 ± 21.91), IL-8 (from 322.19 ± 11.83 to 226.08 ± 22.06), and IL-1β (111.43 ± 8.14 to 56.90 ± 2.70) levels and up-regulated anti-inflammatory factor IL-10 (from 126.08 ± 24.92 to 275.89 ± 21.87) level of AOM/DSS-treated mice. L. plantarum-12 oral administration restored the intestinal microbiota dysbiosis of the AOM/DSS treated mice by up-regulating beneficial Muribaculaceae, Lactobacillaceae, and Bifidobacteriaceae levels and down-regulating pathogenic Proteobacteria, Desulfovibrionaceae, and Erysipelotrichaceae levels. As a result, the fecal metabolites of the AOM/DSS-treated mice were altered, including xanthosine, uridine, 3,4-methylenesebacic acid, 3-hydroxytetradecanedioic acid, 4-hydroxyhexanoylglycine, beta-leucine, and glycitein, by L. plantarum-12 oral administration. Furthermore, L. plantarum-12 oral administration significantly ameliorated the colon injury of the AOM/DSS-treated mice by enhancing colonic tight junction protein level and promoting tumor cells death via down-regulating PCNA (proliferating cell nuclear antigen) and up-regulating pro-apoptotic Bax. (p < 0.05). Taken together, L. plantarum-12 oral administration could ameliorate the colon cancer burden and inflammation of AOM-DSS-treated C57BL/6 mice through regulating the intestinal microbiota, manipulating fecal metabolites, enhancing colon barrier function, and inhibiting NF-κB signaling. These results suggest that L. plantarum-12 might be an excellent probiotic candidate for the prevention of colon cancer.
Collapse
Affiliation(s)
- Fenglian Ma
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (F.M.); (M.S.); (Y.S.); (A.W.); (S.J.); (F.Q.)
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, China
| | - Mengying Sun
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (F.M.); (M.S.); (Y.S.); (A.W.); (S.J.); (F.Q.)
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, China
| | - Yinglong Song
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (F.M.); (M.S.); (Y.S.); (A.W.); (S.J.); (F.Q.)
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, China
| | - Arong Wang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (F.M.); (M.S.); (Y.S.); (A.W.); (S.J.); (F.Q.)
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, China
| | - Shujuan Jiang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (F.M.); (M.S.); (Y.S.); (A.W.); (S.J.); (F.Q.)
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, China
| | - Fang Qian
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (F.M.); (M.S.); (Y.S.); (A.W.); (S.J.); (F.Q.)
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, China
| | - Guangqing Mu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (F.M.); (M.S.); (Y.S.); (A.W.); (S.J.); (F.Q.)
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, China
- Correspondence: (G.M.); (Y.T.); Tel./Fax: +86-0411-86324506 (G.M.); +86-0411-86322121 (Y.T.)
| | - Yanfeng Tuo
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (F.M.); (M.S.); (Y.S.); (A.W.); (S.J.); (F.Q.)
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, China
- Correspondence: (G.M.); (Y.T.); Tel./Fax: +86-0411-86324506 (G.M.); +86-0411-86322121 (Y.T.)
| |
Collapse
|
43
|
Moraes de Farias K, Rosa-Ribeiro R, Souza EE, Kobarg J, Banwell MG, de Brito Vieira Neto J, Leyenne Alves Sales S, Roberto Ribeiro Costa P, Cavalcante Dos Santos R, Vilaça Gaspar F, Gomes Barreto Junior A, da Conceição Ferreira Oliveira M, Odorico de Moraes M, Libardi M Furtado C, Carvalho HF, Pessoa C. The Isoflavanoid (+)-PTC Regulates Cell-Cycle Progression and Mitotic Spindle Assembly in a Prostate Cancer Cell Line. Chem Biodivers 2022; 19:e202200102. [PMID: 35362194 DOI: 10.1002/cbdv.202200102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/31/2022] [Indexed: 12/24/2022]
Abstract
Prostate cancer is the second most common malignancy in men and the development of effective therapeutic strategies remains challenging when more advanced, androgen-independent or insensitive forms are involved. Accordingly, we have evaluated, using flow cytometry, confocal microscopy and image analysis, the anti-proliferative effects of (+)-2,3,9-trimethoxypterocarpan [(+)-PTC, 1] on relevant human prostate cancer cells as well as its capacity to control mitosis within them. In particular, the studies reported herein reveal that (+)-PTC exerts anti-proliferative activity against the PC-3 cell lines by regulating cell-cycle progression with mitosis being arrested in the prophase or prometaphase. Furthermore, it emerges that treatment of the target cells with this compound results in the formation of monopolar spindles, disorganized centrosomes and extensively disrupted γ-tubulin distributions while centriole replication remains unaffected. Such effects suggest (+)-PTC should be considered as a possible therapy for androgen-insensitive/independent prostate cancer.
Collapse
Affiliation(s)
- Kaio Moraes de Farias
- Programa de Pós-Graduação em Biotecnologia - RENORBIO - Rede Nordeste de Biotecnologia, Federal University of Ceará - UFC, 60020-181, Fortaleza, CE, Brazil.,Núcleo de Pesquisa e Desenvolvimento de Medicamentos - NPDM, Federal University of Ceará - UFC, Fortaleza, CE 60430-275, Brazil
| | - Rafaela Rosa-Ribeiro
- Department of Structural and Functional Biology, Biology Institute, State University of Campinas, Campinas, 13083-970, SP, Brazil
| | - Edmarcia E Souza
- Faculdade de Ciências Farmacêuticas, State University of Campinas, Campinas, 13083-859, SP, Brazil
| | - Jörg Kobarg
- Faculdade de Ciências Farmacêuticas, State University of Campinas, Campinas, 13083-859, SP, Brazil
| | - Martin G Banwell
- Institute for Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou, 510632, China
| | - José de Brito Vieira Neto
- Núcleo de Pesquisa e Desenvolvimento de Medicamentos - NPDM, Federal University of Ceará - UFC, Fortaleza, CE 60430-275, Brazil
| | - Sarah Leyenne Alves Sales
- Núcleo de Pesquisa e Desenvolvimento de Medicamentos - NPDM, Federal University of Ceará - UFC, Fortaleza, CE 60430-275, Brazil
| | - Paulo Roberto Ribeiro Costa
- Laboratório de Química Bioorgânica (LQB), Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-909, RJ, Brazil
| | - Rafael Cavalcante Dos Santos
- Engenharia de Processos Químicos e Bioquímicos (EPQB), Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-909, RJ, Brazil
| | - Francisco Vilaça Gaspar
- Laboratório de Química Bioorgânica (LQB), Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-909, RJ, Brazil
| | - Amaro Gomes Barreto Junior
- Engenharia de Processos Químicos e Bioquímicos (EPQB), Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-909, RJ, Brazil
| | | | - Manoel Odorico de Moraes
- Núcleo de Pesquisa e Desenvolvimento de Medicamentos - NPDM, Federal University of Ceará - UFC, Fortaleza, CE 60430-275, Brazil
| | - Cristiana Libardi M Furtado
- Núcleo de Pesquisa e Desenvolvimento de Medicamentos - NPDM, Federal University of Ceará - UFC, Fortaleza, CE 60430-275, Brazil.,Experimental Biology Center - NUBEX, University of Fortaleza, UNIFOR, Fortaleza, CE 60811-905, Brazil
| | - Hernandes F Carvalho
- Department of Structural and Functional Biology, Biology Institute, State University of Campinas, Campinas, 13083-970, SP, Brazil
| | - Claudia Pessoa
- Programa de Pós-Graduação em Biotecnologia - RENORBIO - Rede Nordeste de Biotecnologia, Federal University of Ceará - UFC, 60020-181, Fortaleza, CE, Brazil.,Núcleo de Pesquisa e Desenvolvimento de Medicamentos - NPDM, Federal University of Ceará - UFC, Fortaleza, CE 60430-275, Brazil
| |
Collapse
|
44
|
Liu W, Yang X, Li M, Gui QW, Jiang H, Li Y, Shen Q, Xia J, Liu X. Sensitive detection of luteolin in peanut shell based on titanium carbide/carbon nanotube composite modified screen-printed electrode. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
45
|
Wang B, Ding Y, Zhao P, Li W, Li M, Zhu J, Ye S. Systems pharmacology-based drug discovery and active mechanism of natural products for coronavirus pneumonia (COVID-19): An example using flavonoids. Comput Biol Med 2022; 143:105241. [PMID: 35114443 PMCID: PMC8789666 DOI: 10.1016/j.compbiomed.2022.105241] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND Recently, the value of natural products has been extensively considered because these resources can potentially be applied to prevent and treat coronavirus pneumonia 2019 (COVID-19). However, the discovery of nature drugs is problematic because of their complex composition and active mechanisms. METHODS This comprehensive study was performed on flavonoids, which are compounds with anti-inflammatory and antiviral effects, to show drug discovery and active mechanism from natural products in the treatment of COVID-19 via a systems pharmacological model. First, a chemical library of 255 potential flavonoids was constructed. Second, the pharmacodynamic basis and mechanism of action between flavonoids and COVID-19 were explored by constructing a compound-target and target-disease network, targets protein-protein interaction (PPI), MCODE analysis, gene ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. RESULTS In total, 105 active flavonoid components were identified, of which 6 were major candidate compounds (quercetin, epigallocatechin-3-gallate (EGCG), luteolin, fisetin, wogonin, and licochalcone A). 152 associated targets were yielded based on network construction, and 7 family proteins (PTGS, GSK3β, ABC, NOS, EGFR, and IL) were included as central hub targets. Moreover, 528 GO items and 178 KEGG pathways were selected through enrichment of target functions. Lastly, molecular docking demonstrated good stability of the combination of selected flavonoids with 3CL Pro and ACEⅡ. CONCLUSION Natural flavonoids could enable resistance against COVID-19 by regulating inflammatory, antiviral, and immune responses, and repairing tissue injury. This study has scientific significance for the selective utilization of natural products, medicinal value enhancement of flavonoids, and drug screening for the treatment of COVID-19 induced by SARS-COV-2.
Collapse
Affiliation(s)
- Bin Wang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, China
| | - Yan Ding
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, China.
| | - Penghui Zhao
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, China
| | - Wei Li
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu, 41062, South Korea
| | - Ming Li
- College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Jingbo Zhu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, China; Institute of Chemistry and Applications of Plant Resources, Dalian Polytechnic University, Dalian, Liaoning, 116034, China
| | - Shuhong Ye
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, China.
| |
Collapse
|
46
|
Salvadora persica attenuates DMBA-induced mammary cancer through downregulation oxidative stress, estrogen receptor expression and proliferation and augmenting apoptosis. Biomed Pharmacother 2022; 147:112666. [DOI: 10.1016/j.biopha.2022.112666] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/16/2022] [Accepted: 01/24/2022] [Indexed: 02/06/2023] Open
|
47
|
Tan C, Fan H, Ding J, Han C, Guan Y, Zhu F, Wu H, Liu Y, Zhang W, Hou X, Tan S, Tang Q. ROS-responsive nanoparticles for oral delivery of luteolin and targeted therapy of ulcerative colitis by regulating pathological microenvironment. Mater Today Bio 2022; 14:100246. [PMID: 35372817 PMCID: PMC8965165 DOI: 10.1016/j.mtbio.2022.100246] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/16/2022] [Accepted: 03/19/2022] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress, caused by excessive production of reactive oxygen species (ROS), plays a crucial role in the occurrence and development of ulcerative colitis (UC). We developed ROS-responsive nanoparticles (NPs) as an efficacious nanomedicine against UC with oral administration. The NPs were fabricated with a d-α-tocopherol polyethylene glycol succinate-b-poly(β-thioester) copolymer (TPGS-PBTE) for ROS cleavage via the colitis-targeted delivery of luteolin (LUT), a natural flavonoid with good anti-inflammation and radical-scavenging activity. Owing to the thioether bond in the polymer main chain, the TPGS-PBTE NPs exhibited an ROS-responsive size change and drug release, which benefited the ROS-scavenging and selective accumulation of LUT in the inflamed colon. In a dextran sulfate sodium-induced acute colitis murine model, LUT@TPGS-PBTE NPs alleviated body weight loss, colon length shortening, and damage to the colonic tissues due to the suppression of ROS and proinflammatory cytokines (e.g., IL-17A, IL-6, interferon-γ, tumor necrosis factor-α), as well as upregulation of glutathione and anti-inflammatory factors (e.g., IL-10, IL-4). More importantly, LUT@TPGS-PBTE NPs regulated the inflammatory microenvironment by modulating the T helper (Th)1/Th2 and Th17/regulatory T cell (Treg) balance (i.e., increased numbers of Tregs and Th2 cells and decreased numbers of Th1 and Th17 cells), thus resolving inflammation and accelerating the healing of the intestinal mucosa. Additionally, the LUT@TPGS-PBTE NPs formulation enabled the reduction of the effective dose of LUT and showed excellent biosafety in the mouse model, demonstrating its potential as a targeted UC therapeutic oral preparation.
Collapse
Affiliation(s)
- Chen Tan
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Heng Fan
- Department of Integrated Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiahui Ding
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chaoqun Han
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yang Guan
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Feng Zhu
- Department of Integrated Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hui Wu
- Department of Integrated Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yujin Liu
- Department of Integrated Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Zhang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaohua Hou
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Songwei Tan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qing Tang
- Department of Integrated Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
48
|
Wang J, Li D, Zhao B, Kim J, Sui G, Shi J. Small Molecule Compounds of Natural Origin Target Cellular Receptors to Inhibit Cancer Development and Progression. Int J Mol Sci 2022; 23:ijms23052672. [PMID: 35269825 PMCID: PMC8911024 DOI: 10.3390/ijms23052672] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/16/2022] [Accepted: 02/25/2022] [Indexed: 01/03/2023] Open
Abstract
Receptors are macromolecules that transmit information regulating cell proliferation, differentiation, migration and apoptosis, play key roles in oncogenic processes and correlate with the prognoses of cancer patients. Thus, targeting receptors to constrain cancer development and progression has gained widespread interest. Small molecule compounds of natural origin have been widely used as drugs or adjuvant chemotherapeutic agents in cancer therapies due to their activities of selectively killing cancer cells, alleviating drug resistance and mitigating side effects. Meanwhile, many natural compounds, including those targeting receptors, are still under laboratory investigation for their anti-cancer activities and mechanisms. In this review, we classify the receptors by their structures and functions, illustrate the natural compounds targeting these receptors and discuss the mechanisms of their anti-cancer activities. We aim to provide primary knowledge of mechanistic regulation and clinical applications of cancer therapies through targeting deregulated receptors.
Collapse
Affiliation(s)
| | | | | | | | - Guangchao Sui
- Correspondence: (G.S.); (J.S.); Tel.: +86-451-82191081 (G.S. & J.S.)
| | - Jinming Shi
- Correspondence: (G.S.); (J.S.); Tel.: +86-451-82191081 (G.S. & J.S.)
| |
Collapse
|
49
|
Liu J, Jiang W. Identification and characterization of unique 5-hydroxyisoflavonoid biosynthetic key enzyme genes in Lupinus albus. PLANT CELL REPORTS 2022; 41:415-430. [PMID: 34851457 DOI: 10.1007/s00299-021-02818-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
5-Hydroxyisoflavonoids, no 5-deoxyisoflavonoids, in Lupinus species, are due to lack of CHRs and Type II CHIs, and the key enzymes of isoflavonoid biosynthetic pathway in white lupin were identified. White lupin (Lupinus albus) is used as food ingredients owing to rich protein, low starch, and rich bioactive compounds such as isoflavonoids. The isoflavonoids biosynthetic pathway in white lupin still remains unclear. In this study, only 5-hydroxyisoflavonoids, but no 5-deoxyisoflavonoids, were detected in white lupin and other Lupinus species. No 5-deoxyisoflavonoids in Lupinus species are due to lack of CHRs and Type II CHIs. We further found that the CHI gene cluster containing both Type I and Type II CHIs possibly arose after the divergence of Lupinus with other legume clade. LaCHI1 and LaCHI2 identified from white lupin metabolized naringenin chalcone to naringenin in yeast and tobacco (Nicotiana benthamiana), and were bona fide Type I CHIs. We further identified two isoflavone synthases (LaIFS1 and LaIFS2), catalyzing flavanone naringenin into isoflavone genistein and also catalyzing liquiritigenin into daidzein in yeast and tobacco. In addition, LaG6DT1 and LaG6DT2 prenylated genistein at the C-6 position into wighteone. Two glucosyltransferases LaUGT1 and LaUGT2 metabolized genistein and wighteone into its 7-O-glucosides. Taken together, our study not only revealed that exclusive 5-hydroxyisoflavonoids do exist in Lupinus species, but also identified key enzymes in the isoflavonoid biosynthetic pathway in white lupin.
Collapse
Affiliation(s)
- Jinyue Liu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, Jiangxi, 332900, China
| | - Wenbo Jiang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
50
|
Homaeigohar S, Boccaccini AR. Nature-Derived and Synthetic Additives to poly(ɛ-Caprolactone) Nanofibrous Systems for Biomedicine; an Updated Overview. Front Chem 2022; 9:809676. [PMID: 35127651 PMCID: PMC8807494 DOI: 10.3389/fchem.2021.809676] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/16/2021] [Indexed: 12/16/2022] Open
Abstract
As a low cost, biocompatible, and bioresorbable synthetic polymer, poly (ɛ-caprolactone) (PCL) is widely used for different biomedical applications including drug delivery, wound dressing, and tissue engineering. An extensive range of in vitro and in vivo tests has proven the favourable applicability of PCL in biomedicine, bringing about the FDA approval for a plethora of PCL made medical or drug delivery systems. This popular polymer, widely researched since the 1970s, can be readily processed through various techniques such as 3D printing and electrospinning to create biomimetic and customized medical products. However, low mechanical strength, insufficient number of cellular recognition sites, poor bioactivity, and hydrophobicity are main shortcomings of PCL limiting its broader use for biomedical applications. To maintain and benefit from the high potential of PCL, yet addressing its physicochemical and biological challenges, blending with nature-derived (bio)polymers and incorporation of nanofillers have been extensively investigated. Here, we discuss novel additives that have been meant for enhancement of PCL nanofiber properties and thus for further extension of the PCL nanofiber application domain. The most recent researches (since 2017) have been covered and an updated overview about hybrid PCL nanofibers is presented with focus on those including nature-derived additives, e.g., polysaccharides and proteins, and synthetic additives, e.g., inorganic and carbon nanomaterials.
Collapse
Affiliation(s)
- Shahin Homaeigohar
- School of Science and Engineering, University of Dundee, Dundee, United Kingdom
| | - Aldo R. Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|